1
|
Saleh RO, Aboqader Al-Aouadi RF, Almuzaini NA, Uthirapathy S, Sanghvi G, Soothwal P, Arya R, Bareja L, Mohamed Abdelgawwad El-Sehrawy AA, Hulail HM. Glucose metabolism is controlled by non-coding RNAs in autoimmune diseases; a glimpse into immune system dysregulation. Hum Immunol 2025; 86:111269. [PMID: 39999745 DOI: 10.1016/j.humimm.2025.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The immune system accidentally targets the body's tissues, causing inflammation and tissue damage, the root causes of autoimmune illnesses. In recent studies, non-coding RNAs have been shown to significantly control gene expression and metabolic pathways linked to autoimmune diseases. This review investigates the effects of non-coding RNA on glucose metabolism, a route frequently dysregulated in autoimmune illnesses such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and diabetes. We review how non-coding RNA affects immune cell activity modulation, glucose absorption, glycolysis, and other metabolic processes critical to immune function. We also investigate the possibility of using non-coding RNA-mediated metabolic pathway targeting as a new therapeutic approach to treat autoimmune disorders. By clarifying the complex interplay of non-coding RNA, glucose metabolism, and immune dysregulation, this study endeavors to enhance comprehension of autoimmune etiology and facilitate the creation of focused therapies.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Li L, Wu YQ, Yang JE. Stress-Related LncRNAs and Their Roles in Diabetes and Diabetic Complications. Int J Mol Sci 2025; 26:2194. [PMID: 40076814 PMCID: PMC11900361 DOI: 10.3390/ijms26052194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder and one of the most significant global health burdens worldwide. Key pathophysiological mechanisms underlying its onset and associated complications include hyperglycemia-related stresses, such as oxidative stress and endoplasmic reticulum stress (ER stress). Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides and lacking protein-coding capacity, play crucial roles in various biological processes and have emerged as crucial regulators in the pathogenesis of diabetes. This review provides a comprehensive overview of lncRNA biogenesis and its functional roles, emphasizing recent findings that link stress-related lncRNAs to diabetic pathology and complications. Also, we discuss how lncRNAs influence diabetes and its complications by modulating pathways involved in cell death, proliferation, inflammation, and fibrosis, which contribute to pancreatic β cell dysfunction, insulin resistance, diabetic nephropathy, and retinopathy. By analyzing current research, we aim to enhance understanding of lncRNA involvement in diabetes while identifying potential therapeutic targets and guiding future research directions to elucidate the complex mechanisms underlying this pervasive condition.
Collapse
Affiliation(s)
| | | | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, China; (L.L.); (Y.-Q.W.)
| |
Collapse
|
3
|
Xi X, Li J, Jia J, Meng Q, Li C, Wang X, Wei L, Zhang X. A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions. Nat Commun 2025; 16:1284. [PMID: 39900922 PMCID: PMC11790924 DOI: 10.1038/s41467-025-56475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory mechanisms, limiting the decoding of regulations behind key cellular events, such as cell state transitions. Here, we present regX, a deep neural network incorporating both gene-level regulation and gene-gene interaction mechanisms, which enables prioritizing potential driver regulators of cell state transitions and providing mechanistic interpretations. Applied to single-cell multi-omics data on type 2 diabetes and hair follicle development, regX reliably prioritizes key transcription factors and candidate cis-regulatory elements that drive cell state transitions. Some regulators reveal potential new therapeutic targets, drug repurposing possibilities, and putative causal single nucleotide polymorphisms. This method to analyze single-cell multi-omics data demonstrates how the interpretable design of neural networks can better decode biological systems.
Collapse
Affiliation(s)
- Xi Xi
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jiaqi Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Jinmeng Jia
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Qiuchen Meng
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Chen Li
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Sethi SC, Singh R, Sahay O, Barik GK, Kalita B. Unveiling the hidden gem: A review of long non-coding RNA NBAT-1 as an emerging tumor suppressor and prognostic biomarker in cancer. Cell Signal 2025; 126:111525. [PMID: 39592019 DOI: 10.1016/j.cellsig.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Previously considered junk or non-functional, long non-coding RNAs (lncRNAs) have emerged over the past few decades as pivotal components in both physiological and pathological processes, including cancer. Neuroblastoma-associated transcript-1 (NBAT-1) was initially discovered a decade ago as a risk-associated tumor suppressor lncRNA in neuroblastoma (NB). Subsequent studies have consistently demonstrated that NBAT-1 serves as a dedicated tumor suppressor in many cancers. NBAT-1 is significantly downregulated in cancer, which is closely linked to higher histological grades, increased metastasis, and poor survival in cancer patients suggesting NBAT-1's potential as a prognostic biomarker. In this review, we delve into the current body of literature, elucidating the tumor-suppressive roles of NBAT-1 and the underlying regulatory mechanisms in the context of human malignancies. Additionally, we shed light on the mechanisms contributing to the diminished expression of NBAT-1 and its potential as both a prognostic biomarker and a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ragini Singh
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Osheen Sahay
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ganesh Kumar Barik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Bhargab Kalita
- Amrita Research Center, Amrita Vishwa Vidyapeetham, Amrita Hospital, Mata Amritanandamayi Marg, Faridabad 121002, India.
