1
|
Rudroff T. Convergent Mechanisms in Virus-Induced Cancers: A Perspective on Classical Viruses, SARS-CoV-2, and AI-Driven Solutions. Infect Dis Rep 2025; 17:33. [PMID: 40277961 PMCID: PMC12027309 DOI: 10.3390/idr17020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
This perspective examines the potential oncogenic mechanisms of SARS-CoV-2 through comparative analysis with established cancer-causing viruses, integrating classical virological approaches with artificial intelligence (AI)-driven analysis. The paper explores four key themes: shared oncogenic mechanisms between classical viruses and SARS-CoV-2 (including cell cycle dysregulation, inflammatory signaling, immune evasion, and metabolic reprogramming); the application of AI in understanding viral oncogenesis; the integration of neuroimaging evidence; and future research directions. The author presents novel hypotheses regarding SARS-CoV-2's potential oncogenic mechanisms, supported by recent PET/FDG imaging studies showing persistent metabolic alterations. The manuscript emphasizes the transformative potential of combining traditional virological methods with advanced AI technologies for better understanding and preventing virus-induced cancers, while highlighting the importance of long-term monitoring of COVID-19 survivors for potential oncogenic developments.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Turku PET Centre, University of Turku, Turku University Hospital, 20520 Turku, Finland
| |
Collapse
|
2
|
Zehetner L, Széliová D, Kraus B, Hernandez Bort JA, Zanghellini J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab Eng 2025; 91:103-118. [PMID: 40220853 DOI: 10.1016/j.ymben.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
Collapse
Affiliation(s)
- L Zehetner
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - D Széliová
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - B Kraus
- Institute of Molecular Biotechnology, Institut für Molekulare Biotechnologie GmbH, Vienna, 1030, Austria
| | - J A Hernandez Bort
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, Vienna, 1100, Austria.
| | - J Zanghellini
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Gutiérrez-Hurtado IA, Martínez-López E, Rico-Méndez MA, Bravo-Villagra KM, Mendoza-Jaramillo HE, Sánchez-Rolón MDP, Betancourt-Núñez A, Gallegos-Arreola MP, Tapia-Rivera JC, López-Quintero A. Modulation of the Inflammatory Response by Adenovirus 36 in Patients with Obesity and Type 2 Diabetes: A Nested Case-Control Study Within a Cohort. Viruses 2025; 17:552. [PMID: 40284995 PMCID: PMC12030835 DOI: 10.3390/v17040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Human adenovirus 36 (HAdV-36) is associated with obesity, potentially by promoting adipocyte proliferation and differentiation. Although linked to increased fat storage, HAdV-36 is also correlated with improved insulin sensitivity. Given its potential role in modulating adipose tissue and promoting a less inflammatory metabolic profile, its impacts on pro- and anti-inflammatory cytokine secretion remain unclear. METHODS This nested case-control study compared cytokine levels (IL-10, IL-2, IL-6, IL-8, and TNF-α) between patients with and without HAdV-36 infection. A total of 76 participants were included, with 37 in the control group (HAdV-36 negative) and 39 classified as cases (HAdV-36 positive). RESULTS HAdV-36 seropositive individuals exhibited significantly lower IL-6 levels and higher IL-8 levels than seronegative participants. Additionally, they had lower glucose levels, suggesting a potential link between HAdV-36 and metabolic regulation. CONCLUSIONS These findings support the hypothesis that HAdV-36 may influence inflammatory and metabolic responses by modulating cytokine expression and glucose levels. Further research is needed to clarify the underlying mechanisms and their implications for metabolic health.
Collapse
Affiliation(s)
- Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.A.G.-H.); (E.M.-L.)
| | - Erika Martínez-López
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.A.G.-H.); (E.M.-L.)
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Manuel Alejandro Rico-Méndez
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (K.M.B.-V.)
| | - Karla Mayela Bravo-Villagra
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (K.M.B.-V.)
| | - Héctor Eduardo Mendoza-Jaramillo
- Departamento de Ciencias Básicas para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico; (H.E.M.-J.); (M.d.P.S.-R.)
| | - María del Pilar Sánchez-Rolón
- Departamento de Ciencias Básicas para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico; (H.E.M.-J.); (M.d.P.S.-R.)
| | - Alejandra Betancourt-Núñez
- Departamento de Disciplinas Filosófico, Metodológico e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico;
| | - José Carlos Tapia-Rivera
- Departamento de Ciencias Básicas para la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico; (H.E.M.-J.); (M.d.P.S.-R.)
| | - Andres López-Quintero
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (M.A.R.-M.); (K.M.B.-V.)
| |
Collapse
|
4
|
Wang J, Ding X, Jia K, Chen H, An G, Zhao Q, Shen D, Qiu Z, Zhang X, Qian H, Xia D. BmWARS inhibits BmNPV infection via the PI3K-Akt pathway. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-14. [PMID: 40125613 DOI: 10.1017/s000748532500015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Bombyx mori Tryptophanyl-tRNA synthetase (BmWARS) belongs to the family of Ic-like aminoacyl-tRNA synthetases (aaRSs), whose specific recognition of the substrate Trp, tRNA, maintains the fidelity of protein synthesis. In this study, BmWARS was cloned and characterized from the midgut of the silkworm, Bombyx mori, resulting in an open reading frame (ORF) with a full length of 1,149 bp, which can encode 382 Aa. BmWARS is localized in the cytoplasm, and is expressed in all tissues of the silkworm, with higher expression in the testis, ovary, silk gland and malpighian tubule. The expression of BmWARS was significantly up-regulated in the midgut and silk gland after infection with Bombyx mori nuclear polyhedrosis virus (BmNPV). In addition, overexpression of BmWARS inhibited BmNPV infection and replication extremely significantly, while interference with BmWARS expression promoted BmNPV infection and replication. Analysis of the immune pathways in which BmWARS may be involved revealed that the expression of the key genes of the PI3K-Akt pathway, BmPI3K, BmAkt, BmPDK1, BmeIF4E, BmS6, and p-Akt protein was significantly reduced, whereas the expression of BmPTEN, BmFoxO, and BmCaspase9 was significantly increased in the cells that overexpressed BmWARS and were infected with BmNPV. Meanwhile, the results of the study interfering with the expression of BmWARS were completely opposite to those of the study overexpressing BmWARS. This is the first report that BmWARS has antiviral effects in Bombyx mori. Moreover, BmWARS inhibits BmNPV infection and replication in Bombyx mori cells by promoting apoptosis and inhibiting cell proliferation.
Collapse
Affiliation(s)
- Jinyang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xiangrui Ding
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Kaifang Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Haiyu Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Guorong An
- Yancheng Agricultural College, Yancheng College of Agricultural Science and Technology Vocational, Yancheng, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xuelian Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Heying Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
5
|
Sanchez BC, Ortiz RM, Grasis JA. Human adenovirus serotype 5 infection dysregulates cysteine, purine, and unsaturated fatty acid metabolism in fibroblasts. FASEB J 2025; 39:e70411. [PMID: 40052831 PMCID: PMC11887610 DOI: 10.1096/fj.202402726r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
Viral infections can cause cellular dysregulation of metabolic reactions. Viruses alter host metabolism to meet their replication needs. The impact of viruses on specific metabolic pathways is not well understood, even in well-studied viruses, such as human adenovirus. Adenoviral infection is known to influence cellular glycolysis and respiration; however, global effects on overall cellular metabolism in response to infection are unclear. Furthermore, few studies have employed an untargeted approach, combining emphasis on viral dosage and infection. To address this, we employed untargeted metabolomics to quantify the dynamic metabolic shifts in fibroblasts infected with human adenovirus serotype 5 (HAdV-5) at three dosages (0.5, 1.0, and 2.0 multiplicity of infection [MOI]) and across 4 time points (6-, 12-, 24-, and 36-h post-infection [HPI]). The greatest differences in individual metabolites were observed at 6- and 12-h post-infection, correlating with the early phase of the HAdV-5 infection cycle. In addition to its effects on glycolysis and respiration, adenoviral infection downregulates cysteine and unsaturated fatty acid metabolism while upregulating aspects of purine metabolism. These results reveal specific metabolic pathways dysregulated by adenoviral infection and the associated dynamic shifts in metabolism, suggesting that viral infections alter energetics via profound changes in lipid, nucleic acid, and protein metabolism. The results revealed previously unconsidered metabolic pathways disrupted by HAdV-5 that can alter cellular metabolism, thereby prompting further investigation into HAdV mechanisms and antiviral targeting.
