1
|
Shi J, Wang W, Xu J, Yin W. Regulation of lipid metabolism: a new strategy for platelet storage. Platelets 2025; 36:2465321. [PMID: 39950500 DOI: 10.1080/09537104.2025.2465321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
Transfusions of platelets are often used as prophylaxis in patients with hematologic malignancies and as treatment for active bleeding. However, platelets are in short supply due to the fact that they could only be kept for 5-7 days in vitro and they lose some of their functionality as a result of platelet storage lesions. To address this issue, refrigeration, cryopreservation and platelet additive solutions have been researched to determine their abilities to extend platelet storage duration. However, refrigerated platelets are quickly cleared after transfusion, while platelets in platelet additive solutions still present issues such as platelets quality and the risk of allergic reactions. Recent studies showed that changes in lipid metabolites during platelet storage and inadequate of fatty acid metabolism may also limit platelet shelf life and function. In this review, we address the principles of lipid metabolism during platelet storage and discuss the strategies for effective platelet storage systems. The findings of this review highlight the role of lipid metabolism during platelet storage, providing insights into future research focused on extending the preservation period and function of platelet.
Collapse
Affiliation(s)
- Jieyun Shi
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Chen Z, Xu L, Yuan Y, Zhang S, Xue R. Metabolic crosstalk between platelets and cancer: Mechanisms, functions, and therapeutic potential. Semin Cancer Biol 2025; 110:65-82. [PMID: 39954752 DOI: 10.1016/j.semcancer.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Platelets, traditionally regarded as passive mediators of hemostasis, are now recognized as pivotal regulators in the tumor microenvironment, establishing metabolic feedback loops with tumor and immune cells. Tumor-derived signals trigger platelet activation, which induces rapid metabolic reprogramming, particularly glycolysis, to support activation-dependent functions such as granule secretion, morphological changes, and aggregation. Beyond self-regulation, platelets influence the metabolic processes of adjacent cells. Through direct mitochondrial transfer, platelets reprogram tumor and immune cells, promoting oxidative phosphorylation. Additionally, platelet-derived cytokines, granules, and extracellular vesicles drive metabolic alterations in immune cells, fostering suppressive phenotypes that facilitate tumor progression. This review examines three critical aspects: (1) the distinctive metabolic features of platelets, particularly under tumor-induced activation; (2) the metabolic crosstalk between activated platelets and other cellular components; and (3) the therapeutic potential of targeting platelet metabolism to disrupt tumor-promoting networks. By elucidating platelet metabolism, this review highlights its essential role in tumor biology and its therapeutic implications.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Xu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yejv Yuan
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
O'Donoghue L, Hiebner D, Krishnankutty R, Schoen I, von Kriegsheim A, Smolenski A. Platelet inhibition by hypochlorous acid involves cAMP signalling. Cell Signal 2025; 127:111568. [PMID: 39689749 DOI: 10.1016/j.cellsig.2024.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
Hypochlorous acid (HOCl), made by neutrophil-derived myeloperoxidase, has been suggested to inhibit platelets, however, the mechanisms involved have not been described. Here we confirm that HOCl exposure changes platelet morphology and inhibits platelet spreading and aggregation. HOCl effects could be reversed by glutathione suggesting a role for cysteine oxidation. Mass spectrometry-based proteomics of HOCl-exposed platelets revealed oxidised cysteine residues in 37 proteins including adenylate cyclase 6 and Rap1B. Adenylate cyclase is involved in the inhibitory cAMP pathway triggered by endothelium-derived prostacyclin and Rap1 is a small G protein required for integrin αIIbβ3 activation and platelet aggregation. We show that HOCl exposure stimulates cAMP production and phosphorylation of the cAMP-dependent protein kinase substrate VASP in platelets and transfected HEK293T cells. In addition, HOCl inhibited Rap1-GTP formation. These data suggest that HOCl inhibits platelets at least in part through the cAMP pathway and by regulating Rap1. Thus, this study provides new insights into HOCl mediated crosstalk between neutrophils and platelets.
Collapse
Affiliation(s)
- Lorna O'Donoghue
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Belfield, Ireland; Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Dishon Hiebner
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland; UCD School of Chemical & Bioprocess Engineering, Engineering & Materials Science Centre University College Dublin, Dublin 4, Belfield, Ireland
| | - Roopesh Krishnankutty
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Albert Smolenski
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Belfield, Ireland; Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland.
| |
Collapse
|
4
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
5
|
Ghorasaini M, Costa D, Tyrrell VJ, Protty M, Giera M, O'Donnell VB. A Method for Analysis of Oxidized Phospholipids from Biological Samples Using Mass Spectrometry. Methods Mol Biol 2025; 2855:155-169. [PMID: 39354307 DOI: 10.1007/978-1-0716-4116-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Oxidized phospholipids (oxPLs) are generated during innate immunity and inflammation, where they play a variety of biological roles, including regulation of autoimmunity and coagulation. Some are generated by enzymatic reactions, leading to stereo- and regiospecificity, while many others can be formed through nonenzymatic oxidation and truncation and can be used as biomarkers of oxidative stress. Mass spectrometry methods have been developed over many years for oxPL analysis, which can provide robust estimations of molecular species and amounts, where standards are available. Here we present a method used for the analysis of enzymatically-generated oxPL (eoxPL), which allows quantification of mono-hydroxy oxylipin-containing species. We also show profiling of many other partially characterized structures in tissue samples and provide typical chromatograms obtained.
Collapse
Affiliation(s)
- Mohan Ghorasaini
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Costa
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Victoria J Tyrrell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Majd Protty
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Valerie B O'Donnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
6
|
Protty MB, Tyrrell VJ, Hajeyah AA, Morgan B, Costa D, Li Y, Choudhury A, Mitra R, Bosanquet D, Reed A, Denisenko IK, Nagata K, Shindou H, Cravatt BF, Poole AW, Shimizu T, Yousef Z, Collins PW, O'Donnell VB. Aspirin modulates generation of procoagulant phospholipids in cardiovascular disease, by regulating LPCAT3. J Lipid Res 2025; 66:100727. [PMID: 39674322 PMCID: PMC11754521 DOI: 10.1016/j.jlr.2024.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Enzymatically oxygenated phospholipids (eoxPL) from lipoxygenases (LOX) or cyclooxygenase (COX) are prothrombotic. Their generation in arterial disease, and their modulation by cardiovascular therapies is unknown. Furthermore, the Lands cycle acyl-transferases that catalyze their formation are unidentified. eoxPL were measured in platelets and leukocytes from an atherosclerotic cardiovascular disease (ASCVD) cohort and retrieved human arterial thrombi from three anatomical sites. The impact of age, gender, and aspirin was characterized in platelets from healthy subjects administered low-dose aspirin. The role of lysophosphatidylcholine acyltransferase 3 (LPCAT3) in eoxPL biosynthesis was tested using an inhibitor and a cell-free assay. Platelets from ASCVD patients generated lower levels of COX-derived eoxPL but elevated 12-LOX-diacyl forms, than platelets from healthy controls. This associated with aspirin and was recapitulated in healthy subjects by aspirin supplementation. P2Y12 inhibition had no impact on eoxPL. LPCAT3 inhibition selectively prevented 12-LOX-derived diacyl-eoxPL generation. LPCAT3 activity was not directly altered by aspirin. P2Y12 inhibition or aspirin had little impact on eoxPL in leukocytes. Complex aspirin-dependent gender and seasonal effects on platelet eoxPL generation were seen in healthy subjects. Limb or coronary (ST-elevation myocardial infarction, STEMI) thrombi displayed a platelet eoxPL signature while carotid thrombi had a white cell profile. EoxPL are altered in ASCVD by a commonly used cardiovascular therapy, and LPCAT3 was identified as the acyltransferase generating aspirin-sensitive 12-LOX diacyl forms. These changes to the phospholipid composition of blood cells in humans at risk of thrombosis may be clinically significant where the procoagulant membrane plays a central role in driving elevated thrombotic risk.
Collapse
Affiliation(s)
- Majd B Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK.
| | | | - Ali A Hajeyah
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Bethan Morgan
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Daniela Costa
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Yong Li
- Bristol Platelet Group, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Anirban Choudhury
- Morriston Cardiac Centre, Swansea Bay University Health Board, Swansea, UK
| | - Rito Mitra
- Department of Cardiology, University Hospital of Wales, Cardiff, UK
| | - David Bosanquet
- Department of Vascular Surgery, Aneurin Bevan University Health Board, Cwmbran, UK
| | - Alex Reed
- Department of Chemistry, The Scripps Research Institute, San Diego, CA
| | | | | | - Hideo Shindou
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Alastair W Poole
- Bristol Platelet Group, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Takao Shimizu
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Zaheer Yousef
- Department of Cardiology, University Hospital of Wales, Cardiff, UK
| | - Peter W Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | | |
Collapse
|
7
|
Striesow J, Nasri Z, von Woedtke T, Bekeschus S, Wende K. Epilipidomics reveals lipid fatty acid and headgroup modification in gas plasma-oxidized biomembranes. Redox Biol 2024; 77:103343. [PMID: 39366067 PMCID: PMC11483335 DOI: 10.1016/j.redox.2024.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Lipids, possessing unsaturated fatty acid chains and polar regions with nucleophilic heteroatoms, represent suitable oxidation targets for autologous and heterologous reactive species. Lipid peroxidation products (LPPs) are highly heterogeneous, including hydroperoxides, alkenals, chlorination, or glycation. Accordingly, delineation of lipid targets, species type, resulting products, and oxidation level remains challenging. To this end, liposomal biomimetic models incorporating a phosphatidylcholine, -ethanolamine, and a sphingomyelin were used to deconvolute effects on a single lipid scale to predict potential modification product outcomes. To introduce oxidative modifications, gas plasma technology, a powerful pro-oxidant tool to promote LPP formation by forming highly abundant reactive species in the gas and liquid phases, was employed to liposomes. The plasma parameters (gas type/combination) were modified to modulate the resulting species-profile and LPP formation by enriching specific reactive species types over others. HR-LC-MS (Münzel and et al., 2017) [2] was employed for LPP identification. Moreover, the heavy oxygen isotope 18O was used to trace O2-incorporation into LPPs, providing first information on the plasma-mediated lipid peroxidation mechanism. We found that combination of lipid class and gas composition predetermined the type of attack: admixture of O2 to the plasma and the presence of nitrogen atoms with free electrons in the molecule lead to chlorination of the amide bond and headgroup. Here, atomic oxygen driven formation of hypochlorite is the major reactive species. In contrast, POPC yields mainly to LPPs with oxidation of the oleic acid tail, especially truncations, epoxidation, and hydroperoxide formation. Here, singlet oxygen is assumingly the major driver. 18O labelling revealed that gas phase derived reactive species are dominantly incorporated into the LPPs, supporting previous findings on gas-liquid interface chemistry. In summary, we here provided the first insights into gas plasma-mediated lipid peroxidation, which, employed in more complex cell and tissue models, may support identifying mechanisms of actions in plasma medicine.
