1
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Identification of molecular signatures for azole fungicide toxicity in zebrafish embryos by integrating transcriptomics and gene network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126215. [PMID: 40189088 DOI: 10.1016/j.envpol.2025.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Azoles control fungal growth by inhibiting sterol biosynthesis in fungi according to the fungicide resistance action committee. Furthermore, previous studies have highlighted several effects of azole fungicides in fish including endocrine disruption. In this study, we analysed the transcriptome responses of zebrafish embryos exposed to azole fungicides to identify gene expression fingerprints indicating toxic effects such as endocrine disruption induced by sterol biosynthesis inhibition. Firstly, a modified zebrafish embryo toxicity test was conducted following the OECD 236 guideline, exposing embryos to difenoconazole, epoxiconazole, and tebuconazole. After 96 h, RNA was extracted for transcriptome analysis, which revealed concentration-dependent responses for each fungicide. Additionally, overrepresentation analysis of significantly differentially expressed genes revealed biological functions related to sterol biosynthesis and endocrine disruption. A gene set with specific expression patterns was was identified as molecular signature for indicating adverse effects induced by sterol biosynthesis inhibitors in zebrafish embryos. After further validation, the gene expression fingerprints and biomarkers identified in this study may be used in the future to identify endocrine activity of substances under development in a pre-regulatory screening using the zebrafish embryo model.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
2
|
Zhang Y, Ma R, Du X, He X, Zhang Y, Ma N, Liu H, Zhao X. Impact of bacteroides uniformis on fatty liver hemorrhagic syndrome in dawu golden phoenix laying hens: modulation of gut microbiota and arachidonic acid metabolism. Front Microbiol 2025; 16:1560887. [PMID: 40356654 PMCID: PMC12066428 DOI: 10.3389/fmicb.2025.1560887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
This study explored the impact of Bacteroides uniformis (B. uniformis) on fatty liver hemorrhagic syndrome (FLHS) induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focusing on hepatic lipid metabolism, gut microbiota, and arachidonic acid (AA) metabolism. A total of 120 Dawu Golden Phoenix laying hens (210-day-old) were randomly divided into four groups. The control group (CON) was fed a standard diet and received a daily gavage of PBS, while the other groups were fed with a HELP diet to induce FLHS and received a daily gavage of PBS (MOD), 1 × 109 CFU/ml B. uniformis (BUL), and 1 × 1011 CFU/ml B. uniformis (BUH) for 70 days. All hens were administered 1 ml daily by gavage. Each group had 6 replications with 5 hens per replication. The results showed that B. uniformis increased the egg production rate and feed conversion ratio and decreased body weight, liver index, and abdominal fat rate (p < 0.05). B. uniformis treatment reduced liver lipid accumulation by reducing the levels of Triglyceride (TG), Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine transaminases (ALT), and aspartate transaminases (AST) in serum and significantly elevated high-density lipoprotein cholesterol (HDL-C) (p < 0.05). The results indicated that B. uniformis altered the gut microbiota. Specifically, the abundance of Bacteroides was higher, and the relative abundances of Treponema, Helicobacter, and Spirochaetota were lower than those of the MOD group (p < 0.05). Moreover, targeted metabolomic analysis showed that supplementation of B. uniformis significantly elevated 6-keto-PGF1α and AA levels, along with significantly reduced levels of thromboxane B2 (TXB2), leukotriene D4 (LTD4), 8-isoprostaglandin F2α (8-iso-PGF2α), 12S-hydroxyeicosatetraenoic acid (12S-HETE), 15S-hydroxyeicosatetraenoic acid (15S-HETE), 9-S-hydroxy-octadecadienoic acid (9S-HODE), and 13-S-hydroxy-octadecadienoic acid (13S-HODE) (p < 0.05). In conclusion, the oral intake of B. uniformis can improve liver function, gut microbiota, and AA metabolism, thereby helping to ameliorate FLHS in Dawu Golden Phoenix laying hens.
Collapse
Affiliation(s)
- Yu Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Rongfei Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xicui Du
- Hebei Jinkun Animal Pharmaceutical Co. Ltd., Xinji, China
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Ning Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hailong Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Tian Y, Liu S, Shi H, Li J, Wan X, Sun Y, Li H, Cao N, Feng Z, Zhang T, Wang J, Shen W. Revealing the Transcriptional and Metabolic Characteristics of Sebocytes Based on the Donkey Cell Transcriptome Atlas. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413819. [PMID: 40013957 PMCID: PMC12021041 DOI: 10.1002/advs.202413819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/15/2025] [Indexed: 02/28/2025]
Abstract
Worldwide, donkeys (Equus asinus) are valued for their meat and milk, and in China also for the medical value of their skin. Physiological characteristics are key to the donkey's adaptability, including their digestive, respiratory, and reproductive systems, which enable them to survive and work in a variety of environments. However, the understanding of donkey physiological characteristics at the cellular level remains poor. Thus, single-cell transcriptome sequencing is used to construct a detailed transcriptional atlas based on 20 tissues from the Dezhou donkey (in total 84 cell types and 275 050 high quality cells) to perform an in-depth investigation of molecular physiology. Cross-species and cross-tissue comparative analyses reveal SOX10 to be an evolutionally conserved regulon in oligodendrocytes and illuminate the distinctive transcriptional patterns of donkey sebocytes. Moreover, through multispecies skin metabolomics, highly abundant, species-specific metabolites in donkey skin are identified, such as arachidonic acid and gamma-glutamylcysteine, and the pivotal role of sebocytes in donkey skin metabolism is highlighted. In summary, this work offers new insights into the unique metabolic patterns of donkey skin and provides a valuable resource for the conservation of donkey germplasm and the advancement of selective breeding programs.
Collapse
Affiliation(s)
- Yu Tian
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL)College of Life SciencesInner Mongolia UniversityHohhot010070China
| | - Shuqin Liu
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| | - Hongtao Shi
- School of Science and Information ScienceQingdao Agricultural UniversityQingdao266109China
| | - Jianjun Li
- National Dezhou Donkey Original Breeding FarmBinzhou251903China
| | - Xinglong Wan
- School of Science and Information ScienceQingdao Agricultural UniversityQingdao266109China
| | - Yujiang Sun
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| | - Huayun Li
- Annoroad Gene TechnologyBeijing100176China
| | - Ning Cao
- Annoroad Gene TechnologyBeijing100176China
| | - Zhixi Feng
- Annoroad Gene TechnologyBeijing100176China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL)College of Life SciencesInner Mongolia UniversityHohhot010070China
| | - Junjie Wang
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| | - Wei Shen
- College of Animal Science and TechnologyQingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
4
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2025; 70:79-101. [PMID: 38710468 PMCID: PMC11976421 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
5
|
Sun C, Na Y, Wang Z, Zhu T, Liu X. Phytochemicals, promising strategies combating Cutibacterium acnes. Front Pharmacol 2024; 15:1476670. [PMID: 39717554 PMCID: PMC11663679 DOI: 10.3389/fphar.2024.1476670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The excessive proliferation of Cutibacterium acnes (C. acnes) is an important reason for the occurrence of acne vulgaris, and genetic detection ratio of C. acnes in acne is as high as 60.5%. Until now, the treatment of C. acnes is mainly limited to antibiotics, but some strains of C. acnes produce antimicrobial resistances, making it difficult for clinical treatment. Additionally, antibiotics can cause severe adverse effects. Therefore, more and more people are paying attention to phytochemicals. It is well known that plants can synthesize a range of secondary metabolites, named phytochemicals, part of which have antibacterial properties. Additionally, the main advantages of phytochemicals are that they have good efficacies and less side effects, so they are suitable choices for medical treatment. This review mainly discusses the effects and mechanisms of phytochemicals against C. acnes.
Collapse
Affiliation(s)
- Cuilian Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yuhang Na
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ziyu Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Olkowicz M, Karas A, Berkowicz P, Kaczara P, Jasztal A, Kurylowicz Z, Fedak F, Rosales-Solano H, Roy KS, Kij A, Buczek E, Pawliszyn J, Chlopicki S. Upregulation of ALOX12-12-HETE pathway impairs AMPK-dependent modulation of vascular metabolism in ApoE/LDLR -/- mice. Pharmacol Res 2024; 210:107478. [PMID: 39448044 DOI: 10.1016/j.phrs.2024.107478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Mitochondrial dysfunction and 12-lipoxygenase (ALOX12)-derived 12(S)-HETE production have been associated with vascular inflammation and the pathogenesis of atherosclerosis. However, the role of ALOX12 in regulating vascular energy metabolism in vascular inflammation has not been studied to date. Using mitochondrial and glycolysis functional profiling with the Seahorse extracellular flux analyzer, metabolipidomics, and proteomic analysis (LC-MS/MS), we characterized alterations in vascular energy metabolism in 2- and 6-month-old ApoE/LDLR-/- vs. control C57BL/6 mice. We identified that aorta of 6-month-old ApoE/LDLR-/- mice displayed compromised mitochondrial metabolism manifested by the reduced expression of mitochondrial enzymes, impaired mitochondrial respiration, and consequently diminished respiratory reserve capacity. An increased flux through the glycolysis/lactate shuttle, the hexosamine biosynthetic pathway (HBP), and the pentose phosphate pathway (PPP) was also recognized. Interestingly, ALOX12-12-HETE was the most upregulated axis in eicosanoid metabolism and histological examinations indicated that ApoE/LDLR-/- mice showed increased aortic expression of ALOX12, particularly in early atherosclerotic plaque areas. Remarkably, the joint blocking of ALOX12 and activation of AMPK, but not AMPK activation alone, resulted in the reprogramming of vascular metabolism, with improved mitochondrial respiration and suppressed auxiliary pathways (HBP, PPP, itaconate shunt). In conclusion, excessive activation of the ALOX12-12-HETE pathway in vascular inflammation in early atherosclerosis inhibits AMPK-dependent regulation of vascular metabolism. Consequently, ALOX12 may represent a novel target to boost impaired vascular mitochondrial function in pro-atherosclerotic vascular inflammation.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland.
| | - Agnieszka Karas
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Filip Fedak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Hernando Rosales-Solano
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
7
|
Jia Z, Zhou Y, Chen X, Zhang L, Li Y, Chen J. Dietary bamboo charcoal powder ameliorates high-fat diet-induced hyperlipidemia by enhancing fecal lipid excretions in Sprague-Dawley rats. Front Nutr 2024; 11:1458350. [PMID: 39444574 PMCID: PMC11496288 DOI: 10.3389/fnut.2024.1458350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bamboo charcoal powder (BCP) is increasingly used as a food colorant. This study aims to evaluate the effects of BCP consumption on improving high-fat diet-induced hyperlipidemia. Methods Fifty male SD rats were randomly assigned into five groups, with 10 rats in each group: the control group was fed a low-fat diet (LFD); the model control group was fed a high-fat diet (HFD); the low-BCP dose group was fed a HFD and given 2.81 g of BCP/kg of body weight (BCP-L) by gavage; the medium-BCP dose group was fed a HFD and given 5.62 g of BCP/kg of body weight (BCP-M) by gavage; the high-BCP dose group was fed a HFD and given 11.24 g of BCP/kg of body weight (BCP-H) by gavage. Results After 90 days, the consumption of BCP caused a decrease in body weight, plasma lipids (triglyceride, cholesterol, and low-density lipoprotein (LDL)), liver triglyceride, and cholesterol levels, and liver histopathological scores. BCP caused a significant increase in superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) in liver tissues. BCP also led to an increase in 72-h fecal dry weight and crude fat in a rat metabolic cage. The analysis of fecal samples with liquid chromatography time-of-flight mass spectrometry (LC-Q-TOF-MS) showed that the biomarkers associated with BCP consumption were mainly related to fatty and amino acid metabolism. Notably, BCP treatment significantly promoted linoleic acid metabolism. Discussion These results suggest that BCP may have a preventive effect against diet-induced hyperlipidemia through the promotion of fecal fat excretion. BCP may potentially be used as an alternative functional food component for people with diet-induced hyperlipidemia.