Collapse
Affiliation(s)
- Bailey‐J C. Sanchez
- Quantitative and Systems Biology, School of Natural SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Rudy M. Ortiz
- Quantitative and Systems Biology, School of Natural SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Juris A. Grasis
- Quantitative and Systems Biology, School of Natural SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
6
|
Li M, Yuan H, Yang X, Lei Y, Lian J. Glutamine-glutamate centered metabolism as the potential therapeutic target against Japanese encephalitis virus-induced encephalitis. Cell Biosci 2025; 15:6. [PMID: 39844330 PMCID: PMC11755858 DOI: 10.1186/s13578-024-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Japanese encephalitis (JE) induced by Japanese encephalitis virus (JEV) infection is the most prevalent diagnosed epidemic viral encephalitis globally. The underlying pathological mechanisms remain largely unknown. Given that viruses are obligate intracellular parasites, cellular metabolic reprogramming triggered by viral infection is intricately related to the establishment of infection and progression of disease. Therefore, uncovering and manipulating the metabolic reprogramming that underlies viral infection will help elucidate the pathogenic mechanisms and develop novel therapeutic strategies. METHODS Metabolomics analysis was performed to comprehensively delineate the metabolic profiles in JEV-infected mice brains and neurons. Metabolic flux analysis, quantitative real-time PCR, western blotting and fluorescence immunohistochemistry were utilized to describe detailed glutamine-glutamate metabolic profiles during JEV infection. Exogenous addition of metabolites and associated compounds and RNA interference were employed to manipulate glutamine-glutamate metabolism to clarify its effects on viral replication. The survival rate, severity of neuroinflammation, and levels of viral replication were assessed to determine the efficacy of glutamine supplementation in JEV-challenged mice. RESULTS Here, we have delineated a novel perspective on the pathogenesis of JE by identifying an aberrant low flux in glutamine-glutamate metabolism both in vivo and in vitro, which was critical in the establishment of JEV infection and progression of JE. The perturbed glutamine-glutamate metabolism induced neurotransmitter imbalance and created an immune-inhibitory state with increased gamma-aminobutyric acid/glutamate ratio, thus facilitating efficient viral replication both in JEV-infected neurons and the brain of JEV-infected mice. In addition, viral infection restrained the utilization of glutamine via the glutamate-α-ketoglutaric acid axis in neurons, thus avoiding the adverse effects of glutamine oxidation on viral propagation. As the conversion of glutamine to glutamate was inhibited after JEV infection, the metabolism of glutathione (GSH) was simultaneously impaired, exacerbating oxidative stress in JEV-infected neurons and mice brains and promoting the progression of JE. Importantly, the supplementation of glutamine in vivo alleviated the intracranial inflammation and enhanced the survival of JEV-challenged mice. CONCLUSION Altogether, our study highlights an aberrant glutamine-glutamate metabolism during JEV infection and unveils how this facilitates viral replication and promotes JE progression. Manipulation of these metabolic alterations may potentially be exploited to develop therapeutic approaches for JEV infection.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Hang Yuan
- Pathogenic Biology, Medical College of Yan'an University, Yan'an, 716000, China
| | - Xiaofei Yang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yingfeng Lei
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
7
|
Campbell SL, Christofk HR. Lessons Learned from Cancer Metabolism for Physiology and Disease. Cold Spring Harb Perspect Med 2025; 15:a041554. [PMID: 38858085 PMCID: PMC11694740 DOI: 10.1101/cshperspect.a041554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.
Collapse
Affiliation(s)
- Sydney L Campbell
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Sun Z, Ma Z, Cao W, Jiang C, Guo L, Liu K, Gao Y, Bai J, Pi J, Jiang P, Liu X. Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation. PLoS Pathog 2025; 21:e1012872. [PMID: 39804926 PMCID: PMC11761150 DOI: 10.1371/journal.ppat.1012872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/24/2025] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication. Mechanistically, PRRSV-induced mitochondrial fission is caused by elevated levels of mitochondria Ca2+, derived from the endoplasmic reticulum (ER) through inositol 1,4,5-triphosphate receptor (IP3R)-voltage-dependent anion channel 1 (VDAC1)-mitochondrial calcium uniporter (MCU) channels. This process is associated with increased mitochondria-associated membranes (MAMs), mediated by the upregulated expression of sigma non-opioid intracellular receptor 1 (SIGMAR1). Elevated mitochondria Ca2+ further activates the Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-AMP-activated protein kinase (AMPK)-dynamin-related protein 1 (DRP1) signaling pathway, which interacts with mitochondrial fission protein 1 (FIS1) and mitochondrial dynamics proteins of 49 kDa (MiD49) to promote mitochondrial fission. PRRSV infection, alongside mitochondrial fission, triggers mitophagy via the PTEN-induced putative kinase 1 (PINK1)-Parkin RBR E3 ubiquitin (Parkin) pathway, promoting cellular glycolysis and excessive lactate production to facilitate its own replication. This study reveals the mechanism by which mitochondrial Ca2+ regulates mitochondrial function during PRRSV infection, providing new insights into the interplay between the virus and host cell metabolism.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wandi Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Guo
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kesen Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiang Pi
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
9
|
Basis A, Sharf R, Kleinberger T. The adenoviral E4orf4 protein: A multifunctional protein serving as a guide for treating cancer, a multifactorial disease. Tumour Virus Res 2024; 19:200303. [PMID: 39681196 PMCID: PMC11928763 DOI: 10.1016/j.tvr.2024.200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Viruses exploit several cellular pathways to support their replication, and many of these virus-targeted pathways are also important for cancer growth. Consequently, studying virus-host interactions offers valuable insights into tumorigenesis and can suggest the development of novel anti-cancer therapies, with oncolytic viruses being one well-known example. The adenovirus E4orf4 protein, which disrupts several host regulatory pathways to facilitate viral infection, also functions as a potent anti-cancer agent when expressed independently. E4orf4 can selectively kill a wide range of cancer cell lines while sparing non-cancerous cells. Moreover, it effectively eliminated cancer in an in vivo Drosophila model without causing significant harm to normal tissues. In this study we provide evidence that an E4orf4-mimicking drug cocktail, comprising sublethal doses of four FDA-approved drugs targeting the pathways disrupted by E4orf4, significantly enhanced cancer cell death in many cancer cell types compared with individual drugs or less inclusive drug combinations. The quadruple drug cocktail was not toxic in non-cancerous cells. These findings provide a proof-of-principle for the potential application of virus-host interaction studies to design an effective E4orf4-based cancer therapy. Further investigation of E4orf4 interactions with the host cell will likely improve this E4orf4-based therapy by adding drugs that disrupt additional pathways. Crucially, the E4orf4-based approach offers a strategic advantage by avoiding the time-consuming development of novel drugs. Instead, it leverages existing drugs, including those that might be too toxic for use as monotherapies, by employing them at sublethal concentrations in combination. Thus, it provides a feasible and efficient method for advancing cancer therapy.
Collapse
Affiliation(s)
- Amir Basis
- Dept. of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rakefet Sharf
- Dept. of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Kleinberger
- Dept. of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Mokry RL, Purdy JG. Glucose-independent human cytomegalovirus replication is supported by metabolites that feed upper glycolytic branches. Proc Natl Acad Sci U S A 2024; 121:e2412966121. [PMID: 39560652 PMCID: PMC11621781 DOI: 10.1073/pnas.2412966121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
Viruses with broad tissue distribution and cell tropism successfully replicate in various nutrient environments in the body. Several viruses reprogram metabolism for viral replication. However, many studies focus on metabolic reprogramming in nutrient-rich conditions that do not recapitulate physiological environments in the body. Here, we investigated how viruses may replicate when a metabolite thought to be essential for replication is limited. We use human cytomegalovirus infection in glucose-free conditions as a model to determine how glucose supports virus replication and how physiologically relevant nutrients contribute to glucose-independent virus production. We find that glucose supports viral genome synthesis, viral protein production and glycosylation, and infectious virus production. Notably, supplement of glucose-free cultures with uridine, ribose, or UDP-GlcNAc-metabolites that feed upper glycolytic branches like the pentose phosphate pathway-results in partially restored virus replication, including low levels of infectious virus production. Supplementing lower glycolysis in glucose-free cultures using pyruvate fails to restore virus replication. These results indicate that nutrients can compensate for glucose via feeding upper glycolytic branches to sustain low levels of virus production. More broadly, our findings suggest that viruses may successfully replicate in diverse metabolic niches, including those in the body with low glucose levels, through alternative nutrient usage.