| |
Collapse
|
5
|
Lopez-Noriega L, Callingham R, Martinez-Sánchez A, Nawaz S, Pizza G, Haberman N, Cvetesic N, Nguyen-Tu MS, Lenhard B, Marchetti P, Piemonti L, de Koning E, Shapiro AJ, Johnson PR, Leclerc I, Hastoy B, Gauthier BR, Pullen TJ, Rutter GA. Roles for the long non-coding RNA Pax6os1/ PAX6-AS1 in pancreatic beta cell function. iScience 2025; 28:111518. [PMID: 39811653 PMCID: PMC11731260 DOI: 10.1016/j.isci.2024.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes. Silencing Pax6os1/PAX6-AS1 in MIN6 or EndoC-βH1 cells increased several beta cell signature genes' expression. Pax6os1/PAX6-AS1 was shown to bind to EIF3D, indicating a role in translation of specific mRNAs, as well as histones H3 and H4, suggesting a role in histone modifications. Important interspecies differences were found, with a stronger phenotype in humans. Only female Pax6os1 null mice fed a high-fat diet showed slightly enhanced glucose clearance. In contrast, silencing PAX6-AS1 in human islets enhanced glucose-stimulated insulin secretion and increased calcium dynamics, whereas overexpression of the lncRNA resulted in the opposite phenotype.
Collapse
Affiliation(s)
- Livia Lopez-Noriega
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Rebecca Callingham
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Aida Martinez-Sánchez
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Nejc Haberman
- Computational Regulatory Genomics, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute (SR–DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eelco de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Hubrecht Institute, Utrecht, the Netherlands
| | - A.M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Paul R. Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain
| | - Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Diabetes, King’s College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- CR-CHUM, Université de Montréal, Montréal, QC, Canada
- Research Institute of McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
6
|
Farhan SH, Jasim SA, Bansal P, Kaur H, Abed Jawad M, Qasim MT, Jabbar AM, Deorari M, Alawadi A, Hadi A. Exosomal Non-coding RNA Derived from Mesenchymal Stem Cells (MSCs) in Autoimmune Diseases Progression and Therapy; an Updated Review. Cell Biochem Biophys 2024; 82:3091-3108. [PMID: 39225902 DOI: 10.1007/s12013-024-01432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Inflammation and autoimmune diseases (AD) are common outcomes of an overactive immune system. Inflammation occurs due to the immune system reacting to damaging stimuli. Exosomes are being recognized as an advanced therapeutic approach for addressing an overactive immune system, positioning them as a promising option for treating AD. Mesenchymal stem cells (MSCs) release exosomes that have strong immunomodulatory effects, influenced by their cell of origin. MSCs-exosomes, being a cell-free therapy, exhibit less toxicity and provoke a diminished immune response compared to cell-based therapies. Exosomal non-coding RNAs (ncRNA), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are intricately linked to various biological and functional aspects of human health. Exosomal ncRNAs can lead to tissue malfunction, aging, and illnesses when they experience tissue-specific alterations as a result of various internal or external problems. In this study, we will examine current trends in exosomal ncRNA researches regarding AD. Then, therapeutic uses of MSCs-exosomal ncRNA will be outlined, with a particle focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Shireen Hamid Farhan
- Biotechnology department, College of Applied Science, Fallujah University, Fallujah, Iraq
| | | | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq.
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of technical engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Hadi
- Department of medical laboratories techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
7
|
Merz S, Senée V, Philippi A, Oswald F, Shaigan M, Führer M, Drewes C, Allgöwer C, Öllinger R, Heni M, Boland A, Deleuze JF, Birkhofer F, Gusmao EG, Wagner M, Hohwieler M, Breunig M, Rad R, Siebert R, Messerer DAC, Costa IG, Alvarez F, Julier C, Kleger A, Heller S. A ONECUT1 regulatory, non-coding region in pancreatic development and diabetes. Cell Rep 2024; 43:114853. [PMID: 39427318 DOI: 10.1016/j.celrep.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
In a patient with permanent neonatal syndromic diabetes clinically similar to cases with ONECUT1 biallelic mutations, we identified a disease-causing deletion located upstream of ONECUT1. Through genetic, genomic, and functional studies, we identified a crucial regulatory region acting as an enhancer of ONECUT1 specifically during pancreatic development. This enhancer region contains a low-frequency variant showing a strong association with type 2 diabetes and other glycemic traits, thus extending the contribution of this region to common forms of diabetes. Clinical relevance is provided by experimentally tailored therapy options for patients carrying ONECUT1 coding or regulatory mutations.
Collapse
Affiliation(s)
- Sarah Merz
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Valérie Senée
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Anne Philippi
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Franz Oswald
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Mina Shaigan
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Cosima Drewes
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Chantal Allgöwer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Franziska Birkhofer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Eduardo G Gusmao
- Centre of Informatics, Federal University of Pernambuco, Recife, Brazil
| | - Martin Wagner
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Center for Translational Cancer Research and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany; Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Fernando Alvarez
- Division of Gastroenterology, Hepatology & Nutrition, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Cécile Julier
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany; Core Facility Organoids, Ulm University, Ulm, Germany.
| | - Sandra Heller
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
8
|
Rezaei N, Dormiani K, Kiani-Esfahani A, Mirdamadian S, Rahmani M, Jafarpour F, Nasr-Esfahani MH. Characterization and functional evaluation of goat PDX1 regulatory modules through comparative analysis of conserved interspecies homologs. Sci Rep 2024; 14:26755. [PMID: 39500950 PMCID: PMC11538457 DOI: 10.1038/s41598-024-77614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
PDX1 is a crucial transcription factor in pancreas development and mature β-cell function. However, the regulation of PDX1 expression in larger animals mirroring human pancreas morphogenesis and endocrine maturation remains poorly understood. Therefore, we conducted a comparative analysis to characterize regulatory regions of goat PDX1 gene and assessed their transcriptional activity by transient transfection of several transgenic EGFP constructs in β- and non-β cell lines. We recognized several highly conserved regions encompassing the promoter and cis-regulatory elements (Area I-IV) at 5' flanking sequence of the genes. Within the promoter, we identified that a key E-box and nearby CAAT element synergistically drive transcription, constituting the basal promoter of goat PDX1 gene. Furthermore, each recognized regulatory area separately enhances this basal promoter activity in β-cells compared to non-β cells; however, cooperatively, they exhibit a bifunctional regulatory effect on transcription. Additionally, the intact ~ 3 kb upstream region (Area I-III) functions as the most efficient reporter transgene in vitro and shows islet-specific expression in native rat pancreas. Together, our findings suggest that the regulation of goat PDX1 gene is governed by conserved regions similar to other mammals, while both structurally and functionally, these regions exhibit a closer resemblance to those found in humans.