Collapse
Affiliation(s)
- Johanna Striesow
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Zahra Nasri
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
8
|
Pirotton L, de Cartier d’Yves E, Bertrand L, Beauloye C, Horman S. Platelet lipidomics and de novo lipogenesis: impact on health and disease. Curr Opin Hematol 2024; 31:217-223. [PMID: 38727017 PMCID: PMC11296274 DOI: 10.1097/moh.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Lipids play vital roles in platelet structure, signaling, and metabolism. In addition to capturing exogenous lipids, platelets possess the capacity for de novo lipogenesis, regulated by acetyl-coA carboxylase 1 (ACC1). This review aims to cover the critical roles of platelet de novo lipogenesis and lipidome in platelet production, function, and diseases. RECENT FINDINGS Upon platelet activation, approximately 20% of the platelet lipidome undergoes significant modifications, primarily affecting arachidonic acid-containing species. Multiple studies emphasize the impact of de novo lipogenesis, with ACC1 as key player, on platelet functions. Mouse models suggest the importance of the AMPK-ACC1 axis in regulating platelet membrane arachidonic acid content, associated with TXA 2 secretion, and thrombus formation. In human platelets, ACC1 inhibition leads to reduced platelet reactivity. Remodeling of the platelet lipidome, alongside with de novo lipogenesis, is also crucial for platelet biogenesis. Disruptions in the platelet lipidome are observed in various pathological conditions, including cardiovascular and inflammatory diseases, with associations between these alterations and shifts in platelet reactivity highlighted. SUMMARY The platelet lipidome, partially regulated by ACC-driven de novo lipogenesis, is indispensable for platelet production and function. It is implicated in various pathological conditions involving platelets.
Collapse
Affiliation(s)
- Laurence Pirotton
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Emma de Cartier d’Yves
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
- Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain)
| |
Collapse
|
9
|
Mo C, Li H, Yan M, Xu S, Wu J, Li J, Yang X, Li Y, Yang J, Su X, Liu J, Wu C, Wang Y, Dong H, Chen L, Dai L, Zhang M, Pu Q, Yang L, Ye T, Cao Z, Ding BS. Dopaminylation of endothelial TPI1 suppresses ferroptotic angiocrine signals to promote lung regeneration over fibrosis. Cell Metab 2024; 36:1839-1857.e12. [PMID: 39111287 DOI: 10.1016/j.cmet.2024.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 03/17/2025]
Abstract
Lungs can undergo facultative regeneration, but handicapped regeneration often leads to fibrosis. How microenvironmental cues coordinate lung regeneration via modulating cell death remains unknown. Here, we reveal that the neurotransmitter dopamine modifies the endothelial niche to suppress ferroptosis, promoting lung regeneration over fibrosis. A chemoproteomic approach shows that dopamine blocks ferroptosis in endothelial cells (ECs) via dopaminylating triosephosphate isomerase 1 (TPI1). Suppressing TPI1 dopaminylation in ECs triggers ferroptotic angiocrine signaling to aberrantly activate fibroblasts, leading to a transition from lung regeneration to fibrosis. Mechanistically, dopaminylation of glutamine (Q) 65 residue in TPI1 directionally enhances TPI1's activity to convert dihydroxyacetone phosphate (DHAP) to glyceraldehyde 3-phosphate (GAP), directing ether phospholipid synthesis to glucose metabolism in regenerating lung ECs. This metabolic shift attenuates lipid peroxidation and blocks ferroptosis. Restoring TPI1 Q65 dopaminylation in an injured endothelial niche overturns ferroptosis to normalize pro-regenerative angiocrine function and alleviate lung fibrosis. Overall, dopaminylation of TPI1 balances lipid/glucose metabolism and suppresses pro-fibrotic ferroptosis in regenerating lungs.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hui Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengli Yan
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiyu Xu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiachen Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinchun Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuanyuan Li
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jian Yang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xingping Su
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Liu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Wu
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuan Wang
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haohao Dong
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Qiang Pu
- Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Tinghong Ye
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China; Department of General Surgery, Department of Thoracic Surgery and Institute of Thoracic Oncology, Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhongwei Cao
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Bi-Sen Ding
- Key Lab of Birth Defects and Related Diseases of Women and Children of MOE, State Key Lab of Biotherapy, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Chronobiology, Sichuan-Chongqing Key Lab of Bio-Resource Research and Utilization, Development and Related Disease of Women and Children Key Lab of Sichuan, West China Second University Hospital, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Yang L, Liu Q, Lu Q, Xiao JJ, Fu AY, Wang S, Ni L, Hu JW, Yu H, Wu X, Zhang BF. Scavenger Receptor Class B Type I Deficiency Induces Iron Overload and Ferroptosis in Renal Tubular Epithelial Cells via Hypoxia-Inducible Factor-1α/Transferrin Receptor 1 Signaling Pathway. Antioxid Redox Signal 2024; 41:56-73. [PMID: 38062756 DOI: 10.1089/ars.2023.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Aims: Scavenger receptor class B type I (SRBI) promotes cell cholesterol efflux and the clearance of plasma cholesterol. Thus, SRBI deficiency causes abnormal cholesterol metabolism and hyperlipidemia. Studies have suggested that ferroptosis is involved in lipotoxicity; however, whether SRBI deficiency could induce ferroptosis remains to be investigated. Results: We knocked down or knocked out SRBI in renal HK-2 cells and C57BL/6 mice to determine the expression levels of ferroptosis-related regulators. Our results demonstrated that SRBI deficiency upregulates transferrin receptor 1 (TFR1) expression and downregulates ferroportin expression, which induces iron overload and subsequent ferroptosis in renal tubular epithelial cells. TFR1 is known to be regulated by hypoxia-inducible factor-1α (HIF-1α). Next, we investigated whether SRBI deletion affected HIF-1α. SRBI deletion upregulated the mRNA and protein expression of HIF-1α, and promoted its translocation to the nucleus. To determine whether HIF-1α plays a key role in SRBI-deficiency-induced ferroptosis, we used HIF-1α inhibitor and siHIF-1α in HK-2 cells, and found that downregulation of HIF-1α prevented SRBI-silencing-induced TFR1 upregulation and iron overload, and eventually reduced ferroptosis. The underlying mechanism of HIF-1α activation was explored next, and the results showed that SRBI knockout or knockdown may upregulate the expression of HIF-1α, and promote HIF-1α translocation from the cytoplasm into the nucleus via the PKC-β/NF-κB signaling pathway. Innovation and Conclusion: Our study showed, for the first time, that SRBI deficiency induces iron overload and subsequent ferroptosis via the HIF-1α/TFR1 pathway.
Collapse
Affiliation(s)
- LiJiao Yang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Liu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University TaiKang Medical School, Wuhan, China
| | - QianYu Lu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing-Jie Xiao
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University TaiKang Medical School, Wuhan, China
| | - An-Yao Fu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University TaiKang Medical School, Wuhan, China
| | - Shan Wang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University TaiKang Medical School, Wuhan, China
| | - LiHua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun-Wei Hu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Yu
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University TaiKang Medical School, Wuhan, China
| | - XiaoYan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bai-Fang Zhang
- Department of Biochemistry and Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University TaiKang Medical School, Wuhan, China
| |
Collapse
|
11
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Yang W, Feng R, Peng G, Wang Z, Cen M, Jing Y, Feng W, Long T, Liu Y, Li Z, Huang K, Chang G. Glycoursodeoxycholic Acid Alleviates Arterial Thrombosis via Suppressing Diacylglycerol Kinases Activity in Platelet. Arterioscler Thromb Vasc Biol 2024; 44:1283-1301. [PMID: 38572646 DOI: 10.1161/atvbaha.124.320728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Glycoursodeoxycholic acid (GUDCA) has been acknowledged for its ability to regulate lipid homeostasis and provide benefits for various metabolic disorders. However, the impact of GUDCA on arterial thrombotic events remains unexplored. The objective of this study is to examine the effects of GUDCA on thrombogenesis and elucidate its underlying mechanisms. METHODS Plasma samples from patients with arterial thrombotic events and diet-induced obese mice were collected to determine the GUDCA concentrations using mass spectrometry. Multiple in vivo murine thrombosis models and in vitro platelet functional assays were conducted to comprehensively evaluate the antithrombotic effects of GUDCA. Moreover, lipidomic analysis was performed to identify the alterations of intraplatelet lipid components following GUDCA treatment. RESULTS Plasma GUDCA level was significantly decreased in patients with arterial thrombotic events and negatively correlated with thrombotic propensity in diet-induced obese mice. GUDCA exhibited prominent suppressing effects on platelet reactivity as evidenced by the attenuation of platelet activation, secretion, aggregation, spreading, and retraction (P<0.05). In vivo, GUDCA administration robustly alleviated thrombogenesis (P<0.05) without affecting hemostasis. Mechanistically, GUDCA inhibited DGK (diacylglycerol kinase) activity, leading to the downregulation of the phosphatidic acid-mediated signaling pathway. Conversely, phosphatidic acid supplementation was sufficient to abolish the antithrombotic effects of GUDCA. More importantly, long-term oral administration of GUDCA normalized the enhanced DGK activity, thereby remarkably alleviating the platelet hyperreactivity as well as the heightened thrombotic tendency in diet-induced obese mice (P<0.05). CONCLUSIONS Our study implicated that GUDCA reduces platelet hyperreactivity and improves thrombotic propensity by inhibiting DGKs activity, which is a potentially effective prophylactic approach and promising therapeutic agent for arterial thrombotic events.