Collapse
Affiliation(s)
- Rebekah L. Mokry
- BIO5 Institute, University of Arizona, Tucson, AZ85719
- Department of Immunobiology, University of Arizona, Tucson, AZ85724
| | - John G. Purdy
- BIO5 Institute, University of Arizona, Tucson, AZ85719
- Department of Immunobiology, University of Arizona, Tucson, AZ85724
- Cancer Biology Interdisciplinary Program, University of Arizona, Tucson, AZ85724
| |
Collapse
|
11
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Su G, Su L, Luo D, Yang X, Liu Z, Lin Q, An T, Weng C, Chen W, Zeng Z, Chen J. Cepharanthine inhibits African swine fever virus replication by suppressing AKT-associated pathways through disrupting Hsp90-Cdc37 complex. Int J Biol Macromol 2024; 282:137070. [PMID: 39486740 DOI: 10.1016/j.ijbiomac.2024.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
African swine fever (ASF) represents one of the most economically important viral infectious diseases in the swine industry worldwide. Presently, there is an absence of commercially available therapeutic drugs and safe vaccines. Cepharanthine (CEP), one of the naturally occurring bisbenzylisoquinoline alkaloids, has been approved as a drug to treat various diseases such as leukopenia, bronchial asthma, and snake bites for 70 years in Japan. Most recently, CEP was reported to inhibit ASFV replication by suppressing endosomal/lysosomal function although the specific molecular mechanisms were not elucidated. In this study, we demonstrate for the first time that ASFV infection promotes co-chaperone Cdc37 expression and its binding to Hsp90, leading to increased AKT phosphorylation to benefit viral replication. Notably, CEP disrupts the Hsp90-Cdc37 complex, subsequently decreasing p-AKT and inhibiting ASFV replication. Furthermore, our investigation reveals that enhanced AKT phosphorylation amplifies glycolysis, resulting in increased lactate production, while it upregulates the NF-κB signaling pathway, resulting in increased expression of IL-1β and other inflammatory cytokines. Elevated lactate enhances ASFV replication, and IL-1β acts synergistically on the proviral effect of lactate. CEP reduces ASFV replication by disrupting the formation of the Hsp90-Cdc37 complex and suppressing its downstream AKT/glycolysis axis and AKT/NF-κB pathway, leading to reduced lactate and IL-1β production. Our findings suggest that CEP could serve as a promising ASFV inhibitor, and the Hsp90-Cdc37 complex and glycolysis represent novel antiviral targets against ASFV infections, offering novel avenues for further exploration in antiviral therapeutic strategies. As the in vivo environment is largely complicated from ex vivo PAMs, anti-ASFV efficacy evaluation of CEP in pigs is the most imperative work in the future.
Collapse
Affiliation(s)
- Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Laboratory Animal Center, Guangdong Medical University, Dongguan 523808, China
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ding Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Andrews JT, Zhang Z, Prasad GVRK, Huey F, Nazarova EV, Wang J, Ranaraja A, Weinkopff T, Li LX, Mu S, Birrer MJ, Huang SCC, Zhang N, Argüello RJ, Philips JA, Mattila JT, Huang L. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol 2024; 17:825-842. [PMID: 38844208 PMCID: PMC11493682 DOI: 10.1016/j.mucimm.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zijing Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G V R Krishna Prasad
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fischer Huey
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ananya Ranaraja
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael J Birrer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stanley Ching-Cheng Huang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
14
|
Yang X, Tian S, Min Z, Garbarino E, Ma J, Jia J, Tang H, Li L. AMPK restricts HHV-6A replication by inhibiting glycolysis and mTOR signaling. Virology 2024; 595:110080. [PMID: 38631099 DOI: 10.1016/j.virol.2024.110080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. In this study, we investigated the role of AMPK in response to human herpesvirus 6A (HHV-6A) infection. We show that HHV-6A infection significantly downregulates the active phosphorylated state of AMPK in infected T cells. Pharmacological activation of AMPK highly attenuated HHV-6A propagation. Mechanistically, we found that the activation of AMPK by AICAR blocked HHV-6-induced glycolysis by inhibiting glucose metabolism and lactate secretion, as well as decreasing expressions of key glucose transporters and glycolytic enzymes. In addition, mTOR signaling has been inactivated in HHV-6A infected T cells by AICAR treatment. We also showed that HHV-6A infection of human umbilical cord blood mononuclear cells (CBMCs) reduced AMPK activity whereas the activation of AMPK by metformin drastically reduced HHV-6A DNA replication and virions production. Taken together, this study demonstrates that AMPK is a promising antiviral therapeutic target against HHV-6A infection.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Siyu Tian
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhujiang Min
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Emanuela Garbarino
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Ma
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Junli Jia
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Huamin Tang
- Department of Immunology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Lingyun Li
- Department of Medical Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Hafner A, Meurs N, Garner A, Azar E, Kannan A, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. PLoS Pathog 2024; 20:e1011909. [PMID: 38976719 PMCID: PMC11257395 DOI: 10.1371/journal.ppat.1011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ari Garner
- Department of Microbiology, Immunology, and Inflammation, University of Illinois, Chicago, Illinois, United States of America
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aditya Kannan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla D. Passalacqua
- Graduate Medical Education, Henry Ford Health, Detroit, Michigan, United States of America
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
16
|
Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, Qin A. Metabolomics analysis of CEF cells infected with avian leukosis virus subgroup J based on UHPLC-QE-MS. Poult Sci 2024; 103:103693. [PMID: 38598912 PMCID: PMC11017069 DOI: 10.1016/j.psj.2024.103693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is a retrovirus that can cause immunosuppression and tumors in chicken. However, relative pathogenesis is still not clear. At present, metabolomics has shown great potential in the screening of tumor metabolic markers, prognostic evaluation, and drug target design. In this study, we utilize an untargeted metabolomics approach based on ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) to analyze the metabolic changes in chicken embryo fibroblast (CEF) cells infected by ALV-J. We found that ALV-J infection significantly altered a wealth of metabolites compared with control group. Additionally, most of the differentially expressed metabolites belonged to lipid metabolism, purine nucleotide metabolism and amino acid metabolism. Among them, the proportion of lipid metabolites account for the highest proportion (around 31%). Results suggest that these changes may be conductive to the formation of virion, thereby promoting the replication of ALV-J. These data provided metabolic evidence and potential biomarkers for the cellular metabolic changes induced by ALV-J, and provided important insight for further understanding the replication needs and pathogenesis of ALV-J.
