1
|
Wang Z, Mu W, Xu R, Zhong J, Xiong W, Zhao X, Liang X, Guo Y, Zhang J, Jiang ZS, Yang B, Chen YE, Chang L. Perivascular adipose tissue dysfunction contributes to thoracic aortic aneurysm development. Cardiovasc Diabetol 2025; 24:223. [PMID: 40399937 PMCID: PMC12096520 DOI: 10.1186/s12933-025-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a life-threatening disease with high morbidity and mortality rates due to fatal complications such as aortic rupture. However, molecular mechanisms underlying TAA pathogenesis remain to be fully elucidated. The aorta is naturally surrounded by perivascular adipose tissue (PVAT), which produces and releases adipokines and other factors in a paracrine manner that are pivotal for vascular physiology and pathophysiology. Under healthy conditions, thoracic PVAT resembles brown adipose tissue (BAT) and maintains vascular homeostasis. In response to pathogenic stimuli, PVAT can undergo whitening and become dysfunctional, contributing to the development of vascular diseases. However, a causal relationship between PVAT dysfunction and TAA pathogenesis, as well as the underlying mechanisms, remain unknown. This study investigated the roles of PPARg (a key determinant of adipogenesis) and PRDM16 (a key determinant of brown adipocyte development) in PVAT on TAA development. METHODS PVAT samples from TAA patients were collected and evaluated. Mice lacking PVAT and those with dysfunctional PVAT were generated by crossbreeding Ucp1 promoter-driven Cre mice with Pparg floxed mice (brown adipocyte-specific Pparg knockout, PpargBAKO) and Prdm16 floxed mice (brown adipocyte-specific Prdm16 knockout, Prdm16BAKO), respectively. TAA formation was induced by perivascular application of porcine pancreatic elastase (PPE) and evaluated through histological staining. Luciferase reporter assays and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) were used to determine PRDM16 target genes. RESULTS We found that PVAT near TAA lesions in patients exhibited reduced expression of browning markers and increased expression of whitening markers. PpargBAKO mice showed impaired PVAT development, while Prdm16BAKO mice displayed a loss of browning in PVAT. Both PpargBAKO and Prdm16BAKO mice exhibited aggravated TAA formation. We identified decorin, a small proteoglycan of the extracellular matrix, as a transcriptional repressive target gene of PRDM16. The expression of decorin was increased in dysfunctional PVAT and the plasma of TAA patients. CONCLUSIONS The development and maintenance of brown-like characteristics in PVAT are necessary to protect against TAA formation. PVAT dysfunction contributes to TAA development. Our study provides a promising therapeutic strategy for preventing TAA progression by inducing PVAT browning.
Collapse
MESH Headings
- Animals
- PPAR gamma/genetics
- PPAR gamma/metabolism
- PPAR gamma/deficiency
- Humans
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Disease Models, Animal
- Mice, Knockout
- Male
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiopathology
- Adipose Tissue, Brown/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/deficiency
- Female
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/pathology
- Mice, Inbred C57BL
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/deficiency
- Middle Aged
- Case-Control Studies
- Aged
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenjuan Mu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Ruiyan Xu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Juan Zhong
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenhao Xiong
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiangjie Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
- Key Laboratory of Animal Cellular and Genetics, Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiubin Liang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Bo Yang
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Santana-Oliveira DA, Souza-Tavares H, Fernandes-da-Silva A, Marinho TS, Silva-Veiga FM, Daleprane JB, Souza-Mello V. Obesity prevention by different exercise protocols (HIIT or MICT) involves beige adipocyte recruitment and improved mitochondrial dynamics in high-fat-fed mice. Mol Cell Endocrinol 2025; 602:112533. [PMID: 40157711 DOI: 10.1016/j.mce.2025.112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
AIM This study evaluated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on UCP1-dependent and UCP1-independent thermogenic and mitochondrial dynamics markers in the inguinal sWAT of high-fat-fed mice. METHODS Sixty male C57BL/6 mice (3 months old) were divided into six experimental groups: control diet (C), C + HIIT (C-HIIT), C + MICT (C-MICT), high-fat diet (HF), HF + HIIT (HF-HIIT) and HF + MICT (HF-MICT). The diet and exercise protocols started simultaneously and lasted ten weeks. RESULTS HIIT and MICT prevented body mass gain and fat pad expansion, improved insulin sensitivity, and induced browning in C-fed and HF-fed animals. Chronic intake of a HF diet caused adipocyte hypertrophy with a proinflammatory adipokine profile and impaired the expression of thermogenic and mitochondrial dynamics markers. However, both exercise intensities increased anti-inflammatory adipokine concentrations and improved gene markers of mitochondrial dynamics, resulting in sustained UCP1-dependent and UCP1-independent thermogenic markers and maintenance of the beige phenotype in inguinal sWAT. The principal component analysis placed all trained groups opposite the HF group and near the C group, ensuring the effectiveness of HIIT and MICT to prevent metabolic alterations. CONCLUSIONS This study provides reliable evidence that, regardless of intensity, exercise is a strategy to prevent obesity by reducing body fat accumulation and inducing browning. The anti-inflammatory adipokine profile and the increased expression of UCP1-dependent and UCP1-independent thermogenic markers sustained active beige adipocytes and mitochondrial enhancement to halt metabolic disturbances due to HF-feeding in exercised mice.
Collapse
Affiliation(s)
- Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Henrique Souza-Tavares
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flavia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology. Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Wang L, Wang Y, Ding K, Li Z, Zhang Z, Li X, Song Y, Xie L, Chen Z. YTHDC1 promotes postnatal brown adipose tissue development and thermogenesis by stabilizing PPARγ. EMBO J 2025:10.1038/s44318-025-00460-x. [PMID: 40355558 DOI: 10.1038/s44318-025-00460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Brown adipose tissue (BAT) plays a vital role in non-shivering thermogenesis and energy metabolism and is influenced by factors like environmental temperature, ageing, and obesity. However, the molecular mechanisms behind BAT development and thermogenesis are not fully understood. Our study identifies the m6A reader protein YTHDC1 as a crucial regulator of postnatal interscapular BAT development and energy metabolism in mice. YTHDC1 directly interacts with PPARγ through its intrinsically disordered region (IDR), thus protecting PPARγ from binding the E3 ubiquitin ligase ARIH2, and preventing its ubiquitin-mediated proteasomal degradation. Specifically, the ARIH2 RING2 domain is essential for PPARγ degradation, while PPARγ's A/B domain is necessary for their interaction. Deletion of Ythdc1 in BAT increases PPARγ degradation, impairing interscapular BAT development, thermogenesis, and overall energy expenditure. These findings reveal a novel mechanism by which YTHDC1 regulates BAT development and energy homeostasis independently of its m6A recognition function.
Collapse
Affiliation(s)
- Lihua Wang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
- Department of Cardiovascular Surgery, Institute for Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Kaixin Ding
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhipeng Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yue Song
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
4
|
Vannuchi N, Pisani L. PGC-1α Activation by Polyphenols: A Pathway to Thermogenesis. Mol Nutr Food Res 2025:e70072. [PMID: 40296576 DOI: 10.1002/mnfr.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
This review investigates the role of polyphenols, abundant natural compounds found in food, to influence the metabolic pathways involved in the thermogenesis and browning of white adipose tissue (WAT). Numerous proteins demonstrate altered expression patterns following prolonged polyphenol consumption, with peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) recognized as a key regulator, contributing to increased thermogenicity of adipose tissues. Polyphenols may enhance PGC-1α activity, stimulating WAT browning, and elevating brown adipose tissue (BAT) thermogenesis. Various classes of polyphenols are explored, along with extensive protein signaling and the physiological implications of these findings. A comprehensive understanding of the myriad proteins and pathways implicated in browning studies can provide readers with a broader perspective on the modulated response of adipose tissue to polyphenols and guide them to innovative therapeutic strategies for lipid metabolism, obesity, and associated metabolic disorders.
Collapse
Affiliation(s)
- Nicholas Vannuchi
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Luciana Pisani
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| |
Collapse
|
5
|
Seewooruttun C, Bouguila B, Corona A, Delanaud S, Bodin R, Bach V, Desailloud R, Pelletier A. 5G Radiofrequency Exposure Reduces PRDM16 and C/EBP β mRNA Expression, Two Key Biomarkers for Brown Adipogenesis. Int J Mol Sci 2025; 26:2792. [PMID: 40141434 PMCID: PMC11942954 DOI: 10.3390/ijms26062792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The widespread use of wireless technologies has raised public health concerns about the biological effects of radiofrequency (RF) exposure. Children have a higher specific absorption rate (SAR) of radiation energy compared to adults. Furthermore, brown adipose tissue (BAT) is more prevalent in infants and tends to decrease with age. Previous animal studies demonstrated a cold sensation in rats exposed to 900 MHz (second generation, 2G). UCP1-dependent thermogenesis and BAT hyperplasia are two fundamental adaptive mechanisms initiated in response to cold. This study investigated the impact of short-term exposure to 2G and fifth generation (5G) on key thermogenic and adipogenic markers related to these mechanisms while considering age and exposure duration. Juvenile and young adult Wistar rats were randomized into three subgroups: a 5G group (3.5 GHz), 2G group (900 MHz), and a control group (SHAM). They were exposed to their respective continuous-wave RF signals for 1 or 2 weeks at an intensity of 1.5 V/m, with two exposure sessions of 1 h per day. After the exposure period, a RT-qPCR was carried out to evaluate the genetic markers involved in BAT thermogenesis and adipogenesis. Two adipogenic biomarkers were affected; a fold change reduction of 49% and 32% was detected for PRDM16 (p = 0.016) and C/EBP β (p = 0.0002), respectively, after 5G exposure, regardless of age and exposure duration. No significant RF effect was found on UCP1-dependent thermogenesis at a transcriptional level. These findings suggest that exposure to a 5G radiofrequency may partially disrupt brown adipocyte differentiation and thermogenic function by downregulating PRDM16 and C/EBP β, possibly leading to higher cold sensitivity.
