1
|
Ping J, Liu X, Lu Y, Quan C, Fan P, Lu H, Li Q, Wang C, Zhang Z, Liu M, Chen S, Chang L, Jiang Y, Huang Q, Liu J, Wuren T, Liu H, Hao Y, Kang L, Liu G, Lu H, Wei X, Wang Y, Li Y, Guo H, Cui Y, Zhang H, Zhang Y, Zhai Y, He Y, Zheng W, Qi X, Ouzhuluobu, Ma H, Yang L, Wang X, Jin W, Cui Y, Ge R, Wu S, Wei Y, Su B, He F, Zhang H, Zhou G. A highland-adaptation variant near MCUR1 reduces its transcription and attenuates erythrogenesis in Tibetans. CELL GENOMICS 2025; 5:100782. [PMID: 40043709 PMCID: PMC11960549 DOI: 10.1016/j.xgen.2025.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
To identify genomic regions subject to positive selection that might contain genes involved in high-altitude adaptation (HAA), we performed a genome-wide scan by whole-genome sequencing of Tibetan highlanders and Han lowlanders. We revealed a collection of candidate genes located in 30 genomic loci under positive selection. Among them, MCUR1 at 6p23 was a novel pronounced candidate. By single-cell RNA sequencing and comprehensive functional studies, we demonstrated that MCUR1 depletion leads to impairment of erythropoiesis under hypoxia and normoxia. Mechanistically, MCUR1 knockdown reduced mitochondrial Ca2+ uptake and then concomitantly increased cytosolic Ca2+ levels, which thereby reduced erythropoiesis via the CAMKK2-AMPK-mTOR axis. Further, we revealed rs61644582 at 6p23 as an expression quantitative trait locus for MCUR1 and a functional variant that confers an allele-specific transcriptional regulation of MCUR1. Overall, MCUR1-mediated mitochondrial Ca2+ homeostasis is highlighted as a novel regulator of erythropoiesis, deepening our understanding of the genetic mechanism of HAA.
Collapse
Affiliation(s)
- Jie Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xinyi Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cheng Quan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pengcheng Fan
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hao Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Cuiling Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Zheng Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Mengyu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Shunqi Chen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Lingle Chang
- Medical College of Guizhou University, Guiyang City 550025, P.R. China
| | - Yuqing Jiang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Qilin Huang
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China
| | - Jie Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Tana Wuren
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Huifang Liu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Ying Hao
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High-Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China; Key Laboratory of High-Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang City 712082, P.R. China
| | - Guanjun Liu
- Henan Provincial People's Hospital, Zhengzhou City 450000, P.R. China; Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Hui Lu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaojun Wei
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuting Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yuanfeng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hao Guo
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Yongquan Cui
- No. 945 Hospital of Joint Logistic Support Force of Chinese PLA, Ya'an City 625000, P.R. China
| | - Haoxiang Zhang
- No. 954 Hospital of Joint Logistic Support Force of Chinese PLA, Shannan City 856000, P.R. China
| | - Yang Zhang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yujia Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650000, China; Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa 850000, China
| | - Huiping Ma
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Linpeng Yang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Xin Wang
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Wanjun Jin
- Pharmacy Department, General Hospital of Lanzhou, Lanzhou City 730050, P.R. China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City 530021, P.R. China
| | - Rili Ge
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China
| | - Shizheng Wu
- Research Center for High-Altitude Medicine, Qinghai University Medical School, Xining City 810001, P.R. China; Qinghai Provincial People's Hospital, Xining City 810001, P.R. China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming City 650223, P.R. China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Hongxing Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, P.R. China.
| | - Gangqiao Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China; Medical College of Guizhou University, Guiyang City 550025, P.R. China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City 211166, P.R. China.
| |
Collapse
|
2
|
Xu J, Cai Z, Pang Z, Chen J, Zhu K, Wang D, Tu J. Smilax glabra Flavonoids Inhibit AMPK Activation and Induce Ferroptosis in Obesity-Associated Colorectal Cancer. Int J Mol Sci 2025; 26:2476. [PMID: 40141120 PMCID: PMC11942472 DOI: 10.3390/ijms26062476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Smilax glabra flavonoids (SGF), the active components of Smilax glabra Roxb., have been demonstrated to exhibit antioxidant activity and metabolic benefits in obesity, leading us to further explore their antitumor effects in obesity-related colorectal cancer (CRC). This study investigated the antiproliferative effects of SGF on obesity-related CRC by using a murine colon adenocarcinoma MC38 cell line. The underlying mechanisms were further explored via RNA-Seq and bioinformatics analysis in combination with experimental validation. SGF was proven to possess cytotoxic effects against MC38 cells, indicated by the inhibition of proliferation and migration, especially in an adipocyte-rich environment. In line with this, SGF exhibited much stronger antiproliferative effects on MC38-transplanted tumors in obese mice. Transcriptomics analysis showed that the cytotoxic effects of SGF might be related to the AMPK pathway and ferroptosis. On this basis, SGF was confirmed to induce ferroptosis and dictate ferroptosis sensitivity in a high-fat context mimicked by a two-step conditioned medium (CM) transfer experiment or a Transwell coculture system. The results of Western blotting validated that SGF suppressed the phosphorylation of AMPK, accompanied by alterations in the biomarkers of ferroptosis. These results demonstrate that SGF exerts in vitro and in vivo antiproliferative effects in obesity-associated CRC through inhibiting AMPK activation, thereby driving ferroptosis.
Collapse
Affiliation(s)
- Jianqin Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyao Pang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayan Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyan Zhu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| | - Dejun Wang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| |
Collapse
|
3
|
Mohanty SS, Warrier S, Rangarajan A. Rethinking AMPK: A Reversible Switch Fortifying Cancer Cell Stress-Resilience. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:33-52. [PMID: 40165808 PMCID: PMC11952127 DOI: 10.59249/jkbb6336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stress adaptation is an evolutionarily conserved mechanism that promotes survival in the face of adverse conditions. AMP-activated protein kinase (AMPK) is a highly conserved energy-sensing kinase found in nearly all eukaryotic cells. It maintains energy homeostasis by promoting catabolism and inhibiting anabolism. In the context of cancer, the role of AMPK is controversial. It was initially touted as a tumor suppressor due to its association with Liver Kinase B1 (LKB1) (an upstream regulator and a known tumor suppressor) and ensuing growth-suppressive actions. However, emerging studies across a variety of cancer types unambiguously reveal AMPK's pro-survival and, thus, tumor-promoting activity, especially under cancer-associated stresses such as hypoxia, nutrient deprivation, oxidative stress, matrix detachment, and chemotherapy. In cancer cells, AMPK is activated in response to stress-induced increases in the levels of adenosine monophosphate (AMP), Ca2+, or reactive oxygen species (ROS). Upon activation, AMPK engages in metabolic rewiring and crosstalk with signaling molecules to mobilize resources toward survival while compromising proliferation. Here, we posit that AMPK is a non-genetic "reversible switch," allowing cancer cells' phenotype to switch to dormant, stem-like, and drug-resistant states, thereby enabling tumor cell survival, pathological progression, and therapy resistance. This review underscores the critical role of AMPK in driving cancer cell stress resilience and survival, advocating for the strategic use of AMPK inhibitors to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Shraddha S. Mohanty
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Shweta Warrier
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| |
Collapse
|
4
|
Jantz-Naeem N, Guvencli N, Böttcher-Loschinski R, Böttcher M, Mougiakakos D, Kahlfuss S. Metabolic T-cell phenotypes: from bioenergetics to function. Am J Physiol Cell Physiol 2025; 328:C1062-C1075. [PMID: 39946684 DOI: 10.1152/ajpcell.00478.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/28/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nese Guvencli
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Böttcher
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Haematology, Oncology, and Cell Therapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention, Otto-von-Guericke-University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Tian RC, Zhang RY, Ma CF. Rejuvenation of Bone Marrow Mesenchymal Stem Cells: Mechanisms and Their Application in Senile Osteoporosis Treatment. Biomolecules 2025; 15:276. [PMID: 40001580 PMCID: PMC11853522 DOI: 10.3390/biom15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells present in bone marrow; they play a crucial role in the process of bone formation. Cellular senescence is defined as a stable state of cell cycle arrest that impairs the functioning of cells. Research has shown that aging triggers a state of senescence in BM-MSCs, leading to a reduced capacity for osteogenic differentiation and the accumulation of senescent cells, which can accelerate the onset of various diseases. Therefore, it is essential to explore mechanisms and strategies for the rejuvenation of senescent BM-MSCs. Senile osteoporosis (SOP) is a metabolic bone disease characterized by reduced bone formation. The senescence of BM-MSCs is considered one of the most important factors in the occurrence and development of SOP. Therefore, the rejuvenation of BM-MSCs for the treatment of SOP represents a promising strategy. This work provides a summary of the functional alterations observed in senescent BM-MSCs and a systematic review of the mechanisms that facilitate the rejuvenation of senescent BM-MSCs. Additionally, we analyze the progress in and the limitations associated with the application of rejuvenated senescent BM-MSCs to treat SOP, with the aim of providing new insights for the prevention and treatment of SOP.