Collapse
Affiliation(s)
- Menglu Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.
| |
Collapse
|
17
|
Ng YS, Chen CY, Cheng SW, Tan YK, Lin SS, Senapin S, Sangsuriya P, Wang HC. WSSV early protein WSSV004 enhances viral replication by suppressing LDH activity. Int J Biol Macromol 2024; 271:132482. [PMID: 38763244 DOI: 10.1016/j.ijbiomac.2024.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
White spot syndrome virus (WSSV) is known to upregulate glycolysis to supply biomolecules and energy for the virus's replication. At the viral genome replication stage, lactate dehydrogenase (LDH), a glycolytic enzyme, shows increased activity without any increase in expression. In the present study, yeast 2-hybrid screening was used to identify WSSV proteins that interacted with LvLDH isoform 1 and 2, and these included the WSSV early protein WSSV004. The interaction between WSSV004 and LvLDH1/2 was confirmed by co-immunoprecipitation. Immunofluorescence showed that WSSV004 co-localized with LvLDH1/2 in the cytoplasm. dsRNA silencing experiments showed that WSSV004 was crucial for WSSV replication. However, although WSSV004 silencing led to the suppression of total LvLDH gene expression during the viral late stage, there was nevertheless a significant increase in LvLDH activity at this time. We also used affinity purification-mass spectrometry to identify cellular proteins that interact with WSSV004, and found a total of 108 host proteins and 3 WSSV proteins with which it potentially interacts. Bioinformatics analysis revealed that WSSV004 and its interacting proteins might be responsible for various biological pathways during infection, including vesicular transport machinery and RNA-related functions. Collectively, our study suggests that WSSV004 serves as a multifunctional modulator to facilitate WSSV replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cong-Yan Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Cheng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu Kent Tan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
18
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Wang G, Cao Y, Xu C, Zhang S, Huang Y, Zhang S, Bao W. Comprehensive transcriptomic and metabolomic analysis of porcine intestinal epithelial cells after PDCoV infection. Front Vet Sci 2024; 11:1359547. [PMID: 38855411 PMCID: PMC11160942 DOI: 10.3389/fvets.2024.1359547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Porcine deltacoronavirus (PDCoV), an emerging swine enteropathogenic coronavirus with worldwide distribution, mainly infects newborn piglets with severe diarrhea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. However, the underlying pathogenic mechanisms of PDCoV infection and the effects of PDCoV infection on host transcripts and metabolites remain incompletely understood. Methods This study investigated a combined transcriptomic and metabolomic analysis of porcine intestinal epithelial cells (IPEC-J2) following PDCoV infection by LC/MS and RNA-seq techniques. A total of 1,401 differentially expressed genes and 254 differentially accumulated metabolites were detected in the comparison group of PDCoV-infected vs. mock-infected. Results and discussion We found that PDCoV infection regulates gene sets associated with multiple signaling pathways, including the neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, MAPK signaling pathway, chemokine signaling pathway, ras signaling pathway and so on. Besides, the metabolomic results showed that biosynthesis of cofactors, nucleotide metabolism, protein digestion and absorption, and biosynthesis of amino acid were involved in PDCoV infection. Moreover, integrated transcriptomics and metabolomics analyses revealed the involvement of ferroptosis in PDCoV infection, and exogenous addition of the ferroptosis activator erastin significantly inhibited PDCoV replication. Overall, these unique transcriptional and metabolic reprogramming features may provide a better understanding of PDCoV-infected IPEC-J2 cells and potential targets for antiviral treatment.
Collapse
Affiliation(s)
- Guangzheng Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanan Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuoshuo Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanjie Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuai Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
King CR, Dodge MJ, MacNeil KM, Tessier TM, Mymryk JS, Mehle A. Expanding the adenovirus toolbox: reporter viruses for studying the dynamics of human adenovirus replication. J Virol 2024; 98:e0020724. [PMID: 38639487 PMCID: PMC11092356 DOI: 10.1128/jvi.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Tanner M. Tessier
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
- Department of Otolaryngology, University of Western Ontario, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Jia K, Wang J, Jiang D, Zhao Q, Shen D, Zhang X, Qiu Z, Wang Y, Lu C, Xia D. Bombyx mori triose-phosphate transporter protein inhibits Bombyx mori nucleopolyhedrovirus infection by reducing the cell glycolysis pathway. Int J Biol Macromol 2024; 266:131197. [PMID: 38554913 DOI: 10.1016/j.ijbiomac.2024.131197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Bombyx mori triose-phosphate transporter protein (BmTPT) is a member of the solute carrier (SLC) family. Its main function is to transport triose phosphate between intracellular and extracellular. In this study, BmTPT was cloned and characterised from the fat body of the silkworm Bombyx mori, resulting in an open reading frame (ORF) with a full length of 936 bp, which can encode 311 amino acid residues and has eight transmembrane structural domains. BmTPT was distributed throughout the cell and deposited the most in the nucleus, and is expressed in all tissues of Bombyx mori. Bombyx mori nucleopolyhedrovirus (BmNPV) infection significantly up-regulated BmTPT expression in immune tissue fat bodies. In addition, overexpression of BmTPT significantly inhibited BmNPV infection and markedly reduced the expression of enzymes related to the cellular glycolytic pathway; on the contrary, down-regulation of BmTPT expression by RNA interference resulted in robust replication of BmNPV and a significant increase in the expression of enzymes related to the cellular glycolytic pathway. This is the first report that BmTPT has antiviral effect in silkworm, and also could result in a lack of energy and raw materials for BmNPV replication and infection through down-regulation of the cellular glycolytic pathway.
Collapse
Affiliation(s)
- Kaifang Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yin Wang
- Zhenjiang Agricultural Product Quality Inspection and Testing Center, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
22
|
Lee C, Park A, Lee JY. In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D. J Microbiol 2024; 62:409-418. [PMID: 38689047 DOI: 10.1007/s12275-024-00132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024]
Abstract
Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.
Collapse
Affiliation(s)
- Chanhee Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
23
|
Su G, Liu J, Duan C, Fang P, Fang L, Zhou Y, Xiao S. Enteric coronavirus PDCoV evokes a non-Warburg effect by hijacking pyruvic acid as a metabolic hub. Redox Biol 2024; 71:103112. [PMID: 38461791 PMCID: PMC10938170 DOI: 10.1016/j.redox.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.
Collapse
Affiliation(s)
- Guanning Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiao Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chenrui Duan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
24
|
Göttig L, Jummer S, Staehler L, Groitl P, Karimi M, Blanchette P, Kosulin K, Branton PE, Schreiner S. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53. J Virol 2024; 98:e0170123. [PMID: 38451084 PMCID: PMC11019960 DOI: 10.1128/jvi.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024] Open
Abstract
Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Jummer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Staehler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maryam Karimi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paola Blanchette
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Karin Kosulin
- Molecular Microbiology, Children’s Cancer Research Institute, Vienna, Austria
| | - Philip E. Branton
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Freiburg, Germany
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Zhu M, Wu N, Zhong J, Chen C, Liu W, Ren Y, Wang X, Jin H. N 6-methyladenosine modification of the mRNA for a key gene in purine nucleotide metabolism regulates virus proliferation in an insect vector. Cell Rep 2024; 43:113821. [PMID: 38368611 DOI: 10.1016/j.celrep.2024.113821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
The titer of viruses that persist and propagate in their insect vector must be high enough for transmission yet not harm the insect, but the mechanism of this dynamic balance is unclear. Here, expression of inosine monophosphate dehydrogenase (LsIMPDH), a rate-limiting enzyme for guanosine triphosphate (GTP) synthesis, is shown to be downregulated by increased levels of N6-methyladenosine (m6A) on LsIMPDH mRNA in rice stripe virus (RSV)-infected small brown planthoppers (SBPHs; Laodelphax striatellus), the RSV vector, which decreases GTP content, thus limiting viral proliferation. Moreover, planthopper methyltransferase-like protein 3 (LsMETTL3) and m6A reader protein LsYTHDF3 are found to catalyze and recognize the m6A on LsIMPDH mRNA, respectively, and cooperate in destabilizing LsIMPDH transcripts. Co-silencing assays show that negative regulation of viral proliferation by both LsMETTL3 and LsYTHDF3 is partially dependent on LsIMPDH. This distinct mechanism limits virus replication in an insect vector, providing a potential gene target to block viral transmission.
Collapse
Affiliation(s)
- Mengjie Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiayi Zhong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huaibing Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
26
|
Peng C, Xiao P, Li N. Does oncolytic viruses-mediated metabolic reprogramming benefit or harm the immune microenvironment? FASEB J 2024; 38:e23450. [PMID: 38294796 DOI: 10.1096/fj.202301947rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Oncolytic virus immunotherapy as a new tumor therapy has made remarkable achievements in clinical practice. And metabolic reprogramming mediated by oncolytic virus has a significant impact on the immune microenvironment. This review summarized the reprogramming of host cell glucose metabolism, lipid metabolism, oxidative phosphorylation, and glutamine metabolism by oncolytic virus and illustrated the effects of metabolic reprogramming on the immune microenvironment. It was found that oncolytic virus-induced reprogramming of glucose metabolism in tumor cells has both beneficial and detrimental effects on the immune microenvironment. In addition, oncolytic virus can promote fatty acid synthesis in tumor cells, inhibit oxidative phosphorylation, and promote glutamine catabolism, which facilitates the anti-tumor immune function of immune cells. Therefore, targeted metabolic reprogramming is a new direction to improve the efficacy of oncolytic virus immunotherapy.