Collapse
Affiliation(s)
- Naeimeh Rezaei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Abbas Kiani-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Mirdamadian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Oguntoyinbo IO, Goyal R. The Role of Long Intergenic Noncoding RNA in Fetal Development. Int J Mol Sci 2024; 25:11453. [PMID: 39519006 PMCID: PMC11546696 DOI: 10.3390/ijms252111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The role of long intergenic noncoding RNAs (lincRNAs) in fetal development has emerged as a significant area of study, challenging the traditional protein-centric view of gene expression. While messenger RNAs (mRNAs) have long been recognized for their role in encoding proteins, recent advances have illuminated the critical functions of lincRNAs in various biological processes. Initially identified through high-throughput sequencing technologies, lincRNAs are transcribed from intergenic regions between protein-coding genes and exhibit unique regulatory functions. Unlike mRNAs, lincRNAs are involved in complex interactions with chromatin and chromatin-modifying complexes, influencing gene expression and chromatin structure. LincRNAs are pivotal in regulating tissue-specific development and embryogenesis. For example, they are crucial for proper cardiac, neural, and reproductive system development, with specific lincRNAs being associated with organogenesis and differentiation processes. Their roles in embryonic development include regulating transcription factors and modulating chromatin states, which are essential for maintaining developmental programs and cellular identity. Studies using RNA sequencing and genetic knockout models have highlighted the importance of lincRNAs in processes such as cell differentiation, tissue patterning, and organ development. Despite their functional significance, the comprehensive annotation and understanding of lincRNAs remain limited. Ongoing research aims to elucidate their mechanisms of action and potential applications in disease diagnostics and therapeutics. This review summarizes current knowledge on the functional roles of lincRNAs in fetal development, emphasizing their contributions to tissue-specific gene regulation and developmental processes.
Collapse
Affiliation(s)
- Ifetoluwani Oluwadunsin Oguntoyinbo
- School of Animal and Comparative Biomedical Sciences, College of Agriculture, Life & Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Ravi Goyal
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
10
|
Dong Y, He Y, Geng Y, Wei M, Zhou X, Lian J, Hallajzadeh J. Autophagy-related lncRNAs and exosomal lncRNAs in colorectal cancer: focusing on lncRNA-targeted strategies. Cancer Cell Int 2024; 24:328. [PMID: 39342235 PMCID: PMC11439232 DOI: 10.1186/s12935-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.
Collapse
Affiliation(s)
- Yan Dong
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yiwei He
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yanna Geng
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Meimei Wei
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Xiaomei Zhou
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Jianlun Lian
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China.
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
11
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
12
|
Huang X, Gu F, Zhao M, Huang W, Han W, Chen R, Wang Y. Function and Therapeutic Potential of Non-Coding RNA in Ameloblastoma. Onco Targets Ther 2024; 17:643-653. [PMID: 39131904 PMCID: PMC11316470 DOI: 10.2147/ott.s474038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Ameloblastoma (AB) is a common odontogenic tumor that develops in the mouth. Despite its benign nature, AB exhibits significant invasiveness leading to tumor metastasis and high postoperative recurrence rates. Studies have shown a relationship between the occurrence and development of various tumors and non-coding RNA (ncRNA). NcRNA, transcribed from the genomes of mammals and other complex organisms, are often products of alternative splicing and processing into smaller products. MicroRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA) are the main types of ncRNA. NcRNA play increasingly significant roles in the pathogenesis of human cancers, regulating their occurrence and progression as oncogenes or tumor suppressors. They are involved in tumor development and progression through alternative splicing of pre-mRNA, transcriptional regulation, mRNA stability, protein translation, and chromatin remodeling and modification. The importance of ncRNA in AB has received significant attention in recent years. However, the biological functions and mechanisms of ncRNA in AB remain largely unknown. In this review, we not only explore the functions and roles of ncRNA in AB, but also describe and envision their potential functional roles as biomarkers in AB diagnosis. In particular, we highlight the potential of miR-29a as a molecular marker for diagnosis and therapy. As promising novel therapeutic targets, the biological functions of ncRNA need further study, which is indispensable.