Collapse
Affiliation(s)
- Rui-Chuan Tian
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing 100142, China;
- Graduate School, China Medical University, Shenyang 110002, China
| | - Ru-Ya Zhang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China;
| | - Chu-Fan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing 100142, China;
- Graduate School, China Medical University, Shenyang 110002, China
| |
Collapse
|
6
|
Cui Z, Wang H, Feng X, Wu C, Yi M, He R, Pan T, Gao R, Feng L, Zeng B, Huang G, Wang Y, Du Y, Zhang CJ, Xiao X, Wang C. MYO1F regulates T-cell activation and glycolytic metabolism by promoting the acetylation of GAPDH. Cell Mol Immunol 2025; 22:176-190. [PMID: 39668163 PMCID: PMC11782582 DOI: 10.1038/s41423-024-01247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Proper cellular metabolism in T cells is critical for a productive immune response. However, when dysregulated by intrinsic or extrinsic metabolic factors, T cells may contribute to a wide spectrum of diseases, such as cancers and autoimmune diseases. However, the metabolic regulation of T cells remains incompletely understood. Here, we show that MYO1F is required for human and mouse T-cell activation after TCR stimulation and that T-cell-specific Myo1f knockout mice exhibit an increased tumor burden and attenuated EAE severity due to impaired T-cell activation in vivo. Mechanistically, after TCR stimulation, MYO1F is phosphorylated by LCK at tyrosines 607 and 634, which is critical for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acetylation at Lys84, 86 and 227 mediated by α-TAT1, which is an acetyltransferase, and these processes are important for its activation, cellular glycolysis and thus the effector function of T cells. Importantly, we show that a fusion protein of VAV1-MYO1F, a recurrent peripheral T-cell lymphoma (PTCL)-associated oncogenic protein, promotes hyperacetylation of GAPDH and its activation, which leads to aberrant glycolysis and T-cell proliferation, and that inhibition of the activity of GAPDH significantly limits T-cell activation and proliferation and extends the survival of hVAV1-MYO1F knock-in mice. Moreover, hyperacetylation of GAPDH was confirmed in human PTCL patient samples containing the VAV1-MYO1F gene fusion. Overall, this study revealed not only the mechanisms by which MYO1F regulates T-cell metabolism and VAV1-MYO1F fusion-induced PTCL but also promising therapeutic targets for the treatment of PTCL.
Collapse
Affiliation(s)
- Zhihui Cui
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Heping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiong Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuyu Wu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ming Yi
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruirui He
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Pan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ru Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074; Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingyun Feng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bo Zeng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Guoling Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuan Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yanyun Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Cun-Jin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xue Xiao
- Department of Pathology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
- Sichuan Medical Laboratory Clinical Medical Research Center, Sichuan Provincial People's Hospital, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Kong W, Li T, Li Y, Zhang L, Xie J, Liu X. Transgenic Cotton Expressing ds AgCYP6CY3 Significantly Delays the Growth and Development of Aphis gossypii by Inhibiting Its Glycolysis and TCA Cycle. Int J Mol Sci 2024; 26:264. [PMID: 39796120 PMCID: PMC11720249 DOI: 10.3390/ijms26010264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
In our previous research, we found that CYP6CY3 not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing dsAgCYP6CY3 affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing dsAgCYP6CY3-P1 (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis. Additionally, multiple DEGs and DAMs of glycolytic and The tricarboxylic acid (TCA) cycle pathways were significantly down-regulated. Pyruvate carboxylase (PC), citrate synthase (CS), malate dehydrogenase (MDH) enzyme activities and pyruvate content were reduced in cotton aphid treated with TG cotton. In addition, TG cotton could significantly decrease the total sugar content from the body and honeydew in cotton aphid. The above results indicated that TG cotton inhibited glycolysis and the TCA cycle, and this inhibition is consistent with previous studies showing that cotton aphid fed on TG cotton showed significantly reduced body length and weight as well as delayed molting. These findings provide a new strategy for reducing the transmission of viruses by cotton aphid honeydew, preventing fungal growth, mitigating impacts on normal photosynthesis and improving cotton quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (W.K.); (T.L.); (Y.L.); (L.Z.); (J.X.)
| |
Collapse
|
8
|
Christensen NV, Laustsen C, Bertelsen LB. Differentiating leukemia subtypes based on metabolic signatures using hyperpolarized 13C NMR. NMR IN BIOMEDICINE 2024; 37:e5264. [PMID: 39319772 DOI: 10.1002/nbm.5264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Leukemia is a group of blood cancers that are classified in four major classes. Within these four classes, many different subtypes exists with similar origin, genetic mutations, and level of maturity, which can make them difficult to distinguish. Despite their similarities, they might respond differently to treatment, and therefore distinguishing between them is of crucial importance. A deranged metabolic phenotype (Warburg effect) is often seen in cancer cells, leukemia cells included, and is increasingly a target for improved diagnosis and treatment. In this study, hyperpolarized 13C NMR spectroscopy was used to characterize the metabolic signatures of the six leukemia cell lines ML-1, CCRF-CEM, THP-1, MOLT-4, HL-60, and K562. This was done using [1-13C]pyruvate and [1-13C]alanine as bioprobes for downstream metabolite quantification and kinetic analysis on cultured cells with and without 2-deoxy-D-glucose treatment. The metabolic signatures of similar leukemia subtypes could be readily distinguished. This includes ML-1 and THP-1, which are of the similar M4 and M5 AML subtypes, CCRF-CEM and MOLT-4, which are of the similar T-ALL lineage at different maturation states, and HL-60 and K562, which are of the closely related M1 and M2 AML subtypes. The data presented here demonstrate the potential of hyperpolarized 13C NMR spectroscopy as a method to differentiate between leukemia subtypes of similar origin. Combining this method with bioreactor setups could potentially allow for better leukemia disease management as metabolic signatures could be acquired from a single biopsy through repeated experimentation and intervention.