Collapse
Affiliation(s)
- Chengcheng Peng
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Pengpeng Xiao
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| | - Nan Li
- Institute of Virology, Wenzhou University, Wenzhou, China
- Key Laboratory of Virology and Immunology of Wenzhou, Wenzhou University, Wenzhou, China
| |
Collapse
|
27
|
Wei TT, Xu W, Tu B, Zhang WX, Yang XX, Zhou Y, Zhang SS, Yang JL, Xie MZ, Du J, Chen WW, Lu QB. Plasma Metabonomics of Human Adenovirus-infected Patients with Pneumonia and Upper Respiratory Tract Infection. Curr Med Sci 2024; 44:121-133. [PMID: 38393525 DOI: 10.1007/s11596-024-2835-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Human adenovirus (HAdV) infection is common and can develop to serious conditions with high mortality, yet the mechanism of HAdV infection remains unclear. In the present study, the serum metabolite profiles of HAdV-7-infected patients with pneumonia or upper respiratory tract infection (URTI) were explored. METHODS In total, 35 patients were enrolled in the study following an outbreak of HAdV-7 in the army, of whom 14 had pneumonia and 21 had URTI. Blood samples were collected at the acute stage and at the recovery stage and were analyzed by untargeted metabolomics. RESULTS Over 90% of the differential metabolites identified between the pneumonia patients and URTI patients were lipids and lipid-like molecules, including glycerophospholipids, fatty acyls, and sphingolipids. The metabolic pathways that were significantly enriched were primarily the lipid metabolism pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. The sphingolipid metabolism was identified as a significantly differential pathway between the pneumonia patients and URTI patients and between the acute and recovery stages for the pneumonia patients, but not between the acute and recovery stages for the URTI patients. Ceramide and lactosylceramide, involved in sphingolipid metabolism, were significantly higher in the pneumonia patients than in the URTI patients with good discrimination abilities [area under curve (AUC) 0.742 and 0.716, respectively; combination AUC 0.801]. CONCLUSION Our results suggested that HAdV modulated lipid metabolism for both the patients with URTI and pneumonia, especially the sphingolipid metabolism involving ceramide and lactosylceramide, which might thus be a potential intervention target in the treatment of HAdV infection.
Collapse
Affiliation(s)
- Ting-Ting Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Wen Xu
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Bo Tu
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Wan-Xue Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, China
| | - Xin-Xin Yang
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yiguo Zhou
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan-Shan Zhang
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, 100191, China
| | - Jun-Lian Yang
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Ming-Zhu Xie
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, 100191, China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, China
| | - Wei-Wei Chen
- Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Qing-Bin Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100191, China.
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, 100191, China.
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
28
|
Bappy SS, Haque Asim MM, Ahasan MM, Ahsan A, Sultana S, Khanam R, Shibly AZ, Kabir Y. Virus-induced host cell metabolic alteration. Rev Med Virol 2024; 34:e2505. [PMID: 38282396 DOI: 10.1002/rmv.2505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024]
Abstract
Viruses change the host cell metabolism to produce infectious particles and create optimal conditions for replication and reproduction. Numerous host cell pathways have been modified to ensure available biomolecules and sufficient energy. Metabolomics studies conducted over the past decade have revealed that eukaryotic viruses alter the metabolism of their host cells on a large scale. Modifying pathways like glycolysis, fatty acid synthesis and glutaminolysis could provide potential energy for virus multiplication. Thus, almost every virus has a unique metabolic signature and a different relationship between the viral life cycle and the individual metabolic processes. There are enormous research in virus induced metabolic reprogramming of host cells that is being conducted through numerous approaches using different vaccine candidates and antiviral drug substances. This review provides an overview of viral interference to different metabolic pathways and improved monitoring in this area will open up new ways for more effective antiviral therapies and combating virus induced oncogenesis.
Collapse
Affiliation(s)
| | | | | | - Asif Ahsan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Sorna Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Roksana Khanam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Zaffar Shibly
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
29
|
Chen Y, Wang W, Zhang W, He M, Li Y, Qu G, Tong J. Emerging roles of biological m 6A proteins in regulating virus infection: A review. Int J Biol Macromol 2023; 253:126934. [PMID: 37722640 DOI: 10.1016/j.ijbiomac.2023.126934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent chemical modifications of intracellular RNA, which recently emerging as a multifaceted effector of viral genomic RNA. As a dynamic process, three groups of biological proteins control the levels of m6A modification in eukaryocyte, designed as m6A writers, erasers, and readers. The m6A writers comprising of methyltransferases complex initiate the modification process. On the contrary, the m6A erasers ALKBH5 or FTO abolish the modification through three-step demethylation: m6A to N6-hydroxymethyl adenosine (hm6A), then hm6A to N6-methyladenosine (f6A), and finally f6A to adenosine. The known m6A readers include the YTH family and the hnRNP family. As m6A modification regulates RNA nuclear exportation, stability, and translation, m6A proteins commonly participate in virus infection by regulating viral genomic RNA synthesis. Moreover, m6A proteins establish molecular linkages between virus genome/viral encode proteins and host cells proteins via their multifunctional roles in cellular RNA metabolism. The m6A writers and erasers directly impact interferon expression and macrophage innate immune responses, facilitating them to act as anti-/pro-viral factors. The m6A readers enable to alter cell metabolism and stress granules (SGs) production to regulate virus-host interactions. Here, the latest progress of m6A proteins in regulating viral infection is reviewed. Demonstrating the roles of m6A proteins will enhance the understanding of epigenetic regulation of virus infection and stimulate the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yuran Chen
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjing Wang
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Mei He
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an 271000, China.
| | - Guosheng Qu
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jie Tong
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
30
|
Qin C, Xie T, Yeh WW, Savas AC, Feng P. Metabolic Enzymes in Viral Infection and Host Innate Immunity. Viruses 2023; 16:35. [PMID: 38257735 PMCID: PMC10820379 DOI: 10.3390/v16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic enzymes are central players for cell metabolism and cell proliferation. These enzymes perform distinct functions in various cellular processes, such as cell metabolism and immune defense. Because viral infections inevitably trigger host immune activation, viruses have evolved diverse strategies to blunt or exploit the host immune response to enable viral replication. Meanwhile, viruses hijack key cellular metabolic enzymes to reprogram metabolism, which generates the necessary biomolecules for viral replication. An emerging theme arising from the metabolic studies of viral infection is that metabolic enzymes are key players of immune response and, conversely, immune components regulate cellular metabolism, revealing unexpected communication between these two fundamental processes that are otherwise disjointed. This review aims to summarize our present comprehension of the involvement of metabolic enzymes in viral infections and host immunity and to provide insights for potential antiviral therapy targeting metabolic enzymes.
Collapse
Affiliation(s)
- Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
31
|
Hafner A, Meurs N, Garner A, Azar E, Passalacqua KD, Nagrath D, Wobus CE. Norovirus NS1/2 protein increases glutaminolysis for efficient viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572316. [PMID: 38187600 PMCID: PMC10769279 DOI: 10.1101/2023.12.19.572316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for replication. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, the acute MNV-1 strain and the persistent CR3 and CR6 strains. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the MNV lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the MNV non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified the first viral regulator of glutaminolysis for RNA viruses, which increases our fundamental understanding of virus-induced metabolic alterations.
Collapse
Affiliation(s)
- Adam Hafner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ari Garner
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elaine Azar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, Li C, Li L, Kong X. Role of HIF in fish inflammation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109222. [PMID: 37956798 DOI: 10.1016/j.fsi.2023.109222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.
Collapse
Affiliation(s)
- Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
33
|
Carreno-Florez GP, Kocak BR, Hendricks MR, Melvin JA, Mar KB, Kosanovich J, Cumberland RL, Delgoffe GM, Shiva S, Empey KM, Schoggins JW, Bomberger JM. Interferon signaling drives epithelial metabolic reprogramming to promote secondary bacterial infection. PLoS Pathog 2023; 19:e1011719. [PMID: 37939149 PMCID: PMC10631704 DOI: 10.1371/journal.ppat.1011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.