Collapse
Affiliation(s)
- Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital, Chengdu, China
| | - Yongru Zhou
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yan Li
- Department of Prevention and Health Care, Sichuan University Hospital, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
8
|
Wang R, Zhang X, Wang Y, Lin Y, Zhou Y, Wang Y, Li G. Gut microbiota of miR-30a-5p-deleted mice aggravate high-fat diet-induced hepatic steatosis by regulating arachidonic acid metabolic pathway. Clin Transl Med 2024; 14:e70035. [PMID: 39360667 PMCID: PMC11447637 DOI: 10.1002/ctm2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Patients with non-alcoholic fatty liver disease (NAFLD) often exhibit hepatic steatosis and dyslipidemia. Studies have shown that intestinal microorganisms are closely related to the occurrence of NAFLD and atherosclerosis. Our previous study has underscored the protective role of microRNA-30a-5p (miR-30a-5p) against atherosclerosis. METHODS AND RESULTS In the present study, we aimed to elucidate the effect and underlying mechanism of the intestinal microorganisms of miR-30a-5p knockout (KO) mice on NAFLD. Our findings demonstrated that KO exacerbated high-fat diet (HFD)-induced hepatic steatosis and disrupted liver function, as evidenced by elevated levels of total cholesterol, low-density lipoprotein, alanine aminotransferase, aspartate transaminase, and total bile acids in serum. Fecal microbiota from HFD-fed KO mice induced hepatic steatosis, dyslipidemia, and higher levels of enzymes indicative of liver damage in wild-type mice. Remarkably, KO mice significantly intensified the above effects. 16s rDNA sequencing and metabolomics of the intestinal microbiota in the HFD-treated KO and WT mice showed that the loss of miR-30a-5p resulted in intestinal microbiota imbalance and was highly related to the arachidonic acid metabolic pathway. Targeted metabolomic in the liver tissues unveiled upregulation of COX-related (PGF2a, 8-iso-PGF2a and PGF2) and LOX-related (LTB4, LTD4, 12S-HETE and 15S-HETE) factors in HFD-treated KO mice. Immunohistochemistry and transcriptional analyses showed that miR-30a-5p affected arachidonic acid metabolism through the LOX/COX pathways. Besides, COX/LOX pathways and hepatic steatosis were reversed after reintroducing miR-30a-5p in HFD-treated KO mice. CONCLUSIONS This study reveals the pivotal mechanism by which miR-30a-5p and intestinal microbes regulate hepatic steatosis and abnormal lipid metabolism, offering promising avenues for NAFLD and atherosclerosis therapeutics. HIGHLIGHTS MiR-30a-5p deletion aggravated hepatic steatosis and lipid disorder induced by an HFD in mice. Gut microbiota participated in the regulation of hepatic steatosis in the context of miR-30a-5p. Gut microbiota metabolism-related arachidonic acid metabolic pathway contributed to miR-30a-5p-regulated hepatic steatosis and lipid disorder. Reintroducing miR-30a-5p reversed hepatic steatosis and arachidonic acid metabolism disorder caused by HFD and miR-30a-5p deletion.
Collapse
Affiliation(s)
- Ruiying Wang
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianP. R. China
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamen Cardiovascular Hospital of Xiamen UniversityXiamenFujianP. R. China
| | - Xiaocheng Zhang
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianP. R. China
| | - Yutian Wang
- Department of CardiologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianP. R. China
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamen Cardiovascular Hospital of Xiamen UniversityXiamenFujianP. R. China
| | - Yuling Zhou
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianP. R. China
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamen Cardiovascular Hospital of Xiamen UniversityXiamenFujianP. R. China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianP. R. China
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamen Cardiovascular Hospital of Xiamen UniversityXiamenFujianP. R. China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianP. R. China
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamen Cardiovascular Hospital of Xiamen UniversityXiamenFujianP. R. China
| |
Collapse
|
9
|
Qiang E, Xu H. PGE 2 synthesis and signaling in the liver physiology and pathophysiology: An update. Prostaglandins Other Lipid Mediat 2024; 174:106875. [PMID: 39019102 DOI: 10.1016/j.prostaglandins.2024.106875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.
Collapse
Affiliation(s)
- Erjiao Qiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
10
|
Guo Y, Wang S, Wu X, Zhao R, Chang S, Ma C, Song S, Zeng S. Multi-Omics Reveals the Role of Arachidonic Acid Metabolism in the Gut-Follicle Axis for the Antral Follicular Development of Holstein Cows. Int J Mol Sci 2024; 25:9521. [PMID: 39273467 PMCID: PMC11395146 DOI: 10.3390/ijms25179521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
In vitro embryonic technology is crucial for improving farm animal reproduction but is hampered by the poor quality of oocytes and insufficient development potential. This study investigated the relationships among changes in the gut microbiota and metabolism, serum features, and the follicular fluid metabolome atlas. Correlation network maps were constructed to reveal how the metabolites affect follicular development by regulating gene expression in granulosa cells. The superovulation synchronization results showed that the number of follicle diameters from 4 to 8 mm, qualified oocyte number, cleavage, and blastocyst rates were improved in the dairy heifers (DH) compared with the non-lactating multiparous dairy cows (NDC) groups. The gut microbiota was decreased in Rikenellaceae_RC9_gut_group, Alistipes, and Bifidobacterium, but increased in Firmicutes, Cyanobacteria, Fibrobacterota, Desulfobacterota, and Verrucomicrobiota in the NDC group, which was highly associated with phospholipid-related metabolites of gut microbiota and serum. Metabolomic profiling of the gut microbiota, serum, and follicular fluid further demonstrated that the co-metabolites were phosphocholine and linoleic acid. Moreover, the expression of genes related to arachidonic acid metabolism in granulosa cells was significantly correlated with phosphocholine and linoleic acid. The results in granulosa cells showed that the levels of PLCB1 and COX2, participating in arachidonic acid metabolism, were increased in the DH group, which improved the concentrations of PGD2 and PGF2α in the follicular fluid. Finally, the expression levels of apoptosis-related proteins, cytokines, and steroidogenesis-related genes in granulosa cells and the concentrations of steroid hormones in follicular fluid were determinants of follicular development. According to our results, gut microbiota-related phosphocholine and linoleic acid participate in arachidonic acid metabolism in granulosa cells through the gut-follicle axis, which regulates follicular development. These findings hold promise for enhancing follicular development and optimizing oocyte quality in subfertile dairy cows.
Collapse
Affiliation(s)
- Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Rong Zhao
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyu Chang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chen Ma
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuang Song
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Song Q, Kobayashi S, Kataoka Y, Oda H. Direct Molecular Action of Taurine on Hepatic Gene Expression Associated with the Amelioration of Hypercholesterolemia in Rats. Antioxidants (Basel) 2024; 13:990. [PMID: 39199235 PMCID: PMC11351134 DOI: 10.3390/antiox13080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% taurine for 14 days. Three-dimensional primary hepatocytes from rats were exposed to 10 mM taurine for 24 h. Transcriptome analyses of both the liver and hepatocytes were performed using DNA microarray. Taurine significantly decreased serum cholesterol levels and increased hepatic CYP7A1 mRNA levels and transcription rates in rats. Taurine altered the expression of seventy-seven genes in the liver, involving lipid, drug, amino acid metabolism, and gluconeogenesis pathways. The small heterodimer partner (SHP), a transcription factor regulated by taurine, was suppressed. "Network analysis" revealed a negative correlation between the SHP and induction of CYP7A1 and cytochrome P450 8B1 (CYP8B1). However, CYP7A1 and CYP8B1 levels were not altered by taurine in 3D-primary hepatocytes. Venn diagram analyses of the transcriptomes in both hepatocytes and the liver indicated a consistent upregulation of organic anion transporting polypeptide 2 (OATP2) and betaine homocysteine methyltransferase (BHMT). Taurine ameliorated hypercholesterolemia in rats fed a high cholesterol diet by directly enhancing the hepatic expression of BHMT and OATP2, which modulated the SHP and induced CYP7A1 and CYP8B1, thereby promoting cholesterol catabolism and lowering blood cholesterol levels.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Wu H, Zhang Q, Dong C, Zheng G, Tan Z, Gu H. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135247. [PMID: 39029196 DOI: 10.1016/j.jhazmat.2024.135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Azaspiracids (AZAs) are lipid biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. However, the mechanisms underlying the tolerance of shellfish to high levels of such toxins remain poorly understood. This study investigated the combined effects of detoxification metabolism and stress-related responses in scallops Chlamys farreri exposed to AZA. Scallops accumulated a maximum of 361.81 μg AZA1 eq/kg and 41.6 % AZA residue remained after 21 days of exposure. A range of AZA2 metabolites, including AZA19, AZA11, and AZA23, and trace levels of AZA2-GST, were detected. Total hemocyte counts significantly increased and ROS levels remained consistently high until gradually decreasing. Immune system activation mediated mitochondrial dysfunction and severe energy deficiency. DEGs increased over time, with key genes CYP2J6 and GPX6 contributing to AZA metabolism. These transcriptome and metabolic results identify the regulation of energy metabolism pathways, including inhibition of the TCA cycle and activation of carbohydrates, amino acids, and lipids. AZA also induced autophagy through the MAPK-AMPK signaling pathways, and primary inhibited PI3K/AKT to decrease mTOR pathway expression. Our results provide additional insights into the resistance of C. farreri to AZA, characterized by re-establishing redox homeostasis toward a more oxidative state.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qianru Zhang
- Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenfan Dong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| |
Collapse
|
13
|
Ghooray DT, Xu M, Shi H, McClain CJ, Song M. Hepatocyte-Specific Fads1 Overexpression Attenuates Western Diet-Induced Metabolic Phenotypes in a Rat Model. Int J Mol Sci 2024; 25:4836. [PMID: 38732052 PMCID: PMC11084797 DOI: 10.3390/ijms25094836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.