Collapse
Affiliation(s)
- Chandreshwar Seewooruttun
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Bélir Bouguila
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Aurélie Corona
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Stéphane Delanaud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Raphaël Bodin
- PériTox (UMR I_01), INERIS/UPJV, INERIS, MIV/TEAM, 60550 Verneuil-en-Halatte, France
| | - Véronique Bach
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| | - Rachel Desailloud
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
- Department of Endocrinology, Diabetes Mellitus and Nutrition, Amiens University Hospital, 1 Rond Point du Pr Christian Cabrol, 80054 Amiens, France
| | - Amandine Pelletier
- PériTox (UMR I_01), UPJV/INERIS, University of Picardy Jules Verne, CURS, Chemin du Thil, 80025 Amiens, France; (C.S.); (B.B.); (A.C.); (S.D.); (V.B.); (R.D.)
| |
Collapse
|
6
|
Liu Z, Peng H, Liu P, Duan F, Yang Y, Li P, Li Z, Wu J, Chang J, Shang D, Tian Q, Zhang J, Xie Y, Liu Z, An Y. Deciphering significances of autophagy in the development and metabolism of adipose tissue. Exp Cell Res 2025; 446:114478. [PMID: 39978716 DOI: 10.1016/j.yexcr.2025.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The mechanisms of adipose tissue activation and inactivation have been a hot topic of research in the last decade, from which countermeasures have been attempted to be found against obesity as well as other lipid metabolism-related diseases, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease. Autophagy has been shown to be closely related to the regulation of adipocyte activity, which is involved in the whole process including white adipocyte differentiation/maturation and brown or beige adipocyte generation/activation. Dysregulation of autophagy in adipose tissue has been demonstrated to be associated with obesity. On this basis, we summarize the pathways and mechanisms of autophagy involved in the regulation of lipid metabolism and present a review of its pathophysiological roles in lipid metabolism-related diseases, in the hope of providing ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Qiwen Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiawei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yucheng Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Zhenzhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China; Henan Provincial Research Center of Engineering Technology for Nuclear Protein Medical Detection, Zhengzhou Health College, Zhengzhou, 450064, China.
| |
Collapse
|
7
|
Rodríguez-Díaz A, Diéguez C, López M, Freire-Agulleiro Ó. FAcTs on fire: Exploring thermogenesis. ADVANCES IN GENETICS 2025; 113:172-198. [PMID: 40409797 DOI: 10.1016/bs.adgen.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Thermoregulation is a fundamental biological process that allows birds and mammals to maintain a stable internal temperature despite environmental fluctuations, a mechanism shaped by millions of years of evolution. Non-shivering thermogenesis (NST), primarily driven by brown adipose tissue (BAT), plays a central role in thermoregulation by not only helping maintain energy homeostasis but also influencing broader metabolic and physiological processes. Recent research has revealed that BAT thermogenesis is regulated by peripheral hormones and at a central level, with key hypothalamic energy-sensing pathways-such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress-playing critical roles. Beyond its metabolic functions, BAT and NST have emerged as important contributors to tumor biology, offering novel therapeutic strategies for metabolic and oncological diseases. This review explores the intricate mechanisms underpinning NST, including UCP1-dependent thermogenesis and alternative pathways such as creatine cycling, calcium-dependent thermogenesis, and lipid cycling. Emerging evidence further highlights BAT's potential in to modulate tumor metabolism, with pharmacological and genetic approaches showing promise in reshaping the tumor microenvironment. This growing body of knowledge offers exciting prospects for targeting BAT thermogenesis in treating obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Amanda Rodríguez-Díaz
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Óscar Freire-Agulleiro
- Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
8
|
Wang S, He T, Luo Y, Ren K, Shen H, Hou L, Wei Y, Fu T, Xie W, Wang P, Hu J, Zhu Y, Huang Z, Li Q, Li W, Guo H, Li B. SOX4 facilitates brown fat development and maintenance through EBF2-mediated thermogenic gene program in mice. Cell Death Differ 2025; 32:447-465. [PMID: 39402212 PMCID: PMC11893884 DOI: 10.1038/s41418-024-01397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 03/12/2025] Open
Abstract
Brown adipose tissue (BAT) is critical for non-shivering thermogenesis making it a promising therapeutic strategy to combat obesity and metabolic disease. However, the regulatory mechanisms underlying brown fat formation remain incompletely understood. Here, we found SOX4 is required for BAT development and thermogenic program. Depletion of SOX4 in BAT progenitors (Sox4-MKO) or brown adipocytes (Sox4-BKO) resulted in whitened BAT and hypothermia upon acute cold exposure. The reduced thermogenic capacity of Sox4-MKO mice increases their susceptibility to diet-induced obesity. Conversely, overexpression of SOX4 in BAT enhances thermogenesis counteracting diet-induced obesity. Mechanistically, SOX4 activates the transcription of EBF2, which determines brown fat fate. Moreover, phosphorylation of SOX4 at S235 by PKA facilitates its nuclear translocation and EBF2 transcription. Further, SOX4 cooperates with EBF2 to activate transcriptional programs governing thermogenic gene expression. These results demonstrate that SOX4 serves as an upstream regulator of EBF2, providing valuable insights into BAT development and thermogenic function maintenance.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Ya Luo
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kexin Ren
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 518055, Shenzhen, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tong Fu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenlong Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Peng Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jie Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yu Zhu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Zhengrong Huang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Weihua Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China.
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of The Ministry of Education, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Tan JM, Cheng L, Calhoun RP, Weller AH, Drareni K, Fong S, Barbara E, Lim HW, Xue C, Winter H, Auguste G, Miller CL, Reilly MP, Maegdefessel L, Lutgens E, Seale P. PRDM16 controls smooth muscle cell fate in atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639186. [PMID: 40027729 PMCID: PMC11870537 DOI: 10.1101/2025.02.19.639186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Vascular smooth muscle cells (SMCs) normally exist in a contractile state but can undergo fate switching to produce various cell phenotypes in response to pathologic stimuli 1-3 . In atherosclerosis, these phenotypically modulated SMCs regulate plaque composition and influence the risk of major adverse cardiovascular events 4,5 . We found that PRDM16, a transcription factor that is genetically associated with cardiovascular disease, is highly expressed in arterial SMCs and downregulated during SMC fate switching in human and mouse atherosclerosis. Loss of Prdm16 in SMCs of mice activates a synthetic modulation program under homeostatic conditions. Single cell analyses show that loss of Prdm16 drives a synthetic program in all SMC populations. Upon exposure to atherogenic stimuli, SMC-selective Prdm16 deficient mice develop SMC-rich, fibroproliferative plaques that contain few foam cells. Acute loss of Prdm16 results in the formation of collagen-rich lesions with thick fibrous caps. Reciprocally, increasing PRDM16 expression in SMCs blocks synthetic processes, including migration, proliferation, and fibrosis. Mechanistically, PRDM16 binds to chromatin and decreases activating histone marks at synthetic genes. Altogether, these results define PRDM16 as a critical determinant of SMC identity and atherosclerotic lesion composition.
Collapse
Affiliation(s)
- Josephine M.E. Tan
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Calhoun
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela H. Weller
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karima Drareni
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Skylar Fong
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eirlys Barbara
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hee-Woong Lim
- Department of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Hanna Winter
- Institute of Molecular Vascular Medicine, University Hospital rechts der Isar, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Gaëlle Auguste
- Department of Genome Sciences; Department of Biochemistry and Molecular Genetics; University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L. Miller
- Department of Genome Sciences; Department of Biochemistry and Molecular Genetics; University of Virginia, Charlottesville, VA 22908, USA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, University Hospital rechts der Isar, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Germany
| | - Esther Lutgens
- Experimental Cardiovascular Immunology Laboratory, Department of Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Rowland LA, Santos KB, Guilherme A, Munroe S, Lifshitz LM, Nicoloro S, Wang H, Yee MF, Czech MP. The autophagy receptor Ncoa4 controls PPARγ activity and thermogenesis in brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636110. [PMID: 39974946 PMCID: PMC11838434 DOI: 10.1101/2025.02.02.636110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Adipose tissue dysfunction leads to a variety of deleterious systemic consequences including ectopic lipid deposition and impaired insulin sensitivity. PPARγ is a major regulator of adipocyte differentiation and functionality and is thus a determinant of systemic metabolic health. We recently reported that deletion of adipocyte fatty acid synthase (AdFasnKO) impairs autophagy in association with a striking upregulation of genes controlled by PPARγ, including thermogenic uncoupling protein 1 (Ucp1). In this present study, screening for PPARγ coactivators regulated by autophagy revealed a protein denoted as Nuclear receptor coactivator 4 (Ncoa4), known to mediate ferritinophagy and interact with PPARγ and other nuclear receptors. Indeed, we found Ncoa4 is upregulated in the early phase of adipocyte differentiation and is required for adipogenesis. Ncoa4 is also elevated in FasnKO adipocytes and necessary for full upregulation of Ucp1 expression in vitro , even in response to norepinephrine. Consistent with these findings, adipose-selective knockout of Ncoa4 (AdNcoa4KO mice) impairs Ucp1 expression in brown adipose tissue and cold-induced thermogenesis. Adipose-selective double KO of Fasn plus Ncoa4 (AdFasnNcoa4DKO mice) prevents the upregulation of classic PPARγ target genes normally observed in the white adipose tissue of AdFasnKO mice, but not thermogenic Ucp1 expression. These findings reveal Ncoa4 is a novel determinant of adipocyte PPARγ activity and regulator of white and brown adipocyte biology and suggest that manipulation of autophagy flux modulates PPARγ activity and key adipocyte functions via Ncoa4 actions.