Collapse
Affiliation(s)
- Grace P. Carreno-Florez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Brian R. Kocak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey A. Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jessica Kosanovich
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
| | - Rachel L. Cumberland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Greg M. Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kerry M. Empey
- Department of Pharmacy and Therapeutics and Center for Clinical Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
34
|
Goyal P, Rajala MS. Reprogramming of glucose metabolism in virus infected cells. Mol Cell Biochem 2023; 478:2409-2418. [PMID: 36709223 PMCID: PMC9884135 DOI: 10.1007/s11010-023-04669-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023]
Abstract
Viral infection is a kind of cellular stress that leads to the changes in cellular metabolism. Many metabolic pathways in a host cell such as glycolysis, amino acid and nucleotide synthesis are altered following virus infection. Both oncogenic and non-oncogenic viruses depend on host cell glycolysis for their survival and pathogenesis. Recent studies have shown that the rate of glycolysis plays an important role in oncolysis as well by oncolytic therapeutic viruses. During infection, viral proteins interact with various cellular glycolytic enzymes, and this interaction enhances the catalytic framework of the enzymes subsequently the glycolytic rate of the cell. Increased activity of glycolytic enzymes following their interaction with viral proteins is vital for replication and to counteract the inhibition of glycolysis caused by immune response. In this review, the importance of host cell glycolysis and the modulation of glycolysis by various viruses such as oncogenic, non-oncogenic and oncolytic viruses are presented.
Collapse
Affiliation(s)
- Priya Goyal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
35
|
Kaushik N, Patel P, Bhartiya P, Shin Y, Kim JH, Choi EH, Kaushik NK. Glycolytic stress deteriorates 229E virulence to improve host defense response. Microbes Infect 2023; 25:105150. [PMID: 37178787 PMCID: PMC10174727 DOI: 10.1016/j.micinf.2023.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Viral infection treatment is a difficult task due to its complex structure and metabolism. Additionally, viruses can alter the metabolism of host cells, mutate, and readily adjust to harsh environments. Coronavirus stimulates glycolysis, weakens mitochondrial activity, and impairs infected cells. In this study, we investigated the efficacy of 2-DG in inhibiting coronavirus-induced metabolic processes and antiviral host defense systems, which have not been explored so far. 2-Deoxy-d-glucose (2-DG), a molecule restricting substrate availability, has recently gained attention as a potential antiviral drug. The results revealed that 229E human coronavirus promoted glycolysis, producing a significant increase in the concentration of fluorescent 2-NBDG, a glucose analog, particularly in the infected host cells. The addition of 2-DG decreased its viral replication and suppressed infection-induced cell death and cytopathic effects, thereby improving the antiviral host defense response. It was also observed that administration of low doses of 2-DG inhibited glucose uptake, indicating that 2-DG consumption in virus-infected host cells was mediated by high-affinity glucose transporters, whose levels were amplified upon coronavirus infection. Our findings indicated that 2-DG could be a potential drug to improve the host defense system in coronavirus-infected cells.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Paritosh Patel
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Pradeep Bhartiya
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Yungoh Shin
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
36
|
Dang CV. Cancer Metabolism Historical Perspectives: A Chronicle of Controversies and Consensus. Cold Spring Harb Perspect Med 2023; 13:a041530. [PMID: 37553212 PMCID: PMC10691493 DOI: 10.1101/cshperspect.a041530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A century ago, Otto Warburg's work sparked the field of cancer metabolism, which has since taken a tortuous path. As evidence accumulated over the decades, consensus views of causes of cancer emerged, whereby genetic and epigenetic oncogenic drivers promoted immune evasion and induced new blood vessels and neoplastic metabolism to support tumor growth. Neoplastic cells abandon social cues of intercellular cooperation, escape tissue confinement, metastasize, and ultimately kill the host. Herein, key milestones in the study of cancer metabolism are chronicled with an emphasis on carbohydrate metabolism. The field began with a cancer cell-autonomous view that has been refined by a richer understanding of solid cancers as growing, immune-suppressive, complex organs comprising different cell types that are nourished by a variety of nutrients and variable amounts of oxygen through abnormal neovasculatures. Based on foundational historical studies, our current understanding of cancer metabolism offers a hopeful outlook for targeting metabolism to enhance cancer therapy.
Collapse
Affiliation(s)
- Chi V Dang
- Ludwig Institute for Cancer Research, New York, New York 10017, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
37
|
Fatoki TH. Human adenovirus DNA polymerase is evolutionarily and functionally associated with human telomerase reverse transcriptase based on in silico molecular characterization that implicate abacavir and zidovudine. FRONTIERS IN BIOINFORMATICS 2023; 3:1123307. [PMID: 37351013 PMCID: PMC10282644 DOI: 10.3389/fbinf.2023.1123307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
Human adenoviruses (HAdVs) are non-enveloped, small double stranded DNA (dsDNA) viruses that cause asymptomatic infections, clinical syndromes and significant susceptibility to infections in immunocompromised people. The aim of the present study was to identify critical host proteins and HAdV hypothetical proteins that could be developed as potential host-viral targets for antiHAdV therapy. Here, the function of selected hypothetical proteins of HAdV based on phylogenetic relationship with the therapeutic targets of antiretroviral drugs of human immunodeficiency virus (HIV) was predicted computationally, and characterized the molecular dynamics and binding affinity of DNA polymerase of HAdV. Thirty-eight hypothetical proteins (HPs) of human adenovirus (HAdV) were used in this study. The results showed that HAdV DNA polymerase (P03261) is related to Human TERT (O14746) and HLA-B (P01889) genes. The protein-protein interaction of human five molecular targets (PNP, TERT, CCR5, HLA-B, and NR1I2) of ARVDs are well-coordinated/networked with CD4, AHR, FKBP4, NR3C1, HSP90AA1, and STUB1 proteins in the anti-HIV infection mechanism. The results showed that the free energy score of abacavir and zidovudine binding to HAdV DNA polymerase are -5.8 and -5.4 kcal mol-1 respectively. Also, the control drug, cidofovir and ganciclovir have less binding affinity for DNA polymerase of HAdV when compare to that of abacavir and zidovudine. Similarity was observed in the binding of abacavir and zidovudine to HAdV DNA polymerase (ASP742, ALA743, LEU772, ARG773 and VAL776). In conclusion, combination of abacavir and zidovudine was predicted to be potential therapy for controlling HAdV infection targeting HAdV DNA polymerase.
Collapse
|
38
|
MA F, FA C, AJ N, AA S, IA PF, LJ C, PA G. Contribution of carbohydrate-related metabolism in Herpesvirus infections. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100192. [PMID: 37273578 PMCID: PMC10238445 DOI: 10.1016/j.crmicr.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Human herpesviruses are enveloped viruses with double-stranded linear DNA genomes highly prevalent in the human population. These viruses are subdivided into three subfamilies, namely alphaherpesvirinae (herpes simplex virus type 1, HSV-1; herpes simplex virus type 2, HSV-2; and varicella-zoster virus, VZV), betaherpesvirinae (human cytomegalovirus, HCMV; human herpesvirus 6, HHV-6; and human herpesvirus 7, HHV-7) and gammaherpesvirinae (Epstein-Barr virus, EBV; and Kaposi's sarcoma-associated herpesvirus, KSHV). Besides encoding numerous molecular determinants to evade the host antiviral responses, these viruses also modulate cellular metabolic processes to promote their replication. Here, we review and discuss existing studies describing an interplay between carbohydrate metabolism and the replication cycle of herpesviruses, altogether highlighting potentially new molecular targets based on these interactions that could be used to block herpesvirus infections.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Cancino FA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Navarro AJ
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Soto AA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Pastén-Ferrada IA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Carreño LJ
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| |
Collapse
|
39
|
Lu J, Liu W, Chen XZ, Wang Y, Ying T, Qiao L, Liu YJ, Liu B. Temporal proteomic profiling reveals functional pathways in vaccinia virus-induced cell migration. Front Microbiol 2023; 14:1185960. [PMID: 37303799 PMCID: PMC10249495 DOI: 10.3389/fmicb.2023.1185960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Viral diseases have always been intricate and persistent issues throughout the world and there is a lack of holistic discoveries regarding the molecular dysregulations of virus-host interactions. The temporal proteomics strategy can identify various differentially expressed proteins and offer collaborated interaction networks under pathological conditions. Method Herein, temporal proteomics at various hours post infection of Vero cells were launched to uncover molecular alternations during vaccinia virus (VACV)-induced cell migration. Different stages of infection were included to differentiate gene ontologies and critical pathways at specific time points of infection via bioinformatics. Results Bioinformatic results showed functional and distinct ontologies and pathways at different stages of virus infection. The enrichment of interaction networks and pathways verified the significances of the regulation of actin cytoskeleton and lamellipodia during VACV-induced fast cell motility. Discussion The current results offer a systematic proteomic profiling of molecular dysregulations at different stages of VACV infection and potential biomedical targets for treating viral diseases.