Collapse
Affiliation(s)
- Dushan T. Ghooray
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (D.T.G.); (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
14
|
Zhang S, Liu R, Ma Y, Ma Y, Feng H, Ding X, Zhang Q, Li Y, Shan J, Bian H, Zhu R, Meng Q. Lactiplantibacillus plantarum ATCC8014 Alleviates Postmenopausal Hypercholesterolemia in Mice by Remodeling Intestinal Microbiota to Increase Secondary Bile Acid Excretion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6236-6249. [PMID: 38484389 DOI: 10.1021/acs.jafc.3c08232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Hypercholesterolemia poses a significant cardiovascular risk, particularly in postmenopausal women. The anti-hypercholesterolemic properties of Lactiplantibacillus plantarum ATCC8014 (LP) are well recognized; however, its improving symptoms on postmenopausal hypercholesterolemia and the possible mechanisms have yet to be elucidated. Here, we utilized female ApoE-deficient (ApoE-/-) mice undergoing bilateral ovariectomy, fed a high-fat diet, and administered 109 colony-forming units (CFU) of LP for 13 consecutive weeks. LP intervention reduces total cholesterol (TC) and triglyceride (TG) accumulation in the serum and liver and accelerates their fecal excretion, which is mainly accomplished by increasing the excretion of fecal secondary bile acids (BAs), thereby facilitating cholesterol conversion. Correlation analysis revealed that lithocholic acid (LCA) is an important regulator of postmenopausal lipid abnormalities. LP can reduce LCA accumulation in the liver and serum while enhancing its fecal excretion, accomplished by elevating the relative abundances of Allobaculum and Olsenella in the ileum. Our findings demonstrate that postmenopausal lipid dysfunction is accompanied by abnormalities in BA metabolism and dysbiosis of the intestinal microbiota. LP holds therapeutic potential for postmenopausal hypercholesterolemia. Its effectiveness in ameliorating lipid dysregulation is primarily achieved through reshaping the diversity and abundance of the intestinal microbiota to correct BA abnormalities.
Collapse
Affiliation(s)
- Shurui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ronghui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxin Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuting Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruigong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
15
|
Wang W, Zhang K, Liu B, Zhou T, Tang Y, Li Y. Chaihu Shugan prevents cholesterol gallstone formation by ameliorating the microbiota dysbiosis and metabolic disturbance in mice. Front Pharmacol 2024; 14:1291236. [PMID: 38357365 PMCID: PMC10866373 DOI: 10.3389/fphar.2023.1291236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction: Cholesterol gallstone (CGS) is a biliary tract disorder requiring treatment in approximately 20% of patients. The efficacy of Chaihu Shugan in preventing CGS recurrence after successful treatment remains uncertain. Methods: We examined the in vivo preventive efficacy of Chaihu Shugan using a CGS mouse model and used multi-omics to study the interplay between gut microbiota, metabolism, and gene expression. Results: The intestinal microbiota was severely dysregulated during the formation of CGS, showing a marked decrease in the abundance of beneficial microbiota, especially Lactobacillus and Akkermansia. Chaihu Shugan prevented CGS formation by restoring the composition of the gut microbiota and reversing the metabolic disturbances caused by dysbiosis. This preventive effect of Chaihu Shugan was paralleled by changes in the expression of metabolism-related genes in the liver. A network pharmacology analysis of Chaihu Shugan revealed that obacunone may be the key active metabolite in regulating bile acid metabolism. Multi-omics and correlation analyses elucidated the interplay between gut microbiota, metabolism, and gene alterations in the dose-dependent effect of Chaihu Shugan. Conclusion: Our data show that Chaihu Shugan can prevent CGS and indicate its mechanisms of action.
Collapse
Affiliation(s)
- Wei Wang
- Department of Intervention, The Second Hospital of Shandong University, Jinan, China
| | - Kun Zhang
- Shanghai Biotree Biotech Co., Ltd, Shanghai, China
| | | | - Tong Zhou
- Department of Intervention, The Second Hospital of Shandong University, Jinan, China
| | - Yu Tang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuliang Li
- Department of Intervention, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
16
|
Zhan X, Xiao Y, Jian Q, Dong Y, Ke C, Zhou Z, Liu Y, Tu J. Integrated analysis of metabolomic and transcriptomic profiling reveals the effect of Atractylodes oil on Spleen Yang Deficiency Syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117205. [PMID: 37741473 DOI: 10.1016/j.jep.2023.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spleen Yang Deficiency Syndrome (SYDS), which is a syndrome commonly treated with Traditional Chinese Medicine (TCM), manifests as overall metabolic dysfunction caused mainly by digestive system disorders. Atractylodes lancea (Thunb.) DC. (AL) is a widely used traditional herb with the efficacy of eliminate dampness and strengthen the spleen, Atractylodes oil (AO) is a medicinal component of AL and can be used to treat various gastrointestinal disorders. However, its effects on SYDS and underlying mechanisms have not been clarified to date. AIM OF THE STUDY The present study aimed to investigate the efficacy of AO in the improvement of the symptoms of SYDS in rat and the underlying mechanism by integrating transcriptomics, and metabolomics. MATERIALS AND METHODS The SYDS rats induced by reserpine were treated with AO. The protective effect of AO on SYDS rats was evaluated by serum biochemical detection, histopathological analyses. Enzyme-linked immunosorbent assay (ELISA), colorimetric assay and immunofluorescence (IF) were performed to determine the levels of relevant indicators of mitochondrial function and energy metabolism in the liver. Liver metabolites and transcript levels were assessed by non-targeted metabolomics and transcriptomics to analyze potential molecular mechanisms and targets. The expression of the corresponding proteins was verified using Western blotting. RESULTS AO not only regulated the digestion, absorption function and oxidative stress status of SYDS rats, but also improved mitochondrial function and alleviated energy metabolism disorders in SYDS rats. Metabolomic and transcriptomic analyses demonstrated that AO regulation is mainly exerted in amino acid metabolism, unsaturated fatty acid metabolism, TCA cycle as well as PPAR and AMPK signaling pathways. In addition, The AMPK signaling pathway was verified and AO promoted AMPK phosphorylation and the expression of SIRT1, PGC-1α, and PPARα in SYDS rats. CONCLUSIONS The therapeutic effect of AO on SYDS is potentially attributable to activation of the AMPK/SIRT1/PGC-1α signaling pathway, which enhances transport and regulation of energy metabolism.
Collapse
Affiliation(s)
- Xin Zhan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yangxin Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qipan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Dong
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Center for Hubei TCM Processing Technology Engineering, Wuhan, 430065, China.
| |
Collapse
|
17
|
Martin M, Condori AI, Davico B, Gómez Rosso L, Gaete L, Tetzlaff W, Chiappe EL, Sáez MS, Lorenzon González MV, Godoy MF, Osta V, Trifone L, Ballerini MG, Cherñavsky A, Boero L, Tonietti M, Feliu S, Brites F. Impaired Reverse Cholesterol Transport is Associated with Changes in Fatty Acid Profile in Children and Adolescents with Abdominal Obesity. J Nutr 2024; 154:12-25. [PMID: 37716606 DOI: 10.1016/j.tjnut.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Abdominal obesity is an important cardiovascular disease risk factor. Plasma fatty acids display a complex network of both pro and antiatherogenic effects. High density lipoproteins (HDL) carry out the antiatherogenic pathway called reverse cholesterol transport (RCT), which involves cellular cholesterol efflux (CCE), and lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. OBJECTIVES Our aim was to characterize RCT and its relation to fatty acids present in plasma in pediatric abdominal obesity. METHODS Seventeen children and adolescents with abdominal obesity and 17 healthy controls were studied. Anthropometric parameters were registered. Glucose, insulin, lipid levels, CCE employing THP-1 cells, LCAT and CETP activities, plus fatty acids in apo B-depleted plasma were measured. RESULTS The obese group showed a more atherogenic lipid profile, plus lower CCE (Mean±Standard Deviation) (6 ± 2 vs. 7 ± 2%; P < 0.05) and LCAT activity (11 ± 3 vs. 15 ±5 umol/dL.h; P < 0.05). With respect to fatty acids, the obese group showed higher myristic (1.1 ± 0.3 vs. 0.7 ± 0.3; P < 0.01) and palmitic acids (21.5 ± 2.8 vs. 19.6 ± 1.9; P < 0.05) in addition to lower linoleic acid (26.4 ± 3.3 vs. 29.9 ± 2.6; P < 0.01). Arachidonic acid correlated with CCE (r = 0.37; P < 0.05), myristic acid with LCAT (r = -0.37; P < 0.05), palmitioleic acid with CCE (r = -0.35; P < 0.05), linoleic acid with CCE (r = 0.37; P < 0.05), lauric acid with LCAT (r = 0.49; P < 0.05), myristic acid with LCAT (r = -0.37; P < 0.05) ecoisatrienoic acid with CCE (r = 0.40; P < 0.05) and lignoseric acid with LCAT (r = -0.5; P < 0.01). CONCLUSIONS Children and adolescents with abdominal obesity presented impaired RCT, which was associated with modifications in proinflammatory fatty acids, such as palmitoleic and myristic, thus contributing to increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Maximiliano Martin
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Anabel Impa Condori
- Departamento de Sanidad, Nutrición, Bromatología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Belén Davico
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Gómez Rosso
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Gaete
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Walter Tetzlaff
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Lozano Chiappe
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | - María Fernanda Godoy
- Departamento de Sanidad, Nutrición, Bromatología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Osta
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Trifone
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Gabriela Ballerini
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Cherñavsky
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Laura Boero
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam Tonietti
- Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Susana Feliu
- Departamento de Sanidad, Nutrición, Bromatología y Toxicología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratorio de Lípidos y Aterosclerosis, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Zeng W, Yang B, Wang Y, Sun M, Yang W, Cui H, Jin J, Zhao Z. Rotundic acid alleviates hyperlipidemia in rats by regulating lipid metabolism and gut microbiota. Phytother Res 2023; 37:5958-5973. [PMID: 37776121 DOI: 10.1002/ptr.8008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023]
Abstract
Disturbances in lipid metabolism and dysbiosis of the gut microbiota play an important role in the progression of hyperlipidemia. Previous study indicated that Ilicis Rotundae Cortex possesses anti-hyperlipidemic activity, and rotundic acid (RA) identified as a key active compound to be incorporated into the body. The study aimed to evaluate the anti-hyperlipidemia effects of RA and explored its impact on gut microbiota and lipid metabolism, as well as its possible mechanisms for improving hyperlipidemia. The study methodology included a comprehensive evaluation of the effects of RA on steatosis markers of hyperlipidemia, lipid metabolism, and gut microbiota by assessing biochemical parameters and histopathology, lipidomics, 16S rRNA gene sequencing, and short-chain fatty acid (SCFA) assays. The results showed that RA effectively reduced body weight and the steatosis markers in serum and liver. Moreover, the lipidomic analysis revealed significant changes in plasmatic and hepatic lipid levels, and these were restored by RA. According to the results of 16S rRNA gene sequencing, RA supplementation raised the relative abundance of Bacteroidetes and Proteobacteria while decreasing the relative abundance of Firmicutes. RA significantly boosted the relative abundance of SCFAs by increasing SCFAs-producing bacteria such as Bacteroides, Alloprevotella, Desulfovibrio, etc. In summary, RA could regulate triglyceride metabolism and glycerophospholipid metabolism, restore gut microbiota structure, and increase the relative abundance of SCFAs-producing bacteria to exert its hypolipidemic effects. These findings suggest RA to be a promising therapeutic agent for hyperlipidemia.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bao Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
| | - Yuanyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengjia Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Sun L, Suo C, Zhang T, Shen S, Gu X, Qiu S, Zhang P, Wei H, Ma W, Yan R, Chen R, Jia W, Cao J, Zhang H, Gao P. ENO1 promotes liver carcinogenesis through YAP1-dependent arachidonic acid metabolism. Nat Chem Biol 2023; 19:1492-1503. [PMID: 37500770 DOI: 10.1038/s41589-023-01391-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Enolase 1 (ENO1) is a glycolytic enzyme that plays essential roles in various pathological activities including cancer development. However, the mechanisms underlying ENO1-contributed tumorigenesis are not well explained. Here, we uncover that ENO1, as an RNA-binding protein, binds to the cytosine-uracil-guanine-rich elements of YAP1 messenger RNA to promote its translation. ENO1 and YAP1 positively regulate alternative arachidonic acid (AA) metabolism by inverse regulation of PLCB1 and HPGD (15-hydroxyprostaglandin dehydrogenase). The YAP1/PLCB1/HPGD axis-mediated activation of AA metabolism and subsequent accumulation of prostaglandin E2 (PGE2) are responsible for ENO1-mediated cancer progression, which can be retarded by aspirin. Finally, aberrant activation of ENO1/YAP1/PLCB1 and decreased HPGD expression in clinical hepatocellular carcinoma samples indicate a potential correlation between ENO1-regulated AA metabolism and cancer development. These findings underline a new function of ENO1 in regulating AA metabolism and tumorigenesis, suggesting a therapeutic potential for aspirin in patients with liver cancer with aberrant expression of ENO1 or YAP1.