Collapse
|
12
|
Verma N, Perie L, Silvestro M, Verma A, Cronstein BN, Ramkhelawon B, Mueller E. Metabolic dysfunction in mice with adipocyte-specific ablation of the adenosine A2A receptor. J Biol Chem 2025; 301:108206. [PMID: 39828097 PMCID: PMC11850162 DOI: 10.1016/j.jbc.2025.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
It has been well established that adenosine plays a key role in the control of inflammation through G protein coupled receptors and recently shown that it can regulate thermogenesis. Here we investigated the specific requirements of the adenosine A2A receptor (A2AR) in mature adipocytes for thermogenic functionality and metabolic homeostasis. We generated fat tissue-specific adenosine A2AR KO mice to assess the influence of signaling through this receptor on brown and beige fat functionality, obesity, insulin sensitivity, inflammation, and liver function. Fat-specific A2AR KO and WT littermate mice were compared for potential differences in cold tolerance and energy metabolism. In addition, we measured glucose metabolism, AT inflammation, and liver phenotypes in mice of the two genotypes after exposure to a diet rich in fat. Our results provide novel evidence indicating that loss of the adenosine A2AR specifically in adipocytes is associated with cold intolerance and decreased oxygen consumption. Furthermore, mice with fat specific ablation of the A2AR exposed to a diet rich in fat showed increased propensity to obesity, decreased insulin sensitivity, elevated adipose tissue inflammation, and hepato-steatosis and hepato-steatitis. Overall, our data provide novel evidence that A2AR in mature adipocytes safeguards metabolic homeostasis, suggesting the possibility of targeting this receptor selectively in fat for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Narendra Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Department of Systems Biology, Center of Biomedical Research, SGPGI campus, Lucknow, India
| | - Luce Perie
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Anupama Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Elisabetta Mueller
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
13
|
Liu J, Ren Q, Du B, Liu X, An Y, Zhang P, Li L, Liu Z, Cao K. Multi-omics approaches to deciphering complex pathological mechanisms of migraine: a systematic review. Front Pharmacol 2025; 15:1452614. [PMID: 39850553 PMCID: PMC11754399 DOI: 10.3389/fphar.2024.1452614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Background Migraine represents a chronic neurological disorder characterized by high prevalence, substantial disability rates, and significant economic burden. Its pathogenesis is complex, and there is currently no cure. The rapid progress in multi-omics technologies has provided new tools to uncover the intricate pathological mechanisms underlying migraine. This systematic review aims to synthesize the findings of multi-omics studies on migraine to further elucidate the complex mechanisms of disease onset, thereby laying a scientific foundation for identifying new therapeutic targets. Methods We conducted a comprehensive systematic review, specifically focusing on clinical observational studies that investigate various aspects of migraine through the integration of genomics, transcriptomics, proteomics, and metabolomics. Our search encompassed multiple databases including PubMed, EMBASE, the Web of Science Core Collection, the Cochrane Library, China National Knowledge Infrastructure, the Chinese Science and Technology Periodical Database, the Wanfang database, and the China Biology Medicine Database to cover studies from database inception until 20 March 2024., The scope of our review included various aspects of migraine such as ictal and interictal phases; episodic or chronic migraine; menstrual-related migraine; and migraine with or without aura (PROSPERO registration number: CRD42024470268). Results A total of 38 studies were ultimately included, highlighting a range of genetic variations, transcriptional abnormalities, protein function alterations, and disruptions in metabolic pathways associated with migraine.These multi-omics findings underscore the pivotal roles played by mitochondrial dysfunction, inflammatory responses, and oxidative stress in the pathophysiology of migraine. Conclusion Multi-omics approaches provide novel perspectives and tools for comprehending the intricate pathophysiology of migraine, facilitating the identification of potential biomarkers and therapeutic targets. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=470268, identifier CRD42024470268.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaosheng Ren
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boxuan Du
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqiu An
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peichi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lexi Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kegang Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Md Fauzi F, Hamzah MF, Mahmud MZ, Amanah A, Mohd Noor MH, Zainuddin Z, Lau WK. Phytol and bilimbi phytocompounds induce thermogenic adipocyte differentiation: An in vitro study on potential anti-obesity effects. Heliyon 2024; 10:e40518. [PMID: 39698098 PMCID: PMC11652845 DOI: 10.1016/j.heliyon.2024.e40518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Obesity is a major health concern associated to diabetes, cardiovascular disease, and cancer. Brown adipocytes, which specialise in thermogenesis, offer a potential therapeutic target for obesity prevention and related conditions. This study builds on previous findings of the browning activity of Averrhoa bilimbi hexane fractions and aims to elucidate the underlying mechanisms in vitro. Squalene and phytol, key phytocompounds from bilimbi leaf extract and fractions, were assessed for their ability to induce thermogenic adipocyte using 3T3-L1 preadipocytes and C2C12 myoblasts in vitro models. The result shows that bilimbi fractions F7, F8, and F9, along with squalene and phytol, effectively induced thermogenic adipocyte differentiation. This was evidenced by the upregulation of key markers, including Ucp1, Prdm16, and Pgc1α, and increased expression of the brown adipocyte-specific protein CIDEA in treated 3T3-L1 preadipocytes. Notably, all treatments promoted thermogenic adipocytes differentiation in C2C12 myoblasts via the upregulation of Pgc1α, Ucp1 genes, and UCP1 protein. These findings suggest that bilimbi fractions and its phytocompounds may hold potential as nutraceutical interventions for obesity management.
Collapse
Affiliation(s)
- Farah Md Fauzi
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Mohamad Faiz Hamzah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Muhd Zulkarnain Mahmud
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Mohd Hasnan Mohd Noor
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Zafarina Zainuddin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Wai Kwan Lau
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| |
Collapse
|
15
|
Aranäs C, Edvardsson CE, Zentveld L, Vallöf D, Witley S, Tufvesson-Alm M, Shevchouk OT, Vestlund J, Jerlhag E. The combination of a glucagon-like peptide-1 and amylin receptor agonists reduces alcohol consumption in both male and female rats. Acta Neuropsychiatr 2024; 37:e42. [PMID: 39639536 DOI: 10.1017/neu.2024.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Combining different pharmaceuticals may be beneficial when treating disorders with complex neurobiology, including alcohol use disorder (AUD). The gut-brain peptides amylin and GLP-1 may be of potential interest as they individually reduce alcohol intake in rodents. While the combination of amylin receptor (AMYR) and glucagon-like peptide-1 receptor (GLP-1R) agonists have been found to decrease feeding and body weight in obese male rats synergistically, their combined impact on alcohol intake is unknown. METHODS Therefore, the effect of the combination of an AMYR (salmon calcitonin (sCT)) and a GLP-1R (dulaglutide) agonist on alcohol intake in rats of both sexes was explored in two separate alcohol-drinking experiments. The first alcohol-drinking experiment evaluated the potential of adding sCT to an ongoing dulaglutide treatment, whereas the second alcohol-drinking experiment examined the effect when adding sCT and dulaglutide simultaneously. RESULTS When adding sCT to an ongoing dulaglutide treatment, a reduction in alcohol intake was observed in both male and female rats. However, when combining sCT and dulaglutide simultaneously, an initial reduction in alcohol intake was observed in rats of both sexes, whereas tolerance towards treatment was observed. In both alcohol-drinking experiments, this treatment combination consistently decreased food consumption and body weight in males and females. While the treatment combination did not affect inflammatory mediators, the gene expression of AMYR or GLP-1R, it changed fat tissue morphology. CONCLUSIONS Further investigation needs to be done on the combination of AMYR and GLP-1R agonists to assess their combined effects on alcohol intake.
Collapse
Affiliation(s)
- Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lindsay Zentveld
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Olesya T Shevchouk
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Miyamori H, Yokokawa T, Miyakita M, Ozaki K, Goto T, Inoue K, Matsumura S. CRTC1 in Mc4r-Expressing Cells Is Required for Peripheral Metabolism and Systemic Energy Homeostasis. Diabetes 2024; 73:1976-1989. [PMID: 39264819 DOI: 10.2337/db24-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Melanocortin-4 receptor (Mc4r) is a G protein-coupled receptor that controls systemic energy balance by regulating food intake and energy expenditure. Although the detailed molecular mechanism remains unclear, the activation of cAMP signaling in Mc4r-expressing cells reportedly suppresses food intake and increases energy expenditure. CREBP-regulated transcriptional coactivator-1 (CRTC1) is selectively expressed in neuronal cells and participates in transcriptional control, thereby contributing to neuronal plasticity and energy homeostasis. Considering the cAMP-dependent regulation of CRTC1 activity, CRTC1 in Mc4r-expressing cells may contribute to energy balance regulation through the melanocortin pathway. In this context, we examined the physiological contribution of CRTC1 in Mc4r-expressing cells to energy metabolism. In this study, mice with CRTC1 deficiency in Mc4r-expressing cells exhibited 1) modest obesity, glucose intolerance, insulin resistance, hyperinsulinemia, and hyperlipidemia; 2) decreased systemic energy expenditure and thermogenesis; 3) suppression of melanocortin agonist-induced adaptation of energy expenditure and food intake; 4) impaired thermogenic programs and oxidative pathway in brown adipose tissue and skeletal muscle; and 5) enhanced lipogenic programs in the liver and white adipose tissue. These results provide novel insights into the molecular mechanisms underlying the regulation of energy balance by the melanocortin system. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Haruka Miyamori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Motoki Miyakita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuki Ozaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
17
|
Nagagata BA, Mandarim-de-Lacerda CA, Aguila MB. Melatonin-Supplemented Obese Female Mice Show Less Inflammation in Ovarian Adipocytes and Browning in Subcutaneous Adipocytes. Cell Biochem Funct 2024; 42:e70034. [PMID: 39707618 DOI: 10.1002/cbf.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
We hypothesized that melatonin (Mel) supplementation may offer therapeutic benefits for obesity, particularly in women. Therefore, the study evaluated Mel's effects on white adipose tissue (WAT) in diet-induced obese female mice. Four-week-old C57BL/6 females were assigned to either a control diet (C group) or a high-fat diet (HF group) for 6 weeks (n = 20/group). Following this, Mel was administered (10 mg/kg/day) for 8 weeks (n = 10/group), resulting in four groups: C, CMel, HF, and HFMel. The HF group developed obesity. HFMel displayed reduced fat pad size, lower plasma insulin, and improved glucose tolerance and insulin resistance compared to HF. In ovarian WAT (oWAT), HFMel versus HF showed reduced pro-inflammatory markers, less endoplasmic reticulum (ER) stress, and smaller adipocyte size. In subcutaneous WAT (sWAT), HFMel versus HF demonstrated increased adipocyte multiloculation, higher uncoupling protein-1 expression, and elevated thermogenic gene expression. Principal component analysis of gene expressions in oWAT and sWAT revealed significant differences: in oWAT, ER stress and inflammation markers were linked to the HF group, while HFMel and CMel clustered together, indicating a beneficial Mel effect. In sWAT, HFMel and CMel clustered on the opposite side of HF, which is associated with thermogenic gene expressions. In conclusion, the findings demonstrate that Mel supplementation in obese female mice, even when maintained on an HF diet, effectively modulated weight gain and reduced ovarian and subcutaneous fat accumulation. Mel supplementation positively influenced insulin resistance, inflammation, and ER stress while promoting thermogenesis in WAT in obese female mice.