Collapse
Affiliation(s)
- Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Xue-Zhu Chen
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yiwen Wang
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Li F, Fu X, Luo X, Lin Q, Liang H, Niu Y, Liu L, Li N. Role of asparagine biosynthesis pathway in Siniperca chuatsi rhabdovirus proliferation. Front Microbiol 2023; 14:1165491. [PMID: 37065159 PMCID: PMC10102668 DOI: 10.3389/fmicb.2023.1165491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Viruses are non-living organisms that rely on host cellular metabolism to complete their life cycle. Siniperca chuatsi rhabdovirus (SCRV) has caused huge economic losses to the Chinese perch (Siniperca chuatsi) industry worldwide. SCRV replication is dependent on the cellular glutamine metabolism, while aspartate metabolism plays an important role in viral proliferation in glutamine deficiency. Herein, we investigated roles of asparagine metabolism in SCRV proliferation. Results showed that SCRV infection upregulated the expression of key enzymes in the aspartate metabolic pathway in CPB cells. And the key enzymes of malate-aspartic acid shuttle pathway upregulated during the virus invasion phase, and key enzymes of the asparagine biosynthesis pathway upregulated during the viral replication and release phase. When asparagine was added to the depleted medium, the SCRV copy number restored to 90% of those in replete medium, showing that asparagine and glutamine completely rescue the replication of SCRV. Moreover, inhibition of the aspartate- malate shuttle pathway and knockdown of the expression of key enzymes in the asparagine biosynthesis pathway significantly reduced SCRV production, indicating that the aspartic acid metabolic pathway was required to the replication and proliferation of SCRV. Above results provided references for elucidating pathogenic mechanism of SCRV by regulation of aspartate metabolism.
Collapse
Affiliation(s)
- Fangying Li
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaozhe Fu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xia Luo
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qiang Lin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongru Liang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yinjie Niu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lihui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Ningqiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Ningqiu Li,
| |
Collapse
|
41
|
Tang N, Chen P, Zhao C, Liu P, Tan L, Song C, Qiu X, Liao Y, Liu X, Luo T, Sun Y, Ding C. Newcastle Disease Virus Manipulates Mitochondrial MTHFD2-Mediated Nucleotide Metabolism for Virus Replication. J Virol 2023; 97:e0001623. [PMID: 36794935 PMCID: PMC10062132 DOI: 10.1128/jvi.00016-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 02/17/2023] Open
Abstract
Viruses require host cell metabolic reprogramming to satisfy their replication demands; however, the mechanism by which the Newcastle disease virus (NDV) remodels nucleotide metabolism to support self-replication remains unknown. In this study, we demonstrate that NDV relies on the oxidative pentose phosphate pathway (oxPPP) and the folate-mediated one-carbon metabolic pathway to support replication. In concert with [1,2-13C2] glucose metabolic flow, NDV used oxPPP to promote pentose phosphate synthesis and to increase antioxidant NADPH production. Metabolic flux experiments using [2,3,3-2H] serine revealed that NDV increased one-carbon (1C) unit synthesis flux through the mitochondrial 1C pathway. Interestingly, methylenetetrahydrofolate dehydrogenase (MTHFD2) was upregulated as a compensatory mechanism for insufficient serine availability. Unexpectedly, direct knockdown of enzymes in the one-carbon metabolic pathway, except for cytosolic MTHFD1, significantly inhibited NDV replication. Specific complementation rescue experiments on small interfering RNA (siRNA)-mediated knockdown further revealed that only a knockdown of MTHFD2 strongly restrained NDV replication and was rescued by formate and extracellular nucleotides. These findings indicated that NDV replication relies on MTHFD2 to maintain nucleotide availability. Notably, nuclear MTHFD2 expression was increased during NDV infection and could represent a pathway by which NDV steals nucleotides from the nucleus. Collectively, these data reveal that NDV replication is regulated by the c-Myc-mediated 1C metabolic pathway and that the mechanism of nucleotide synthesis for viral replication is regulated by MTHFD2. IMPORTANCE Newcastle disease virus (NDV) is a dominant vector for vaccine and gene therapy that accommodates foreign genes well but can only infect mammalian cells that have undergone cancerous transformation. Understanding the remodeling of nucleotide metabolic pathways in host cells by NDV proliferation provides a new perspective for the precise use of NDV as a vector or in antiviral research. In this study, we demonstrated that NDV replication is strictly dependent on pathways involved in redox homeostasis in the nucleotide synthesis pathway, including the oxPPP and the mitochondrial one-carbon pathway. Further investigation revealed the potential involvement of NDV replication-dependent nucleotide availability in promoting MTHFD2 nuclear localization. Our findings highlight the differential dependence of NDV on enzymes for one-carbon metabolism, and the unique mechanism of action of MTHFD2 in viral replication, thereby providing a novel target for antiviral or oncolytic virus therapy.
Collapse
Affiliation(s)
- Ning Tang
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Pingyi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, P. R. China
| | - Changrun Zhao
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Panrao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Xiufan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Tingrong Luo
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
| | - Chan Ding
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
42
|
Tang H, Abouleila Y, Saris A, Shimizu Y, Ottenhoff THM, Mashaghi A. Ebola virus-like particles reprogram cellular metabolism. J Mol Med (Berl) 2023; 101:557-568. [PMID: 36959259 PMCID: PMC10036248 DOI: 10.1007/s00109-023-02309-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Ebola virus can trigger a release of pro-inflammatory cytokines with subsequent vascular leakage and impairment of clotting finally leading to multiorgan failure and shock after entering and infecting patients. Ebola virus is known to directly target endothelial cells and macrophages, even without infecting them, through direct interactions with viral proteins. These interactions affect cellular mechanics and immune processes, which are tightly linked to other key cellular functions such as metabolism. However, research regarding metabolic activity of these cells upon viral exposure remains limited, hampering our understanding of its pathophysiology and progression. Therefore, in the present study, an untargeted cellular metabolomic approach was performed to investigate the metabolic alterations of primary human endothelial cells and M1 and M2 macrophages upon exposure to Ebola virus-like particles (VLP). The results show that Ebola VLP led to metabolic changes among endothelial, M1, and M2 cells. Differential metabolite abundance and perturbed signaling pathway analysis further identified specific metabolic features, mainly in fatty acid-, steroid-, and amino acid-related metabolism pathways for all the three cell types, in a host cell specific manner. Taken together, this work characterized for the first time the metabolic alternations of endothelial cells and two primary human macrophage subtypes after Ebola VLP exposure, and identified the potential metabolites and pathways differentially affected, highlighting the important role of those host cells in disease development and progression. KEY MESSAGES: • Ebola VLP can lead to metabolic alternations in endothelial cells and M1 and M2 macrophages. • Differential abundance of metabolites, mainly including fatty acids and sterol lipids, was observed after Ebola VLP exposure. • Multiple fatty acid-, steroid-, and amino acid-related metabolism pathways were observed perturbed.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
43
|
Wang J, Zhu HD, Wang YX, Guo ZX, Liu YX, Huang ZH, Zhu LB, Liu MH, Liu SH, Xu JP. Trehalose hydrolysis and transport-related genes promote Bombyx mori nucleopolyhedrovirus proliferation through the phosphoinositide 3-kinase-Akt signalling pathway in BmN cell. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104625. [PMID: 36572165 DOI: 10.1016/j.dci.2022.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The reprogramming of host physiology has been considered an essential process for baculovirus propagation. Trehalose, the main sugar in insect blood, plays a crucial role as an instant energy source. Although the trehalose level is modulated following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), the mechanism of trehalose metabolism in response to BmNPV infection is still unclear. In this study, we demonstrated that the trehalose level tended to be lower in BmNPV-infected hemolymph and higher in the midgut. The omics analysis revealed that two trehalose transporters, BmTret1-1 and BmTret1-2, and trehalase, BmTRE1 and BmTRE2, were differentially expressed in the midgut after BmNPV infection. BmTret1-1 and BmTret1-2 had the ability to transport trehalose into the cell and promoted cellular absorption of trehalose. Furthermore, the functions of BmTret1-1, BmTret1-2, BmTRE1 and BmTRE2 in BmNPV infection were analyzed. These genes were upregulated in the midgut after BmNPV infection. Virus amplification analysis revealed that these genes could promote BmNPV proliferation in BmN cells. In addition, these genes could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO in the phosphoinositide 3-kinase (PI3K)-Akt signalling pathway. Similarly, the increased trehalose level in BmN cells could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO. Taken together, BmNPV infection promote the expression of trehalose hydrolysis and transport-related genes. These changes affect the PI3K-Akt signalling pathway to facilitate BmNPV proliferation. These findings help clarify the relationship between trehalose metabolism and BmNPV infection.