Collapse
Affiliation(s)
- Xu Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Feihan Gu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Mingyu Zhao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Wenjia Han
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Ran Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Yuanyin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
13
|
Shi L, Han X, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr Issues Mol Biol 2024; 46:7558-7576. [PMID: 39057090 PMCID: PMC11276060 DOI: 10.3390/cimb46070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (L.S.); (X.H.); (F.L.); (J.L.); (Y.J.); (S.C.); (G.D.)
| |
Collapse
|
14
|
Das S, Zea Rojas MP, Tran EJ. Novel insights on the positive correlation between sense and antisense pairs on gene expression. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1864. [PMID: 39087253 PMCID: PMC11626863 DOI: 10.1002/wrna.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/02/2024]
Abstract
A considerable proportion of the eukaryotic genome undergoes transcription, leading to the generation of noncoding RNA molecules that lack protein-coding information and are not subjected to translation. These noncoding RNAs (ncRNAs) are well recognized to have essential roles in several biological processes. Long noncoding RNAs (lncRNAs) represent the most extensive category of ncRNAs found in the human genome. Much research has focused on investigating the roles of cis-acting lncRNAs in the regulation of specific target gene expression. In the majority of instances, the regulation of sense gene expression by its corresponding antisense pair occurs in a negative (discordant) manner, resulting in the suppression of the target genes. The notion that a negative correlation exists between sense and antisense pairings is, however, not universally valid. In fact, several recent studies have reported a positive relationship between corresponding cis antisense pairs within plants, budding yeast, and mammalian cancer cells. The positive (concordant) correlation between anti-sense and sense transcripts leads to an increase in the level of the sense transcript within the same genomic loci. In addition, mechanisms such as altering chromatin structure, the formation of R loops, and the recruitment of transcription factors can either enhance transcription or stabilize sense transcripts through their antisense pairs. The primary objective of this work is to provide a comprehensive understanding of both aspects of antisense regulation, specifically focusing on the positive correlation between sense and antisense transcripts in the context of eukaryotic gene expression, including its implications towards cancer progression. This article is categorized under: RNA Processing > 3' End Processing Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| | | | - Elizabeth J. Tran
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Institute for Cancer Research, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
15
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Elmasri RA, Rashwan AA, Gaber SH, Rostom MM, Karousi P, Yasser MB, Kontos CK, Youness RA. Puzzling out the role of MIAT LncRNA in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:547-559. [PMID: 38515792 PMCID: PMC10955557 DOI: 10.1016/j.ncrna.2024.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024] Open
Abstract
A non-negligible part of our DNA has been proven to be transcribed into non-protein coding RNA and its intricate involvement in several physiological processes has been highly evidenced. The significant biological role of non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) has been variously reported. In the current review, the authors highlight the multifaceted role of myocardial infarction-associated transcript (MIAT), a well-known lncRNA, in hepatocellular carcinoma (HCC). Since its discovery, MIAT has been described as a regulator of carcinogenesis in several malignant tumors and its overexpression predicts poor prognosis in most of them. At the molecular level, MIAT is closely linked to the initiation of metastasis, invasion, cellular migration, and proliferation, as evidenced by several in-vitro and in-vivo models. Thus, MIAT is considered a possible theranostic agent and therapeutic target in several malignancies. In this review, the authors provide a comprehensive overview of the underlying molecular mechanisms of MIAT in terms of its downstream target genes, interaction with other classes of ncRNAs, and potential clinical implications as a diagnostic and/or prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Rawan Amr Elmasri
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Alaa A. Rashwan
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo (AUC), 11835, Cairo, Egypt
| | - Sarah Hany Gaber
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| | - Monica Mosaad Rostom
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), 11835, Cairo, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt
| |
Collapse
|
17
|
Luo H, Jing H, Chen W. An extensive overview of the role of lncRNAs generated from immune cells in the etiology of cancer. Int Immunopharmacol 2024; 133:112063. [PMID: 38677091 DOI: 10.1016/j.intimp.2024.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are involved in the control of critical tumor-suppressor and oncogenic pathways in cancer. These types of non-coding RNAs could affect both immune and cancer cells. The thorough analysis of lncRNAs derived from immune cells and the incorporation of new findings significantly advance our understanding of the complex role of lncRNAs in the context of cancer. This work highlights the promise of lncRNAs for translational therapeutic approaches while also establishing a solid foundation for comprehending the complex link between lncRNAs and cancer through a coherent narrative. The main findings of this article are that types of lncRNAs derived from immune cells, such as MM2P and MALAT1, can affect the behaviors of cancer cells, like invasion, angiogenesis, and proliferation. As research in this area grows, the therapeutic potential of targeting these lncRNAs offers promising opportunities for expanding our understanding of cancer biology and developing cutting-edge, precision-based therapies for cancer therapy.
Collapse
Affiliation(s)
- Hong Luo
- Department of Oncology, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China.
| | - Hailiang Jing
- Department of Integrative Medicine, Yancheng Branch of Nanjing Drum Tower Hospital, Yancheng, Jiangsu Province, China
| | - Wei Chen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
18
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Cuozzo F, Viloria K, Shilleh AH, Nasteska D, Frazer-Morris C, Tong J, Jiao Z, Boufersaoui A, Marzullo B, Rosoff DB, Smith HR, Bonner C, Kerr-Conte J, Pattou F, Nano R, Piemonti L, Johnson PRV, Spiers R, Roberts J, Lavery GG, Clark A, Ceresa CDL, Ray DW, Hodson L, Davies AP, Rutter GA, Oshima M, Scharfmann R, Merrins MJ, Akerman I, Tennant DA, Ludwig C, Hodson DJ. LDHB contributes to the regulation of lactate levels and basal insulin secretion in human pancreatic β cells. Cell Rep 2024; 43:114047. [PMID: 38607916 PMCID: PMC11164428 DOI: 10.1016/j.celrep.2024.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning β cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and β cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human β cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in β cells to maintain appropriate insulin release.