Collapse
Affiliation(s)
- Brenda A Nagagata
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Van Wauwe J, Mahy A, Craps S, Ekhteraei-Tousi S, Vrancaert P, Kemps H, Dheedene W, Doñate Puertas R, Trenson S, Roderick HL, Beerens M, Luttun A. PRDM16 determines specification of ventricular cardiomyocytes by suppressing alternative cell fates. Life Sci Alliance 2024; 7:e202402719. [PMID: 39304345 PMCID: PMC11415600 DOI: 10.26508/lsa.202402719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally. Because in other tissues PRDM16 is best known for its role in binary cell fate decisions, we hypothesized a similar decision-making function in cardiomyocytes. Here, we demonstrated that cardiomyocyte-specific deletion of Prdm16 during cardiac development results in contractile dysfunction and abnormal electrophysiology of the postnatal heart, resulting in premature death. By combined RNA+ATAC single-cell sequencing, we found that PRDM16 favors ventricular working cardiomyocyte identity, by opposing the activity of master regulators of ventricular conduction and atrial fate. Myocardial loss of PRDM16 during development resulted in hyperplasia of the (distal) ventricular conduction system. Hence, PRDM16 plays an indispensable role during cardiac development by driving ventricular working cardiomyocyte identity.
Collapse
Affiliation(s)
- Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Craps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Vrancaert
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hannelore Kemps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- Cardiology Lab, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- Institute for Clinical Chemistry and Laboratory Medicine, Medizinische Klinik und Poliklinik Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Zhang H, Wague A, Diaz A, Liu M, Sang L, Youn A, Sharma S, Milan N, Kim H, Feeley B, Liu X. Overexpression of PRDM16 improves muscle function after rotator cuff tears. J Shoulder Elbow Surg 2024; 33:2725-2733. [PMID: 39032686 PMCID: PMC12070449 DOI: 10.1016/j.jse.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Muscle atrophy, fibrosis, and fatty infiltration are commonly seen in rotator cuff tears (RCTs), which are critical factors that directly determine the clinical outcomes for patients with this injury. Therefore, improving muscle quality after RCT is crucial in improving the clinical outcome of tendon repair. In recent years, it has been discovered that adults have functional beige/brown adipose tissue (BAT) that can secrete batokines to promote muscle growth. PRDM16, a PR-domain-containing protein, was discovered with the ability to determine the brown fat cell fate and stimulate its development. Thus, the goal of this study was to discover the role of PRDM16 in improving muscle function after massive tendon tears using a transgenic mouse model with an elevated level of PRDM16 expression. METHODS Transgenic aP2-driven PRDM16-overexpressing mice and C57BL/6J mice underwent unilateral supraspinatus (SS) tendon transection and suprascapular nerve transection (TTDN) as described previously (n = 8 in each group). DigiGait was performed to evaluate forelimb function at 6 weeks post the TTDN injury. Bilateral SS muscles, interscapular brown fat, epididymal white fat, and inguinal beige fat were harvested for analysis. The expression of PRDM16 in adipose tissue was detected by Western blot. Masson Trichrome staining was conducted to evaluate the muscle fibrosis, and Oil Red O staining was used to determine the fat infiltration. Muscle fiber type was determined by major histocompatibility complex (MHC) expression via immunostaining. All data were presented in the form of mean ± standard deviation. t test and 2-way analysis of variance was performed to determine a statistically significant difference between groups. Significance was considered when P < .05. RESULTS Western blot data showed an increased expression of PRDM16 protein in both white and brown fat in PRDM16-overexpressing mice compared with wild-type (WT) mice. Even though PRDM16 overexpression had no effect on increasing muscle weight, it significantly improved the forelimbs function with longer brake, stance, and stride time and larger stride length and paw area in mice after RCT. Additionally, PRDM16-overexpressing mice showed no difference in the amount of fibrosis when compared to WT mice; however, they had a significantly reduced area of fatty infiltration. These mice also exhibited abundant MHC-IIx fiber percentage in the supraspinatus muscle after TTDN. CONCLUSION Overexpression of PRDM16 significantly improved muscle function and reduced fatty infiltration after rotator cuff tears. Promoting BAT activity is beneficial in improving rotator cuff muscle quality and shoulder function after RCT.
Collapse
Affiliation(s)
- He Zhang
- Department of Physical Education, Central South University, Changsha, Hunan, China; Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Agustin Diaz
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Luke Sang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alex Youn
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sankalp Sharma
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nesa Milan
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hubert Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Wang Z, Zhu M, Li Q, Cao J, Zhong Q, Jin Z, Huang Y, Lan Q, Gao Y, Xiong Z. Lycorine ameliorates liver steatosis, oxidative stress, ferroptosis and intestinal homeostasis imbalance in MASLD mice. Mol Med 2024; 30:235. [PMID: 39604837 PMCID: PMC11600876 DOI: 10.1186/s10020-024-01003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide and few drugs are available for its treatment. Lycorine has effective anti-inflammatory and lipid-lowering effects, but the impact on MASLD is not fully understood. In this study, we intend to test the intervention effect of lycorine on MASLD. METHODS A MASLD mouse model was constructed on a high-fat diet for 16 weeks, and low, medium, and high doses of lycorine were given by gavage for the last 4 weeks. Detecting indicators related to liver steatosis, oxidative stress, and ferroptosis. In vivo and in vitro experiments co-validate potential targets identified by network pharmacology, molecular docking and western blot for lycorine intervention in MASLD liver. A combination of pathology, western blot, qRT-PCR, and 16 S rRNA sequencing verified adipose tissue and intestinal alterations. RESULTS Lycorine ameliorated hepatic steatosis, oxidative stress and ferroptosis in MASLD mice by inhibiting the expression of phosphorylated EGFR, inhibiting the PI3K/AKT signaling pathway. We also observed a dose-dependent effect of lycorine to improve some of the indicators of MASLD. In vitro, knockdown of EGFR significantly attenuated palmitic acid-induced hepatocyte steatosis. In addition, lycorine promoted WAT browning for thermogenesis and energy consumption, affected the composition of intestinal flora, improved the intestinal barrier, and reduced intestinal inflammation. CONCLUSIONS EGFR was the target of lycorine intervention in MASLD. Lycorine ameliorated hepatic steatosis, oxidative stress and ferroptosis by affecting the EGFR/PI3K/AKT signaling pathway in MASLD mice. Furthermore, lycorine promoted WAT browning and ameliorated intestinal homeostatic imbalance. The above effects may also have dose-dependent effects.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lan
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Gao
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- , Present address: #39 Yanhu Avenue, East Lake Scenic Area, Wuhan, 430077, Hubei, China.
| |
Collapse
|
21
|
Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 deficiency leads to defective brown adipose tissue differentiation and thermogenic response. Sci Rep 2024; 14:28692. [PMID: 39562682 PMCID: PMC11577055 DOI: 10.1038/s41598-024-79301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Adipose tissue, which is crucial for the regulation of energy within the body, contains both white and brown adipocytes. White adipose tissue (WAT) primarily stores energy, while brown adipose tissue (BAT) plays a critical role in energy dissipation as heat, offering potential for therapies aimed at enhancing metabolic health. Regulation of the RhoA/ROCK pathway is crucial for appropriate specification, differentiation and maturation of both white and brown adipocytes. However, our knowledge of how this pathway is controlled within specific adipose depots remains unclear, and to date a RhoA regulator that selectively controls adipocyte browning has not been identified. Our study shows that GRAF1, a RhoGAP, is highly expressed in metabolically active tissues, and closely correlates with brown adipocyte differentiation in culture and in vivo. Mice with either global or adipocyte-specific GRAF1 deficiency exhibit impaired BAT maturation and compromised cold-induced thermogenesis. Moreover, defects in differentiation of human GRAF1-deficient brown preadipocytes can be rescued by treatment with a Rho kinase inhibitor. Collectively, these studies indicate that GRAF1 can selectively induce brown adipocyte differentiation and suggest that manipulating GRAF1 activity may hold promise for the future treatment of diseases related to metabolic dysfunction.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Qiang Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew Combs
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute, University of North Carolina, 160 North Medical Drive, 501 Brinkhous-Bullitt, CB# 7525, Chapel Hill, NC, 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, 160 North Medical Drive, 501 Brinkhous-Bullitt, CB# 7525, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Lu WH, Chen HF, King PC, Peng C, Huang YS. CPEB2-activated Prdm16 translation promotes brown adipocyte function and prevents obesity. Mol Metab 2024; 89:102034. [PMID: 39305947 PMCID: PMC11462068 DOI: 10.1016/j.molmet.2024.102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) plays an important role in mammalian thermogenesis through the expression of uncoupling protein 1 (UCP1). Our previous study identified cytoplasmic polyadenylation element binding protein 2 (CPEB2) as a key regulator that activates the translation of Ucp1 with a long 3'-untranslated region (Ucp1L) in response to adrenergic signaling. Mice lacking CPEB2 or Ucp1L exhibited reduced UCP1 expression and impaired thermogenesis; however, only CPEB2-null mice displayed obesogenic phenotypes. Hence, this study aims to investigate how CPEB2-controlled translation impacts body weight. METHODS Body weight measurements were conducted on mice with global knockout (KO) of CPEB2, UCP1 or Ucp1L, as well as those with conditional knockout of CPEB2 in neurons or adipose tissues. RNA sequencing coupled with bioinformatics analysis was used to identify dysregulated gene expression in CPEB2-deficient BAT. The role of CPEB2 in regulating PRD1-BF1-RIZ1 homologous-domain containing 16 (PRDM16) expression was subsequently confirmed by RT-qPCR, Western blotting, polysomal profiling and luciferase reporter assays. Adeno-associated viruses (AAV) expressing CPEB2 or PRDM16 were delivered into BAT to assess their efficacy in mitigating weight gain in CPEB2-KO mice. RESULTS We validated that defective BAT function contributed to the increased weight gain in CPEB2-KO mice. Transcriptomic profiling revealed upregulated expression of genes associated with muscle development in CPEB2-KO BAT. Given that both brown adipocytes and myocytes stem from myogenic factor 5-expressing precursors, with their cell-fate differentiation regulated by PRDM16, we identified that Prdm16 was translationally upregulated by CPEB2. Ectopic expression of PRDM16 in CPEB2-deprived BAT restored gene expression profiles and decreased weight gain in CPEB2-KO mice. CONCLUSIONS In addition to Ucp1L, activation of Prdm16 translation by CPEB2 is critical for sustaining brown adipocyte function. These findings unveil a new layer of post-transcriptional regulation governed by CPEB2, fine-tuning thermogenic and metabolic activities of brown adipocytes to control body weight.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Feng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Chih King
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chi Peng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
23
|
Choi SM, Lee HS, Lim SH, Choi G, Choi CI. Hederagenin from Hedera helix Promotes Fat Browning in 3T3-L1 Adipocytes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2789. [PMID: 39409659 PMCID: PMC11478623 DOI: 10.3390/plants13192789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024]
Abstract
The prevalence of obesity is increasing globally, with approximately 700 million obese people worldwide. Currently, regulating energy homeostasis by increasing energy expenditure is attracting attention as a strategy for treating obesity. White adipose tissue is known to play a role in accumulating energy by storing excess energy, while brown adipose tissue expends energy and maintains body temperature. Thus, the browning of white adipose tissue has been shown to be effective in controlling obesity. Hedera helix (H. helix) has been widely used as a traditional medicine for various diseases. In several previous studies, hederagenin (HDG) from H. helix has demonstrated many biological activities. In this study, we investigated the antiobesity effect of HDG on fat browning in 3T3-L1 adipocytes. Consequent to HDG treatment, a reduction in lipid accumulation was measured through oil red O staining. In addition, this study investigated that HDG increases energy expenditure by upregulating the expression of several targets related to thermogenesis, including uncoupling protein 1 (UCP1). This process involves inhibiting lipogenesis via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway and promoting lipolysis through the protein kinase A (PKA) pathway. HDG is expected to be effective in promoting fat browning, indicating its potential as a natural antiobesity candidate.