Collapse
Affiliation(s)
- Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiqiao Qiu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Pinggen Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhao Ma
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghui Yan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weidong Jia
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
20
|
Zhang Y, Liu Y, Sun J, Zhang W, Guo Z, Ma Q. Arachidonic acid metabolism in health and disease. MedComm (Beijing) 2023; 4:e363. [PMID: 37746665 PMCID: PMC10511835 DOI: 10.1002/mco2.363] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Arachidonic acid (AA), an n-6 essential fatty acid, is a major component of mammalian cells and can be released by phospholipase A2. Accumulating evidence indicates that AA plays essential biochemical roles, as it is the direct precursor of bioactive lipid metabolites of eicosanoids such as prostaglandins, leukotrienes, and epoxyeicosatrienoic acid obtained from three distinct enzymatic metabolic pathways: the cyclooxygenase pathway, lipoxygenase pathway, and cytochrome P450 pathway. AA metabolism is involved not only in cell differentiation, tissue development, and organ function but also in the progression of diseases, such as hepatic fibrosis, neurodegeneration, obesity, diabetes, and cancers. These eicosanoids are generally considered proinflammatory molecules, as they can trigger oxidative stress and stimulate the immune response. Therefore, interventions in AA metabolic pathways are effective ways to manage inflammatory-related diseases in the clinic. Currently, inhibitors targeting enzymes related to AA metabolic pathways are an important area of drug discovery. Moreover, many advances have also been made in clinical studies of AA metabolic inhibitors in combination with chemotherapy and immunotherapy. Herein, we review the discovery of AA and focus on AA metabolism in relation to health and diseases. Furthermore, inhibitors targeting AA metabolism are summarized, and potential clinical applications are discussed.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Yingxiang Liu
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Jin Sun
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Zheng Guo
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Qiong Ma
- Department of Orthopedic SurgeryOrthopedic Oncology InstituteThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Department of PathologyThe Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| |
Collapse
|
21
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Qi L, Pan X, Chen X, Liu P, Chen M, Zhang Q, Hang X, Tang M, Wen D, Dai L, Chen C, Liu Y, Xu Z. COX-2/PGE2 upregulation contributes to the chromosome 17p-deleted lymphoma. Oncogenesis 2023; 12:5. [PMID: 36750552 PMCID: PMC9905509 DOI: 10.1038/s41389-023-00451-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Deletions of chromosome 17p, where TP53 gene locates, are the most frequent chromosome alterations in human cancers and associated with poor outcomes in patients. Our previous work suggested that there were p53-independent mechanisms involved in chromosome 17p deletions-driven cancers. Here, we report that altered arachidonate metabolism, due to the deficiency of mouse Alox8 on chromosome 11B3 (homologous to human ALOX15B on chromosome 17p), contributes to the B cell malignancy. While the metabolites produced from lipoxygenase pathway reduced, chromosome 11B3 deletions or Alox8 loss, lead to upregulating its paralleling cyclooxygenase pathway, indicated by the increased levels of oncometabolite prostaglandin E2. Ectopic PGE2 prevented the apoptosis and differentiation of pre-B cells. Further studies revealed that Alox8 deficiency dramatically and specifically induced Cox-2(Ptgs2) gene expression. Repressing Cox-2 by its shRNAs impaired the tumorigenesis driven by Alox8 loss. And, in turn, tumor cells with Alox8 or 11B3 loss were sensitive to the COX-2 inhibitor celecoxib. This correlation between COX-2 upregulation and chromosome 17p deletions was consistent in human B-cell lymphomas. Hence, our studies reveal that the arachidonate metabolism abnormality with unbalanced ALOX and COX pathways underlies human cancers with 17p deletions and suggest new susceptibility for this disease.
Collapse
Affiliation(s)
- Lu Qi
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiangyu Pan
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xuelan Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Pengpeng Liu
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Mei Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Qi Zhang
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaohang Hang
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Minghai Tang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Dan Wen
- grid.449525.b0000 0004 1798 4472Department of Rheumatology, North Sichuan Medical College First Affiliated Hospital, Institute of Material Medicine, North Sichuan Medical College, Nanchong, Sichuan China
| | - Lunzhi Dai
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Chong Chen
- grid.13291.380000 0001 0807 1581Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhengmin Xu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Department of Rheumatology, North Sichuan Medical College First Affiliated Hospital, Institute of Material Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
23
|
Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins Other Lipid Mediat 2023; 164:106698. [PMID: 36379414 DOI: 10.1016/j.prostaglandins.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs). Additionally, hyperglycemia with enhanced levels of cholesterol, native and oxidized low-density lipoproteins, free fatty acids, and oxidative stress induces lipotoxicity. Accelerated glycation and disturbed lipid metabolism are characteristic features of diabetic heart failure. SREBP signaling plays a significant role in lipid and glucose homeostasis. AGEs increase lipotoxicity in diabetic cardiomyopathy by inhibiting SREBP signaling. While anti-inflammatory lipid mediators, lipoxins resolve inflammation caused by lipotoxicity by upregulating the PPARγ expression and regulating CD36. PPARγ connects the bridge between glycation and lipoxin in SREBP signaling. A summary of treatment modalities against diabetic cardiomyopathy is given in brief. This review indicates the novel therapeutic approach in the crosstalk between glycation and lipoxin in SREBP signaling.
Collapse
|
24
|
Xie S, Chen M, Fang W, Liu S, Wu Q, Liu C, Xing Y, Shi W, Xu M, Zhang M, Chen S, Zeng X, Wang S, Deng W, Tang Q. Diminished arachidonate 5-lipoxygenase perturbs phase separation and transcriptional response of Runx2 to reverse pathological ventricular remodeling. EBioMedicine 2022; 86:104359. [PMID: 36395739 PMCID: PMC9672960 DOI: 10.1016/j.ebiom.2022.104359] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Arachidonate 5-lipoxygenase (Alox5) belongs to a class of nonheme iron-containing dioxygenases involved in the catalysis of leukotriene biosynthesis. However, the effects of Alox5 itself on pathological cardiac remodeling and heart failure remain elusive. METHODS The role of Alox5 in pathological cardiac remodeling was investigated by Alox5 genetic depletion, AAV9-mediated overexpression in cardiomyocytes, and a bone marrow (BM) transplantation approach. Neonatal rat cardiomyocytes were used to explore the effects of Alox5 in vitro. Molecular and signaling pathways were revealed by CUT &Tag, IP-MS, RNA sequencing and bioinformatic analyses. FINDINGS Untargeted metabolomics showed that serum 5-HETE (a primary product of Alox5) levels were little changed in patients with cardiac hypertrophy, while Alox5 expression was significantly upregulated in murine hypertensive cardiac samples and human cardiac samples of hypertrophy, which prompted us to test whether high Alox5 levels under hypertensive stimuli were directly associated with pathologic myocardium in an enzymatic activity-independent manner. Herein, we revealed that Alox5 deficiency significantly ameliorated transverse aortic constriction (TAC)-induced hypertrophy. Cardiomyocyte-specific Alox5 depletion attenuated hypertensive ventricular remodeling. Conversely, cardiac-specifical Alox5 overexpression showed a pro-hypertrophic cardiac phenotype. Ablation of Alox5 in bone marrow-derived cells did not affect pathological cardiac remodeling and heart failure. Mechanically, Runx2 was identified as a target of Alox5. In this regard, Alox5 PEST domain could directly bind to Runx2 PTS domain, promoting nuclear localization of Runx2 in an enzymatic activity-independent manner, simultaneously contributed to liquid-liquid phase separation (LLPS) of Runx2 at specific domain in the nucleus and increased transcription of EGFR in cardiomyocytes. Runx2 depletion alleviated hypertrophy in Ang II-pretreated Alox5-overexpressing cardiomyocytes. INTERPRETATION Overall, our study demonstrated that targeting Alox5 exerted a protective effect against cardiac remodeling and heart failure under hypertensive stimuli by disturbing LLPS of Runx2 and substantial reduction of EGFR transcription activation in cardiomyocytes. Our findings suggest that negative modulation of Alox5-Runx2 may provide a therapeutic approach against pathological cardiac remodeling and heart failure. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Min Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China,Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Corresponding author. Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China,Corresponding author. Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China.
| |
Collapse
|
25
|
Yan B, Fung K, Ye S, Lai PM, Wei YX, Sze KH, Yang D, Gao P, Kao RYT. Linoleic acid metabolism activation in macrophages promotes the clearing of intracellular Staphylococcus aureus. Chem Sci 2022; 13:12445-12460. [PMID: 36382278 PMCID: PMC9629105 DOI: 10.1039/d2sc04307f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 09/02/2023] Open
Abstract
Multidrug-resistant bacterial pathogens pose an increasing threat to human health. Certain bacteria, such as Staphylococcus aureus, are able to survive within professional phagocytes to escape the bactericidal effects of antibiotics and evade killing by immune cells, potentially leading to chronic or persistent infections. By investigating the macrophage response to S. aureus infection, we may devise a strategy to prime the innate immune system to eliminate the infected bacteria. Here we applied untargeted tandem mass spectrometry to characterize the lipidome alteration in S. aureus infected J774A.1 macrophage cells at multiple time points. Linoleic acid (LA) metabolism and sphingolipid metabolism pathways were found to be two major perturbed pathways upon S. aureus infection. The subsequent validation has shown that sphingolipid metabolism suppression impaired macrophage phagocytosis and enhanced intracellular bacteria survival. Meanwhile LA metabolism activation significantly reduced intracellular S. aureus survival without affecting the phagocytic capacity of the macrophage. Furthermore, exogenous LA treatment also exhibited significant bacterial load reduction in multiple organs in a mouse bacteremia model. Two mechanisms are proposed to be involved in this progress: exogenous LA supplement increases downstream metabolites that partially contribute to LA's capacity of intracellular bacteria-killing and LA induces intracellular reactive oxygen species (ROS) generation through an electron transport chain pathway in multiple immune cell lines, which further increases the capacity of killing intracellular bacteria. Collectively, our findings not only have characterized specific lipid pathways associated with the function of macrophages but also demonstrated that exogenous LA addition may activate lipid modulator-mediated innate immunity as a potential therapy for bacterial infections.