Collapse
Affiliation(s)
- Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ali H Shilleh
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charlotte Frazer-Morris
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jason Tong
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Zicong Jiao
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Geneplus-Beijing, Changping District, Beijing 102206, China
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel B Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah R Smith
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Caroline Bonner
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000 Lille, France
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Paul R V Johnson
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca Spiers
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Systems Health and Integrated Metabolic Research (SHiMR), Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Carlo D L Ceresa
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amy P Davies
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; CHUM Research Centre and Faculty of Medicine, University of Montreal, Montreal, QC, Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Masaya Oshima
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Raphaël Scharfmann
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - Christian Ludwig
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Xu Y, Mao S, Fan H, Wan J, Wang L, Zhang M, Zhu S, Yuan J, Lu Y, Wang Z, Yu B, Jiang Z, Huang Y. LINC MIR503HG Controls SC-β Cell Differentiation and Insulin Production by Targeting CDH1 and HES1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305631. [PMID: 38243869 PMCID: PMC10987150 DOI: 10.1002/advs.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived β (SC-β) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-β cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-β cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-β cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Haowen Fan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Department of Graduate SchoolDalian Medical UniversityDalianLiaoning116000China
| | - Mingyu Zhang
- Department of Nuclear MedicineBeijing Friendship HospitalAffiliated to Capital Medical UniversityBeijing100050China
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Jin Yuan
- Department of Endocrinology and MetabolismAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Zhaoyan Jiang
- Center of Gallbladder DiseaseShanghai East HospitalInstitute of Gallstone DiseaseSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong226001China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology ProductsCo‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| |
Collapse
|
21
|
Fustaino V, Papoff G, Ruberti F, Ruberti G. Co-Expression Network Analysis Unveiled lncRNA-mRNA Links Correlated to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance and/or Intermediate Epithelial-to-Mesenchymal Transition Phenotypes in a Human Non-Small Cell Lung Cancer Cellular Model System. Int J Mol Sci 2024; 25:3863. [PMID: 38612674 PMCID: PMC11011530 DOI: 10.3390/ijms25073863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Campus Adriano Buzzati Traverso, Via E. Ramarini 32, 00015 Monterotondo (Roma), Italy; (G.P.); (F.R.)
| | | | | | | |
Collapse
|
22
|
Chen Y, Chen H, Wang Y, Liu F, Fan X, Shi C, Su X, Tan M, Yang Y, Lin B, Lei K, Qu L, Yang J, Zhu Z, Yuan Z, Xie S, Sun Q, Neculai D, Liu W, Yan Q, Wang X, Shao J, Liu J, Lin A. LncRNA LINK-A Remodels Tissue Inflammatory Microenvironments to Promote Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303341. [PMID: 38145352 PMCID: PMC10933663 DOI: 10.1002/advs.202303341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/09/2023] [Indexed: 12/26/2023]
Abstract
High-fat diet (HFD)-induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity-associated human lncRNA LINK-A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD-induced obesity knock-in (KI) mouse model. Mechanistically, HFD LINK-A KI mice induce the infiltration of inflammatory factors, including IL-1β and CXCL16, through the LINK-A/HB-EGF/HIF1α feedback loop axis in a self-amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK-A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK-A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD-induced obesity and metabolic syndrome, pointing out LINK-A as a valuable and effective therapeutic target for treating HFD-induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK-A) in remodeling tissue inflammatory microenvironments to promote HFD-induced obesity.
Collapse
Affiliation(s)
- Yu Chen
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Chen
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yebin Yang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Bangxing Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zengzhuang Yuan
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)University School of MedicineInternational CampusZhejiang UniversityHainingZhejiang314400China
| | - Shanshan Xie
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouZhejiang310003China
- Department of Cell BiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Qinming Sun
- Department of BiochemistryDepartment of Cardiology of Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang313000China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Dante Neculai
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
- Department of Cell BiologyDepartment of General Surgery of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Wei Liu
- Department of BiochemistryDepartment of Cardiology of Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang313000China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Central LaboratoryThe First People's Hospital of HuzhouHuzhouZhejiang313000China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jian Liu
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)University School of MedicineInternational CampusZhejiang UniversityHainingZhejiang314400China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- Hangzhou Cancer InstitutionAffiliated Hangzhou Cancer HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiang310002China
- College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghEH16 4SBUK
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhouZhejiang310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingZhejiang314100China
- Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationHangzhouZhejiang310009China
| |
Collapse
|
23
|
Farrim MI, Gomes A, Milenkovic D, Menezes R. Gene expression analysis reveals diabetes-related gene signatures. Hum Genomics 2024; 18:16. [PMID: 38326874 PMCID: PMC10851551 DOI: 10.1186/s40246-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Diabetes is a spectrum of metabolic diseases affecting millions of people worldwide. The loss of pancreatic β-cell mass by either autoimmune destruction or apoptosis, in type 1-diabetes (T1D) and type 2-diabetes (T2D), respectively, represents a pathophysiological process leading to insulin deficiency. Therefore, therapeutic strategies focusing on restoring β-cell mass and β-cell insulin secretory capacity may impact disease management. This study took advantage of powerful integrative bioinformatic tools to scrutinize publicly available diabetes-associated gene expression data to unveil novel potential molecular targets associated with β-cell dysfunction. METHODS A comprehensive literature search for human studies on gene expression alterations in the pancreas associated with T1D and T2D was performed. A total of 6 studies were selected for data extraction and for bioinformatic analysis. Pathway enrichment analyses of differentially expressed genes (DEGs) were conducted, together with protein-protein interaction networks and the identification of potential transcription factors (TFs). For noncoding differentially expressed RNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), which exert regulatory activities associated with diabetes, identifying target genes and pathways regulated by these RNAs is fundamental for establishing a robust regulatory network. RESULTS Comparisons of DEGs among the 6 studies showed 59 genes in common among 4 or more studies. Besides alterations in mRNA, it was possible to identify differentially expressed miRNA and lncRNA. Among the top transcription factors (TFs), HIPK2, KLF5, STAT1 and STAT3 emerged as potential regulators of the altered gene expression. Integrated analysis of protein-coding genes, miRNAs, and lncRNAs pointed out several pathways involved in metabolism, cell signaling, the immune system, cell adhesion, and interactions. Interestingly, the GABAergic synapse pathway emerged as the only common pathway to all datasets. CONCLUSIONS This study demonstrated the power of bioinformatics tools in scrutinizing publicly available gene expression data, thereby revealing potential therapeutic targets like the GABAergic synapse pathway, which holds promise in modulating α-cells transdifferentiation into β-cells.