Collapse
Affiliation(s)
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
10
|
Yang W, Lin R, Guan S, Dang Y, He H, Huang X, Yang C. HNF1ɑ promotes colorectal cancer progression via HKDC1-mediated activation of AKT/AMPK signaling pathway. Gene 2024; 928:148752. [PMID: 38986750 DOI: 10.1016/j.gene.2024.148752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The hepatocyte nuclear factor-1 (HNF1ɑ) is a transcription factor that contributes to several kinds of cancer progression. However, very little is known regarding the mechanisms underlying the activity of HNF1ɑ. We aimed to explore the role of HNF1ɑ in the progress of colorectal cancer (CRC) and elucidate its molecular mechanism. HNF1ɑ expression was upregulated in CRC samples and high expression of HNF1ɑ was associated with poor prognosis of CRC patients. HNF1α knockdown and overexpression inhibited and promoted proliferation, migration and invasion of CRC cells both in vitro and in vivo respectively. Mechanistically, HNF1ɑ increased the transcriptional activity of hexokinase domain component 1(HKDC1)promoter, thus activated AKT/AMPK signaling. Meanwhile, HKDC1 upregulation was important for the proliferation, migration and invasion of CRC cells and knockdown of HKDC1 significantly reversed the proliferation, migration and invasion induced by HNF1α overexpression. Taken together, HNF1ɑ contributes to CRC progression and metastasis through binding to HKDC1 and activating AKT/AMPK signaling. Targeting HNF1ɑ could be a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Weijin Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruirong Lin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Yuan Dang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Xinxiang Huang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, China; Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, China.
| |
Collapse
|
11
|
Stanulović VS, Al Omair S, Reed MAC, Roberts J, Potluri S, Fulton-Ward T, Gudgeon N, Bishop EL, Roels J, Perry TA, Sarkar S, Pratt G, Taghon T, Dimeloe S, Günther UL, Ludwig C, Hoogenkamp M. The glutamate/aspartate transporter EAAT1 is crucial for T-cell acute lymphoblastic leukemia proliferation and survival. Haematologica 2024; 109:3505-3519. [PMID: 38813748 PMCID: PMC11532688 DOI: 10.3324/haematol.2023.283471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a cancer of the immune system. Approximately 20% of pediatric and 50% of adult T-ALL patients have refractory disease or relapse and die from the disease. To improve patient outcome new therapeutics are needed. With the aim to identify new therapeutic targets, we combined the analysis of T-ALL gene expression and metabolism to identify the metabolic adaptations that T-ALL cells exhibit. We found that glutamine uptake is essential for T-ALL proliferation. Isotope tracing experiments showed that glutamine fuels aspartate synthesis through the tricarboxylic acid cycle and that glutamine and glutamine-derived aspartate together supply three nitrogen atoms in purines and all but one atom in pyrimidine rings. We show that the glutamate-aspartate transporter EAAT1 (SLC1A3), which is normally expressed in the central nervous system, is crucial for glutamine conversion to aspartate and nucleotides and that T-ALL cell proliferation depends on EAAT1 function. Through this work, we identify EAAT1 as a novel therapeutic target for T-ALL treatment.
Collapse
Affiliation(s)
- Vesna S Stanulović
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Shorog Al Omair
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Michelle A C Reed
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Jennie Roberts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Sandeep Potluri
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Taylor Fulton-Ward
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Emma L Bishop
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Tracey A Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Guy Pratt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Sarah Dimeloe
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham
| | - Ulrich L Günther
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham.
| |
Collapse
|
12
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
13
|
Datta C, Das P, Dutta S, Prasad T, Banerjee A, Gehlot S, Ghosal A, Dhabal S, Biswas P, De D, Chaudhuri S, Bhattacharjee A. AMPK activation reduces cancer cell aggressiveness via inhibition of monoamine oxidase A (MAO-A) expression/activity. Life Sci 2024; 352:122857. [PMID: 38914305 DOI: 10.1016/j.lfs.2024.122857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
AIM AMPK can be considered as an important target molecule for cancer for its unique ability to directly recognize cellular energy status. The main aim of this study is to explore the role of different AMPK activators in managing cancer cell aggressiveness and to understand the mechanistic details behind the process. MAIN METHODS First, we explored the AMPK expression pattern and its significance in different subtypes of lung cancer by accessing the TCGA data sets for LUNG, LUAD and LUSC patients and then established the correlation between AMPK expression pattern and overall survival of lung cancer patients using Kaplan-Meire plot. We further carried out several cell-based assays by employing different wet lab techniques including RT-PCR, Western Blot, proliferation, migration and invasion assays to fulfil the aim of the study. KEY FINDINGS SIGNIFICANCE: This study identifies the importance of AMPK activators as a repurposing agent for combating lung and colon cancer cell aggressiveness. It also suggests SRT-1720 as a potent repurposing agent for cancer treatment especially in NSCLC patients where a point mutation is present in LKB1.
Collapse
Affiliation(s)
- Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Payel Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Subhajit Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Tuhina Prasad
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Abhineet Banerjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sameep Gehlot
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Arpa Ghosal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Sukhamoy Dhabal
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, 713209 Burdwan, West Bengal, India.
| |
Collapse
|
14
|
Chai Y, Sun X, Zhou Q, Li H, Xi Y. Exploration of the mechanism of fraxetin in treating acute myeloid leukemia based on network pharmacology and experimental verification. Heliyon 2024; 10:e34717. [PMID: 39166080 PMCID: PMC11334658 DOI: 10.1016/j.heliyon.2024.e34717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Objective To explore the pharmacological mechanism of the effect of fraxetin in treating acute myeloid leukemia (AML) by the network pharmacology method combined with experimental validation. Methods The targets of fraxetin were identified through Swisstarget prediction, PhammerMap, and CTDBASE. Disease-related targets of AML were explored using GeneCards and DisGenet databases, and the intersected targets were analyzed in the String website to construct a protein-protein interaction (PPI) network. Subsequently, gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted using the DAVID database. Molecular docking of core proteins with drugs was performed using Auto Dock Vina software. Finally, the effect of fraxetin on AML was evaluated by in vitro experiments. The effect of fraxetin on AML cell proliferation was assessed by CCK8, the effect of fraxetin on AML cell apoptosis was assessed by flow cytometry, and the expression of relevant protein targets was detected by Western blotting to evaluate the anti-AML effect of fraxetin. Results In this study, fraxetin exerts its effect against AML through 101 intersecting genes. The pathway enrichment analysis revealed that the pharmacological effects of fraxetin on AML were related to the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, and the molecular docking results indicated that fraxetin had an excellent binding affinity to both the core target and AMPK. In vitro experiments have demonstrated that fraxetin inhibited the proliferation and induced apoptosis of THP1 and HL60 cells, and the western blotting results indicated that the p-AMPK of the fraxetin intervention group was significantly changed in a dose-dependent manner. Conclusion Fraxetin may modulate the AMPK signal pathway by interactine with the core target, thereby potentially therapeutic effect on AML.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| |
Collapse
|
15
|
Schneider C, Hilbert J, Genevaux F, Höfer S, Krauß L, Schicktanz F, Contreras CT, Jansari S, Papargyriou A, Richter T, Alfayomy AM, Falcomatà C, Schneeweis C, Orben F, Öllinger R, Wegwitz F, Boshnakovska A, Rehling P, Müller D, Ströbel P, Ellenrieder V, Conradi L, Hessmann E, Ghadimi M, Grade M, Wirth M, Steiger K, Rad R, Kuster B, Sippl W, Reichert M, Saur D, Schneider G. A Novel AMPK Inhibitor Sensitizes Pancreatic Cancer Cells to Ferroptosis Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307695. [PMID: 38885414 PMCID: PMC11336956 DOI: 10.1002/advs.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.