Collapse
Affiliation(s)
- Wenchao Yang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ruijia Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guiyan Peng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China (M.C.)
| | - Yexiang Jing
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Weiqi Feng
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Ting Long
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Yunchong Liu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Kan Huang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| | - Guangqi Chang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (W.Y., R.F., G.P., Z.W., Y.J., W.F., T.L., Y.L., Z.L, K.H., G.C.)
| |
Collapse
|
13
|
Del Castillo J, Tool ATJ, van Leeuwen K, van Alphen FPJ, Brands MM, Suijker MH, Meijer AB, Hoogendijk AJ, Kuijpers TW. Platelet proteomic profiling in sitosterolemia suggests thrombocytopenia is driven by lipid disorder and not platelet aberrations. Blood Adv 2024; 8:2466-2477. [PMID: 38513134 PMCID: PMC11112606 DOI: 10.1182/bloodadvances.2023012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Sitosterolemia is a rare autosomal recessive genetic disorder in which patients develop hypercholesterolemia and may exhibit abnormal hematologic and/or liver test results. In this disease, dysfunction of either ABCG5 or ABCG8 results in the intestinal hyperabsorption of all sterols, including cholesterol and, more specifically, plant sterols or xenosterols, as well as in the impaired ability to excrete xenosterols into the bile. It remains unknown how and why some patients develop hematologic abnormalities. Only a few unrelated patients with hematologic abnormalities at the time of diagnosis have been reported. Here, we report on 2 unrelated pedigrees who were believed to have chronic immune thrombocytopenia as their most prominent feature. Both consanguineous families showed recessive gene variants in ABCG5, which were associated with the disease by in silico protein structure analysis and clinical segregation. Hepatosplenomegaly was absent. Thrombopoietin levels and megakaryocyte numbers in the bone marrow were normal. Metabolic analysis confirmed the presence of strongly elevated plasma levels of xenosterols. Potential platelet proteomic aberrations were longitudinally assessed following dietary restrictions combined with administration of the sterol absorption inhibitor ezetimibe. No significant effects on platelet protein content before and after the onset of treatment were demonstrated. Although we cannot exclude that lipotoxicity has a direct and platelet-specific impact in patients with sitosterolemia, our data suggest that thrombocytopenia is neither caused by a lack of megakaryocytes nor driven by proteomic aberrations in the platelets themselves.
Collapse
Affiliation(s)
- Jessica Del Castillo
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Anton T. J. Tool
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Research Facilities, Sanquin Research, Amsterdam, The Netherlands
| | | | - Marion M. Brands
- Department of Pediatric Metabolic Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Monique H. Suijker
- Department of Pediatric Hematology, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander B. Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Arie J. Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Zhang P, Liu N, Xue M, Zhang M, Xiao Z, Xu C, Fan Y, Qiu J, Zhang Q, Zhou Y. β-Sitosterol Reduces the Content of Triglyceride and Cholesterol in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Zebrafish ( Danio rerio) Model. Animals (Basel) 2024; 14:1289. [PMID: 38731293 PMCID: PMC11083524 DOI: 10.3390/ani14091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. β-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood. METHODS A high-fat diet (HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic effect and potential mechanism of β-sitosterol were studied using oil red O staining, filipin staining, and lipid metabolomics. RESULTS β-sitosterol significantly reduced the accumulation of triglyceride, glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differential lipid molecules in β-sitosterol mainly regulated the lipid metabolism and signal transduction function of the zebrafish model. β-sitosterol mainly affected steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the HFD group, the addition of 500 mg/100 g of β-sitosterol significantly inhibited the expression of Ppar-γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. CONCLUSIONS β-sitosterol can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and signal transduction and inhibiting adipogenesis and lipid storage.
Collapse
Affiliation(s)
- Peng Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Mengjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Junqiang Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| |
Collapse
|
15
|
Harm T, Fu X, Frey M, Dittrich K, Brun A, Castor T, Borst O, Müller KAL, Geisler T, Rath D, Lämmerhofer M, Gawaz MP. Machine learning insights into thrombo-ischemic risks and bleeding events through platelet lysophospholipids and acylcarnitine species. Sci Rep 2024; 14:6089. [PMID: 38480746 PMCID: PMC10937715 DOI: 10.1038/s41598-024-56304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Coronary artery disease (CAD) often leads to adverse events resulting in significant disease burdens. Underlying risk factors often remain inapparent prior to disease incidence and the cardiovascular (CV) risk is not exclusively explained by traditional risk factors. Platelets inherently promote atheroprogression and enhanced platelet functions and distinct platelet lipid species are associated with disease severity in patients with CAD. Lipidomics data were acquired using mass spectrometry and processed alongside clinical data applying machine learning to model estimates of an increased CV risk in a consecutive CAD cohort (n = 595). By training machine learning models on CV risk measurements, stratification of CAD patients resulted in a phenotyping of risk groups. We found that distinct platelet lipids are associated with an increased CV or bleeding risk and independently predict adverse events. Notably, the addition of platelet lipids to conventional risk factors resulted in an increased diagnostic accuracy of patients with adverse CV events. Thus, patients with aberrant platelet lipid signatures and platelet functions are at elevated risk to develop adverse CV events. Machine learning combining platelet lipidome data and common clinical parameters demonstrated an increased diagnostic value in patients with CAD and might improve early risk discrimination and classification for CV events.
Collapse
Affiliation(s)
- Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Moritz Frey
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Kristina Dittrich
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Adrian Brun
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Karin Anne Lydia Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany.
| |
Collapse
|
16
|
Kiirikki AM, Antila HS, Bort LS, Buslaev P, Favela-Rosales F, Ferreira TM, Fuchs PFJ, Garcia-Fandino R, Gushchin I, Kav B, Kučerka N, Kula P, Kurki M, Kuzmin A, Lalitha A, Lolicato F, Madsen JJ, Miettinen MS, Mingham C, Monticelli L, Nencini R, Nesterenko AM, Piggot TJ, Piñeiro Á, Reuter N, Samantray S, Suárez-Lestón F, Talandashti R, Ollila OHS. Overlay databank unlocks data-driven analyses of biomolecules for all. Nat Commun 2024; 15:1136. [PMID: 38326316 PMCID: PMC10850068 DOI: 10.1038/s41467-024-45189-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.
Collapse
Affiliation(s)
- Anne M Kiirikki
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
| | - Hanne S Antila
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Lara S Bort
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- University of Potsdam, Institute of Physics and Astronomy, 14476, Potsdam-Golm, Germany
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Fernando Favela-Rosales
- Departamento de Ciencias Básicas, Tecnológico Nacional de México - ITS Zacatecas Occidente, Sombrerete, 99102, Zacatecas, Mexico
| | - Tiago Mendes Ferreira
- NMR group - Institute for Physics, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Patrick F J Fuchs
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), F-75005, Paris, France
- Université Paris Cité, F-75006, Paris, France
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | | | - Batuhan Kav
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- ariadne.ai GmbH (Germany), Häusserstraße 3, 69115, Heidelberg, Germany
| | - Norbert Kučerka
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32, Bratislava, Slovakia
| | - Patrik Kula
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16610, Prague, Czech Republic
| | - Milla Kurki
- School of Pharmacy, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Anusha Lalitha
- Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université Montpellier, Place Eugène Bataillon, 34095, Montpellier, Cedex 05, France
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
- Department of Physics, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesper J Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 33612, Tampa, FL, USA
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, 33612, Tampa, FL, USA
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - Cedric Mingham
- Hochschule Mannheim, University of Applied Sciences, 68163, Mannheim, Germany
| | - Luca Monticelli
- University of Lyon, CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), F-69007, Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Ricky Nencini
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Alexey M Nesterenko
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - Thomas J Piggot
- Chemistry, University of Southampton, Highfield, SO17 1BJ, Southampton, UK
| | - Ángel Piñeiro
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - Suman Samantray
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Fabián Suárez-Lestón
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
- Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, 15782, Santiago de Compostela, Spain
| | - Reza Talandashti
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, 5008, Bergen, Norway
| | - O H Samuli Ollila
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland.
- VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
17
|
Chicanne G, Darcourt J, Bertrand-Michel J, Garcia C, Ribes A, Payrastre B. What can we learn from the platelet lipidome? Platelets 2023; 34:2182180. [PMID: 36880158 DOI: 10.1080/09537104.2023.2182180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Besides their proteome, platelets use, in all responses to the environmental cues, a huge and diverse family of hydrophobic and amphipathic small molecules involved in structural, metabolic and signaling functions; the lipids. Studying how platelet lipidome changes modulate platelet function is an old story constantly renewed through the impressive technical advances allowing the discovery of new lipids, functions and metabolic pathways. Technical progress in analytical lipidomic profiling by top-of-the-line approaches such as nuclear magnetic resonance and gas chromatography or liquid chromatography coupled to mass spectrometry enables either large-scale analysis of lipids or targeted lipidomics. With the support of bioinformatics tools and databases, it is now possible to investigate thousands of lipids over a concentration range of several orders of magnitude. The lipidomic landscape of platelets is considered a treasure trove, not only able to expand our knowledge of platelet biology and pathologies but also to bring diagnostic and therapeutic opportunities. The aim of this commentary article is to summarize the advances in the field and to highlight what lipidomics can tell us about platelet biology and pathophysiology.