Collapse
Affiliation(s)
- M I Farrim
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal
- Universidad de Alcalá, Escuela de Doctorado, Madrid, Spain
| | - A Gomes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal
| | - D Milenkovic
- Department of Nutrition, University of California Davis, Davis, USA
| | - R Menezes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Universidade Lusófona, Lisbon, Portugal.
| |
Collapse
|
24
|
Wang Y, Ding H, Guo C, Bao Q, Li D, Xiong Y. LncRNA Malat1 regulates iPSC-derived β-cell differentiation by targeting the miR-15b-5p/Ihh axis. Cell Signal 2024; 113:110975. [PMID: 37972802 DOI: 10.1016/j.cellsig.2023.110975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Differentiation of induced pluripotent stem cells (iPSCs)-derived β-like cells is a novel strategy for treatment of type 1 diabetes. Elucidation of the regulatory mechanisms of long noncoding RNAs (lncRNAs) in β-like cells derived from iPSCs is important for understanding the development of the pancreas and pancreatic β-cells and may improve the quality of β-like cells for stem cell therapy. METHODS β-like cells were derived from iPSCs in a three-step protocol. RNA sequencing and bioinformatics analysis were carried out to screen the differentially expressed lncRNAs and identify the putative target genes separately. LncRNA Malat1 was chosen for further research. Series of loss and gain of functions experiments were performed to study the biological function of LncRNA Malat1. Quantitative real-time PCR (qRT-PCR), Western blot (WB) analysis and immunofluorescence (IF) staining were carried out to separately detect the functions of pancreatic β-cells at the mRNA and protein levels. Cytoplasmic and nuclear RNA fractionation and fluorescence in situ hybridization (FISH) were used to determine the subcellar location of lncRNA Malat1 in β-like cells. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the differentiation and insulin secretion of β-like cells after stimulation with different glucose concentrations. Structural interactions between lncRNA Malat1 and miR-15b-5p and between miR-15b-5p/Ihh were detected by dual luciferase reporter assays (LRAs). RESULTS We found that the expression of lncRNA Malat1 declined during differentiation, and overexpression (OE) of lncRNA Malat1 notably impaired the differentiation and maturation of β-like cells derived from iPSCs in vitro and in vivo. Most importantly, lncRNA Malat1 could function as a competing endogenous RNA (ceRNA) of miR-15b-5p to regulate the expression of Ihh according to bioinformatics prediction, mechanistic analysis and downstream experiments. CONCLUSION This study established an unreported regulatory network of lncRNA Malat1 and the miR-15b-5p/Ihh axis during the differentiation of iPSCs into β-like cells. In addition to acting as an oncogene promoting tumorigenesis, lncRNA Malat1 may be an effective and novel target for treatment of diabetes in the future.
Collapse
Affiliation(s)
- Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, China
| | - Qian Bao
- Nantong University Medical School, Nantong 226001, China
| | - Dongqian Li
- Nantong University Medical School, Nantong 226001, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
25
|
Shafaf T, Kazeminejad SR, Hoveizi E. Evaluation of lncRNA Expression During the Differentiation of Mesenchymal Stem Cells to Insulin-Secreting Progenitors. Mol Neurobiol 2024; 61:372-384. [PMID: 37610615 DOI: 10.1007/s12035-023-03571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Diabetes mellitus is a metabolic disease caused by a defect in insulin secretion, insulin function, or both that destroys pancreatic islet beta cells. There is ample evidence that long non-coding RNAs (lncRNAs) play a vital role in cell formation and differentiation. The present study aims to investigate the expression pattern of specific lncRNAs in mesenchymal stem cell (MSC) differentiation into insulin-producing beta cell (IPCs) progenitors for cell therapy purposes. MSCs were extracted from human umbilical cord Wharton jelly (hWJ-MSCs) using the explant method and cultured in two-dimensional (2D) and three-dimensional (3D) media on polylactic acid/Wax (PLA/Wax) nanofibrous scaffold using a three-step protocol containing CHIR99021 small molecules and Indolactam V. At the end of each differentiation step, immunocytochemistry and qRT-PCR were used to confirm the differentiation at the protein and RNA levels and the expression changes of six selective lncRNAs were evaluated by qRT-PCR. The results indicated that the expression of the selected lncRNAs was significantly altered during the differentiation process into beta progenitor cells, indicating their potential role in regulating the IPC differentiation process. More specifically, all of the desired lncRNAs demonstrated a significant increase during the beta cell differentiation, with HI-LNC71 and HI-LNA12 experiencing the highest expression in the produced Beta cell progenitors respectively (p<0.0001). These results can be valuable in tissue engineering and treatment studies by replacing beta precursor cells to control diabetic patients.
Collapse
Affiliation(s)
- Tina Shafaf
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Reza Kazeminejad
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
26
|
Pierre TH, Toren E, Kepple J, Hunter CS. Epigenetic Regulation of Pancreas Development and Function. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 239:1-30. [PMID: 39283480 DOI: 10.1007/978-3-031-62232-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.