Collapse
Affiliation(s)
| | | | | | | | - Chang-Ik Choi
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.M.C.); (H.S.L.); (S.H.L.); (G.C.)
| |
Collapse
|
24
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
25
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 regulate chromatin accessibility required for NKX2-1 mediated alveolar epithelial differentiation and function. Nat Commun 2024; 15:8112. [PMID: 39284798 PMCID: PMC11405758 DOI: 10.1038/s41467-024-52154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Combined deletion of the histone methyl transferases Prdm3 and Prdm16 in early lung endoderm causes perinatal lethality due to respiratory failure from loss of AT2 cells and the accumulation of partially differentiated AT1 cells. Combination of single-cell RNA-seq, bulk ATAC-seq, and CUT&RUN data demonstrate that PRDM3 and PRDM16 regulate chromatin accessibility at NKX2-1 transcriptional targets critical for perinatal AT2 cell differentiation and surfactant homeostasis. Lineage specific deletion of PRDM3/16 in AT2 cells leads to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
| | - Sheila M Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Vargas-Castillo A, Sun Y, Smythers AL, Grauvogel L, Dumesic PA, Emont MP, Tsai LT, Rosen ED, Zammit NW, Shaffer SM, Ordonez M, Chouchani ET, Gygi SP, Wang T, Sharma AK, Balaz M, Wolfrum C, Spiegelman BM. Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle. Cell Metab 2024; 36:2146-2155.e5. [PMID: 39084217 PMCID: PMC12005060 DOI: 10.1016/j.cmet.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs in vivo but has been difficult to model in vitro; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.
Collapse
Affiliation(s)
- Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Louisa Grauvogel
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan W Zammit
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anand K Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Shi Q, Song G, Song L, Wang Y, Ma J, Zhang L, Yuan E. Unravelling the function of prdm16 in human tumours: A comparative analysis of haematologic and solid tumours. Biomed Pharmacother 2024; 178:117281. [PMID: 39137651 DOI: 10.1016/j.biopha.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Extensive research has shown that PR domain 16 (PRDM16) plays a critical role in adipose tissue metabolism, including processes such as browning and thermogenesis of adipocytes, beigeing of adipocytes, and adipogenic differentiation of myoblasts. These functions have been associated with diseases such as obesity and diabetes. Additionally, PRDM16 has been correlated with various other conditions, including migraines, heterochromatin abnormalities, metabolic syndrome, cardiomyopathy, sarcopenia, nonsyndromic cleft lip, and essential hypertension, among others. However, there is currently no systematic or comprehensive conclusion regarding the mechanism of PRDM16 in human tumours, including haematologic and solid tumours. The aim of this review is to provide an overview of the research progress on PRDM16 in haematologic and solid tumours by incorporating recent literature findings. Furthermore, we explore the prospects of PRDM16 in the precise diagnosis and treatment of human haematologic and solid tumours.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Guangyong Song
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liying Song
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Yu Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Jun Ma
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Enwu Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
28
|
Jugan JA, Jackson KB, Elmore SE, La Merrill MA. Impaired energy expenditure following exposure to either DDT or DDE in mice may be mediated by DNA methylation changes in brown adipose. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae011. [PMID: 39403345 PMCID: PMC11472829 DOI: 10.1093/eep/dvae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 10/19/2024]
Abstract
The insecticide dichlorodiphenyltrichloroethane (DDT) and its persistent metabolite, dichlorodiphenyldichloroethylene (DDE), have been associated with increased adiposity and obesity in multiple generations of rodents and humans. These lipophilic pollutants accumulate in adipose tissue and appear to decrease energy expenditure through the impairment of thermogenesis in brown adipose tissue (BAT). We hypothesized that impaired thermogenesis is due to persistent epigenetic modifications of BAT. To address this, we exposed C57BL/6 J mice to DDT or DDE from gestational day (GD) 11.5 to postnatal day (PND) 5, evaluated longitudinal body temperature, and performed reduced representation bisulfite sequencing and RNA sequencing of BAT from infant and adult offspring. Exposure to DDT or DDE reduced core body temperature in adult mice, and differential methylation at the pathway and gene level was persistent from infancy to adulthood. Furthermore, thermogenesis and biological pathways essential for thermogenic function, such as oxidative phosphorylation and mechanistic target of rapamycin kinase (mTOR) signaling, were enriched with differential methylation and RNA transcription in adult mice exposed to DDT or DDE. PAZ6 human brown preadipocytes were differentiated in the presence of DDT or DDE to understand the brown adipocyte-autonomous effect of these pollutants. In vitro exposure led to limited changes in RNA expression; however, mitochondrial membrane potential was decreased in vitro with 0.1 µM and 1 µM doses of DDT or DDE. These results demonstrate that concentrations of DDT and DDE relevant to human exposure have a significant effect on thermogenesis, the transcriptome, and DNA methylome of mouse BAT and the mitochondrial function of human brown adipocytes.
Collapse
Affiliation(s)
- Juliann A Jugan
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States
| | - Kyle B Jackson
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States
| | - Sarah E Elmore
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616, United States
| |
Collapse
|
29
|
Baskaran P, Gustafson N, Chavez N. TRPV1 Activation Antagonizes High-Fat Diet-Induced Obesity at Thermoneutrality and Enhances UCP-1 Transcription via PRDM-16. Pharmaceuticals (Basel) 2024; 17:1098. [PMID: 39204203 PMCID: PMC11359803 DOI: 10.3390/ph17081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Body weight is a balance between energy intake and energy expenditure. Energy expenditure is mainly governed by physical activity and adaptive thermogenesis. Adaptive dietary thermogenesis in brown and beige adipose tissue occurs through mitochondrial uncoupling protein (UCP-1). Laboratory mice, when housed at an ambient temperature of 22-24 °C, maintain their body temperature by dietary thermogenesis, eating more food compared to thermoneutrality. Humans remain in the thermoneutral zone (TNZ) without expending extra energy to maintain normal body temperature. TRPV1 activation by capsaicin (CAP) inhibited weight gain in mice housed at ambient temperature by activating UCP-1-dependent adaptive thermogenesis. Hence, we evaluated the effect of CAP feeding on WT and UCP-1-/- mice maintained under thermoneutral conditions. Our research presents novel findings that TRPV1 activation by CAP at thermoneutrality counters obesity in WT mice and promotes PRDM-16-dependent UCP-1 transcription. CAP fails to inhibit weight gain in UCP-1-/- mice housed at thermoneutrality and in adipose tissue-specific PRDM-16-/- mice. In vitro, capsaicin treatment increases UCP-1 transcription in PRDM-16 overexpressing cells. Our data indicate for the first time that TRPV1 activation counters obesity at thermoneutrality permissive for UCP-1 and the enhancement of PRDM-16 is not beneficial in the absence of UCP-1.