Collapse
Affiliation(s)
- Carolin Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Jorina Hilbert
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Franziska Genevaux
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Stefanie Höfer
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Felix Schicktanz
- Institute of PathologyTechnical University of Munich81675MunichGermany
| | - Constanza Tapia Contreras
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Shaishavi Jansari
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Aristeidis Papargyriou
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Institute of Stem Cell ResearchHelmholtz Zentrum MuenchenD‐85764NeuherbergGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
| | - Thorsten Richter
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Abdallah M. Alfayomy
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
- Department of Pharmaceutical ChemistryAl‐Azhar UniversityAssiut71524Egypt
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Ruppert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
| | - Florian Wegwitz
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Denise Müller
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
| | - Philipp Ströbel
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Volker Ellenrieder
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Lena Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Department of HematologyOncology and Cancer ImmunologyCampus Benjamin FranklinCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin12203BerlinGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Bernhard Kuster
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Wolfgang Sippl
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
- Center for Protein Assemblies (CPA)Technical University of Munich85747GarchingGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Günter Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| |
Collapse
|
16
|
Shi W, Zhang L, Zhao Y, Li X. Exendin-4 Caused Growth Arrest by Regulating Sugar Metabolism in Hyphantria cunea (Lepidoptera: Erebidae) Larvae. INSECTS 2024; 15:503. [PMID: 39057236 PMCID: PMC11276936 DOI: 10.3390/insects15070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Insects' growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, and energy metabolism of fourth-instar larvae of the fall webworm, Hyphantria cunea. We determined the impact of exendin-4 on larval growth and nutritional indices, analyzed the responses of glycolytic and metabolic pathways, and revealed the underlying regulatory mechanisms. Exendin-4 treatment significantly decreased growth and nutritional indices, influenced the activity of digestive enzymes, and induced changes in metabolite profiles, particularly affecting energy substance metabolism. We observed an increase in the glycogen content and a decrease in glucose and trehalose levels in the hemolymph, suggesting a regulatory effect on blood sugar homeostasis. Furthermore, exendin-4 promoted glycolysis by enhancing the activities and expressions of key glycolytic enzymes, leading to an increase in pyruvate production. This was accompanied by a reduction in ATP levels and the activation of AMP-activated protein kinase (AMPK), which may underlie the growth arrest in larvae. Our findings provide novel insights into the effects of exendin-4 on insect responses from an energy metabolism perspective and may contribute to the development of GLP-1R agonists for pest management.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Lu Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Yuecheng Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xingpeng Li
- College of Forestry, Beihua University, Jilin 132013, China
| |
Collapse
|
17
|
Son TH, Kim SH, Shin HL, Kim D, Kim HG, Choi Y, Choi SW. 3-Hydroxytanshinone Inhibits the Activity of Hypoxia-Inducible Factor 1-α by Interfering with the Function of α-Enolase in the Glycolytic Pathway. Molecules 2024; 29:2218. [PMID: 38792080 PMCID: PMC11123766 DOI: 10.3390/molecules29102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Tumor cells in hypoxic conditions control cancer metabolism and angiogenesis by expressing HIF-1α. Tanshinone is a traditional Chinese medicine that has been shown to possess antitumor properties and exerts a therapeutic impact on angiogenesis. However, the precise molecular mechanism responsible for the antitumor activity of 3-Hydroxytanshinone (3-HT), a type of tanshinone, has not been fully understood. Therefore, our study aimed to investigate the mechanism by which 3-HT regulates the expression of HIF-1α. Our findings demonstrate that 3-HT inhibits HIF-1α activity and expression under hypoxic conditions. Additionally, 3-HT inhibits hypoxia-induced angiogenesis by suppressing the expression of VEGF. Moreover, 3-HT was found to directly bind to α-enolase, an enzyme associated with glycolysis, resulting in the suppression of its activity. This inhibition of α-enolase activity by 3-HT leads to the blockade of the glycolytic pathway and a decrease in glycolysis products, ultimately altering HIF1-α expression. Furthermore, 3-HT negatively regulates the expression of HIF-1α by altering the phosphorylation of AMP-activated protein kinase (AMPK). Our study's findings elucidate the mechanism by which 3-HT regulates HIF-1α through the inhibition of the glycolytic enzyme α-enolase and the phosphorylation of AMPK. These results suggest that 3-HT holds promise as a potential therapeutic agent for hypoxia-related angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Tae Hyun Son
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (D.K.)
| | - Shin-Hye Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (D.K.)
| | - Hye-Lim Shin
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (D.K.)
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Dongsoo Kim
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (D.K.)
| | - Hwan Gyu Kim
- Department of Biological Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Sik-Won Choi
- Forest Biomaterials Research Center, National Institute of Forest Science (NIFoS), Jinju 52817, Republic of Korea; (S.-H.K.); (H.-L.S.); (D.K.)
| |
Collapse
|
18
|
Shan Y, Wu J, Dai X, Yuan C, Jiang J, Yan H, Tang L, Dong Y, Ren L, Pan Q, Ji J, Zhao X. Jiangqi Pingxiao formula regulates dendritic cell apoptosis in an autophagy-dependent manner through the AMPK/mTOR pathway in a murine model of OVA-induced asthma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117405. [PMID: 37952734 DOI: 10.1016/j.jep.2023.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allergic asthma is a recurring respiratory condition that typically manifests during childhood or adolescence. It is characterized by a dominant type II immune response triggered by the identification and capturing of inhaled allergens by dendritic cells (DCs). Jiangqi Pingxiao Formula (JQPXF), a prescription medicine used for the treatment of pediatric asthma, has been clinically proven to be both safe and effective. However, its mechanism of action in the treatment of asthma has not been fully been fully elucidated. Recent research suggests that several natural compounds have the potential to target dendritic cells (DCs) and alleviate ovalbumin (OVA)-induced asthma, which may also be found within JQPXF. AIM OF THE STUDY This study aimed to elucidate the effect of JQPXF on OVA-induced asthma model and its molecular mechanism targeting DCs. MATERIALS AND METHODS The main constituents of JQPXF were analyzed by ultra performance liquid chromatography (UPLC). An asthma model was established by OVA. Hematoxylin-eosin staining and measurement of respiratory function was used to evaluate the treatment effect of JQPXF on asthmatic mice. Cytokine (IL-5, IL-13 and IgE) concentrations were determined by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was employed to evaluate inflammatory cell infiltration (T helper 2 cells and DCs) in vivo and DC survival in vivo and vitro. Western blot and immunofluorescence were used to verify the molecular mechanisms. RESULTS The results suggest that JQPXF can ameliorate pathological conditions and improve lung function in asthmatic mice, as well as the Th2 cells. Treatment with JQPXF significantly reduced the number of DCs and increased the number of Propidium iodide+ (PI) DCs. Furthermore, JQPXF upregulated protein levels of the pro-apoptotic factors Cleaved-caspase-3 and Bax, while downregulating the anti-apoptotic factor Bcl-2. Simultaneously, JQPXF increased autophagy levels by facilitating p62 degradation and promoting translation from LC3B I to LC3B II of DCs in vitro, as well as reducing the integrated optical density (IOD) of p62 within the CD11c-positive area in the lung. 3-Methyladenine (3-MA) was used to block autophagic flux and the apoptotic effect of JQPXF on DCs was abolished in vitro, with the number of DCs decreased by JQPXF being reversed in vivo. We further investigated the upstream key regulator of autophagy, the AMPK/mTOR pathway, and found that JQPXF increased AMPK phosphorylation while decreasing mTOR phosphorylation levels. Additionally, we employed Compound C (CC) as an AMPK inhibitor to inhibit this signaling pathway, and our findings revealed that both autophagic flux and apoptotic levels in DCs were abolished in vitro. CONCLUSIONS In summary, we have demonstrated that JQPXF could alleviate type II inflammation in an asthmatic model by promoting the apoptosis of DCs through an autophagy-dependent mechanism, achieved by regulating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yiwen Shan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabao Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohan Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjin Jiang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingmei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lishun Ren
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingyun Pan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
19
|
Asanoma K, Yagi H, Onoyama I, Cui L, Hori E, Kawakami M, Maenohara S, Hachisuga K, Tomonobe H, Kodama K, Yasunaga M, Ohgami T, Okugawa K, Yahata H, Kitao H, Kato K. The BHLHE40‒PPM1F‒AMPK pathway regulates energy metabolism and is associated with the aggressiveness of endometrial cancer. J Biol Chem 2024; 300:105695. [PMID: 38301894 PMCID: PMC10904277 DOI: 10.1016/j.jbc.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