Collapse
Affiliation(s)
- Bingpeng Yan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Kingchun Fung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Sen Ye
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Pok-Man Lai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Yuan Xin Wei
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Kong-Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory of Chemical Biology and Molecular Medicine, School of Life Sciences, Westlake University Hangzhou Zhejiang P. R. China
| | - Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| |
Collapse
|
26
|
Henriksen HH, Marín de Mas I, Herand H, Krocker J, Wade CE, Johansson PI. Metabolic systems analysis identifies a novel mechanism contributing to shock in patients with endotheliopathy of trauma (EoT) involving thromboxane A2 and LTC 4. Matrix Biol Plus 2022; 15:100115. [PMID: 35813244 PMCID: PMC9260291 DOI: 10.1016/j.mbplus.2022.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Endotheliopathy of trauma (EoT), as defined by circulating levels of syndecan-1 ≥ 40 ng/mL, has been reported to be associated with significantly increased transfusion requirements and a doubled 30-day mortality. Increased shedding of the glycocalyx points toward the endothelial cell membrane composition as important for the clinical outcome being the rationale for this study. Results The plasma metabolome of 95 severely injured trauma patients was investigated by mass spectrometry, and patients with EoT vs. non-EoT were compared by partial least square-discriminant analysis, identifying succinic acid as the top metabolite to differentiate EoT and non-EoT patients (VIP score = 3). EoT and non-EoT patients' metabolic flux profile was inferred by integrating the corresponding plasma metabolome data into a genome-scale metabolic network reconstruction analysis and performing a functional study of the metabolic capabilities of each group. Model predictions showed a decrease in cholesterol metabolism secondary to impaired mevalonate synthesis in EoT compared to non-EoT patients. Intracellular task analysis indicated decreased synthesis of thromboxanA2 and leukotrienes, as well as a lower carnitine palmitoyltransferase I activity in EoT compared to non-EoT patients. Sensitivity analysis also showed a significantly high dependence of eicosanoid-associated metabolic tasks on alpha-linolenic acid as unique to EoT patients. Conclusions Model-driven analysis of the endothelial cells' metabolism identified potential novel targets as impaired thromboxane A2 and leukotriene synthesis in EoT patients when compared to non-EoT patients. Reduced thromboxane A2 and leukotriene availability in the microvasculature impairs vasoconstriction ability and may thus contribute to shock in EoT patients. These findings are supported by extensive scientific literature; however, further investigations are required on these findings.
Collapse
Key Words
- AA, Arachidonic acid
- CPT1, Carnitine palmitoyltransferase I
- EC, Endothelial cell
- EC-GEM, Genome-scale metabolic model of the microvascular endothelial cell
- ELISA, Enzyme-linked immunosorbent assay
- Eicosanoid
- Endotheliopathy
- EoT, Endotheliopathy of trauma
- FBA, Flux balance analysis
- GEMs, Genome-scale metabolic models
- Genome-scale metabolic model
- HMG-CoA, Hydroxymethylglutaryl-CoA
- ISS, Injury Severity Score
- LTC4, Leukotriene C4
- Metabolomics
- PCA, Principal Component Analysis
- PLS-DA, Partial least square-discriminant analysis
- Systems biology
- Trauma
Collapse
Affiliation(s)
- Hanne H. Henriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Igor Marín de Mas
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | - Helena Herand
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark
| | - Joseph Krocker
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Pär I. Johansson
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Denmark
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
27
|
Hao J, Feng Y, Xu X, Li L, Yang K, Dai G, Gao W, Zhang M, Fan Y, Yin T, Wang J, Yang B, Jiao L, Zhang L. Plasma Lipid Mediators Associate With Clinical Outcome After Successful Endovascular Thrombectomy in Patients With Acute Ischemic Stroke. Front Immunol 2022; 13:917974. [PMID: 35865524 PMCID: PMC9295711 DOI: 10.3389/fimmu.2022.917974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNeuroinflammatory response contributes to early neurological deterioration (END) and unfavorable long-term functional outcome in patients with acute ischemic stroke (AIS) who recanalized successfully by endovascular thrombectomy (EVT), but there are no reliable biomarkers for their accurate prediction. Here, we sought to determine the temporal plasma profiles of the bioactive lipid mediators lipoxin A4 (LXA4), resolvin D1 (RvD1), and leukotriene B4 (LTB4) for their associations with clinical outcome.MethodsWe quantified levels of LXA4, RvD1, and LTB4 in blood samples retrospectively and longitudinally collected from consecutive AIS patients who underwent complete angiographic recanalization by EVT at admission (pre-EVT) and 24 hrs post-EVT. The primary outcome was unfavorable long-term functional outcome, defined as a 90-day modified Rankin Scale score of 3-6. Secondary outcome was END, defined as an increase in National Institutes of Health Stroke Scale (NIHSS) score ≥4 points at 24 hrs post-EVT.ResultsEighty-one consecutive AIS patients and 20 healthy subjects were recruited for this study. Plasma levels of LXA4, RvD1, and LTB4 were significantly increased in post-EVT samples from AIS patients, as compared to those of healthy controls. END occurred in 17 (20.99%) patients, and 38 (46.91%) had unfavorable 90-day functional outcome. Multiple logistic regression analyses demonstrated that post-EVT levels of LXA4 (adjusted odd ratio [OR] 0.992, 95% confidence interval [CI] 0.987-0.998), ΔLXA4 (adjusted OR 0.995, 95% CI 0.991-0.999), LTB4 (adjusted OR 1.003, 95% CI 1.001-1.005), ΔLTB4 (adjusted OR 1.004, 95% CI 1.002-1.006), and post-EVT LXA4/LTB4 (adjusted OR 0.023, 95% CI 0.001-0.433) and RvD1/LTB4 (adjusted OR 0.196, 95% CI 0.057-0.682) ratios independently predicted END, and post-EVT LXA4 levels (adjusted OR 0.995, 95% CI 0.992-0.999), ΔLXA4 levels (adjusted OR 0.996, 95% CI 0.993-0.999), and post-EVT LXA4/LTB4 ratio (adjusted OR 0.285, 95% CI 0.096-0.845) independently predicted unfavorable 90-day functional outcome. These were validated using receiver operating characteristic curve analyses.ConclusionsPlasma lipid mediators measured 24 hrs post-EVT were independent predictors for early and long-term outcomes. Further studies are needed to determine their causal-effect relationship, and whether the imbalance between anti-inflammatory/pro-resolving and pro-inflammatory lipid mediators could be a potential adjunct therapeutic target.
Collapse
Affiliation(s)
- Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Kun Yang
- Department of Evidence-based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gaolei Dai
- Department of Intervention, Liaocheng People’s hospital, Liaocheng, China
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Yaming Fan
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Tengkun Yin
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical Universit, Beijing, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s hospital, Liaocheng, China
- *Correspondence: Xin Xu, ; Liqun Jiao, ; Liyong Zhang,
| |
Collapse
|
28
|
Fu Y, Feng H, Ding X, Meng QH, Zhang SR, Li J, Chao Y, Ji TT, Bi YH, Zhang WW, Chen Q, Zhang YH, Feng YL, Bian HM. Alisol B 23-acetate adjusts bile acid metabolisim via hepatic FXR-BSEP signaling activation to alleviate atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154120. [PMID: 35523117 DOI: 10.1016/j.phymed.2022.154120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Postmenopausal women have a high incidence of atherosclerosis. Phytosterols have been shown to have cholesterol-lowering properties. Alisa B 23-acetate (AB23A) is a biologically active plant sterol isolated from Chinese herbal medicine Alisma. However, the atherosclerosis effect of AB23A after menopause and its possible mechanism have not been reported yet. PURPOSE To explore whether AB23A can prevent atherosclerosis by regulating farnesoid X receptor and subsequently increasing fecal bile acid and cholesterol excretion to reduce plasma cholesterol levels. METHODS Aortic samples from premenopausal and postmenopausal women with ascending aortic arteriosclerosis were analyzed, and bilateral ovariectomized (OVX) female LDLR-/- mice and free fatty acid (FFA)-treated L02 cells were used to analyze the effect of AB23A supplementation therapy. RESULTS AB23A increased fecal cholesterol and bile acids (BAs) excretion dependent on activation of hepatic farnesoid X receptor (FXR) in ovariectomized mice. AB23A inhibited hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) via inducing small heterodimer partner (SHP) expression. On the other hand, AB23A increased the level of hepatic chenodeoxycholic acid (CDCA), and activated the hepatic BSEP signaling. The activation of hepatic FXR-BSEP signaling by AB23A in ovariectomized mice was accompanied by the reduction of liver cholesterol, hepatic lipolysis, and bile acids efflux, and reduced the damage of atherosclerosis. In vitro, AB23A fixed abnormal lipid metabolism in L02 cells and increased the expression of FXR, BSEP and SHP. Moreover, the inhibition and silencing of FXR canceled the regulation of BSEP by AB23A in L02 cells. CONCLUSION Our results shed light into the mechanisms behind the cholesterol-lowering of AB23A, and increasing FXR-BSEP signaling by AB23A may be a potential postmenopausal atherosclerosis therapy.
Collapse
Affiliation(s)
- Yu Fu
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qing-Hai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu-Rui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ting-Ting Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Hui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei-Wei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Han Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - You-Long Feng
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, China.
| | - Hui-Min Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
29
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
30
|
Wassie T, Duan X, Xie C, Wang R, Wu X. Dietary Enteromorpha polysaccharide-Zn supplementation regulates amino acid and fatty acid metabolism by improving the antioxidant activity in chicken. J Anim Sci Biotechnol 2022; 13:18. [PMID: 35074004 PMCID: PMC8785591 DOI: 10.1186/s40104-021-00648-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background Enteromorpha prolifera (E. prolifera) polysaccharide has become a promising feed additive with a variety of physiological activities, such as anti-oxidant, anti-cancer, anti-diabetic, immunomodulatory, hypolipidemic, and cation chelating ability. However, whether Enteromorpha polysaccharide-trace element complex supplementation regulates amino acid and fatty acid metabolism in chicken is largely unknown. This study was conducted to investigate the effects of E. prolifera polysaccharide (EP)-Zn supplementation on growth performance, amino acid, and fatty acid metabolism in chicken. Methods A total of 184 one-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with 8 replicates, 12 chickens per replicate, and fed either the basal diet (control group) or basal diet plus E. prolifera polysaccharide-Zinc (400 mg EP-Zn/kg diet). Results Dietary EP-Zn supplementation significantly increased (P < 0.05) the body weight, average daily gain, muscle antioxidant activity, serum HDL level, and reduced serum TG and LDL concentration. In addition, dietary EP-Zn supplementation could modulate ileal amino acid digestibility and upregulate the mRNA expression of amino acid transporter genes in the jejunum, ileum, breast muscle, and liver tissues (P < 0.05). Compared with the control group, breast meat from chickens fed EP-Zn had higher (P < 0.05) Pro and Asp content, and lower (P < 0.05) Val, Phe, Gly, and Cys free amino acid content. Furthermore, EP-Zn supplementation upregulated (P < 0.05) the mRNA expressions of mTOR and anti-oxidant related genes, while down-regulated protein degradation related genes in the breast muscle. Breast meat from EP-Zn supplemented group had significantly lower (P < 0.05) proportions of Σn-3 PUFA, and a higher percentage of Σn-6 PUFA and the ratio of n-6/n-3 PUFA. Besides, EP-Zn supplementation regulated lipid metabolism by inhibiting the gene expression of key enzymes involved in the fatty acid synthesis and activating genes that participated in fatty acid oxidation in the liver tissue. Conclusions It is concluded that EP-Zn complex supplementation regulates apparent ileal amino acid digestibility, enhances amino acid metabolism, and decreases oxidative stress-associated protein breakdown, thereby improving the growth performance. Furthermore, it promotes fatty acid oxidation and restrains fat synthesis through modulating lipid metabolism-related gene expression. Graphical abstract ![]()
Collapse
|
31
|
Wang Y, Chen XH, Cai GH, Zhai SW. Grape seed proanthocyanidin extract regulates lipid metabolism of the American eel ( Anguilla rostrata). Nat Prod Res 2021; 36:5889-5893. [PMID: 34969332 DOI: 10.1080/14786419.2021.2022666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The current study was aimed to examine the effect of grape seed proanthocyanidin extract (GSPE) on regulating lipid metabolism of American eels. A total of six cement tanks of fish were randomly divided into a control group fed with a commercial diet and a GSPE group fed with a commercial diet supplemented 400 mg/kg GSPE. There were three replicates in each group. Results suggested that GSPE could decrease the levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol, and increase the high-density lipoprotein cholesterol level in serum. GSPE might regulate lipid metabolism through upregulating linoleic acid metabolism and arachidonic acid metabolism along with downregulating metabolisms of phenylalanine, tyrosine, and tryptophan biosynthesis and valine, leucine, and isoleucine biosynthesis.