Collapse
Affiliation(s)
- Gaëtan Chicanne
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France
| | - Jean Darcourt
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France
| | - Justine Bertrand-Michel
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Cédric Garcia
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,Laboratory of Haematology, University Hospital of Toulouse, Toulouse, France
| | - Agnès Ribes
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,Laboratory of Haematology, University Hospital of Toulouse, Toulouse, France
| | - Bernard Payrastre
- Institute of Metabolic and Cardiovascular Disease, Inserm UMR1297 and University of Toulouse 3, Toulouse, France.,Laboratory of Haematology, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
18
|
Tabassum R, Widén E, Ripatti S. Effect of biological sex on human circulating lipidome: An overview of the literature. Atherosclerosis 2023; 384:117274. [PMID: 37743161 DOI: 10.1016/j.atherosclerosis.2023.117274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide for both men and women, but their prevalence and burden show marked sex differences. The existing knowledge gaps in research, prevention, and treatment for women emphasize the need for understanding the biological mechanisms contributing to the sex differences in CVD. Sex differences in the plasma lipids that are well-known risk factors and predictors of CVD events have been recognized and are believed to contribute to the known disparities in CVD manifestations in men and women. However, the current understanding of sex differences in lipids has mainly come from the studies on routinely measured standard lipids- low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total triglycerides, and total cholesterol, which have been the mainstay of the lipid profiling. Sex differences in individual lipid species, collectively called the lipidome, have until recently been less explored due to the technological challenges and analytic costs. With the technological advancements in the last decade and growing interest in understanding mechanisms of sexual dimorphism in metabolic disorders, many investigators utilized metabolomics and lipidomics based platforms to examine the effect of biological sex on detailed lipidomic profiles and individual lipid species. This review presents an overview of the research on sex differences in the concentrations of circulating lipid species, focusing on findings from the metabolome- and lipidome-wide studies. We also discuss the potential contribution of genetic factors including sex chromosomes and sex-specific physiological factors such as menopause and sex hormones to the sex differences in lipidomic profiles.
Collapse
Affiliation(s)
- Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Harm T, Dittrich K, Brun A, Fu X, Frey M, Petersen Uribe A, Schwarz FJ, Rohlfing AK, Castor T, Geisler T, Rath D, Lämmerhofer M, Gawaz MP. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk. Clin Res Cardiol 2023; 112:1664-1678. [PMID: 37470807 PMCID: PMC10584760 DOI: 10.1007/s00392-023-02260-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND AND AIMS Patients with cardiovascular disease (CVD) are at high risk to develop adverse events. The distinct risk of developing adverse cardiovascular (CV) events is not solely explained by traditional risk factors. Platelets are essentially involved in progression of CVD including coronary artery disease (CAD) and platelet hyperreactivity leads to development of adverse CV events. Alterations in the platelet lipidome lead to platelet hyperresponsiveness and thus might alter the individual risk profile. In this study, we investigate the platelet lipidome of CAD patients by untargeted lipidomics and elucidate alterations in the lipid composition of patients with adverse CV events. METHODS We characterized the platelet lipidome in a large consecutive CAD cohort (n = 1057) by an untargeted lipidomics approach using liquid chromatography coupled to mass spectrometry. RESULTS The platelet lipidome in this study identified 767 lipids and characteristic changes occurred in patients with adverse CV events. The most prominent upregulated lipids in patients with cardiovascular events primarily belong to the class of phospholipids and fatty acyls. Further, upregulated platelet lipids are associated with an increased cardiovascular or bleeding risk and independently associated with adverse events. In addition, alterations of the platelet lipidome are associated with modulation of in vitro platelet functions. CONCLUSIONS Our results reveal that the composition of the platelet lipidome is altered in CVD patients with an increased cardiovascular risk and distinct platelet lipids may indicate adverse events. Results of this study may contribute to improved risk discrimination and classification for cardiovascular events in patients with CVD. Main findings of this study and hypothetical impact of altered platelet lipid signatures in patients with adverse cardiovascular events on platelet function and clinical outcome. LPE lysophosphatidylethanolamines, CAR acylcarnitines, FA fatty acids.
Collapse
Affiliation(s)
- Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Kristina Dittrich
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Adrian Brun
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Moritz Frey
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Alvaro Petersen Uribe
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Frederic-Joaquim Schwarz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Meinrad P Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Otfried-Müller-Straße 10, 72076, Tübingen, Germany.
| |
Collapse
|
20
|
Xu P, Han S, Hou M, Zhao Y, Xu M. The serum lipid profiles in immune thrombocytopenia: Mendelian randomization analysis and a retrospective study. Thromb J 2023; 21:107. [PMID: 37833799 PMCID: PMC10571271 DOI: 10.1186/s12959-023-00551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease characterized by increased platelet destruction and impaired thrombopoiesis. The changes in platelet indices depend on the morphology and volume of platelets. Serum lipids have been found to affect platelet formation and activity in certain diseases, thus inducing the corresponding variation of platelet indices. METHODS Mendelian randomization (MR) analysis was performed based on databases. The clinical data from 457 ITP patients were retrospectively collected and analyzed, including platelet indices, serum lipids, hemorrhages and therapeutic responses. RESULTS MR analysis showed low high-density-lipoprotein-cholesterol (HDL-C), low apolipoprotein A-1, high triglyceride (TG) and high apolipoprotein B (ApoB) caused high platelet distribution width (PDW); high low-density-lipoprotein-cholesterol (LDL-C) increased mean platelet volume (MPV). In ITP, there were positive correlations between platelet count with TG, PDW with HDL-C and ApoB, and plateletcrit with TG and non-esterified fatty acid, and the correlation had gender differences. Bleeding scores were negatively correlated with cholesterol and LDL-C. LDL-C and homocysteine were risk factors for therapeutic responses. CONCLUSIONS Serum lipids, especially cholesterol were tightly correlated with platelet indices, hemorrhage and therapeutic effects in ITP patients. These results provide clinical references for the management of serum lipids, and highlight the necessity to further explore the relationship between lipids and pathogenesis of ITP. TRIAL REGISTRATION No: NCT05095896, October 14, 2021, retrospectively registered.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shouqing Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Shanghai, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Shanghai, China
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, China.
- Shandong Provincial Key Laboratory of Immunohematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Shanghai, China.
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, China.
| |
Collapse
|
21
|
Jovičić EJ, Janež AP, Eichmann TO, Koren Š, Brglez V, Jordan PM, Gerstmeier J, Lainšček D, Golob-Urbanc A, Jerala R, Lambeau G, Werz O, Zimmermann R, Petan T. Lipid droplets control mitogenic lipid mediator production in human cancer cells. Mol Metab 2023; 76:101791. [PMID: 37586657 PMCID: PMC10470291 DOI: 10.1016/j.molmet.2023.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVES Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids and precursors of oxygenated lipid mediators with diverse functions, including the control of cell growth, inflammation and tumourigenesis. However, the molecular pathways that control the availability of PUFAs for lipid mediator production are not well understood. Here, we investigated the crosstalk of three pathways in the provision of PUFAs for lipid mediator production: (i) secreted group X phospholipase A2 (GX sPLA2) and (ii) cytosolic group IVA PLA2 (cPLA2α), both mobilizing PUFAs from membrane phospholipids, and (iii) adipose triglyceride lipase (ATGL), which mediates the degradation of triacylglycerols (TAGs) stored in cytosolic lipid droplets (LDs). METHODS We combined lipidomic and functional analyses in cancer cell line models to dissect the trafficking of PUFAs between membrane phospholipids and LDs and determine the role of these pathways in lipid mediator production, cancer cell proliferation and tumour growth in vivo. RESULTS We demonstrate that lipid mediator production strongly depends on TAG turnover. GX sPLA2 directs ω-3 and ω-6 PUFAs from membrane phospholipids into TAG stores, whereas ATGL is required for their entry into lipid mediator biosynthetic pathways. ATGL controls the release of PUFAs from LD stores and their conversion into cyclooxygenase- and lipoxygenase-derived lipid mediators under conditions of nutrient sufficiency and during serum starvation. In starving cells, ATGL also promotes the incorporation of LD-derived PUFAs into phospholipids, representing substrates for cPLA2α. Furthermore, we demonstrate that the built-up of TAG stores by acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is required for the production of mitogenic lipid signals that promote cancer cell proliferation and tumour growth. CONCLUSION This study shifts the paradigm of PLA2-driven lipid mediator signalling and identifies LDs as central lipid mediator production hubs. Targeting DGAT1-mediated LD biogenesis is a promising strategy to restrict lipid mediator production and tumour growth.
Collapse
Affiliation(s)
- Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Špela Koren
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Vesna Brglez
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Anja Golob-Urbanc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST, Centre of Excellence, Ljubljana, Slovenia
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, University of Graz, Graz, Austria
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Striesow J, Wesche J, McKitterick N, Busch LM, von Woedtke T, Greinacher A, Bekeschus S, Wende K. Gas plasma-induced platelet activation corresponds to reactive species profiles and lipid oxidation. Free Radic Biol Med 2023; 207:212-225. [PMID: 37490986 DOI: 10.1016/j.freeradbiomed.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Surgical-induced hemostasis is a critical step in the closure of incisions, which is frequently achieved via electrocauterization and subsequent tissue necrotization. The latter is associated with postoperative complications. Recent in vivo work suggested reactive species-producing gas plasma technology as a pro-homeostatic agent acting via platelet activation. However, it remained elusive how platelet activation is linked to lipid and protein oxidation and the reactive species compositions. A direct relation between the reactive species composition and platelet activation was revealed by assessing the production of several reactive species and by using antioxidants. In addition, platelet lipidome and proteome analysis identified significantly regulated key lipids in the platelet activation pathway, such as diacylglycerols and phosphatidylinositol as well as oxylipins like thromboxanes. Lipid oxidation products mainly derived from phosphatidylethanolamine and phosphatidylserine species were observed at modest levels. In addition, oxidative post-translational modifications were identified on key proteins of the hemostasis machinery. This study provides new insights into oxidation-induced platelet activation in general and suggests a potential role of those processes in gas plasma-mediated hemostasis in particular.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Jan Wesche
- Institute of Transfusion Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Nicholas McKitterick
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Larissa M Busch
- Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Andreas Greinacher
- Institute of Transfusion Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
23
|
Jain K, Tyagi T, Hwa J. Lipid remodeling in megakaryocyte differentiation and platelet biogenesis. NATURE CARDIOVASCULAR RESEARCH 2023; 2:803-804. [PMID: 37736249 PMCID: PMC10512809 DOI: 10.1038/s44161-023-00324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Lipid remodeling, from fatty acid transport and de novo lipid synthesis, is necessary for megakaryocyte differentiation and platelet production. Dietary saturated fatty acids, impaired fatty acid transport and/or dysfunction in lipid biogenesis can contribute to low platelet counts.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Cooperative Center of Excellence in Hematology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Duchez AC, Fauteux-Daniel S, Ebermeyer T, Heestermans M, Arthaud CA, Eyraud MA, Prier A, Audoux E, Portais JC, Bertrand-Michel J, Garraud O, Hamzeh-Cognasse H, Boilard E, Cognasse F. Lipidomic analysis of differently prepared platelet concentrates in additive solution during storage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:409-421. [PMID: 36346879 PMCID: PMC10497391 DOI: 10.2450/2022.0144-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Structural and biochemical changes in stored platelets are influenced by collection and processing methods. Lesions may appear during platelet concentrate storage, some of which may be involved in adverse transfusion reactions. The preparation and storage of platelet concentrates (PC) may modify and even damage the lipid mediator content. The aim of this study was to investigate the lipidomic profile identified in the supernatants of PCs according to processing and storage conditions, both after leukocyte filtration and contained in platelet additive solution (PAS), comparing single donor apheresis (SDA) products with pooled buffy coat (BC) products. MATERIALS AND METHODS We investigated the accumulation of various lipid mediators including lysophospholipids (LP) and eicosanoids in SDA and BC products stored for 0-5 days. All products were processed following French Blood Establishment (EFS) procedures in accordance with EDQM/GTS European Standards. Both SDA and BC were leukocyte reduced and conserved in 35% autologous donor plasma and 65% platelet additive solution. Lipidomic analysis was performed on PC supernatants using LS/MS spectrometry. RESULTS Our data demonstrate that lysophosphatidylcholine (LPC) levels were higher in BCs compared to SDAs, with no difference in lysophosphatidic acid (LPA) expression between the two preparation methods. Results for other eicosanoids showed greater similarity; indeed, no clear pattern emerged from analysis of eicosanoids in terms of storage time and process. In general, we observed longitudinal lipid mediator modulation for both SDAs and BCs, particularly at later time points. DISCUSSION The expression of LPC and some eicosanoids in BCs could be used as novel biomarkers of PC quality. Future studies are needed to explore their impact on adverse transfusion reactions.