BHLHE40 is a basic helix-loop-helix transcription factor that is involved in multiple cell activities including differentiation, cell cycle, and epithelial-to-mesenchymal transition. While there is growing evidence to support the functions of BHLHE40 in energy metabolism, little is known about the mechanism. In this study, we found that BHLHE40 expression was downregulated in cases of endometrial cancer of higher grade and advanced disease. Knockdown of BHLHE40 in endometrial cancer cells resulted in suppressed oxygen consumption and enhanced extracellular acidification. Suppressed pyruvate dehydrogenase (PDH) activity and enhanced lactated dehydrogenase (LDH) activity were observed in the knockdown cells. Knockdown of BHLHE40 also led to dephosphorylation of AMPKα Thr172 and enhanced phosphorylation of pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) Ser293 and lactate dehydrogenase A (LDHA) Tyr10. These results suggested that BHLHE40 modulates PDH and LDH activity by regulating the phosphorylation status of PDHA1 and LDHA. We found that BHLHE40 enhanced AMPKα phosphorylation by directly suppressing the transcription of an AMPKα-specific phosphatase, PPM1F. Our immunohistochemical study showed that the expression of BHLHE40, PPM1F, and phosphorylated AMPKα correlated with the prognosis of endometrial cancer patients. Because AMPK is a central regulator of energy metabolism in cancer cells, targeting the BHLHE40‒PPM1F‒AMPK axis may represent a strategy to control cancer development.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Maenohara
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhisa Hachisuga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Tomonobe
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Yasunaga
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kitao
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Pokhrel RH, Acharya S, Mishra S, Gu Y, Manzoor U, Kim JK, Park Y, Chang JH. AMPK Alchemy: Therapeutic Potentials in Allergy, Aging, and Cancer. Biomol Ther (Seoul) 2024; 32:171-182. [PMID: 38346909 PMCID: PMC10902700 DOI: 10.4062/biomolther.2023.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
21
|
Feng S, Yuan Y, Lin Z, Li M, Ye D, Shi L, Li D, Zhao M, Meng C, He X, Wu S, Xiong F, Ye S, Yang J, Zhuang H, Hong L, Gao S. Low-dose hypomethylating agents cooperate with ferroptosis inducers to enhance ferroptosis by regulating the DNA methylation-mediated MAGEA6-AMPK-SLC7A11-GPX4 signaling pathway in acute myeloid leukemia. Exp Hematol Oncol 2024; 13:19. [PMID: 38378601 PMCID: PMC10877917 DOI: 10.1186/s40164-024-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Ferroptosis is a new form of nonapoptotic and iron-dependent type of cell death. Glutathione peroxidase-4 (GPX4) plays an essential role in anti-ferroptosis by reducing lipid peroxidation. Although acute myeloid leukemia (AML) cells, especially relapsed and refractory (R/R)-AML, present high GPX4 levels and enzyme activities, pharmacological inhibition of GPX4 alone has limited application in AML. Thus, whether inhibition of GPX4 combined with other therapeutic reagents has effective application in AML is largely unknown. METHODS Lipid reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) assays were used to assess ferroptosis in AML cells treated with the hypomethylating agent (HMA) decitabine (DAC), ferroptosis-inducer (FIN) RAS-selective lethal 3 (RSL3), or their combination. Combination index (CI) analysis was used to assess the synergistic activity of DAC + RSL3 against AML cells. Finally, we evaluated the synergistic activity of DAC + RSL3 in murine AML and a human R/R-AML-xenografted NSG model in vivo. RESULTS We first assessed GPX4 expression and found that GPX4 levels were higher in AML cells, especially those with MLL rearrangements, than in NCs. Knockdown of GPX4 by shRNA and indirect inhibition of GPX4 enzyme activity by RSL3 robustly induced ferroptosis in AML cells. To reduce the dose of RSL3 and avoid side effects, low doses of DAC (0.5 µM) and RSL3 (0.05 µM) synergistically facilitate ferroptosis by inhibiting the AMP-activated protein kinase (AMPK)-SLC7A11-GPX4 axis. Knockdown of AMPK by shRNA enhanced ferroptosis, and overexpression of SLC7A11 and GPX4 rescued DAC + RSL3-induced anti-leukemogenesis. Mechanistically, DAC increased the expression of MAGEA6 by reducing MAGEA6 promoter hypermethylation. Overexpression of MAGEA6 induced the degradation of AMPK, suggesting that DAC inhibits the AMPK-SLC7A11-GPX4 axis by increasing MAGEA6 expression. In addition, DAC + RSL3 synergistically reduced leukemic burden and extended overall survival compared with either DAC or RSL3 treatment in the MLL-AF9-transformed murine model. Finally, DAC + RSL3 synergistically reduced viability in untreated and R/R-AML cells and extended overall survival in two R/R-AML-xenografted NSG mouse models. CONCLUSIONS Our study first identify vulnerability to ferroptosis by regulating MAGEA6-AMPK-SLC7A11-GPX4 signaling pathway. Combined treatment with HMAs and FINs provides a potential therapeutic choice for AML patients, especially for R/R-AML.
Collapse
Affiliation(s)
- Shuya Feng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Meng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Shanshan Wu
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Fang Xiong
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang Province, China
| | - Siyu Ye
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China
| | - Junjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China
| | - Lili Hong
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China.
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Hawley SA, Russell FM, Ross FA, Hardie DG. BAY-3827 and SBI-0206965: Potent AMPK Inhibitors That Paradoxically Increase Thr172 Phosphorylation. Int J Mol Sci 2023; 25:453. [PMID: 38203624 PMCID: PMC10778976 DOI: 10.3390/ijms25010453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.
Collapse
Affiliation(s)
| | | | | | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; (S.A.H.); (F.A.R.)
| |
Collapse
|
23
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
24
|
Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Biochem J 2023; 480:1951-1968. [PMID: 37962491 PMCID: PMC10754287 DOI: 10.1042/bcj20230380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.
Collapse
Affiliation(s)
- Fiona A. Ross
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Simon A. Hawley
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - Nicola Goodman
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Scotland, U.K
| |
Collapse
|
25
|
Sun G, Leclerc GJ, Chahar S, Barredo JC. AMPK Associates with Chromatin and Phosphorylates the TAF-1 Subunit of the Transcription Initiation Complex to Regulate Histone Gene Expression in ALL Cells. Mol Cancer Res 2023; 21:1261-1273. [PMID: 37682252 PMCID: PMC10690046 DOI: 10.1158/1541-7786.mcr-23-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL) remain poor. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK). To identify the target genes directly regulated by AMPKα2, we performed genome-wide RNA-seq and ChIP-seq in CCRF-CEM (T-ALL) cells expressing HA-AMPKα2 (CN2) under normal and energy/metabolic stress conditions. CN2 cells show significantly altered AMPKα2 genomic binding and transcriptomic profile under metabolic stress conditions, including reduced histone gene expression. Proteomic analysis and in vitro kinase assays identified the TATA-Box-Binding Protein-Associated Factor 1 (TAF1) as a novel AMPKα2 substrate that downregulates histone gene transcription in response to energy/metabolic stress. Knockdown and knockout studies demonstrated that both AMPKα2 and TAF1 are required for histone gene expression. Mechanistically, upon activation, AMPKα2 phosphorylates TAF1 at Ser-1353 which impairs TAF1 interaction with RNA polymerase II (Pol II), leading to a compromised state of p-AMPKα2/p-TAF1/Pol II chromatin association and suppression of transcription. This mechanism was also observed in primary ALL cells and in vivo in NSG mice. Consequently, we uncovered a non-canonical function of AMPK that phosphorylates TAF1, both members of a putative chromatin-associated transcription complex that regulate histone gene expression, among others, in response to energy/metabolic stress. IMPLICATIONS Fully delineating the protein interactome by which AMPK regulates adaptive survival responses to energy/metabolic stress, either via epigenetic gene regulation or other mechanisms, will allow the rational development of strategies to overcome de novo or acquired resistance in ALL and other cancers.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J. Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjay Chahar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C. Barredo
- Department of Pediatrics, Biochemistry, and Molecular Biology and Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
26
|
Wu Z, Wang W, Wei L, Zhu S. Current status and frontier tracking of clinical trials on Metformin for cancer treatment. J Cancer Res Clin Oncol 2023; 149:16931-16946. [PMID: 37698682 DOI: 10.1007/s00432-023-05391-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Metformin has been used clinically for more than six decades. Over time, numerous remarkable effects of metformin beyond the clinic have been discovered and discussed. Metformin has been shown to have a favorable impact on cancer therapy in addition to its clinically recognized hypoglycemic effect. However, the antitumor efficacy of metformin in humans has not been clearly demonstrated yet. Hence, a systematic analysis of the existing trials is necessary. METHODS Here, we retrieved clinical trials from the Clinical Trials.gov database to overview the clinical development of metformin for the treatment of cancer, analyze existing clinical results, and summarize some promising applications for specific cancer therapies. RESULTS The potential application of metformin contains three directions: Firstly, improvement of metabolic factors associated with treatment effects, such as insulin resistance and peripheral neuropathy. Secondly, in combination with immune checkpoint blockade effects. Finally, use it for the endocrine treatment of hormone-dependent cancers. CONCLUSION Although the outcomes of metformin as a repurposed agent in some trials have been unsatisfactory, it still has the potential to be used in select cancer therapy settings.