Collapse
Affiliation(s)
| | - Noah Gustafson
- School of Pharmacy, University of Wyoming, Wyoming, Laramie, WY 82071, USA; (N.G.); (N.C.)
| | - Nicolas Chavez
- School of Pharmacy, University of Wyoming, Wyoming, Laramie, WY 82071, USA; (N.G.); (N.C.)
| |
Collapse
|
30
|
Chang Z, Xu Y, Dong X, Gao Y, Wang C. Single-cell and spatial multiomic inference of gene regulatory networks using SCRIPro. Bioinformatics 2024; 40:btae466. [PMID: 39024032 PMCID: PMC11288411 DOI: 10.1093/bioinformatics/btae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
MOTIVATION The burgeoning generation of single-cell or spatial multiomic data allows for the characterization of gene regulation networks (GRNs) at an unprecedented resolution. However, the accurate reconstruction of GRNs from sparse and noisy single-cell or spatial multiomic data remains challenging. RESULTS Here, we present SCRIPro, a comprehensive computational framework that robustly infers GRNs for both single-cell and spatial multi-omics data. SCRIPro first improves sample coverage through a density clustering approach based on multiomic and spatial similarities. Additionally, SCRIPro scans transcriptional regulator (TR) importance by performing chromatin reconstruction and in silico deletion analyses using a comprehensive reference covering 1,292 human and 994 mouse TRs. Finally, SCRIPro combines TR-target importance scores derived from multiomic data with TR-target expression levels to ensure precise GRN reconstruction. We benchmarked SCRIPro on various datasets, including single-cell multiomic data from human B-cell lymphoma, mouse hair follicle development, Stereo-seq of mouse embryos, and Spatial-ATAC-RNA from mouse brain. SCRIPro outperforms existing motif-based methods and accurately reconstructs cell type-specific, stage-specific, and region-specific GRNs. Overall, SCRIPro emerges as a streamlined and fast method capable of reconstructing TR activities and GRNs for both single-cell and spatial multi-omic data. AVAILABILITY SCRIPro is available at https://github.com/wanglabtongji/SCRIPro. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhanhe Chang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunfan Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Yawei Gao
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai 200120, China
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 200120, China
| |
Collapse
|
31
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
32
|
Yang S, Liu Y, Wu X, Zhu R, Sun Y, Zou S, Zhang D, Yang X. Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes. Int J Mol Sci 2024; 25:6303. [PMID: 38928011 PMCID: PMC11203837 DOI: 10.3390/ijms25126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.
Collapse
Affiliation(s)
- Siqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yingke Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Shuoya Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| |
Collapse
|
33
|
Lee D, Benvie AM, Steiner BM, Kolba NJ, Ford JG, McCabe SM, Jiang Y, Berry DC. Smooth muscle cell-derived Cxcl12 directs macrophage accrual and sympathetic innervation to control thermogenic adipose tissue. Cell Rep 2024; 43:114169. [PMID: 38678562 PMCID: PMC11413973 DOI: 10.1016/j.celrep.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Sympathetic innervation of brown adipose tissue (BAT) controls mammalian adaptative thermogenesis. However, the cellular and molecular underpinnings contributing to BAT innervation remain poorly defined. Here, we show that smooth muscle cells (SMCs) support BAT growth, lipid utilization, and thermogenic plasticity. Moreover, we find that BAT SMCs express and control the bioavailability of Cxcl12. SMC deletion of Cxcl12 fosters brown adipocyte lipid accumulation, reduces energy expenditure, and increases susceptibility to diet-induced metabolic dysfunction. Mechanistically, we find that Cxcl12 stimulates CD301+ macrophage recruitment and supports sympathetic neuronal maintenance. Administering recombinant Cxcl12 to obese mice or leptin-deficient (Ob/Ob) mice is sufficient to boost macrophage presence and drive sympathetic innervation to restore BAT morphology and thermogenic responses. Altogether, our data reveal an SMC chemokine-dependent pathway linking immunological infiltration and sympathetic innervation as a rheostat for BAT maintenance and thermogenesis.
Collapse
Affiliation(s)
- Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nikolai J Kolba
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Josie G Ford
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sean M McCabe
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Taylor BC, Steinthal LH, Dias M, Yalamanchili HK, Ochsner SA, Zapata GE, Mehta NR, McKenna NJ, Young NL, Nuotio-Antar AM. Histone proteoform analysis reveals epigenetic changes in adult mouse brown adipose tissue in response to cold stress. Epigenetics Chromatin 2024; 17:12. [PMID: 38678237 PMCID: PMC11055387 DOI: 10.1186/s13072-024-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses of RNA-Seq data uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. RESULTS Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression datasets suggest a role for epigenetic modification of DNA in regulation of gene expression in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. CONCLUSIONS Our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.
Collapse
Affiliation(s)
- Bethany C Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Loic H Steinthal
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Michelle Dias
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hari Krishna Yalamanchili
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Gladys E Zapata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Nitesh R Mehta
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nicolas L Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| | - Alli M Nuotio-Antar
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Nutrition, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
35
|
Yadav MK, Ishida M, Gogoleva N, Liao CW, Salim FN, Kanai M, Kuno A, Hayashi T, Shahri ZJ, Kulathunga K, Samir O, Lyu W, Olivia O, Mbanefo EC, Takahashi S, Hamada M. MAFB in macrophages regulates cold-induced neuronal density in brown adipose tissue. Cell Rep 2024; 43:113978. [PMID: 38522069 DOI: 10.1016/j.celrep.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Transcription factor MAFB regulates various homeostatic functions of macrophages. This study explores the role of MAFB in brown adipose tissue (BAT) thermogenesis using macrophage-specific Mafb-deficient (Mafbf/f::LysM-Cre) mice. We find that Mafb deficiency in macrophages reduces thermogenesis, energy expenditure, and sympathetic neuron (SN) density in BAT under cold conditions. This phenotype features a proinflammatory environment that is characterized by macrophage/granulocyte accumulation, increases in interleukin-6 (IL-6) production, and IL-6 trans-signaling, which lead to decreases in nerve growth factor (NGF) expression and reduction in SN density in BAT. We confirm MAFB regulation of IL-6 expression using luciferase readout driven by IL-6 promoter in RAW-264.7 macrophage cell lines. Immunohistochemistry shows clustered organization of NGF-producing cells in BAT, which are primarily TRPV1+ vascular smooth muscle cells, as additionally shown using single-cell RNA sequencing and RT-qPCR of the stromal vascular fraction. Treating Mafbf/f::LysM-Cre mice with anti-IL-6 receptor antibody rescues SN density, body temperature, and energy expenditure.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; National Institutes of Health, Bethesda, MD 20892, USA
| | - Megumi Ishida
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Filiani Natalia Salim
- Centre for Medical Science and Technology and Healthcare Equity, Parahyangan Catholic University, Bandung 40141, Indonesia
| | - Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kaushalya Kulathunga
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Omar Samir
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Jeff and Penny Vinik Center for Allergic Disease Research, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Wenxin Lyu
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olivia Olivia
- Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
36
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
37
|
Li B, Liu S, He Z, Luo E, Liu H. The role of zinc finger proteins in the fate determination of mesenchymal stem cells during osteogenic and adipogenic differentiation. Int J Biochem Cell Biol 2024; 167:106507. [PMID: 38142772 DOI: 10.1016/j.biocel.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Zinc finger proteins (ZFPs) constitute a crucial group of transcription factors widely present in various organisms. They act as transcription factors, nucleases, and RNA-binding proteins, playing significant roles in cell differentiation, growth, and development. With extensive research on ZFPs, their roles in the determination of mesenchymal stem cells (MSCs) fate during osteogenic and adipogenic differentiation processes have become increasingly clear. ZFP521, for instance, is identified as an inhibitor of the Wnt signaling pathway and RUNX2's transcriptional activity, effectively suppressing osteogenic differentiation. Moreover, ZFP217 contributes to the inhibition of adipogenic differentiation by reducing the M6A level of the cell cycle regulator cyclin D1 (CCND1). In addition, other ZFPs can also influence the fate of mesenchymal stem cells (MSCs) during osteogenic and adipogenic differentiation through various signaling pathways, transcription factors, and epigenetic controls, participating in the subsequent differentiation and maturation of precursor cells. Given the prevalent occurrence of osteoporosis, obesity, and related metabolic disorders, a comprehensive understanding of the regulatory mechanisms balancing bone and fat metabolism is essential, with a particular focus on the fate determination of MSCs in osteogenic and adipogenic differentiation. In this review, we provide a detailed summary of how zinc finger proteins influence the osteogenic and adipogenic differentiation of MSCs through different signaling pathways, transcription factors, and epigenetic mechanisms. Additionally, we outline the regulatory mechanisms of ZFPs in controlling osteogenic and adipogenic differentiation based on various stages of MSC differentiation.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
38
|
Castellá M, Mestres-Arenas A, Gavaldà-Navarro A, Blasco-Roset A, Quesada-López T, Romero-Carramiñana I, Giralt M, Villarroya F, Cereijo R. The splicing factor SF3B1 is involved in brown adipocyte thermogenic activation. Biochem Pharmacol 2024; 220:116014. [PMID: 38158020 DOI: 10.1016/j.bcp.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The ability of alternative splicing mechanisms to control gene expression is increasingly being recognized as relevant for adipose tissue function. The expression of SF3B1, a key component of the SF3B complex directly involved in spliceosome formation, was previously reported to be significantly induced in brown adipose tissue under cold-induced thermogenic activation. Here, we identify that noradrenergic cAMP-mediated thermogenic stimulation increases SF3B1 expression in brown and beige adipocytes. We further show that pladienolide-B, a drug that binds SF3B1 to inhibit pre-mRNA splicing by targeting the SF3B complex, down-regulates key components of the thermogenic machinery (e.g., UCP1 gene expression), differentially alters the expression of alternative splicing-regulated transcripts encoding molecular actors involved in the oxidative metabolism of brown adipocytes (e.g., peroxisome proliferator-activated receptor-gamma co-activator-alpha [PGC-1α] and cytochrome oxidase subunit 7a genes), and impairs the respiratory activity of brown adipocytes. Similar alterations were found in brown adipocytes with siRNA-mediated knockdown of SF3B1 protein levels. Our findings collectively indicate that SF3B1 is a key factor in the appropriate thermogenic activation of differentiated brown adipocytes. This work exemplifies the importance of splicing processes in adaptive thermogenesis and suggests that pharmacological tools, such as pladienolide-B, may be used to modulate brown adipocyte thermogenic activity.
Collapse
Affiliation(s)
- Moisés Castellá
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Alberto Mestres-Arenas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Inés Romero-Carramiñana
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM); Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28049 Madrid, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain.