Collapse
Affiliation(s)
- Anne-Claire Duchez
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Sébastien Fauteux-Daniel
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Theo Ebermeyer
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Marco Heestermans
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Charles-Antoine Arthaud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Marie-Ange Eyraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Amélie Prier
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Estelle Audoux
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Jean-Charles Portais
- MetaToul-Lipidomic MetaboHUB Core Facility, Inserm, U1048, Toulouse France
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic MetaboHUB Core Facility, Inserm, U1048, Toulouse France
- INSERM UMR 1214, ToNIC: Toulouse NeuroImaging Center, Toulouse, France
| | - Olivier Garraud
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Hind Hamzeh-Cognasse
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec, Canada
- Université Laval and Centre de recherche ARThrite, Québec, Canada
| | - Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
- University of Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 SAINBIOSE, Saint-Étienne, France
| |
Collapse
|
25
|
Ravera S, Signorello MG, Panfoli I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023; 12:1802. [PMID: 37443836 PMCID: PMC10340290 DOI: 10.3390/cells12131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are cellular elements that are physiologically involved in hemostasis, inflammation, thrombotic events, and various human diseases. There is a link between the activation of platelets and their metabolism. Platelets possess considerable metabolic versatility. Although the role of platelets in hemostasis and inflammation is known, our current understanding of platelet metabolism in terms of substrate preference is limited. Platelet activation triggers an oxidative metabolism increase to sustain energy requirements better than aerobic glycolysis alone. In addition, platelets possess extra-mitochondrial oxidative phosphorylation, which could be one of the sources of chemical energy required for platelet activation. This review aims to provide an overview of flexible platelet metabolism, focusing on the role of metabolic compartmentalization in substrate preference, since the metabolic flexibility of stimulated platelets could depend on subcellular localization and functional timing. Thus, developing a detailed understanding of the link between platelet activation and metabolic changes is crucial for improving human health.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | | | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
26
|
Menzel JP, Young RSE, Benfield AH, Scott JS, Wongsomboon P, Cudlman L, Cvačka J, Butler LM, Henriques ST, Poad BLJ, Blanksby SJ. Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome. Nat Commun 2023; 14:3940. [PMID: 37402773 DOI: 10.1038/s41467-023-39617-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Fatty acid isomers are responsible for an under-reported lipidome diversity across all kingdoms of life. Isomers of unsaturated fatty acids are often masked in contemporary analysis by incomplete separation and the absence of sufficiently diagnostic methods for structure elucidation. Here, we introduce a comprehensive workflow, to discover unsaturated fatty acids through coupling liquid chromatography and mass spectrometry with gas-phase ozonolysis of double bonds. The workflow encompasses semi-automated data analysis and enables de novo identification in complex media including human plasma, cancer cell lines and vernix caseosa. The targeted analysis including ozonolysis enables structural assignment over a dynamic range of five orders of magnitude, even in instances of incomplete chromatographic separation. Thereby we expand the number of identified plasma fatty acids two-fold, including non-methylene-interrupted fatty acids. Detection, without prior knowledge, allows discovery of non-canonical double bond positions. Changes in relative isomer abundances reflect underlying perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Wollongong, NSW, Australia
| | - Aurélie H Benfield
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Julia S Scott
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Lukáš Cudlman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 16600, Prague, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
27
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
28
|
Kulkarni PP, Ekhlak M, Dash D. Energy metabolism in platelets fuels thrombus formation: Halting the thrombosis engine with small-molecule modulators of platelet metabolism. Metabolism 2023:155596. [PMID: 37244415 DOI: 10.1016/j.metabol.2023.155596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Platelets are circulating cells central to haemostasis that follows vessel injury, as well as thrombosis that ensues as a consequence of pathological stasis or plaque rupture. Platelet responses to various stimuli that mediate these processes are all energy-intensive. Hence, platelets need to adapt their energy metabolism to fulfil the requirements of clot formation while overcoming the adversities of the thrombus niche such as restricted access to oxygen and nutrient. In the present review, we describe the changes in energy metabolism of platelets upon agonist challenge and their underlying molecular mechanisms. We briefly discuss the metabolic flexibility and dependency of stimulated platelets in terms of choice of energy substrates. Finally, we discuss how targeting the metabolic vulnerabilities of stimulated platelets such as aerobic glycolysis and/or beta oxidation of fatty acids could forestall platelet activation and thrombus formation. Thus, we present a case for modulating platelet energy metabolism using small-molecules as a novel anti-platelet strategy in the management of vaso-occlusive disorders like acute myocardial infarction, ischemic stroke, deep vein thrombosis and pulmonary embolism.
Collapse
Affiliation(s)
- Paresh P Kulkarni
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA.
| | - Mohammad Ekhlak
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
29
|
Heimerl S, Höring M, Kopczynski D, Sigruener A, Hart C, Burkhardt R, Black A, Ahrends R, Liebisch G. Quantification of bulk lipid species in human platelets and their thrombin-induced release. Sci Rep 2023; 13:6154. [PMID: 37061580 PMCID: PMC10105721 DOI: 10.1038/s41598-023-33076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Lipids play a central role in platelet physiology. Changes in the lipidome have already been described for basal and activated platelets. However, quantitative lipidomic data of platelet activation, including the released complex lipids, are unavailable. Here we describe an easy-to-use protocol based on flow-injection mass spectrometry for the quantitative analysis of bulk lipid species in basal and activated human platelets and their lipid release after thrombin activation. We provide lipid species concentrations of 12 healthy human donors, including cholesteryl ester (CE), ceramide (Cer), free cholesterol (FC), hexosylceramide (HexCer), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM) and triglycerides (TG). The assay exhibited good technical repeatability (CVs < 5% for major lipid species in platelets). Except for CE and TG, the inter-donor variability of the majority of lipid species concentrations in platelets was < 30% CV. Balancing of concentrations revealed the generation of LPC and loss of TG. Changes in lipid species concentrations indicate phospholipase-mediated release of arachidonic acid mainly from PC, PI, and PE but not from PS. Thrombin induced lipid release was mainly composed of FC, PS, PC, LPC, CE, and TG. The similarity of the released lipidome with that of plasma implicates that lipid release may originate from the open-canalicular system (OCS). The repository of lipid species concentrations determined with this standardized platelet release assay contribute to elucidating the physiological role of platelet lipids and provide a basis for investigating the platelet lipidome in patients with hemorrhagic or thrombotic disorders.
Collapse
Affiliation(s)
- Susanne Heimerl
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Dominik Kopczynski
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Alexander Sigruener
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Christina Hart
- Department of Hematology and Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Anne Black
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
30
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
31
|
Harm T, Frey M, Dittrich K, Goldschmied A, Rohlfing AK, Fu X, Brun A, Castor T, Rath D, Müller K, Lammerhofer M, Gawaz M. Statin Treatment Is Associated with Alterations in the Platelet Lipidome. Thromb Haemost 2023; 123:585-596. [PMID: 36898406 DOI: 10.1055/s-0043-1764353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
BACKGROUND Platelets are key players in the pathophysiology of coronary artery disease (CAD) and platelet hyperreactivity leads to increased risk of developing adverse cardiovascular events. Further, significant changes in the platelet lipidome occur in patients with acute coronary syndrome (ACS) and critically regulated lipids lead to platelet hyperresponsiveness. Statin treatment is crucial in the treatment and prevention of patients with CAD by remodeling lipid metabolism. OBJECTIVE In this study, we investigate the platelet lipidome of CAD patients by untargeted lipidomics, highlighting significant changes between statin-treated and naïve patients. METHODS We characterized the platelet lipidome in a CAD cohort (n = 105) by an untargeted lipidomics approach using liquid chromatography coupled to mass spectrometry. RESULTS Among the annotated lipids, 41 lipids were significantly upregulated in statin-treated patients, whereas 6 lipids were downregulated compared to naïve patients. The most prominent upregulated lipids in statin-treated patients belong to the class of triglycerides, cholesteryl esters, palmitic acid, and oxidized phospholipids, whereas mainly glycerophospholipids were downregulated compared to untreated patients. A more pronounced effect of statin treatment on the platelet lipidome was observed in ACS patients. We further highlight a dose-dependent influence on the platelet lipidome. CONCLUSION Our results reveal that the platelet lipidome is altered in CAD patients with statin treatment and upregulated lipids embody mainly characteristic triglycerides, whereas downregulated lipids mostly compromise glycerophospholipids, which may play a role in the pathophysiology of CAD. Results of this study may contribute to the understanding of statin treatment softening the lipid phenotype.