Collapse
Affiliation(s)
- Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Han-Dan Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Yan-Xiang Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhe-Xiao Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ying-Xue Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhi-Hao Huang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Lin-Bao Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Ming-Hui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shi-Huo Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China.
| |
Collapse
|
44
|
Golikov MV, Bartosch B, Smirnova OA, Ivanova ON, Ivanov AV. Plasma-Like Culture Medium for the Study of Viruses. mBio 2023; 14:e0203522. [PMID: 36515528 PMCID: PMC9973327 DOI: 10.1128/mbio.02035-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Viral infections attract more and more attention, especially after the emergence of novel zoonotic coronaviruses and the monkeypox virus over the last 2 decades. Research on viruses is based to a great extent on mammalian cell lines that are permissive to the respective viruses. These cell lines are usually cultivated according to the protocols established in the 1950s to 1970s, although it is clear that classical media have a significant imprint on cell growth, phenotype, and especially metabolism. So, recently in the field of biochemistry and metabolomics novel culture media have been developed that resemble human blood plasma. As perturbations in metabolic and redox pathways during infection are considered significant factors of viral pathogenesis, these novel medium formulations should be adapted by the virology field. So far, there are only scarce data available on viral propagation efficiencies in cells cultivated in plasma-like media. But several groups have presented convincing data on the use of such media for cultivation of uninfected cells. The aim of the present review is to summarize the current state of research in the field of plasma-resembling culture media and to point out the influence of media on various cellular processes in uninfected cells that may play important roles in viral replication and pathogenesis in order to sensitize virology research to the use of such media.
Collapse
Affiliation(s)
- Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Wuri N, Gou H, Zhang B, Wang M, Wang S, Zhang W, He H, Fan X, Zhang C, Liu Z, Geri L, Shen H, Zhang J. Lactate is useful for the efficient replication of porcine epidemic diarrhea virus in cell culture. Front Vet Sci 2023; 10:1116695. [PMID: 36861007 PMCID: PMC9968725 DOI: 10.3389/fvets.2023.1116695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a deadly pathogen infecting pig herds, and has caused significant economic losses around the world. Vaccination remains the most effective way of keeping the PEDV epidemic under control. Previous studies have shown that the host metabolism has a significant impact on viral replication. In this study, we have demonstrated that two substrates of metabolic pathway, glucose and glutamine, play a key role in PEDV replication. Interestingly, the boosting effect of these compounds toward viral replication appeared to be dose-independent. Furthermore, we found that lactate, which is a downstream metabolite, promotes PEDV replication, even when added in excess to the cell culture medium. Moreover, the role of lactate in promoting PEDV was independent of the genotype of PEDV and the multiplicity of infection (MOI). Our findings suggest that lactate is a promising candidate for use as a cell culture additive for promoting PEDV replication. It could improve the efficiency of vaccine production and provide the basis for designing novel antiviral strategies.
Collapse
Affiliation(s)
- Nile Wuri
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongchao Gou
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Bin Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Menglu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Songqi Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weixiao Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haiyan He
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuelei Fan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunhong Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Zhicheng Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan Shen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,Haiyan Shen ✉
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China,Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China,*Correspondence: Jianfeng Zhang ✉
| |
Collapse
|
46
|
Oncolytic Avian Reovirus σA-Modulated Upregulation of the HIF-1α/C-myc/glut1 Pathway to Produce More Energy in Different Cancer Cell Lines Benefiting Virus Replication. Viruses 2023; 15:v15020523. [PMID: 36851737 PMCID: PMC9961784 DOI: 10.3390/v15020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Our previous reports proved that the structural protein σA of avian reovirus (ARV) is an energy activator which can regulate cellular metabolism that is essential for virus replication. This study has further demonstrated that the ARV protein σA is able to upregulate the HIF-1α/myc/glut1 pathway in three cancer cell lines (A549, B16-F10, and HeLa) to alter the metabolic pathway of host cells. Quantitative real-time RT-PCR and Western blotting results have revealed that σA protein could enhance both mRNA and the protein levels of HIF-1α, c-myc, and glut1 in these cancer cell lines. In this work, ATeam immunofluorescence staining was used to reveal that knockdown of HIF-1α, c-myc, and glut1 by shRNAs decreased cellular ATP levels. Our data reveal that the ARV σA protein can downregulate lactate fermentation and upregulate glutaminolysis. The σA protein upregulates glutaminase, which converts glutamate into the TCA cycle intermediate α-ketoglutarate, activating the TCA cycle. In the lactate fermentation pathway, ARV σA protein suppresses lactate dehydrogenase A (LDHA), implying the Warburg effect does not occur in these cancer cell lines. This study provides a novel finding revealing that ARV σA protein upregulates glycolysis and glutaminolysis to produce energy using the HIF-1α/c-myc/glut1 pathway to benefit virus replication in these cancer cell lines.
Collapse
|
47
|
Shi H, Liu S, Tan Z, Yin L, Zeng L, Liu T, Zhang S, Zhang L. Proteomic and metabonomic analysis uncovering Enterovirus A71 reprogramming host cell metabolic pathway. Proteomics 2023; 23:e2200362. [PMID: 36254857 DOI: 10.1002/pmic.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.
Collapse
Affiliation(s)
- Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Glutamine-Driven Metabolic Adaptation to COVID-19 Infection. Indian J Clin Biochem 2023; 38:83-93. [PMID: 35431470 PMCID: PMC8992789 DOI: 10.1007/s12291-022-01037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/11/2022] [Indexed: 01/24/2023]
Abstract
Background COVID-19 is known to be transmitted by direct contact, droplets or feces/orally. There are many factors which determines the clinical progression of the disease. Aminoacid disturbance in viral disease is shown in many studies. İn this study we aimed to evaluate the change of aminoacid metabolism especially the aspartate, glutamine and glycine levels which have been associated with an immune defence effect in viral disease. Methods Blood samples from 35 volunteer patients with COVID-19, concretized diagnosis was made by oropharyngeal from nazofaringeal swab specimens and reverse transcriptase-polymerase chain reaction, and 35 control group were analyzed. The amino acid levels were measured with liquid chromatography-mass spectrometry technology. Two groups were compared by Kolmogorov-Smirnov analysis, Kruskal-Wallis and the Mann-Whitney U. The square test was used to evaluate the tests obtained by counting, and the error level was taken as 0.05. Results The average age of the patient and control group were 48.5 ± 14.9 and 48.8 ± 14.6 years respectively. The decrease in aspartate (p = 5.5 × 10-9) and glutamine levels (p = 9.0 × 10-17) were significiantly in COVID group, whereas Glycine (p = 0.243) increase was not significiant. Conclusions Metabolic pathways, are affected in rapidly dividing cells in viral diseases which are important for immun defence. We determined that aspartate, glutamine and glycine levels in Covid 19 patients were affected by the warburg effect, malate aspartate shuttle, glutaminolysis and pentose phosphate pathway. Enteral or parenteral administration of these plasma amino acid levels will correct the duration and pathophysiology of the patients' stay in hospital and intensive care.
Collapse
|
49
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
50
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|