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain.
| |
Collapse
|
39
|
Huang J, Zhang Y, Zhou X, Song J, Feng Y, Qiu T, Sheng S, Zhang M, Zhang X, Hao J, Zhang L, Zhang Y, Li X, Liu M, Chang Y. Foxj3 Regulates Thermogenesis of Brown and Beige Fat Via Induction of PGC-1α. Diabetes 2024; 73:178-196. [PMID: 37939221 DOI: 10.2337/db23-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Enhancing the development of and thermogenesis in brown and beige fat represents a potential treatment for obesity. In this study, we show that Foxj3 expression in fat is stimulated by cold exposure and a β-adrenergic agonist. Adipose-specific Foxj3 knockout impaired the thermogenic function of brown fat, leading to morphological whitening of brown fat and obesity. Adipose Foxj3-deficient mice displayed increased fasting blood glucose levels and hepatic steatosis while on a chow diet. Foxj3 deficiency inhibited the browning of inguinal white adipose tissue (iWAT) following β3-agonist treatment of mice. Furthermore, depletion of Foxj3 in primary brown adipocytes reduced the expression of thermogenic genes and cellular respiration, indicating that the Foxj3 effects on the thermogenic program are cell autonomous. In contrast, Foxj3 overexpression in primary brown adipocytes enhanced the thermogenic program. Moreover, AAV-mediated Foxj3 overexpression in brown fat and iWAT increased energy expenditure and improved systemic metabolism on either a chow or high-fat diet. Finally, Foxj3 deletion in fat inhibited the β3-agonist-mediated induction of WAT browning and brown adipose tissue thermogenesis. Mechanistically, cold-inducible Foxj3 stimulated the expression of PGC-1α and UCP1, subsequently promoting energy expenditure. This study identifies Foxj3 as a critical regulator of fat thermogenesis, and targeting Foxj3 in fat might be a therapeutic strategy for treating obesity and metabolic diseases. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jincan Huang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuenan Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jiani Song
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yueyao Feng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Tongtong Qiu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Sufang Sheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Menglin Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xi Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingran Hao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Lei Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yinliang Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
40
|
Taylor BC, Steinthal LH, Dias M, Yalamanchili HK, Ochsner SA, Zapata GE, Mehta NR, McKenna NJ, Young NL, Nuotio-Antar AM. Histone proteoform analysis reveals epigenetic changes in adult mouse brown adipose tissue in response to cold stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.30.551059. [PMID: 38328142 PMCID: PMC10849524 DOI: 10.1101/2023.07.30.551059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28.8°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression data suggest a role for epigenetic modification of DNA in gene regulation in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. Taken together, our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.
Collapse
Affiliation(s)
- Bethany C. Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
| | - Loic H. Steinthal
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Michelle Dias
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX
| | - Hari K. Yalamanchili
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Gladys E. Zapata
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Nitesh R. Mehta
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Nicolas L. Young
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
41
|
Nah J, Lee Y, Seong RH. PRDM16 regulates γδT17 cell differentiation via controlling type 17 program and lipid-dependent cell fitness. Front Immunol 2024; 14:1332386. [PMID: 38239368 PMCID: PMC10794300 DOI: 10.3389/fimmu.2023.1332386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
γδT17 cells are a subset of γδT cells producing IL-17, which is crucial for protection against bacterial and fungal infections. It has recently been shown that γδT17 cells have enriched lipid storage and lipid metabolism. However, the regulation of γδT17 cell function and differentiation with respect to lipids remains unknown. Here, we report that PRDM16 is a critical regulator of γδT17 cell differentiation, controlling type 17 immunity gene expression program and lipid-dependent cell fitness. We demonstrated that γδT17 cells have higher lipid-dependent cell fitness, which is negatively correlated with the expression of Prdm16. Loss of Prdm16 enhances the function and differentiation of γδT17 cells, and increases their fitness in lipid-rich environments. Specifically, loss of Prdm16 exacerbates development of psoriasis in the skin, a lipid-rich organ, and Prdm16 controls lipid-mediated differentiation of Vγ4+ γδT17 cells, which are the major source of IL-17 during the onset of psoriasis. Our study highlights the potential impact of PRDM16 on lipid-dependent fitness and protective immune function of γδT cells and also on the immunotherapy of psoriasis and inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Rho H. Seong
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Li C, Kiefer MF, Dittrich S, Flores RE, Meng Y, Yang N, Wulff S, Gohlke S, Sommerfeld M, Wowro SJ, Petricek KM, Dürbeck D, Spranger L, Mai K, Scholz H, Schulz TJ, Schupp M. Adipose retinol saturase is regulated by β-adrenergic signaling and its deletion impairs lipolysis in adipocytes and acute cold tolerance in mice. Mol Metab 2024; 79:101855. [PMID: 38128827 PMCID: PMC10784691 DOI: 10.1016/j.molmet.2023.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Retinol saturase (RetSat) is an endoplasmic reticulum-localized oxidoreductase highly expressed in organs involved in lipid metabolism such as white (WAT) and brown adipose tissue (BAT). Cold exposure was shown to increase RETSAT protein in BAT but its relevance for non-shivering thermogenesis, a process with beneficial effects on metabolic health, is unknown. METHODS We analyzed the regulation of RetSat expression in white and brown adipocytes and different murine adipose tissue depots upon β-adrenergic stimulation and cold exposure. RetSat function during the differentiation and β-adrenergic stimulation of brown adipocytes was dissected by loss-of-function experiments. Mice with BAT-specific deletion of RetSat were generated and exposed to cold. Gene expression in human WAT was analyzed and the effect of RetSat depletion on adipocyte lipolysis investigated. RESULTS We show that cold exposure induces RetSat expression in both WAT and BAT of mice via β-adrenergic signaling. In brown adipocytes, RetSat has minor effects on differentiation but is required for maximal thermogenic gene and protein expression upon β-adrenergic stimulation and mitochondrial respiration. In mice, BAT-specific deletion of RetSat impaired acute but not long-term adaptation to cold exposure. RetSat expression in subcutaneous WAT of humans correlates with the expression of genes related to mitochondrial function. Mechanistically, we found that RetSat depletion impaired β-agonist-induced lipolysis, a major regulator of thermogenic gene expression in adipocytes. CONCLUSIONS Thus, RetSat expression is under β-adrenergic control and determines thermogenic capacity of brown adipocytes and acute cold tolerance in mice. Modulating RetSat activity may allow for therapeutic interventions towards pathologies with inadequate metabolic activity.
Collapse
Affiliation(s)
- Chen Li
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie F Kiefer
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Dittrich
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roberto E Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yueming Meng
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Na Yang
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sascha Wulff
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
| | - Manuela Sommerfeld
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sylvia J Wowro
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin M Petricek
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominic Dürbeck
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Spranger
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, And Berlin Institute of Health, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Holger Scholz
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Miranda CS, Silva-Veiga FM, Santana-Oliveira DA, Vasques-Monteiro IML, Daleprane JB, Souza-Mello V. PPARα/γ synergism activates UCP1-dependent and -independent thermogenesis and improves mitochondrial dynamics in the beige adipocytes of high-fat fed mice. Nutrition 2024; 117:112253. [PMID: 37944411 DOI: 10.1016/j.nut.2023.112253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daiana Araujo Santana-Oliveira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabela Macedo Lopes Vasques-Monteiro
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 Regulate Chromatin Accessibility Required for NKX2-1 Mediated Alveolar Epithelial Differentiation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.570481. [PMID: 38187557 PMCID: PMC10769259 DOI: 10.1101/2023.12.20.570481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Differential chromatin accessibility accompanies and mediates transcriptional control of diverse cell fates and their differentiation during embryogenesis. While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Here, we demonstrate that the paired domain zinc finger transcriptional regulators PRDM3 and PRDM16 regulate chromatin accessibility to mediate cell differentiation decisions during lung morphogenesis. Combined deletion of Prdm3 and Prdm16 in early lung endoderm caused perinatal lethality due to respiratory failure from loss of AT2 cell function. Prdm3/16 deletion led to the accumulation of partially differentiated AT1 cells and loss of AT2 cells. Combination of single cell RNA-seq, bulk ATAC-seq, and CUT&RUN demonstrated that PRDM3 and PRDM16 enhanced chromatin accessibility at NKX2-1 transcriptional targets in peripheral epithelial cells, all three factors binding together at a multitude of cell-type specific cis-active DNA elements. Network analysis demonstrated that PRDM3/16 regulated genes critical for perinatal AT2 cell differentiation, surfactant homeostasis, and innate host defense. Lineage specific deletion of PRDM3/16 in AT2 cells led to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital Sichuan University, Chengdu, Sichuan, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Sichuan 610041, China
| | - Sheila M. Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Daniel T. Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - William J. Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
45
|
Bai X, Zhu Q, Combs M, Wabitsch M, Mack CP, Taylor JM. GRAF1 Regulates Brown and Beige Adipose Differentiation and Function. RESEARCH SQUARE 2023:rs.3.rs-3740465. [PMID: 38196614 PMCID: PMC10775368 DOI: 10.21203/rs.3.rs-3740465/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Adipose tissue, which is crucial for the regulation of energy within the body, contains both white and brown adipocytes. White adipose tissue (WAT) primarily stores energy, while brown adipose tissue (BAT) plays a critical role in energy dissipation as heat, offering potential for therapies aimed at enhancing metabolic health. Regulation of the RhoA/ROCK pathway is crucial for appropriate specification, differentiation and maturation of both white and brown adipocytes. However, our knowledge of how this pathway is controlled within specific adipose depots remains unclear, and to date a RhoA regulator that selectively controls adipocyte browning has not been identified. Our study shows that expression of GRAF1, a RhoGAP highly expressed in metabolically active tissues, closely correlates with brown adipocyte differentiation in culture and in vivo. Mice with either global or adipocyte-specific GRAF1 deficiency exhibit impaired BAT maturation, reduced capacity for WAT browning, and compromised cold-induced thermogenesis. Moreover, defects in differentiation of mouse or human GRAF1-deficient brown preadipocytes can be rescued by treatment with a Rho kinase inhibitor. Collectively, these studies indicate that GRAF1 can selectively induce brown and beige adipocyte differentiation and suggest that manipulating GRAF1 activity may hold promise for the future treatment of diseases related to metabolic dysfunction.