Collapse
Affiliation(s)
- Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Moritz Frey
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kristina Dittrich
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Goldschmied
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Xiaoqing Fu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Adrian Brun
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karin Müller
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Lammerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
van Pijkeren A, Egger AS, Hotze M, Zimmermann E, Kipura T, Grander J, Gollowitzer A, Koeberle A, Bischoff R, Thedieck K, Kwiatkowski M. Proteome Coverage after Simultaneous Proteo-Metabolome Liquid-Liquid Extraction. J Proteome Res 2023; 22:951-966. [PMID: 36763818 PMCID: PMC9990123 DOI: 10.1021/acs.jproteome.2c00758] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Proteomics and metabolomics are essential in systems biology, and simultaneous proteo-metabolome liquid-liquid extraction (SPM-LLE) allows isolation of the metabolome and proteome from the same sample. Since the proteome is present as a pellet in SPM-LLE, it must be solubilized for quantitative proteomics. Solubilization and proteome extraction are critical factors in the information obtained at the proteome level. In this study, we investigated the performance of two surfactants (sodium deoxycholate (SDC), sodium dodecyl sulfate (SDS)) and urea in terms of proteome coverage and extraction efficiency of an interphase proteome pellet generated by methanol-chloroform based SPM-LLE. We also investigated how the performance differs when the proteome is extracted from the interphase pellet or by direct cell lysis. We quantified 12 lipids covering triglycerides and various phospholipid classes, and 25 polar metabolites covering central energy metabolism in chloroform and methanol extracts. Our study reveals that the proteome coverages between the two surfactants and urea for the SPM-LLE interphase pellet were similar, but the extraction efficiencies differed significantly. While SDS led to enrichment of basic proteins, which were mainly ribosomal and ribonuclear proteins, urea was the most efficient extraction agent for simultaneous proteo-metabolome analysis. The results of our study also show that the performance of surfactants for quantitative proteomics is better when the proteome is extracted through direct cell lysis rather than an interphase pellet. In contrast, the performance of urea for quantitative proteomics was significantly better when the proteome was extracted from an interphase pellet than by direct cell lysis. We demonstrated that urea is superior to surfactants for proteome extraction from SPM-LLE interphase pellets, with a particularly good performance for the extraction of proteins associated with metabolic pathways. Data are available via ProteomeXchange with identifier PXD027338.
Collapse
Affiliation(s)
- Alienke van Pijkeren
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria.,Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Madlen Hotze
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Elisabeth Zimmermann
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Tobias Kipura
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| | - Julia Grander
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020, Innsbruck, Austria
| | - Rainer Bischoff
- Department of Analytical Biochemistry and Interfaculty Mass Spectrometry Center, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria.,Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, A-6020, Austria
| |
Collapse
|
33
|
Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 2023; 89:101207. [PMID: 36464139 DOI: 10.1016/j.plipres.2022.101207] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Perturbations in lipid homeostasis combined with conditions favoring oxidative stress constitute a hallmark of the inflammatory response. In this review we focus on the most recent results concerning lipid signaling in various oxidative stress-mediated responses and inflammation. These include phagocytosis and ferroptosis. The best characterized event, common to these responses, is the synthesis of oxygenated metabolites of arachidonic acid and other polyunsaturated fatty acids. Major developments in this area have highlighted the importance of compartmentalization of the enzymes and lipid substrates in shaping the appropriate response. In parallel, other relevant lipid metabolic pathways are also activated and, until recently, there has been a general lack of knowledge on the enzyme regulation and molecular mechanisms operating in these pathways. Specifically, data accumulated in recent years on the regulation and biological significance of plasmalogens and oxidized phospholipids have expanded our knowledge on the involvement of lipid metabolism in the progression of disease and the return to homeostasis. These recent major developments have helped to establish the concept of membrane phospholipids as cellular repositories for the compartmentalized production of bioactive lipids involved in cellular regulation. Importantly, an enzyme classically described as being involved in regulating the homeostatic turnover of phospholipids, namely the group VIA Ca2+-independent phospholipase A2 (iPLA2β), has taken center stage in oxidative stress and inflammation research owing to its key involvement in regulating metabolic and ferroptotic signals arising from membrane phospholipids. Understanding the role of iPLA2β in ferroptosis and metabolism not only broadens our knowledge of disease but also opens possible new horizons for this enzyme as a target for therapeutic intervention.
Collapse
|
34
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
36
|
Pablo-Torres C, Izquierdo E, Tan TJ, Obeso D, Layhadi JA, Sánchez-Solares J, Mera-Berriatua L, Bueno-Cabrera JL, Del Mar Reaño-Martos M, Iglesias-Cadarso A, Barbas C, Gomez-Casado C, Villaseñor A, Barber D, Shamji MH, Escribese MM. Deciphering the role of platelets in severe allergy by an integrative omics approach. Allergy 2022; 78:1319-1332. [PMID: 36527294 DOI: 10.1111/all.15621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mechanisms causing the onset and perpetuation of inflammation in severe allergic patients remain unknown. Our previous studies suggested that severe allergic inflammation is linked to platelet dysfunction. METHODS Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) samples were obtained by platelet-apheresis from severe (n = 7) and mild (n = 10) allergic patients and nonallergic subjects (n = 9) to perform platelet lipidomics by liquid chromatography coupled to mass spectrometry (LC-MS) and RNA-seq analysis. Significant metabolites and transcripts were used to identify compromised biological pathways in the severe phenotype. Platelet and inflammation-related proteins were quantified by Luminex. RESULTS Platelets from severe allergic patients were characterized by high levels of ceramides, phosphoinositols, phosphocholines, and sphingomyelins. In contrast, they showed a decrease in eicosanoid precursor levels. Biological pathway analysis performed with the significant lipids revealed the alteration of phospholipases, calcium-dependent events, and linolenic metabolism. RNAseq confirmed mRNA overexpression of genes related to platelet activation and arachidonic acid metabolism in the severe phenotypes. Pathway analysis indicated the alteration of NOD, MAPK, TLR, TNF, and IL-17 pathways in the severe phenotype. P-Selectin and IL-17AF proteins were increased in the severe phenotype. CONCLUSIONS This study demonstrates that platelet lipid, mRNA, and protein content is different according to allergy severity. These findings suggest that platelet load is a potential source of biomarkers and a new chance for therapeutic targets in severe inflammatory pathologies.
Collapse
Affiliation(s)
- Carmela Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Elena Izquierdo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Tiak Ju Tan
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - David Obeso
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España.,Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Janice A Layhadi
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Javier Sánchez-Solares
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Leticia Mera-Berriatua
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - José Luis Bueno-Cabrera
- Department of Hematology and Hemotherapy, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| | | | - Alfredo Iglesias-Cadarso
- Department of Allergy and Immunology, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Cristina Gomez-Casado
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| | - Mohamed H Shamji
- National Heart and Lung Institute, Allergy and Clinical Immunology, Imperial College NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - María M Escribese
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, España
| |
Collapse
|
37
|
Zhan Q, Yi K, Cui X, Li X, Yang S, Wang Q, Fang C, Tan Y, Li L, Xu C, Yuan X, Kang C. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy. Neuro Oncol 2022; 24:1871-1883. [PMID: 35312010 PMCID: PMC9629419 DOI: 10.1093/neuonc/noac071] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Targeting glioblastoma (GBM) energy metabolism through multiple metabolic pathways has emerged as an effective therapeutic approach. Dual inhibition of phospholipid and mitochondrial metabolism with cytoplasmic phospholipase A2 (cPLA2) knockdown and metformin treatment could be a potential strategy. However, the strategic prerequisite is to explore a carrier capable of co-delivering the therapeutic combination to cross the blood-brain barrier (BBB) and preferentially accumulate at the GBM site. METHODS Blood exosomes (Exos) were selected as the combination delivery carriers. The cellular uptake of Exos and the therapeutic effects of the combination strategy were evaluated in primary GBM cells. In vivo GBM-targeted delivery efficiency and anti-GBM efficacy were tested in a patient-derived xenograft (PDX) model. RESULTS Here, we showed that the Exos-mediated cPLA2 siRNA/metformin combined strategy could regulate GBM energy metabolism for personalized treatment. Genomic analysis and experiments showed that polymerase 1 and transcript release factor (PTRF, a biomarker of GBM) positively regulated the uptake of Exos by GBM cells, confirming the feasibility of the delivery strategy. Further, Exos could co-load cPLA2 siRNA (sicPLA2) and metformin and co-deliver them across the BBB and into GBM tissue. The mitochondrial energy metabolism of GBM was impaired with this combination treatment (Exos-Met/sicPLA2). In the PDX GBM model, systemic administration of Exos-Met/sicPLA2 reduced tumor growth and prolonged survival. CONCLUSIONS Our findings demonstrated that Exos-based combined delivery of sicPLA2 and metformin selectively targeted the GBM energy metabolism to achieve antitumor effects, showing its potential as a personalized therapy for GBM patients.