Collapse
Affiliation(s)
- Tanya Hans Pierre
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Kepple
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Mardafkan N, Karamali N, Razavi ZS, Mardi A. Molecular mechanism of lncRNAs in pathogenesis and diagnosis of auto-immune diseases, with a special focus on lncRNA-based therapeutic approaches. Life Sci 2024; 336:122322. [PMID: 38042283 DOI: 10.1016/j.lfs.2023.122322] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Autoimmune diseases are a diverse set of conditions defined by organ damage due to abnormal innate and acquired immune system responses. The pathophysiology of autoimmune disorders is exceedingly intricate and has yet to be fully understood. The study of long non-coding RNAs (lncRNAs), non-protein-coding RNAs with at least 200 nucleotides in length, has gained significant attention due to the completion of the human genome project and the advancement of high-throughput genomic approaches. Recent research has demonstrated how lncRNA alters disease development to different degrees. Although lncRNA research has made significant progress in cancer and generative disorders, autoimmune illnesses are a relatively new research area. Moreover, lncRNAs play crucial functions in differentiating various immune cells, and their potential relationships with autoimmune diseases have received growing attention. Because of the importance of Th17/Treg axis in auto-immune disease development, in this review, we discuss various molecular mechanisms by which lncRNAs regulate the differentiation of Th17/Treg cells. Also, we reviewed recent findings regarding the several approaches in the application of lncRNAs in the diagnosis and treatment of human autoimmune diseases, as well as current challenges in lncRNA-based therapeutic approaches to auto-immune diseases.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, Turkey
| | - Nasibeh Mardafkan
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
28
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
29
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Hossain MM, Roat R, Christopherson J, Free C, Ansarullah, James B, Guo Z. Exploring lncRNAs associated with human pancreatic islet cell death induced by transfer of adoptive lymphocytes in a humanized mouse model. Front Endocrinol (Lausanne) 2023; 14:1244688. [PMID: 38027148 PMCID: PMC10646418 DOI: 10.3389/fendo.2023.1244688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Long noncoding RNA (lncRNA)-mediated posttranscriptional and epigenetic landscapes of gene regulation are associated with numerous human diseases. However, the regulatory mechanisms governing human β-cell function and survival remain unknown. Owing to technical and ethical constraints, studying the direct role of lncRNAs in β-cell function and survival in humans in vivo is difficult. Therefore, we utilized humanized mice with human islets to investigate lncRNA expression using whole transcriptome shotgun sequencing. Our study aimed to characterize lncRNAs that may be crucial for human islet cell function and survival. Methods Human β-cell death was induced in humanized mice engrafted with functional human islets. Using these humanized mice harboring human islets with induced β-cell death, we investigated lncRNA expression through whole transcriptome shotgun sequencing. Additionally, we systematically identified, characterized, and explored the regulatory functions of lncRNAs that are potentially important for human pancreatic islet cell function and survival. Results Human islet cell death was induced in humanized mice engrafted with functional human islets. RNA sequencing analysis of isolated human islets, islet grafts from humanized mice with and without induced cell death, revealed aberrant expression of a distinct set of lncRNAs that are associated with the deregulated mRNAs important for cellular processes and molecular pathways related to β-cell function and survival. A total of 10 lncRNA isoforms (SCYL1-1:22, POLG2-1:1, CTRB1-1:1, SRPK1-1:1, GTF3C5-1:1, PPY-1:1, CTRB1-1:5, CPA5-1:1, BCAR1-2:1, and CTRB1-1:4) were identified as highly enriched and specific to human islets. These lncRNAs were deregulated in human islets from donors with different BMIs and with type 2 diabetes (T2D), as well as in cultured human islets with glucose stimulation and induced cell death induced by cytokines. Aberrant expression of these lncRNAs was detected in the exosomes from the medium used to culture islets with cytokines. Conclusion Islet-enriched and specific human lncRNAs are deregulated in human islet grafts and cultured human islets with induced cell death. These lncRNAs may be crucial for human β-cell function and survival and could have an impact on identifying biomarkers for β-cell loss and discovering novel therapeutic targets to enhance β-cell function and survival.
Collapse
Affiliation(s)
- Md Munir Hossain
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Regan Roat
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Jenica Christopherson
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Colette Free
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Ansarullah
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Brian James
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
- Discovery Genomics, Inc., Irvine, CA, United States
| | - Zhiguang Guo
- The Sanford Project/Children Health Research Center, Sanford Research, Sioux Falls, SD, United States
| |
Collapse
|
31
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
32
|
Hussein RM. Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr 2023; 17:102872. [PMID: 37797393 DOI: 10.1016/j.dsx.2023.102872] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND AIM Long non-coding RNAs (lncRNAs) have been recognized as important regulators of gene expression in various human diseases. Diabetes mellitus (DM) is a long-term metabolic disorder associated with serious macro and microvascular complications. This review discusses the potential lncRNAs involved in DM-related complications such as dysfunction of pancreatic beta islets, nephropathy, retinopathy, cardiomyopathy, and peripheral neuropathy. METHODS An extensive literature search was conducted in the Scopus database to find information from reputed biomedical articles published on lncRNAs and diabetic complications from 2014 to 2023. All review articles were collected and statistically analyzed, and the findings were summarized. In addition, the potential lncRNAs involved in DM-related complications, molecular mechanisms, and gene targets were discussed in detail. RESULTS The lncRNAs ANRIL, E33, MALAT1, PVT1, Erbb4-IR, Gm4419, Gm5524, MIAT, MEG3, KNCQ1OT1, Uc.48+, BC168687, HOTAIR, and NONRATT021972 were upregulated in several diabetic complications. However, βlinc1, H19, PLUTO, MEG3, GAS5, uc.322, HOTAIR, MIAT, TUG1, CASC2, CYP4B1-PS1-001, SOX2OT, and Crnde were downregulated. Remarkably, lncRNAs MALAT1, ANRIL, MIAT, MEG3, H19, and HOTAIR were overlapping in more than one diabetic complication and were considered potential lncRNAs. CONCLUSION Several lncRNAs are identified as regulators of DM-related complications. The expression of lncRNAs is up or downregulated depending on the disease context, target genes, and regulatory partners. However, most lncRNAs target oxidative stress, inflammation, apoptosis, fibrosis, and angiogenesis pathways to mediate their protective/pathogenic mechanism of action and contribute to DM-related complications.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan.