Collapse
Affiliation(s)
- Xue Bai
- University of North Carolina at Chapel Hill
| | - Qiang Zhu
- University of North Carolina at Chapel Hill
| | | | | | | | | |
Collapse
|
46
|
Huang Z, Gu C, Zhang Z, Arianti R, Swaminathan A, Tran K, Battist A, Kristóf E, Ruan HB. Supraclavicular brown adipocytes originate from Tbx1+ myoprogenitors. PLoS Biol 2023; 21:e3002413. [PMID: 38048357 PMCID: PMC10721186 DOI: 10.1371/journal.pbio.3002413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Brown adipose tissue (BAT) dissipates energy as heat, contributing to temperature control, energy expenditure, and systemic homeostasis. In adult humans, BAT mainly exists in supraclavicular areas and its prevalence is associated with cardiometabolic health. However, the developmental origin of supraclavicular BAT remains unknown. Here, using genetic cell marking in mice, we demonstrate that supraclavicular brown adipocytes do not develop from the Pax3+/Myf5+ epaxial dermomyotome that gives rise to interscapular BAT (iBAT). Instead, the Tbx1+ lineage that specifies the pharyngeal mesoderm marks the majority of supraclavicular brown adipocytes. Tbx1Cre-mediated ablation of peroxisome proliferator-activated receptor gamma (PPARγ) or PR/SET Domain 16 (PRDM16), components of the transcriptional complex for brown fat determination, leads to supraclavicular BAT paucity or dysfunction, thus rendering mice more sensitive to cold exposure. Moreover, human deep neck BAT expresses higher levels of the TBX1 gene than subcutaneous neck white adipocytes. Taken together, our observations reveal location-specific developmental origins of BAT depots and call attention to Tbx1+ lineage cells when investigating human relevant supraclavicular BAT.
Collapse
Affiliation(s)
- Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Chenxin Gu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Aneesh Swaminathan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kevin Tran
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Alex Battist
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
47
|
Griffin JD, Buxton JM, Culver JA, Barnes R, Jordan EA, White AR, Flaherty SE, Bernardo B, Ross T, Bence KK, Birnbaum MJ. Hepatic Activin E mediates liver-adipose inter-organ communication, suppressing adipose lipolysis in response to elevated serum fatty acids. Mol Metab 2023; 78:101830. [PMID: 38787338 PMCID: PMC10656223 DOI: 10.1016/j.molmet.2023.101830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE The liver is a central regulator of energy metabolism exerting its influence both through intrinsic processing of substrates such as glucose and fatty acid as well as by secreting endocrine factors, known as hepatokines, which influence metabolism in peripheral tissues. Human genome wide association studies indicate that a predicted loss-of-function variant in the Inhibin βE gene (INHBE), encoding the putative hepatokine Activin E, is associated with reduced abdominal fat mass and cardiometabolic disease risk. However, the regulation of hepatic Activin E and the influence of Activin E on adiposity and metabolic disease are not well understood. Here, we examine the relationship between hepatic Activin E and adipose metabolism, testing the hypothesis that Activin E functions as part of a liver-adipose, inter-organ feedback loop to suppress adipose tissue lipolysis in response to elevated serum fatty acids and hepatic fatty acid exposure. METHODS The relationship between hepatic Activin E and non-esterified fatty acids (NEFA) released from adipose lipolysis was assessed in vivo using fasted CL 316,243 treated mice and in vitro using Huh7 hepatocytes treated with fatty acids. The influence of Activin E on adipose lipolysis was examined using a combination of Inhbe knockout mice, a mouse model of hepatocyte-specific overexpression of Activin E, and mouse brown adipocytes treated with Activin E enriched media. RESULTS Increasing hepatocyte NEFA exposure in vivo by inducing adipose lipolysis through fasting or CL 316,243 treatment increased hepatic Inhbe expression. Similarly, incubation of Huh7 human hepatocytes with fatty acids increased expression of INHBE. Genetic ablation of Inhbe in mice increased fasting circulating NEFA and hepatic triglyceride accumulation. Treatment of mouse brown adipocytes with Activin E conditioned media and overexpression of Activin E in mice suppressed adipose lipolysis and reduced serum FFA levels, respectively. The suppressive effects of Activin E on lipolysis were lost in CRISPR-mediated ALK7 deficient cells and ALK7 kinase deficient mice. Disruption of the Activin E-ALK7 signaling axis in Inhbe KO mice reduced adiposity upon HFD feeding, but caused hepatic steatosis and insulin resistance. CONCLUSIONS Taken together, our data suggest that Activin E functions as part of a liver-adipose feedback loop, such that in response to increased serum free fatty acids and elevated hepatic triglyceride, Activin E is released from hepatocytes and signals in adipose through ALK7 to suppress lipolysis, thereby reducing free fatty acid efflux to the liver and preventing excessive hepatic lipid accumulation. We find that disrupting this Activin E-ALK7 inter-organ communication network by ablation of Inhbe in mice increases lipolysis and reduces adiposity, but results in elevated hepatic triglyceride and impaired insulin sensitivity. These results highlight the liver-adipose, Activin E-ALK7 signaling axis as a critical regulator of metabolic homeostasis.
Collapse
Affiliation(s)
- John D Griffin
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA.
| | - Joanne M Buxton
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Jeffrey A Culver
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Robert Barnes
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Emily A Jordan
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Alexis R White
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Stephen E Flaherty
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Trenton Ross
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Jun S, Angueira AR, Fein EC, Tan JME, Weller AH, Cheng L, Batmanov K, Ishibashi J, Sakers AP, Stine RR, Seale P. Control of murine brown adipocyte development by GATA6. Dev Cell 2023; 58:2195-2205.e5. [PMID: 37647897 PMCID: PMC10842351 DOI: 10.1016/j.devcel.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/07/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Brown adipose tissue (BAT) is a thermogenic organ that protects animals against hypothermia and obesity. BAT derives from the multipotent paraxial mesoderm; however, the identity of embryonic brown fat progenitor cells and regulators of adipogenic commitment are unclear. Here, we performed single-cell gene expression analyses of mesenchymal cells during mouse embryogenesis with a focus on BAT development. We identified cell populations associated with the development of BAT, including Dpp4+ cells that emerge at the onset of adipogenic commitment. Immunostaining and lineage-tracing studies show that Dpp4+ cells constitute the BAT fascia and contribute minorly as adipocyte progenitors. Additionally, we identified the transcription factor GATA6 as a marker of brown adipogenic progenitor cells. Deletion of Gata6 in the brown fat lineage resulted in a striking loss of BAT. Together, these results identify progenitor and transitional cells in the brown adipose lineage and define a crucial role for GATA6 in BAT development.
Collapse
Affiliation(s)
- Seoyoung Jun
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony R Angueira
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan C Fein
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine M E Tan
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela H Weller
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeff Ishibashi
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel R Stine
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Yu P, Wang W, Guo W, Cheng L, Wan Z, Cheng Y, Shen Y, Xu F. Pioglitazone-Enhanced Brown Fat Whitening Contributes to Weight Gain in Diet-Induced Obese Mice. Exp Clin Endocrinol Diabetes 2023; 131:595-604. [PMID: 37729949 DOI: 10.1055/a-2178-9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Pioglitazone is an insulin sensitizer used for the treatment of type 2 diabetes mellitus (T2DM) by activating peroxisome proliferator-activated receptor gamma. This study aimed to investigate the effects of pioglitazone on white adipose tissue (WAT) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice. METHODS C57BL/6 mice were treated with pioglitazone (30 mg/kg/day) for 4 weeks after a 16-week high-fat diet (HFD) challenge. Body weight gain, body fat mass, energy intake, and glucose homeostasis were measured during or after the treatment. Histopathology was observed by hematoxylin and eosin, oil red O, immunohistochemistry, and immunofluorescence staining. Expression of thermogenic and mitochondrial biogenesis-related genes was detected by quantitative real-time PCR and western blotting. RESULTS After 4-week pioglitazone treatment, the fasting blood glucose levels, glucose tolerance, and insulin sensitivity were significantly improved, but the body weight gain and fat mass were increased in DIO mice. Compared with the HFD group, pioglitazone did not significantly affect the weights of liver and WAT in both subcutaneous and epididymal regions. Unexpectedly, the weight of BAT was increased after pioglitazone treatment. Histological staining revealed that pioglitazone ameliorated hepatic steatosis, reduced the adipocyte size in WAT, but increased the adipocyte size in BAT. CONCLUSION Though pioglitazone can promote lipolysis, thermogenesis, and mitochondrial function in WAT, it leads to impaired thermogenesis, and mitochondrial dysfunction in BAT. In conclusion, pioglitazone could promote the browning of WAT but led to the whitening of BAT; the latter might be a new potential mechanism of pioglitazone-induced weight gain during T2DM treatment.
Collapse
Affiliation(s)
- Piaojian Yu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
| | - Lidan Cheng
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiping Wan
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong Province, China
- Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University
| |
Collapse
|
50
|
Gao H, Li Y, Jin Y, Zhang L, Xia X, Liu J, Wang H, Xie Y, Ding W. Electroacupuncture activates angiogenesis by regulating the PI3K/Pten/Thbs1 signaling pathway to promote the browning of adipose tissue in HFD-induced obese mice. Biomed Pharmacother 2023; 166:115386. [PMID: 37651803 DOI: 10.1016/j.biopha.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigated the effect of electroacupuncture (EA) on the browning of white adipose tissue (WAT) via angiogenesis and its potential mechanism in obese mice. Four-week-old male C56BL/6 mice were randomly divided into a high-fat diet (HFD) and a normal chow diet (ND) group. After 12 weeks, HFD mice were randomly divided into two groups to receive or not receive EA for 3 weeks. After EA treatment, body weight, adipocyte size, serum glucose (GLU), triacylglycerol (TG), cholesterol (CHO), leptin (Lep), monocyte chemoattractant protein-1 (MCP-1), WAT browning-related genes, angiogenesis-related genes, and the PI3K/Pten/Thbs1 signaling pathway were evaluated. The results indicated that EA significantly reduced body weight, adipocyte size, and serum concentrations of GLU, TG, CHO, Lep and MCP-1 and promoted WAT browning. Angiogenesis and the PI3K/Pten/Thbs1 signaling pathway were all activated by EA intervention. The expression levels were consistent with the results of RNA-seq and confirmed via qRTPCR and WB. Our study showed that EA may activate angiogenesis via the PI3K/Pten/Thbs1 signaling pathway in WAT, thereby promoting the browning and thermogenesis of adipose tissue.
Collapse
Affiliation(s)
- Hongyan Gao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanhui Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yue Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinkun Liu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Huaifu Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Xie
- Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu 610007, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|