Collapse
Affiliation(s)
| | | | | | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Shixue Yang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Baoding, China
| | - Lijie Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Can Xu
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xubo Yuan
- Corresponding Authors: Xubo Yuan, PhD, Tianjin University, 92 Weijin Road, Tianjin 300072, China ()
| | - Chunsheng Kang
- Chunsheng Kang, PhD, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China ()
| |
Collapse
|
38
|
Criscuolo A, Nepachalovich P, Garcia-del Rio DF, Lange M, Ni Z, Baroni M, Cruciani G, Goracci L, Blüher M, Fedorova M. Analytical and computational workflow for in-depth analysis of oxidized complex lipids in blood plasma. Nat Commun 2022; 13:6547. [PMID: 36319635 PMCID: PMC9626469 DOI: 10.1038/s41467-022-33225-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022] Open
Abstract
Lipids are a structurally diverse class of biomolecules which can undergo a variety of chemical modifications. Among them, lipid (per)oxidation attracts most of the attention due to its significance in the regulation of inflammation, cell proliferation and death programs. Despite their apparent regulatory significance, the molecular repertoire of oxidized lipids remains largely elusive as accurate annotation of lipid modifications is complicated by their low abundance and often unknown, biological context-dependent structural diversity. Here, we provide a workflow based on the combination of bioinformatics and LC-MS/MS technologies to support identification and relative quantification of oxidized complex lipids in a modification type- and position-specific manner. The developed methodology is used to identify epilipidomics signatures of lean and obese individuals with and without type 2 diabetes. The characteristic signature of lipid modifications in lean individuals, dominated by the presence of modified octadecanoid acyl chains in phospho- and neutral lipids, is drastically shifted towards lipid peroxidation-driven accumulation of oxidized eicosanoids, suggesting significant alteration of endocrine signalling by oxidized lipids in metabolic disorders.
Collapse
Affiliation(s)
- Angela Criscuolo
- grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany ,grid.424957.90000 0004 0624 9165Thermo Fisher Scientific, 63303 Dreieich, Germany
| | - Palina Nepachalovich
- grid.4488.00000 0001 2111 7257Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany ,grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Diego Fernando Garcia-del Rio
- grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Mike Lange
- grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Zhixu Ni
- grid.4488.00000 0001 2111 7257Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany ,grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| | - Massimo Baroni
- grid.452579.8Molecular Discovery, Kinetic Business Centre, Borehamwood, WD6 4PJ Hertfordshire UK
| | - Gabriele Cruciani
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Laura Goracci
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Matthias Blüher
- grid.9647.c0000 0004 7669 9786Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, 04103 Leipzig, Germany ,grid.411339.d0000 0000 8517 9062Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Maria Fedorova
- grid.4488.00000 0001 2111 7257Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany ,grid.9647.c0000 0004 7669 9786Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013 Leipzig, Germany ,grid.9647.c0000 0004 7669 9786Center for Biotechnology and Biomedicine, University of Leipzig, 04013 Leipzig, Germany
| |
Collapse
|
39
|
Yang S, Zhao J, Cui X, Zhan Q, Yi K, Wang Q, Xiao M, Tan Y, Hong B, Fang C, Kang C. TCA-phospholipid-glycolysis targeted triple therapy effectively suppresses ATP production and tumor growth in glioblastoma. Theranostics 2022; 12:7032-7050. [PMID: 36276638 PMCID: PMC9576613 DOI: 10.7150/thno.74197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
Rationale: Glioblastoma (GBM) displays a complex metabolic reprogramming in cancer cells. Adenosine triphosphate (ATP) is one of the central mediators of cell metabolism and signaling. GBM cells generate ATP by glycolysis and the tricarboxylic acid (TCA) cycle associated with oxidative phosphorylation (OXPHOS) through the breaking-down of pyruvate or fatty acids to meet the growing energy demand of cancer cells. Therefore, it's urgent to develop novel treatments targeting energy metabolism to hinder tumor cell proliferation in GBM. Methods: Non-targeted metabolomic profiling analysis was utilized to evaluate cell metabolic reprogramming using a small molecule inhibitor (SMI) EPIC-0412 treatment. Cellular oxygen consumption rate (OCR) and the total proton efflux rate (PER), as well as ATP concentration, were tracked to study metabolic responses to specifically targeted inhibitors, including EPIC-0412, arachidonyl trifluoromethyl ketone (AACOCF3), and 2 deoxy-D-glucose (2-DG). Cancer cell proliferation was assessed by CCK-8 measurements and colony formation assay. Additionally, flow cytometry, immunoblotting (IB), and immunofluorescence (IF) analyses were performed with GBM cells to understand their tumorigenic properties under treatments. Finally, the anticancer effects of this combination therapy were evaluated in the GBM mouse model by convection-enhanced delivery (CED). Results: We found that SMI EPIC-0412 could effectively perturb the TCA cycle, which participated in the combination therapy of cytosolic phospholipase A2 (cPLA2)-inhibitor AACOCF3, and hexokinase II (HK2)-inhibitor 2-DG to disrupt the GBM energy metabolism for targeted metabolic treatments. ATP production was significantly declined in glioma cells when treated with monotherapy (EPIC-0412 or AACOCF3), dual therapy (EPIC-0412 + AACOCF3), or triple therapy (EPIC-0412 + AACOCF3 +2-DG) regimen. Our experiments revealed that these therapies hindered glioma cell proliferation and growth, leading to the reduction in ATP production and G0/G1 cell cycle arrest. We demonstrated that the combination therapy effectively extended the survival of cerebral tumor-bearing mice. Conclusion: Our findings indicate that the TCA-phospholipid-glycolysis metabolism axis can be blocked by specific inhibitors that significantly disrupt the tumor energy metabolism and suppress tumor proliferation in vitro and in vivo, suggesting that targeting ATP synthesis inhibition in cancer cells might be an attractive therapeutic avenue in GBM management.
Collapse
Affiliation(s)
- Shixue Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xiaoteng Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Kaikai Yi
- Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Menglin Xiao
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, 071000, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Department of Pathology, Hebei University School of Basic Medical Sciences, Baoding, 071000, China
| | - Biao Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, 071000, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| |
Collapse
|
40
|
Contursi A, Tacconelli S, Hofling U, Bruno A, Dovizio M, Ballerini P, Patrignani P. Biology and pharmacology of platelet-type 12-lipoxygenase in platelets, cancer cells, and their crosstalk. Biochem Pharmacol 2022; 205:115252. [PMID: 36130648 DOI: 10.1016/j.bcp.2022.115252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Platelet-type lipoxygenase (pl12-LOX), encoded by ALOX12, catalyzes the production of the lipid mediator 12S-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12S-HpETE), which is quickly reduced by cellular peroxidases to form 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12S-HETE). Platelets express high levels of pl12-LOX and generate considerable amounts of 12S-HETE from arachidonic acid (AA; C20:4, n-6). The development of sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods has allowed the accurate quantification of 12S-HETE in biological samples. Moreover, advances in the knowledge of the mechanism of action of 12S-HETE have been achieved. The orphan G-protein-coupled receptor 31 (GPR31) has been identified as the high-affinity 12S-HETE receptor. Moreover, upon platelet activation, 12S-HETE is produced, and significant amounts are found esterified to membrane phospholipids (PLs), such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), promoting thrombin generation. Platelets play many roles in cancer metastasis. Among them, the platelets' ability to interact with cancer cells and transfer platelet molecules by the release of extracellular vesicles (EVs) is noteworthy. Recently, it was found that platelets induce epithelial-mesenchymal transition(EMT) in cancer cells, a phenomenon known to confer high-grade malignancy, through the transfer of pl12-LOX contained in platelet-derived EVs. These cancer cells now generate 12-HETE, considered a key modulator of cancer metastasis. Interestingly, 12-HETE was mainly found esterified in plasmalogen phospholipids of cancer cells. This review summarizes the current knowledge on the regulation and functions of pl12-LOX in platelets and cancer cells and their crosstalk.Novel approaches to preventing cancer and metastasis by the pharmacological inhibition of pl12-LOX and the internalization of mEVs are discussed.