Collapse
Affiliation(s)
- Yue Wang
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Jimei University, Xiamen, China
| | - Xue-Hao Chen
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Jimei University, Xiamen, China
| | - Guo-He Cai
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Jimei University, Xiamen, China
| | - Shao-Wei Zhai
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education, Jimei University, Xiamen, China
| |
Collapse
|
32
|
Kajani S, Curley S, O'Reilly ME, Yin X, Dillon ET, Guo W, Nilaweera KN, Brennan L, Roche HM, McGillicuddy FC. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue - implications for obesity-impaired reverse cholesterol transport. Mol Metab 2021; 56:101425. [PMID: 34954383 PMCID: PMC8762459 DOI: 10.1016/j.molmet.2021.101425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction High-fat diet (HFD)-induced obesity impairs clearance of cholesterol through the Reverse Cholesterol Transport (RCT) pathway, with downregulation in hepatic expression of cholesterol and bile acid transporters, namely ABCG5/8 and ABCB11, and reduced high-density lipoprotein (HDL) cholesterol efflux capacity (CEC). In the current study, we hypothesized that the development of hepatosteatosis, secondary to adipose-tissue dysfunction, contributes to obesity-impaired RCT and that such effects could be mitigated using the anti-inflammatory drug sodium salicylate (NaS). Materials and methods C57BL/6J mice, fed HFD ± NaS or low-fat diet (LFD) for 24 weeks, underwent glucose and insulin tolerance testing. The 3H-cholesterol movement from macrophage-to-feces was assessed in vivo. HDL-CEC was determined ex vivo. Cytokine secretion from adipose-derived stromal vascular fraction (SVF) cells was measured ex vivo. Liver and HDL proteins were determined by mass spectrometry and analyzed using Ingenuity Pathway Analysis. Results NaS delayed HFD-induced weight gain, abrogated priming of pro-IL-1β in SVFs, attenuated insulin resistance, and prevented steatohepatitis (ectopic fat accumulation in the liver). Prevention of hepatosteatosis coincided with increased expression of PPAR-alpha/beta-oxidation proteins with NaS and reduced expression of LXR/RXR-induced proteins including apolipoproteins. The latter effects were mirrored within the HDL proteome in circulation. Despite remarkable protection shown against steatosis, HFD-induced hypercholesterolemia and repression of the liver-to-bile cholesterol transporter, ABCG5/8, could not be rescued with NaS. Discussions and conclusions The cardiometabolic health benefits of NaS may be attributed to the reprogramming of hepatic metabolic pathways to increase fatty acid utilization in the settings of nutritional overabundance. Reduced hepatic cholesterol levels, coupled with reduced LXR/RXR-induced proteins, may underlie the lack of rescue of ABCG5/8 expression with NaS. This remarkable protection against HFD-induced hepatosteatosis did not translate to improvements in cholesterol homeostasis. Sodium salicylate (NaS) initially delays weight-gain in mice fed high-fat diet (HFD) - catch-up evident in weeks 12–24. NaS prevents HFD-induced insulin resistance, hepatosteatosis and pro-IL-1β priming in adipose tissue even upon weight-gain. Hepatic expression of proteins involved in beta oxidation, oxidative phosphorylation and TCA cycle upregulated with NaS. Hepatic expression of LXR/RXR proteins eg. apolipoproteins reduced with NaS; these effects were mirrored in HDL proteome. NaS failed to improve HFD-impaired Reverse Cholesterol Transport or hypercholesterolemia despite preventing hepatosteatosis.
Collapse
Affiliation(s)
- Sarina Kajani
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Sean Curley
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Marcella E O'Reilly
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Xiaofei Yin
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | | | - Weili Guo
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health
| | - Kanishka N Nilaweera
- Teagasc Food Research Centre; VistaMilk Research Centre, Moorepark, Fermoy, Ireland
| | - Lorraine Brennan
- UCD Conway Institute; UCD Institute of Food and Health; School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Helen M Roche
- Diabetes Complications Research Centre; UCD Conway Institute; Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science; UCD Institute of Food and Health
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre; UCD School of Medicine; UCD Conway Institute; UCD Institute of Food and Health.
| |
Collapse
|
33
|
Wang F, Wang J, Cai H, Yuan L, Sun C, Peng X, Yan W, Zhang J. Network pharmacology combined with metabolomics to investigate the anti-hyperlipidemia mechanism of a novel combination. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:12803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
35
|
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 2021; 17:101. [PMID: 34792662 DOI: 10.1007/s11306-021-01854-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations. OBJECTIVES Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome-a complex neurometabolic MD defined by progressive focal lesions in specific brain regions-to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level. METHODS Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice. RESULTS Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain. CONCLUSION Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
36
|
Yücel H, Özdemir AT. Low LXA4, RvD1 and RvE1 levels may be an indicator of the development of hypertension. Prostaglandins Leukot Essent Fatty Acids 2021; 174:102365. [PMID: 34740030 DOI: 10.1016/j.plefa.2021.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Vascular structure and integrity are at the forefront of blood pressure regulation. However, there are many factors that affect the responses of the vessels. One of these is the inflammatory processes associated with high cholesterol and its modification. 15-lipoxygenase (15-LOX) is the critical enzyme in cholesterol oxidation, but this enzyme is also responsible for the synthesis of specialized proresoving lipid mediators (SPMs) called Lipoxin (Lxs) and Resolvin (Rvs). In this study, we determined serum LXA4, RvD1 and RvE1 levels in newly diagnosed hypertension (HT) and normotension (NT) cases. We evaluated how the presence of hypercholesterolemia (HC) in the follow-up changes the levels of these SPMs. We found that the three SPMs we measured decreased significantly in the presence of HC. In addition, we found a negative and significant correlation with systolic blood pressure and total cholesterol levels for the three SPMs. In conclusion, HT and HC are independent risk factors for cardiovascular death. However, the presence of HC may be an important factor for the development of HT. Increasing cholesterol levels may cause 15-LOX to shift towards LDL oxidation, thus leading to inflammation. This situation may negatively affect the vascular functions in the regulation of blood pressure. Serum LXA4, RvD1 and RvE1 measurements may provide clues that represent a shift of 15-LOX enzyme activity towards cholesterol.
Collapse
Affiliation(s)
- Habil Yücel
- Department of Cardiology, Manisa City Hospital, Manisa, Turkey.
| | - Alper Tunga Özdemir
- Department of Medical Biochemistry, Merkezefendi State Hospital, Manisa, Turkey
| |
Collapse
|
37
|
Zhi H, Zhang Z, Deng Y, Yan B, Li Z, Wu W, Feng Z, Lei M, Long H, Hou J, Guo D, Wu W. Restoring perturbed oxylipins with Danqi Tongmai Tablet attenuates acute myocardial infarction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153616. [PMID: 34252738 DOI: 10.1016/j.phymed.2021.153616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Salvianolic acids have a special synergic effect on panax notoginsenosides in acute myocardial infarction (AMI) and have been developed into a new drug as Danqi Tongmai Tablet (DQTT). To explore candidate targets and mechanisms of DQTT on AMI, a network pharmacology-based analysis was performed on absorbed prototype compounds of DQTT in rat plasma. Target prediction from network analysis indicated that the arachidonic acid pathway might contribute to the therapeutic effects of DQTT on AMI, and the regulatory effects on cyclooxygenase (COX) and lipoxygenase (LOX) were validated using an oxygen-glucose deprivation/reoxygenation model established on H9c2 cardiomyocytes. To further explore the action mechanisms of DQTT, 38 oxylipins were quantitatively analyzed among high, medium, and low doses of DQTT using a rat AMI model with an ultra high performance liquid chromatograph coupled with a triple quadrupole mass spectrometry (UHPLC-QqQ/MS) detection system. As attenuation was observed in AMI with DQTT treatment, the perturbed arachidonic acid metabolome was partly restored in a dose-dependent fashion with a significant elevation of anti-inflammatory metabolites, while pro-inflammatory lipids were decreased. Cytokine array analysis also supported the anti-inflammatory effects of DQTT, as significant down-regulation of pro-inflammatory cytokines was observed. The analysis of ischemic heart tissues demonstrated that COX and LOX, the inflammation-induced catalytic enzymes of arachidonic acid metabolism, were inhibited on both gene expression and protein level. These results confirmed that DQTT could restore the arachidonic acid metabolome to maintain an anti-inflammatory profile against the ischemic tissue injury and support that DQTT can be a promising medicinal therapy against AMI.
Collapse
Affiliation(s)
- Haijuan Zhi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China
| | - Yanping Deng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China
| | - Bingpeng Yan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Zhenwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China
| | - Zijing Feng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China.
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuanquan Road, Beijing 100049, China.
| |
Collapse
|
38
|
Ji Y, Luo K, Zhang JM, Ni P, Xiong W, Luo X, Xu G, Liu H, Zeng Z. Obese rats intervened with Rhizoma coptidis revealed differential gene expression and microbiota by serum metabolomics. BMC Complement Med Ther 2021; 21:208. [PMID: 34380455 PMCID: PMC8359625 DOI: 10.1186/s12906-021-03382-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/22/2021] [Indexed: 12/04/2022] Open
Abstract
Background Integrating systems biology is an approach for investigating metabolic diseases in humans. However, few studies use this approach to investigate the mechanism by which Rhizoma coptidis (RC) reduces the effect of lipids and glucose on high-fat induced obesity in rats. Methods Twenty-four specific pathogen-free (SPF) male Sprague–Dawley rats (80 ± 10 g) were used in this study. Serum metabolomics were detected by ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. Liver tissue and cecum feces were used for RNA-Seq technology and 16S rRNA gene sequencing, respectively. Results We identified nine potential biomarkers, which are differential metabolites in the Control, Model and RC groups, including linoleic acid, eicosapentaenoic acid, arachidonic acid, stearic acid, and L-Alloisoleucine (p < 0.01). The liver tissue gene expression profile indicated the circadian rhythm pathway was significantly affected by RC (Q ≤ 0.05). A total of 149 and 39 operational taxonomic units (OTUs), which were highly associated with biochemical indicators and potential biomarkers in the cecum samples (FDR ≤ 0.05), respectively, were identified. Conclusion This work provides information to better understand the mechanism of the effect of RC intervention on hyperlipidemia and hypoglycemic effects in obese rats. The present study demonstrates that integrating systems biology may be a powerful tool to reveal the complexity of metabolic diseases in rats intervened by traditional Chinese medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03382-3.