Collapse
Affiliation(s)
- Zhipeng Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lengyun Wei
- School of Life Science, Anhui Medical University, Hefei, China.
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
27
|
Zhou Y, Guo Y, Ran M, Shan W, Granchi C, Giovannetti E, Minutolo F, Peters GJ, Tam KY. Combined inhibition of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase a induces metabolic and signaling reprogramming and enhances lung adenocarcinoma cell killing. Cancer Lett 2023; 577:216425. [PMID: 37805163 DOI: 10.1016/j.canlet.2023.216425] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.
Collapse
Affiliation(s)
- Yan Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Maoxin Ran
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenying Shan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, 56126, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081, HV Amsterdam, the Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, 56126, Pisa, Italy
| | - Godefridus J Peters
- Department of Biochemistry, Medical University of Gdansk, 80-210, Gdańsk, Poland; Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081, HV Amsterdam, the Netherlands
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
28
|
Zheng Y, Liu Q, Goronzy JJ, Weyand CM. Immune aging - A mechanism in autoimmune disease. Semin Immunol 2023; 69:101814. [PMID: 37542986 PMCID: PMC10663095 DOI: 10.1016/j.smim.2023.101814] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.
Collapse
Affiliation(s)
- Yanyan Zheng
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Qingxiang Liu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jorg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Zhao Y, Zou C, Zhang L, Li C, Li X, Song L. Chlorbenzuron caused growth arrest through interference of glycolysis and energy metabolism in Hyphantria cunea (Lepidoptera: Erebidae) larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105466. [PMID: 37248002 DOI: 10.1016/j.pestbp.2023.105466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
Chlorbenzuron is a kind of benzoylphenylureas (BPUs), which plays a broad role in insect growth regulators (IGRs), with an inhibitory effect on chitin biosynthesis. However, BPUs how to regulate glycolysis and insect growth remains largely unclear. Here, we investigated the effects of chlorbenzuron on growth, nutritional indices, glycolysis, and carbohydrate homeostasis in Hyphantria cunea, a destructive and highly polyphagous forest pest, to elucidate the action mechanism of chlorbenzuron from the perspective of energy metabolism. The results showed that chlorbenzuron dramatically restrained the growth and nutritional indices of H. cunea larvae and resulted in lethality. Meanwhile, we confirmed that chlorbenzuron significantly decreased carbohydrate levels, adenosine triphosphate (ATP), and pyruvic acid (PA) in H. cunea larvae. Further studies indicated that chlorbenzuron caused a significant enhancement in the enzyme activities and mRNA expressions of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK), resulting in increased glycolytic flux. Expressions of genes involved in the AMP-activated protein kinase (AMPK) signaling pathway were also upregulated. Moreover, chlorbenzuron had remarkable impacts on H. cunea larvae from the perspective of metabolite enrichment, including the tricarboxylic acid (TCA) cycle and glycolysis, indicating an energy metabolism disorder in larvae. The findings provide a novel insight into the molecular mechanism by which chlorbenzuron abnormally promotes glycolysis and eventually interferes with insect growth and nutritional indices.
Collapse
Affiliation(s)
- Yuecheng Zhao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Lu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chengde Li
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China.
| | - Liwen Song
- Jilin Provincial Academy of Forestry Sciences, Changchun 130033, PR China.
| |
Collapse
|
30
|
Tirado HA, Balasundaram N, Laaouimir L, Erdem A, van Gastel N. Metabolic crosstalk between stromal and malignant cells in the bone marrow niche. Bone Rep 2023; 18:101669. [PMID: 36909665 PMCID: PMC9996235 DOI: 10.1016/j.bonr.2023.101669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023] Open
Abstract
Bone marrow is the primary site of blood cell production in adults and serves as the source of osteoblasts and osteoclasts that maintain bone homeostasis. The medullary microenvironment is also involved in malignancy, providing a fertile soil for the growth of blood cancers or solid tumors metastasizing to bone. The cellular composition of the bone marrow is highly complex, consisting of hematopoietic stem and progenitor cells, maturing blood cells, skeletal stem cells, osteoblasts, mesenchymal stromal cells, adipocytes, endothelial cells, lymphatic endothelial cells, perivascular cells, and nerve cells. Intercellular communication at different levels is essential to ensure proper skeletal and hematopoietic tissue function, but it is altered when malignant cells colonize the bone marrow niche. While communication often involves soluble factors such as cytokines, chemokines, and growth factors, as well as their respective cell-surface receptors, cells can also communicate by exchanging metabolic information. In this review, we discuss the importance of metabolic crosstalk between different cells in the bone marrow microenvironment, particularly concerning the malignant setting.
Collapse
Affiliation(s)
- Hernán A Tirado
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nithya Balasundaram
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Lotfi Laaouimir
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Ayşegül Erdem
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Nick van Gastel
- Cellular Metabolism and Microenvironment Laboratory, de Duve Institute, UCLouvain, Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
31
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
32
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 399] [Impact Index Per Article: 199.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
33
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK. Nutrients 2023; 15:nu15071660. [PMID: 37049501 PMCID: PMC10097356 DOI: 10.3390/nu15071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
This study examined the protective effect of 11-keto-β-boswellic acid (AKBA) against streptozotocin (STZ)-induced diabetic cardiomyopathy (DC) in rats and examined the possible mechanisms of action. Male rats were divided into 5 groups (n = 8/each): (1) control, AKBA (10 mg/kg, orally), STZ (65 mg/kg, i.p.), STZ + AKBA (10 mg/kg, orally), and STZ + AKBA + compound C (CC/an AMPK inhibitor, 0.2 mg/kg, i.p.). AKBA improved the structure and the systolic and diastolic functions of the left ventricles (LVs) of STZ rats. It also attenuated the increase in plasma glucose, plasma insulin, and serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), and free fatty acids (FFAs) in these diabetic rats. AKBA stimulated the ventricular activities of phosphofructokinase (PFK), pyruvate dehydrogenase (PDH), and acetyl CoA carboxylase (ACC); increased levels of malonyl CoA; and reduced levels of carnitine palmitoyltransferase I (CPT1), indicating improvement in glucose and FA oxidation. It also reduced levels of malondialdehyde (MDA); increased mitochondria efficiency and ATP production; stimulated mRNA, total, and nuclear levels of Nrf2; increased levels of glutathione (GSH), heme oxygenase (HO-1), superoxide dismutase (SOD), and catalase (CAT); but reduced the expression and nuclear translocation of NF-κB and levels of tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These effects were concomitant with increased activities of AMPK in the LVs of the control and STZ-diabetic rats. Treatment with CC abolished all these protective effects of AKBA. In conclusion, AKBA protects against DC in rats, mainly by activating the AMPK-dependent control of insulin release, cardiac metabolism, and antioxidant and anti-inflammatory effects.