Collapse
Affiliation(s)
- Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Ulrika Hofling
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
41
|
Manke MC, Ahrends R, Borst O. Platelet lipid metabolism in vascular thrombo-inflammation. Pharmacol Ther 2022; 237:108258. [DOI: 10.1016/j.pharmthera.2022.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
42
|
Fu X, Calderón C, Harm T, Gawaz M, Lämmerhofer M. Advanced unified monophasic lipid extraction protocol with wide coverage on the polarity scale optimized for large-scale untargeted clinical lipidomics analysis of platelets. Anal Chim Acta 2022; 1221:340155. [DOI: 10.1016/j.aca.2022.340155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/01/2022]
|
43
|
Schuurman AR, Léopold V, Pereverzeva L, Chouchane O, Reijnders TDY, Brabander JD, Douma RA, Weeghel MV, Wever E, Schomaker BV, Vaz FM, Wiersinga WJ, Veer CV, Poll TVD. The Platelet Lipidome Is Altered in Patients with COVID-19 and Correlates with Platelet Reactivity. Thromb Haemost 2022; 122:1683-1692. [PMID: 35850149 PMCID: PMC9512584 DOI: 10.1055/s-0042-1749438] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Activated platelets have been implicated in the proinflammatory and prothrombotic phenotype of coronavirus disease 2019 (COVID-19). While it is increasingly recognized that lipids have important structural and signaling roles in platelets, the lipidomic landscape of platelets during infection has remained unexplored. OBJECTIVE To investigate the platelet lipidome of patients hospitalized for COVID-19. METHODS We performed untargeted lipidomics in platelets of 25 patients hospitalized for COVID-19 and 23 noninfectious controls with similar age and sex characteristics, and with comparable comorbidities. RESULTS Twenty-five percent of the 1,650 annotated lipids were significantly different between the groups. The significantly altered part of the platelet lipidome mostly comprised lipids that were less abundant in patients with COVID-19 (20.4% down, 4.6% up, 75% unchanged). Platelets from COVID-19 patients showed decreased levels of membrane plasmalogens, and a distinct decrease of long-chain, unsaturated triacylglycerols. Conversely, platelets from patients with COVID-19 displayed class-wide higher abundances of bis(monoacylglycero)phosphate and its biosynthetic precursor lysophosphatidylglycerol. Levels of these classes positively correlated with ex vivo platelet reactivity-as measured by P-selectin expression after PAR1 activation-irrespective of disease state. CONCLUSION Taken together, this investigation provides the first exploration of the profound impact of infection on the human platelet lipidome, and reveals associations between the lipid composition of platelets and their reactivity. These results warrant further lipidomic research in other infections and disease states involving platelet pathophysiology.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Valentine Léopold
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Anesthesia and Intensive Care, Hôpital Lariboisière, INSERM U942S MASCOT, Université de Paris, Paris, France
| | - Liza Pereverzeva
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Osoul Chouchane
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom D Y Reijnders
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée A Douma
- Department of Internal Medicine, Flevo Hospital, Almere, The Netherlands
| | - Michel van Weeghel
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eric Wever
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology & Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke V Schomaker
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Core Facility Metabolomics, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis Van't Veer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Murakami M, Takamiya R, Miki Y, Sugimoto N, Nagasaki Y, Suzuki-Yamamoto T, Taketomi Y. Segregated functions of two cytosolic phospholipase A 2 isoforms (cPLA 2α and cPLA 2ε) in lipid mediator generation. Biochem Pharmacol 2022; 203:115176. [PMID: 35841927 DOI: 10.1016/j.bcp.2022.115176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Among the phospholipase A2 (PLA2) superfamily, group IVA cytosolic PLA2 (cPLA2α) is currently attracting much attention as a central regulator of arachidonic acid (AA) metabolism linked to eicosanoid biosynthesis. Following cell activation, cPLA2α selectively releases AA, a precursor of a variety of eicosanoids, from phospholipids in perinuclear membrane compartments. cPLA2α-null mice display various phenotypes that could be largely explained by reduced eicosanoid signaling. In contrast, group IVE cPLA2ε, another member of the cPLA2 family, acts as a Ca2+-dependent N-acyltransferase rather than a PLA2, thereby regulating the biosynthesis of N-acylethanolamines (NAEs), a unique class of lipid mediators with an anti-inflammatory effect. In response to Ca2+ signaling, cPLA2ε translocates to phosphatidylserine-rich organelle membranes in the endocytic/recycling pathway. In vivo, cPLA2ε is induced in keratinocytes of psoriatic skin, and its genetic deletion exacerbates psoriatic inflammation due to a marked reduction of NAE-related lipids. cPLA2ε also contributes to NAE generation in several if not all mouse tissues. Thus, the two members of the cPLA2 family, cPLA2α and cPLA2ε, catalyze distinct enzymatic reactions to mobilize distinct sets of lipid mediators, thereby differently regulating pathophysiological events in health and disease. Such segregation of the cPLA2α-eicosanoid and cPLA2ε-NAE pathways represents a new paradigm of research on PLA2s and lipid mediators.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Rina Takamiya
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Sugimoto
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Nagasaki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Muralidharan S, Torta F, Lin MK, Olona A, Bagnati M, Moreno-Moral A, Ko JH, Ji S, Burla B, Wenk MR, Rodrigues HG, Petretto E, Behmoaras J. Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Front Immunol 2022; 13:926220. [PMID: 35844525 PMCID: PMC9280915 DOI: 10.3389/fimmu.2022.926220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4)-mediated changes in macrophages reshape intracellular lipid pools to coordinate an effective innate immune response. Although this has been previously well-studied in different model systems, it remains incompletely understood in primary human macrophages. Here we report time-dependent lipidomic and transcriptomic responses to lipopolysaccharide (LPS) in primary human macrophages from healthy donors. We grouped the variation of ~200 individual lipid species measured by LC-MS/MS into eight temporal clusters. Among all other lipids, glycosphingolipids (glycoSP) and cholesteryl esters (CE) showed a sharp increase during the resolution phase (between 8h or 16h post LPS). GlycoSP, belonging to the globoside family (Gb3 and Gb4), showed the greatest inter-individual variability among all lipids quantified. Integrative network analysis between GlycoSP/CE levels and genome-wide transcripts, identified Gb4 d18:1/16:0 and CE 20:4 association with subnetworks enriched for T cell receptor signaling (PDCD1, CD86, PTPRC, CD247, IFNG) and DC-SIGN signaling (RAF1, CD209), respectively. Our findings reveal Gb3 and Gb4 globosides as sphingolipids associated with the resolution phase of inflammatory response in human macrophages.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| | - Michelle K. Lin
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Antoni Olona
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Marta Bagnati
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore
| | - Jeong-Hun Ko
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore,Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hosana G. Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,MRC London Institute of Medical Sciences (LMC), Imperial College, London, United Kingdom,Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - Jacques Behmoaras
- Program in Cardiovascular and Metabolic Disorders (CVMD) and Center for Computational Biology (CCB), Duke NUS Graduate Medical School, Singapore, Singapore,Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom,*Correspondence: Jacques Behmoaras, ; Federico Torta,
| |
Collapse
|
46
|
Jin W, Zhao J, Yang E, Wang Y, Wang Q, Wu Y, Tong F, Tan Y, Zhou J, Kang C. Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A. Theranostics 2022; 12:3196-3216. [PMID: 35547748 PMCID: PMC9065197 DOI: 10.7150/thno.71029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1α and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1α/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Weili Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Eryan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Ye Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Junhu Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin City, Tianjin 300052, China
| |
Collapse
|
47
|
Protty MB, Jenkins PV, Collins PW, O'Donnell VB. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol 2022; 12:210318. [PMID: 35440201 PMCID: PMC9019515 DOI: 10.1098/rsob.210318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Phospholipids (PLs) are found in all cell types and are required for structural support and cell activation signalling pathways. In resting cells, PLs are asymmetrically distributed throughout the plasma membrane with native procoagulant aminophospholipids (aPLs) being actively maintained in the inner leaflet of the membrane. Upon platelet activation, aPLs rapidly externalize to the outer leaflet and are essential for supporting the coagulation cascade by providing binding sites for factors in the cell-based model. More recent work has uncovered a role for enzymatically oxidized PLs (eoxPLs) in facilitating coagulation, working in concert with native aPLs. Despite this, the role of aPLs and eoxPLs in thrombo-inflammatory conditions, such as arterial and venous thrombosis, has not been fully elucidated. In this review, we describe the biochemical structures, distribution and regulation of aPL externalization and summarize the literature on eoxPL generation in circulating blood cells. We focus on the currently understood role of these lipids in mediating coagulation reactions in vitro, in vivo and in human thrombotic disease. Finally, we highlight gaps in our understanding in how these lipids vary in health and disease, which may place them as future therapeutic targets for the management of thrombo-inflammatory conditions.
Collapse
Affiliation(s)
- Majd B. Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - P. Vince Jenkins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | - Peter W. Collins
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
48
|
Tyagi T, Jain K, Gu SX, Qiu M, Gu VW, Melchinger H, Rinder H, Martin KA, Gardiner EE, Lee AI, Ho Tang W, Hwa J. A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences. NATURE CARDIOVASCULAR RESEARCH 2022; 1:223-237. [PMID: 37502132 PMCID: PMC10373053 DOI: 10.1038/s44161-022-00021-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/17/2022] [Indexed: 07/29/2023]
Abstract
Platelets have been shown to be associated with pathophysiological process beyond thrombosis, demonstrating critical additional roles in homeostatic processes, such as immune regulation, and vascular remodeling. Platelets themselves can have multiple functional states and can communicate and regulate other cells including immune cells and vascular smooth muscle cells, to serve such diverse functions. Although traditional platelet functional assays are informative and reliable, they are limited in their ability to unravel platelet phenotypic heterogeneity and interactions. Developments in methods such as electron microscopy, flow cytometry, mass spectrometry, and 'omics' studies, have led to new insights. In this Review, we focus on advances in platelet biology and function, with an emphasis on current and promising methodologies. We also discuss technical and biological challenges in platelet investigations. Using coronavirus disease 2019 (COVID-19) as an example, we further describe the translational relevance of these approaches and the possible 'bench-to-bedside' utility in patient diagnosis and care.
Collapse
Affiliation(s)
- Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Miaoyun Qiu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Hannah Melchinger
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Henry Rinder
- Department of Laboratory Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth E Gardiner
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
49
|
O'Donnell VB. New appreciation for an old pathway: the Lands Cycle moves into new arenas in health and disease. Biochem Soc Trans 2022; 50:1-11. [PMID: 35225335 PMCID: PMC9022965 DOI: 10.1042/bst20210579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
The Lands Pathway is a fundamental biochemical process named for its discovery by William EM Lands and revealed in a series of seminal papers published in the Journal of Biological Chemistry between 1958-65. It describes the selective placement in phospholipids of acyl chains, by phospholipid acyltransferases. This pathway has formed a core component of our knowledge of phospholipid and also diglyceride metabolism in mammalian tissues for over 60 years now. Our understanding of how the Lands pathways are enzymatically mediated via large families of related gene products that display both substrate and tissue specificity has grown exponentially since. Recent studies building on this are starting to reveal key roles for the Lands pathway in specific scenarios, in particular inflammation, immunity and inflammation. This review will cover the Lands cycle from historical perspectives first, then present new information on how this important cycle forms a central regulatory node connecting fatty acyl and phospholipid metabolism and how its altered regulation may present new opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Valerie B. O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4SN, U.K
| |
Collapse
|
50
|
Misheva M, Kotzamanis K, Davies LC, Tyrrell VJ, Rodrigues PRS, Benavides GA, Hinz C, Murphy RC, Kennedy P, Taylor PR, Rosas M, Jones SA, McLaren JE, Deshpande S, Andrews R, Schebb NH, Czubala MA, Gurney M, Aldrovandi M, Meckelmann SW, Ghazal P, Darley-Usmar V, White DA, O'Donnell VB. Oxylipin metabolism is controlled by mitochondrial β-oxidation during bacterial inflammation. Nat Commun 2022; 13:139. [PMID: 35013270 PMCID: PMC8748967 DOI: 10.1038/s41467-021-27766-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial β-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin β-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by β-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial β-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.
Collapse
Affiliation(s)
- Mariya Misheva
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Konstantinos Kotzamanis
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Luke C Davies
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Patricia R S Rodrigues
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christine Hinz
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Paul Kennedy
- Cayman Chemical, 1180 E Ellsworth Rd, Ann Arbor, MI, 48108, USA
| | - Philip R Taylor
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, CF14 4XN, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Simon A Jones
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - James E McLaren
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Sumukh Deshpande
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gausstraße 20, 42119, Wuppertal, Germany
| | - Magdalena A Czubala
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Mark Gurney
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Sven W Meckelmann
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Peter Ghazal
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Daniel A White
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK.
| |
Collapse
|