Collapse
Affiliation(s)
- Yanhua Ji
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.,Laboratory Animal Science and Technology Center, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Kexin Luo
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiri Mutu Zhang
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Peng Ni
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Wangping Xiong
- School of Computer, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Xiaoquan Luo
- Laboratory Animal Science and Technology Center, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Guoliang Xu
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.,Jiangxi Key Lab of Pharmacology of TCM, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Hongning Liu
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China
| | - Zhijun Zeng
- Jiangxi Province Key Laboratory of TCM Etiopathogenisis, Research Center for Differention and Development of TCM Basic Theory, University of Jiangxi TCM, Nanchang, Jiangxi, 330006, P. R. China.
| |
Collapse
|
39
|
Tang L, Li L, Bu L, Guo S, He Y, Liu L, Xing Y, Lou F, Zhang F, Wang S, Lv J, Guo N, Tong J, Xu L, Tang S, Zhu C, Wang Z. Bigu-Style Fasting Affects Metabolic Health by Modulating Taurine, Glucose, and Cholesterol Homeostasis in Healthy Young Adults. J Nutr 2021; 151:2175-2187. [PMID: 33979839 DOI: 10.1093/jn/nxab123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dynamic orchestration of metabolic pathways during continuous fasting remains unclear. OBJECTIVE We investigated the physiological effects of Bigu-style fasting and underlying metabolic reprogramming in healthy adults. METHODS We conducted a 5-d Bigu trial in 43 healthy subjects [age 23.2 ± 2.4 y; BMI (in kg/m2) 22.52 ± 1.79]. Physiological indicators and body composition were monitored daily during fasting day 1 (F1D) to F5D and after 10-d refeeding postfasting (R10D) and R30D. Blood samples were collected in the morning. Risk factors associated with inflammation, aging, cardiovascular diseases, malnutrition, and organ dysfunction were evaluated by biochemical measurements. Untargeted plasma metabolomics and gut microbial profiling were performed using plasma and fecal samples. Data were analyzed by repeated measures ANOVA with Greenhouse-Geisser correction. Correlation analyses for metabolite modules and taurine were analyzed by Spearman's rank and Pearson tests, respectively. RESULTS Heart rate was accelerated throughout the fasting period. Risk factors associated with inflammation and cardiovascular diseases were significantly lowered during or after Bigu (P < 0.05). Body composition measurement detected an overconsumption of fat starting from F3D till 1 mo after refeeding. Metabolomics unveiled a coupling between gluconeogenesis and cholesterol biosynthesis beyond F3D. Plasma taurine significantly increased at F3D by 31%-46% followed by a reduction to basal level at F5D (P < 0.001), a pattern inversely correlated with changes in glucose and de novo synthesized cholesterol (r = -0.407 and -0.296, respectively; P < 0.001). Gut microbial profiling showed an enrichment of taurine-utilizing bacteria at F5D, which was completely recovered at R10D. CONCLUSIONS Our data demonstrate that 5-d Bigu is potentially beneficial to health in young adults. A starvation threshold of 3-d fasting is necessary for maintaining glucose and cholesterol homeostasis via a taurine-microbiota regulatory loop. Our findings provide novel insights into the physiological and metabolic responses of the human body to continuous Bigu-style fasting. This trial was registered at http://www.chictr.org.cn as ChiCTR1900022917.
Collapse
Affiliation(s)
- Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihong Bu
- PET-CT/MRI Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaoying Guo
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Yuan He
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Liu
- Department of Physical Education, Hubei University of Education, Wuhan, China
| | - Yangqi Xing
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Fangxiao Lou
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Fengcheng Zhang
- School of Martial Arts, Wuhan Sports University, Wuhan, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lijuan Xu
- Physical Examination Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqi Tang
- Physical Examination Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihua Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| |
Collapse
|
40
|
Schierle S, Brunst S, Helmstädter M, Ebert R, Kramer JS, Steinhilber D, Proschak E, Merk D. Development and in vitro Profiling of Dual FXR/LTA4H Modulators. ChemMedChem 2021; 16:2366-2374. [PMID: 33856122 PMCID: PMC8453936 DOI: 10.1002/cmdc.202100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/10/2022]
Abstract
Designed polypharmacology presents as an attractive strategy to increase therapeutic efficacy in multi-factorial diseases by a directed modulation of multiple involved targets with a single molecule. Such an approach appears particularly suitable in non-alcoholic steatohepatitis (NASH) which involves hepatic steatosis, inflammation and fibrosis as pathological hallmarks. Among various potential pharmacodynamic mechanisms, activation of the farnesoid X receptor (FXRa) and inhibition of leukotriene A4 hydrolase (LTA4Hi) hold promise to counteract NASH according to preclinical and clinical observations. We have developed dual FXR/LTA4H modulators as pharmacological tools, enabling evaluation of this polypharmacology concept to treat NASH and related pathologies. The optimized FXRa/LTA4Hi exhibits well-balanced dual activity on the intended targets with sub-micromolar potency and is highly selective over related nuclear receptors and enzymes rendering it suitable as tool to probe synergies of dual FXR/LTA4H targeting.
Collapse
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Steffen Brunst
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Moritz Helmstädter
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Roland Ebert
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Jan S. Kramer
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Daniel Merk
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| |
Collapse
|
41
|
Sahanic S, Löffler-Ragg J, Tymoszuk P, Hilbe R, Demetz E, Masanetz RK, Theurl M, Holfeld J, Gollmann-Tepeköylü C, Tzankov A, Weiss G, Giera M, Tancevski I. The Role of Innate Immunity and Bioactive Lipid Mediators in COVID-19 and Influenza. Front Physiol 2021; 12:688946. [PMID: 34366882 PMCID: PMC8339726 DOI: 10.3389/fphys.2021.688946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss spatiotemporal kinetics and inflammatory signatures of innate immune cells specifically found in response to SARS-CoV-2 compared to influenza virus infection. Importantly, we cover the current understanding on the mechanisms by which SARS-CoV-2 may fail to engage a coordinated type I response and instead may lead to exaggerated inflammation and death. This knowledge is central for the understanding of available data on specialized pro-resolving lipid mediators in severe SARS-CoV-2 infection pointing toward inhibited E-series resolvin synthesis in severe cases. By investigating a publicly available RNA-seq database of bronchoalveolar lavage cells from patients affected by COVID-19, we moreover offer insights into the regulation of key enzymes involved in lipid mediator synthesis, critically complementing the current knowledge about the mediator lipidome in severely affected patients. This review finally discusses different potential approaches to sustain the synthesis of 3-PUFA-derived pro-resolving lipid mediators, including resolvins and lipoxins, which may critically aid in the prevention of acute lung injury and death from COVID-19.
Collapse
Affiliation(s)
- Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Rebecca K Masanetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
43
|
Sun Y, Wu D, Zeng W, Chen Y, Guo M, Lu B, Li H, Sun C, Yang L, Jiang X, Gao Q. The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Front Cell Infect Microbiol 2021; 11:618265. [PMID: 33816331 PMCID: PMC8012722 DOI: 10.3389/fcimb.2021.618265] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Aging induced chronic systemic inflammatory response is an important risk factor for atherosclerosis (AS) development; however, the detailed mechanism is yet to be elucidated. Objective To explore the underlying mechanism of how aging aggravates AS advancement. Methods A young (five-week-old, YM) and aged group (32-week-old, OM) male apoE-/- mice with a high fat diet were used as models, and age-matched male wild-type C57BL/6J (WT) mice were used as controls. AS lesion size, serum lipid profile, cytokines, and gut microbiota-derived LPS were analyzed after 32 weeks of diet intervention. A correlation analysis between the 16S rRNA sequencing of the feces and serum metabolomics profiles was applied to examine the effect of their interactions on AS. Results ApoE-/- mice developed severe atherosclerosis and inflammation in the aorta compared to the WT groups, and aged apoE-/- mice suffered from a more severe AS lesion than their younger counterparts and had low-grade systemic inflammation. Furthermore, increased levels of serum LPS, decreased levels of SCFAs production, as well as dysfunction of the ileal mucosal barrier were detected in aged mice compared with their younger counterparts. There were significant differences in the intestinal flora composition among the four groups, and harmful bacteria such as Lachnospiraceae_FCS020, Ruminococcaceae_UCG-009, Acetatifactor, Lachnoclostridium and Lactobacillus_gasseri were significantly increased in the aged apoE-/- mice compared with the other groups. Concurrently, metabolomics profiling revealed that components involved in the arachidonic acid (AA) metabolic pathway such as 20-HETE, PGF2α, arachidonic acid, and LTB4 were significantly higher in the aged AS group than in the other groups. This suggested that metabolic abnormalities and disorders of intestinal flora occurred in AS mice. Conclusions Aging not only altered the gut microbiome community but also substantially disturbed metabolic conditions. Our results confirm that AA metabolism is associated with the imbalance of the intestinal flora in the AS lesions of aged mice. These findings may offer new insights regarding the role of gut flora disorders and its consequent metabolite changed in inflammaging during AS development.
Collapse
Affiliation(s)
- Yingxin Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danbin Wu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yefei Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chun Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Nephrology lacks effective therapeutics for many of the presentations and diseases seen in clinical practice. In recent decades, we have come to understand the central place of inflammation in initiating and propagating kidney disease, and, research in more recent years has established that the resolution of inflammation is a highly regulated and active process. With this, has evolved an appreciation that this aspect of the host inflammatory response is defective in kidney disease and led to consideration of a therapeutic paradigm aiming to harness the activity of the molecular drivers of the resolution phase of inflammation. Fatty-acid-derived Specialized pro-resolving mediators (SPMs), partly responsible for resolution of inflammation have gained traction as potential therapeutics. RECENT FINDINGS We describe our current understanding of SPMs for this purpose in acute and chronic kidney disease. These studies cement the place of inflammation and its defective resolution in the pathogenesis of kidney disease, and highlight new avenues for therapy. SUMMARY Targeting resolution of inflammation is a viable approach to treating kidney disease. We optimistically look forward to translating these experimental advances into tractable therapeutics to treat kidney disease.
Collapse
|
45
|
Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin Nutr 2021; 40:2974-2987. [PMID: 33509668 DOI: 10.1016/j.clnu.2020.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been proposed as beneficial for cardiovascular health. However, results from both epidemiological studies and clinical trials have been inconsistent, whereas most of the animal studies showed promising benefits of PUFAs in the prevention and treatment of ischemic stroke. In recent years, it has become clear that PUFAs are metabolized into various types of bioactive derivatives, including the specialized pro-resolving mediators (SPMs). SPMs exert multiple biofunctions, such as to limit excessive inflammatory responses, regulate lipid metabolism and immune cell functions, decrease production of pro-inflammatory factors, increase anti-inflammatory mediators, as well as to promote tissue repair and homeostasis. Inflammation has been recognised as a key contributor to the pathophysiology of acute ischemic stroke. Owing to their potent pro-resolving actions, SPMs are potential for development of novel anti-stroke therapy. In this review, we will summarize current knowledge of epidemiological studies, basic research and clinical trials concerning PUFAs in stroke prevention and treatment, with special attention to SPMs as the unsung heroes behind PUFAs.