Collapse
|
34
|
Liu Z, Shan S, Yuan Z, Wu F, Zheng M, Wang Y, Gui J, Xu W, Wang C, Ren T, Wen Z. Mitophagy bridges DNA sensing with metabolic adaption to expand lung cancer stem-like cells. EMBO Rep 2023; 24:e54006. [PMID: 36416244 PMCID: PMC9900345 DOI: 10.15252/embr.202154006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
While previous studies have identified cancer stem-like cells (CSCs) as a crucial driver for chemoresistance and tumor recurrence, the underlying mechanisms for populating the CSC pool remain unclear. Here, we identify hypermitophagy as a feature of human lung CSCs, promoting metabolic adaption via the Notch1-AMPK axis to drive CSC expansion. Specifically, mitophagy is highly active in CSCs, resulting in increased mitochondrial DNA (mtDNA) content in the lysosome. Lysosomal mtDNA acts as an endogenous ligand for Toll-like receptor 9 (TLR9) that promotes Notch1 activity. Notch1 interacts with AMPK to drive lysosomal AMPK activation by inducing metabolic stress and LKB1 phosphorylation. This TLR9-Notch1-AMPK axis supports mitochondrial metabolism to fuel CSC expansion. In patient-derived xenograft chimeras, targeting mitophagy and TLR9-dependent Notch1-AMPK pathway restricts tumor growth and CSC expansion. Taken together, mitochondrial hemostasis is interlinked with innate immune sensing and Notch1-AMPK activity to increase the CSC pool of human lung cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Shan Shan
- Department of Respiratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zixin Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Jun Gui
- State Key Laboratory of Oncogenes and Related Genes; Renji‐Med X Clinical Stem Cell Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Chunhong Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Tao Ren
- Department of Respiratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Kay Laboratory of Sleep Disordered BreathingShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
35
|
Melnick A, Liang S, Liu Y, Wang Q, Dean N, Choe E, Kunnath N, Bodanapu G, Mullin C, Akter F, Lin K, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525059. [PMID: 36711472 PMCID: PMC9882378 DOI: 10.1101/2023.01.22.525059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.
Collapse
|
36
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
37
|
Mitochondrial pyruvate carrier influences ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2023; 107:1361-1371. [PMID: 36635397 DOI: 10.1007/s00253-022-12357-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Mitochondrial pyruvate carriers (MPCs), located in the inner membrane of mitochondria, are essential carriers for pyruvate to enter mitochondria. MPCs regulate a wide range of intracellular metabolic processes, such as glycolysis, the tricarboxylic acid cycle (TCA cycle), fatty acid metabolism, and amino acid metabolism. However, the metabolic regulation of MPCs in macrofungi is poorly studied. We studied the role of MPCs in Ganoderma lucidum (GlMPC) on ganoderic acid (GA) biosynthesis regulation in G. lucidum. In this study, we found that the mitochondrial/cytoplasmic ratio of pyruvate was downregulated about 75% in GlMPC1- and GlMPC2-silenced transformants compared with wild type (WT). In addition, the GA content was 17.72 mg/g and increased by approximately 50% in GlMPC1- and GlMPC2-silenced transformants compared with WT. By assaying the expression levels of three key enzymes and the enzyme activities of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) of the TCA cycle in GlMPC1- and GlMPC2-silenced transformants, it was found that the decrease in GlMPCs activity did not significantly downregulate the TCA cycle rate, and the enzyme activity of IDH increased by 44% compared with WT. We then verified that fatty acid β-oxidation (FAO) supplements the TCA cycle by detecting the expression levels of key enzymes involved in FAO. The results showed that compared with WT, the GA content was 1.14 mg/g and reduced by approximately 40% in co-silenced transformants. KEY POINTS: • GlMPCs affects the distribution of pyruvate between mitochondria and the cytoplasm. • Acetyl-CoA produced by FAO maintains the TCA cycle. • Acetyl-CoA produced by FAO promotes the accumulation of GA.
Collapse
|
38
|
Zeng Z, Chen CX. Metabonomic analysis of tumor microenvironments: a mini-review. Front Oncol 2023; 13:1164266. [PMID: 37124524 PMCID: PMC10140396 DOI: 10.3389/fonc.2023.1164266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Metabolomic analysis is a vital part of studying cancer progression. Metabonomic crosstalk, such as nutrient availability, physicochemical transformation, and intercellular interactions can affect tumor metabolism. Many original studies have demonstrated that metabolomics is important in some aspects of tumor metabolism. In this mini-review, we summarize the definition of metabolomics and how it can help change a tumor microenvironment, especially in pathways of three metabonomic tumors. Just as non-invasive biofluids have been identified as early biomarkers of tumor development, metabolomics can also predict differences in tumor drug response, drug resistance, and efficacy. Therefore, metabolomics is important for tumor metabolism and how it can affect oncology drugs in cancer therapy.
Collapse
Affiliation(s)
- Zeng Zeng
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Cong-Xian Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- *Correspondence: Cong-Xian Chen,
| |
Collapse
|
39
|
Sieow JL, Penny HL, Gun SY, Tan LQ, Duan K, Yeong JPS, Pang A, Lim D, Toh HC, Lim TKH, Engleman E, Rotzschke O, Ng LG, Chen J, Tan SM, Wong SC. Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24010753. [PMID: 36614196 PMCID: PMC9821271 DOI: 10.3390/ijms24010753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer.
Collapse
Affiliation(s)
- Je Lin Sieow
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hweixian Leong Penny
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Ling Qiao Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Joe Poh Sheng Yeong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Angela Pang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Diana Lim
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Han Chong Toh
- Department of Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Edgar Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: ; Tel.: +65-64070030
| |
Collapse
|
40
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
41
|
Hardie DG. AMP-activated protein kinase - a journey from 1 to 100 downstream targets. Biochem J 2022; 479:2327-2343. [PMID: 36383046 PMCID: PMC9704532 DOI: 10.1042/bcj20220255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
A casual decision made one evening in 1976, in a bar near the Biochemistry Department at the University of Dundee, led me to start my personal research journey by following up a paper that suggested that acetyl-CoA carboxylase (ACC) (believed to be a key regulatory enzyme of fatty acid synthesis) was inactivated by phosphorylation by what appeared to be a novel, cyclic AMP-independent protein kinase. This led me to define and name the AMP-activated protein kinase (AMPK) signalling pathway, on which I am still working 46 years later. ACC was the first known downstream target for AMPK, but at least 100 others have now been identified. This article contains some personal reminiscences of that research journey, focussing on: (i) the early days when we were defining the kinase and developing the key tools required to study it; (ii) the late 1990s and early 2000s, an exciting time when we and others were identifying the upstream kinases; (iii) recent times when we have been studying the complex role of AMPK in cancer. The article is published in conjunction with the Sir Philip Randle Lecture of the Biochemical Society, which I gave in September 2022 at the European Workshop on AMPK and AMPK-related kinases in Clydebank, Scotland. During the early years of my research career, Sir Philip acted as a role model, due to his pioneering work on insulin signalling and the regulation of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
42
|
Zhang S, Liu S, Lin Z, Zhang J, Lin Z, Fang H, Hu Z. Development and Validation of a Prognostic Model for Esophageal Adenocarcinoma Based on Necroptosis-Related Genes. Genes (Basel) 2022; 13:genes13122243. [PMID: 36553511 PMCID: PMC9778007 DOI: 10.3390/genes13122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Necroptosis is a newly developed cell death pathway that differs from necrosis and apoptosis; however, the potential mechanism of necroptosis-related genes in EAC and whether they are associated with the prognosis of EAC patients remain unclear. We obtained 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and performed differential expression analysis of the NRGs in 9 normal samples and 78 EAC tumor samples derived from The Cancer Genome Atlas (TCGA). Finally, we screened 38 differentially expressed NRGs (DE-NRGs). The results of the GO and KEGG analyses indicated that the DE-NRGs were mainly enriched in the functions and pathways associated with necroptosis. Protein interaction network (PPI) analysis revealed that TNF, CASP1, and IL-1B were the core genes of the network. A risk score model based on four DE-NRGs was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression, and the results showed that the higher the risk score, the worse the survival. The model achieved more efficient diagnosis compared with the clinicopathological variables, with an area under the receiver operating characteristic (ROC) curve of 0.885. The prognostic value of this model was further validated using Gene Expression Omnibus (GEO) datasets. Gene set enrichment analyses (GSEA) demonstrated that several metabolism-related pathways were activated in the high-risk population. Single-sample GSEA (ssGSEA) provided further confirmation that this prognostic model was remarkably associated with the immune status of EAC patients. Finally, the nomogram map exhibited a certain prognostic prediction efficiency, with a C-index of 0.792 and good consistency. Thus, the prognostic model based on four NRGs could better predict the prognosis of EAC and help to elucidate the mechanism of necroptosis-related genes in EAC, which can provide guidance for the target prediction and clinical treatment of EAC patients.
Collapse
Affiliation(s)
- Suhong Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Shuang Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Juwei Zhang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Zhifeng Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Haiyin Fang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, China
- Correspondence: ; Tel.: +86-591-83383362; Fax: +86-591-822862510
| |
Collapse
|
43
|
Wang S, Li H, Yuan M, Fan H, Cai Z. Role of AMPK in autophagy. Front Physiol 2022; 13:1015500. [PMID: 36505072 PMCID: PMC9732440 DOI: 10.3389/fphys.2022.1015500] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a significant energy sensor in the maintenance of cellular energy homeostasis. Autophagy is a highly conserved catabolic process that involves an intracellular degradation system in which cytoplasmic components, such as protein aggregates, organelles, and other macromolecules, are directed to the lysosome through the self-degradative process to maintain cellular homeostasis. Given the triggered autophagy process in various situations including the nutrient deficit, AMPK is potentially linked with different stages of autophagy. Above all, AMPK increases ULK1 activity by directly phosphorylating Ser467, Ser555, Thr574, and Ser637 at least four sites, which increases the recruitment of autophagy-relevant proteins (ATG proteins) to the membrane domains which affects autophagy at the initiation stage. Secondly, AMPK inhibits VPS34 complexes that do not contain pro-autophagic factors and are thus involved in isolation membrane forming processes, by direct phosphorylation of VPS34 on Thr163 and Ser165. After phosphorylation, AMPK can govern autophagosome formation through recruiting downstream autophagy-related proteins to the autophagosome formation site. Finally, the AMPK-SIRT1 signaling pathway can be activated by upregulating the transcription of autophagy-related genes, thereby enhancing autophagosome-lysosome fusion. This review provides an introduction to the role of AMPK in different stages of autophagy.
Collapse
Affiliation(s)
- Shengyuan Wang
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Hongyan Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Minghao Yuan
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Haixia Fan
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Chongqing Medical University, Chongqing, China,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China,Department of Neurology, Chongqing School, University of Chinese Academy of Sciences, Chongqing, China,Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China,*Correspondence: Zhiyou Cai,
| |
Collapse
|
44
|
Alshahrani SH, Ibrahim YS, Jalil AT, Altoum AA, Achmad H, Zabibah RS, Gabr GA, Ramírez-Coronel AA, Alameri AA, Qasim QA, Karampoor S, Mirzaei R. Metabolic reprogramming by miRNAs in the tumor microenvironment: Focused on immunometabolism. Front Oncol 2022; 12:1042196. [PMID: 36483029 PMCID: PMC9723351 DOI: 10.3389/fonc.2022.1042196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are emerging as a significant modulator of immunity, and their abnormal expression/activity has been linked to numerous human disorders, such as cancer. It is now known that miRNAs potentially modulate the production of several metabolic processes in tumor-associated immune cells and indirectly via different metabolic enzymes that affect tumor-associated signaling cascades. For instance, Let-7 has been identified as a crucial modulator for the long-lasting survival of CD8+ T cells (naive phenotypes) in cancer by altering their metabolism. Furthermore, in T cells, it has been found that enhancer of zeste homolog 2 (EZH2) expression is controlled via glycolytic metabolism through miRNAs in patients with ovarian cancer. On the other hand, immunometabolism has shown us that cellular metabolic reactions and processes not only generate ATP and biosynthetic intermediates but also modulate the immune system and inflammatory processes. Based on recent studies, new and encouraging approaches to cancer involving the modification of miRNAs in immune cell metabolism are currently being investigated, providing insight into promising targets for therapeutic strategies based on the pivotal role of immunometabolism in cancer. Throughout this overview, we explore and describe the significance of miRNAs in cancer and immune cell metabolism.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Rahman S. Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Gamal A. Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Laboratory of Psychometry and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | | | | | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
45
|
Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, Wong WF, Kamarulzaman A. Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines 2022; 10:0. [PMID: 36359329 PMCID: PMC9687279 DOI: 10.3390/biomedicines10112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2023] Open
Abstract
The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
46
|
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86:542-565. [PMID: 35151845 DOI: 10.1016/j.semcancer.2022.02.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/08/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1)-based immune checkpoint inhibitors (ICIs) have led to significant improvements in the overall survival of patients with certain cancers and are expected to benefit patients by achieving complete, long-lasting remissions and cure. However, some patients who receive ICIs either fail treatment or eventually develop immunotherapy resistance. The existence of such patients necessitates a deeper understanding of cancer progression, specifically nutrient regulation in the tumor microenvironment (TME), which includes both metabolic cross-talk between metabolites and tumor cells, and intracellular metabolism in immune and cancer cells. Here we review the features and behaviors of the TME and discuss the recently identified major immune checkpoints. We comprehensively and systematically summarize the metabolic modulation of tumor immunity and immune checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways, and further discuss the potential metabolism-based therapeutic strategies tested in preclinical and clinical settings. These findings will help to determine the existence of a link or crosstalk between tumor metabolism and immunotherapy, which will provide an important insight into cancer treatment and cancer research.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical Center, Chongqing, 400038, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, 43221, United States.
| |
Collapse
|
47
|
Ramgopal A, Sun LK, Byersdorfer CA. The role of AMP-activated protein kinase in GVHD-causing T cells. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00009. [PMID: 36275779 PMCID: PMC9561229 DOI: 10.1097/in9.0000000000000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Allogeneic stem cell transplantation is a curative therapy for multiple hematologic disorders. However, this life-saving procedure is often complicated by acute graft-versus-host disease (GVHD), where donor T cells attack tissues in the recipient's skin, liver, and gastrointestinal tract. Previous research has demonstrated that GVHD-causing T cells undergo significant metabolic reprogramming during disease pathogenesis, with an increased reliance on oxidative metabolism. This dependence makes metabolic modulation a potential approach to treat and/or prevent GVHD. Here, we provide an overview on the metabolic changes adopted by allogeneic T cells during disease initiation, highlighting the role played by AMP-activated protein kinase (AMPK) and identifying ways in which these insights might be leveraged to therapeutic advantage clinically.
Collapse
Affiliation(s)
- Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee-Kai Sun
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Craig A. Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Wu Y, Zong M, Zhang Z, Wu Y, Li L, Zhang X, Wu H, Li B. Selective transportation and energy homeostasis regulation of dietary advanced glycation end-products in human intestinal Caco-2 cells. Food Chem 2022; 391:133284. [PMID: 35640343 DOI: 10.1016/j.foodchem.2022.133284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
|
49
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
50
|
Zhu Y, Lin X, Zhou X, Prochownik EV, Wang F, Li Y. Posttranslational control of lipogenesis in the tumor microenvironment. J Hematol Oncol 2022; 15:120. [PMID: 36038892 PMCID: PMC9422141 DOI: 10.1186/s13045-022-01340-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
Collapse
Affiliation(s)
- Yahui Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.,School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xingrong Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Xiaojun Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, The Department of Microbiology and Molecular Genetics, The Pittsburgh Liver Research Center and The Hillman Cancer Center of UPMC, The University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China. .,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|