Collapse
|
46
|
Rosa L, Lobos-González L, Muñoz-Durango N, García P, Bizama C, Gómez N, González X, Wichmann IA, Saavedra N, Guevara F, Villegas J, Arrese M, Ferreccio C, Kalergis AM, Miquel JF, Espinoza JA, Roa JC. Evaluation of the chemopreventive potentials of ezetimibe and aspirin in a novel mouse model of gallbladder preneoplasia. Mol Oncol 2020; 14:2834-2852. [PMID: 33326125 PMCID: PMC7607176 DOI: 10.1002/1878-0261.12766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/24/2022] Open
Abstract
Gallbladder stones (cholecystolithiasis) are the main risk factor for gallbladder cancer (GBC), a lethal biliary malignancy with poor survival rates worldwide. Gallbladder stones are thought to damage the gallbladder epithelium and trigger chronic inflammation. Preneoplastic lesions that arise in such an inflammatory microenvironment can eventually develop into invasive carcinoma, through mechanisms that are not fully understood. Here, we developed a novel gallbladder preneoplasia mouse model through the administration of two lithogenic diets (a low‐ or a high‐cholesterol diet) in wild‐type C57BL/6 mice over a period of 9 months. Additionally, we evaluated the chemopreventive potentials of the anti‐inflammatory drug aspirin and the cholesterol absorption inhibitor ezetimibe. Both lithogenic diets induced early formation of gallbladder stones, together with extensive inflammatory changes and widespread induction of metaplasia, an epithelial adaptation to tissue injury. Dysplastic lesions were presented only in mice fed with high‐cholesterol diet (62.5%) in late stages (9th month), and no invasive carcinoma was observed at any stage. The cholesterol absorption inhibitor ezetimibe inhibited gallbladder stone formation and completely prevented the onset of metaplasia and dysplasia in both lithogenic diets, whereas aspirin partially reduced metaplasia development only in the low‐cholesterol diet setting. This model recapitulates several of the structural and inflammatory findings observed in human cholecystolithiasic gallbladders, making it relevant for the study of gallbladder carcinogenesis. In addition, our results suggest that the use of cholesterol absorption inhibitors and anti‐inflammatory drugs can be evaluated as chemopreventive strategies to reduce the burden of GBC among high‐risk populations.
Collapse
Affiliation(s)
- Lorena Rosa
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile.,Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Natalia Muñoz-Durango
- Millennium Institute of Immunology and Immunotherapy (IMII), Santiago, Chile.,Departmento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia García
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Gómez
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena González
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Departamento de Hematología-Oncología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Saavedra
- Departamento de Ciencias Básicas, Centro de Biología Molecular y Farmacogenética, BIOREN, Universidad de La Frontera, Temuco, Chile
| | | | - Jaime Villegas
- Fundación Ciencia & Vida, Santiago, Chile.,Centro de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Departamento de Salud Publica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy (IMII), Santiago, Chile.,Departmento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Francisco Miquel
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime A Espinoza
- SciLifeLab, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan C Roa
- Departamento de Patología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
47
|
Hu T, Zhu Q, Hu Y, Kamal GM, Feng Y, Manyande A, Wang J, Xu F. Qualitative and Quantitative Analysis of Regional Cerebral Free Fatty Acids in Rats Using the Stable Isotope Labeling Liquid Chromatography-Mass Spectrometry Method. Molecules 2020; 25:molecules25215163. [PMID: 33171987 PMCID: PMC7664212 DOI: 10.3390/molecules25215163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Free fatty acids serve as important bioactive molecules in the brain. They are involved in message transfer in the brain. There are many reports available in the literature regarding the role of cerebral fatty acids in message transfer; however, most of the studies are mainly focused on limited fatty acid species or only a few specific brain regions. To understand the relationship between cerebral functions and free fatty acids, it is necessary to investigate the distribution of the free fatty acids among different regions in the whole brain. In this study, free fatty acids were extracted from different brain regions and analyzed qualitatively and quantitatively using the stable isotopic labeling liquid chromatography–mass spectrometry approach. In total, 1008 potential free fatty acids were detected in the whole brain out of which 38 were found to be commonly present in all brain regions. Among different brain regions, the highest and the smallest amounts of potential free fatty acids were detected in the olfactory bulb and cerebellum, respectively. From a statistical point of view, 4-methyl-2-oxovaleric acid, cis-11, 14-eicosadienoic acid, tridecanoic acid, myristic acid, nonadecanoic acid, and arachidic acid were found to significantly vary among the four different brain regions (olfactory bulb, occipital lobe, hippocampus, and cerebellum). The variation in the composition of free fatty acids among different brain regions may be very important for investigating the relationship between free fatty acids and functions of cerebral regions.
Collapse
Affiliation(s)
- Ting Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China; (Q.Z.); (Y.H.); (Y.F.)
| | - Yuning Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China; (Q.Z.); (Y.H.); (Y.F.)
| | - Ghulam Mustafa Kamal
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; (Q.Z.); (Y.H.); (Y.F.)
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW89GA, UK;
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (F.X.); Tel.: +86-27-8719-7653 (J.W.); +86-27-8719-7091 (F.X.); Fax: +86-27-8719-9543 (J.W. & F.X.)
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (J.W.); (F.X.); Tel.: +86-27-8719-7653 (J.W.); +86-27-8719-7091 (F.X.); Fax: +86-27-8719-9543 (J.W. & F.X.)
| |
Collapse
|
48
|
Schulze MB, Minihane AM, Saleh RNM, Risérus U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol 2020; 8:915-930. [PMID: 32949497 DOI: 10.1016/s2213-8587(20)30148-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Prospective observational studies support the use of long-chain omega-3 polyunsaturated fatty acids (PUFAs) in the primary prevention of atherosclerotic cardiovascular disease; however, randomised controlled trials, have often reported neutral findings. There is a long history of debate about the potential harmful effects of a high intake of omega-6 PUFAs, although this idea is not supported by prospective observational studies or randomised controlled trials. Health effects of PUFAs might be influenced by Δ-5 and Δ-6 desaturases, the key enzymes in the metabolism of PUFAs. The activity of these enzymes and modulation by variants in encoding genes (FADS1-2-3 gene cluster) are linked to several cardiometabolic traits. This Review will further consider non-genetic determinants of desaturase activity, which have the potential to modify the availability of PUFAs to tissues. Finally, we discuss the consequences of altered desaturase activity in the context of PUFA intake, that is, gene-diet interactions and their clinical and public health implications.
Collapse
Affiliation(s)
- Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rasha Noureldin M Saleh
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK; Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Demetz E, Tymoszuk P, Hilbe R, Volani C, Haschka D, Heim C, Auer K, Lener D, Zeiger LB, Pfeifhofer-Obermair C, Boehm A, Obermair GJ, Ablinger C, Coassin S, Lamina C, Kager J, Petzer V, Asshoff M, Schroll A, Nairz M, Dichtl S, Seifert M, von Raffay L, Fischer C, Barros-Pinkelnig M, Brigo N, Valente de Souza L, Sopper S, Hirsch J, Graber M, Gollmann-Tepeköylü C, Holfeld J, Halper J, Macheiner S, Gostner J, Vogel GF, Pechlaner R, Moser P, Imboden M, Marques-Vidal P, Probst-Hensch NM, Meiselbach H, Strauch K, Peters A, Paulweber B, Willeit J, Kiechl S, Kronenberg F, Theurl I, Tancevski I, Weiss G. The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur Heart J 2020; 41:3949-3959. [PMID: 32227235 DOI: 10.1093/eurheartj/ehaa140] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/16/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Imbalances of iron metabolism have been linked to the development of atherosclerosis. However, subjects with hereditary haemochromatosis have a lower prevalence of cardiovascular disease. The aim of our study was to understand the underlying mechanisms by combining data from genome-wide association study analyses in humans, CRISPR/Cas9 genome editing, and loss-of-function studies in mice. METHODS AND RESULTS Our analysis of the Global Lipids Genetics Consortium (GLGC) dataset revealed that single nucleotide polymorphisms (SNPs) in the haemochromatosis gene HFE associate with reduced low-density lipoprotein cholesterol (LDL-C) in human plasma. The LDL-C lowering effect could be phenocopied in dyslipidaemic ApoE-/- mice lacking Hfe, which translated into reduced atherosclerosis burden. Mechanistically, we identified HFE as a negative regulator of LDL receptor expression in hepatocytes. Moreover, we uncovered liver-resident Kupffer cells (KCs) as central players in cholesterol homeostasis as they were found to acquire and transfer LDL-derived cholesterol to hepatocytes in an Abca1-dependent fashion, which is controlled by iron availability. CONCLUSION Our results disentangle novel regulatory interactions between iron metabolism, KC biology and cholesterol homeostasis which are promising targets for treating dyslipidaemia but also provide a mechanistic explanation for reduced cardiovascular morbidity in subjects with haemochromatosis.
Collapse
Affiliation(s)
- Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Chiara Volani
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Christiane Heim
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Kristina Auer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Lucas B Zeiger
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Anna Boehm
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria
- Division of Physiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Cornelia Ablinger
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria
| | - Stefan Coassin
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Claudia Lamina
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Juliane Kager
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Malte Asshoff
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura von Raffay
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Christine Fischer
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Marina Barros-Pinkelnig
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Lara Valente de Souza
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Department of Internal Medicine V, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Jakob Hirsch
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Michael Graber
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Johannes Holfeld
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Julia Halper
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Sophie Macheiner
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Johanna Gostner
- Division of Medical Biochemistry, Medical University of Innsbruck, Innrain 80/IV, 6020 Innsbruck, Austria
| | - Georg F Vogel
- Department of Pediatrics I, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Innsbruck University Hospital, Anichstraße 35, 6020 Innsbruck, Austria
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Socinstraße 57, 4051 Basel, Switzerland
- Department of Public Health, University of Basel, Bernoullistraße 28, 4056 Basel, Switzerland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Nicole M Probst-Hensch
- Swiss Tropical and Public Health Institute, Socinstraße 57, 4051 Basel, Switzerland
- Department of Public Health, University of Basel, Bernoullistraße 28, 4056 Basel, Switzerland
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, University Hospital Erlangen, Maximiliansplatz 2, 91054 Erlangen, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Marchioninistraße 15, 81377 Munich, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- German Center for Cardiovascular Research, Lazarettstraße 36, 80636 Munich, Germany
| | - Bernhard Paulweber
- First Department of Medicine, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Florian Kronenberg
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
50
|
Xu L, Guo L, Wang Z, Xu X, Zhang S, Wu X, Kuang H, Xu C. Profiling and Identification of Biocatalyzed Transformation of Sulfoxaflor In Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Liwei Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Shuang Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- International Joint Research Laboratory for Bi ointerface and Biodetection and School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 P. R. China
- Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|