| |
Collapse
|
33
|
Elsayed AK, Alajez NM, Abdelalim EM. Genome-wide differential expression profiling of long non-coding RNAs in FOXA2 knockout iPSC-derived pancreatic cells. Cell Commun Signal 2023; 21:229. [PMID: 37670346 PMCID: PMC10478503 DOI: 10.1186/s12964-023-01212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Our recent studies have demonstrated the crucial involvement of FOXA2 in the development of human pancreas. Reduction of FOXA2 expression during the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic islets has been found to reduce α-and β-cell masses. However, the extent to which such changes are linked to alterations in the expression profile of long non-coding RNAs (lncRNAs) remains unraveled. METHODS Here, we employed our recently established FOXA2-deficient iPSCs (FOXA2-/- iPSCs) to investigate changes in lncRNA profiles and their correlation with dysregulated mRNAs during the pancreatic progenitor (PP) and pancreatic islet stages. Furthermore, we constructed co-expression networks linking significantly downregulated lncRNAs with differentially expressed pancreatic mRNAs. RESULTS Our results showed that 442 lncRNAs were downregulated, and 114 lncRNAs were upregulated in PPs lacking FOXA2 compared to controls. Similarly, 177 lncRNAs were downregulated, and 59 lncRNAs were upregulated in islet cells lacking FOXA2 compared to controls. At both stages, we observed a strong correlation between lncRNAs and several crucial pancreatic genes and TFs during pancreatic differentiation. Correlation analysis revealed 12 DE-lncRNAs that strongly correlated with key downregulated pancreatic genes in both PPs and islet cell stages. Selected DE-lncRNAs were validated using RT-qPCR. CONCLUSIONS Our data indicate that the observed defects in pancreatic islet development due to the FOXA2 loss is associated with significant alterations in the expression profile of lncRNAs. Therefore, our findings provide novel insights into the role of lncRNA and mRNA networks in regulating pancreatic islet development, which warrants further investigations. Video Abstract.
Collapse
Affiliation(s)
- Ahmed K Elsayed
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
34
|
Al-Hawary SIS, Kashikova K, Ioffe EM, Izbasarova A, Hjazi A, Tayyib NA, Alsalamy A, Hussien BM, Hameed M, Abdalkareem MJ. Pathological role of LncRNAs in immune-related disease via regulation of T regulatory cells. Pathol Res Pract 2023; 249:154709. [PMID: 37586216 DOI: 10.1016/j.prp.2023.154709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Human regulatory T cells (Tregs) are essential in pathogenesis of several diseases such as autoimmune diseases and cancers, and their imbalances may be promoting factor in these disorders. The development of the proinflammatory T cell subset TH17 and its balance with the generation of regulatory T cells (Treg) is linked to autoimmune disease and cancers. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in a variety of diseases and can regulate the expression of significant genes at multiple levels through epigenetic regulation and by modulating transcription, post-transcriptional processes, translation, and protein modification. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structural makeup. LncRNAs are implicated in a range of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. In this regard, a prominent example is lncRNA NEAT1 which several studies have performed to determine its role in the differentiation of immune cells. Many other lncRNAs have been linked to Treg cell differentiation in the context of immune cell differentiation. In this study, we review recent research on the various roles of lncRNAs in differentiation of Treg cell and regulation of the Th17/Treg balance in autoimmune diseases and tumors in which T regs play an important role.
Collapse
Affiliation(s)
| | - Khadisha Kashikova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | - Elena M Ioffe
- Department of Military Clinical Hospital, Ministry of Defence, Almaty, Kazakhstan.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
35
|
Macvanin MT, Gluvic Z, Bajic V, Isenovic ER. Novel insights regarding the role of noncoding RNAs in diabetes. World J Diabetes 2023; 14:958-976. [PMID: 37547582 PMCID: PMC10401459 DOI: 10.4239/wjd.v14.i7.958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders defined by hyperglycemia induced by insulin resistance, inadequate insulin secretion, or excessive glucagon secretion. In 2021, the global prevalence of diabetes is anticipated to be 10.7% (537 million people). Noncoding RNAs (ncRNAs) appear to have an important role in the initiation and progression of DM, according to a growing body of research. The two major groups of ncRNAs implicated in diabetic disorders are miRNAs and long noncoding RNAs. miRNAs are single-stranded, short (17-25 nucleotides), ncRNAs that influence gene expression at the post-transcriptional level. Because DM has reached epidemic proportions worldwide, it appears that novel diagnostic and therapeutic strategies are required to identify and treat complications associated with these diseases efficiently. miRNAs are gaining attention as biomarkers for DM diagnosis and potential treatment due to their function in maintaining physiological homeostasis via gene expression regulation. In this review, we address the issue of the gradually expanding global prevalence of DM by presenting a complete and up-to-date synopsis of various regulatory miRNAs involved in these disorders. We hope this review will spark discussion about ncRNAs as prognostic biomarkers and therapeutic tools for DM. We examine and synthesize recent research that used novel, high-throughput technologies to uncover ncRNAs involved in DM, necessitating a systematic approach to examining and summarizing their roles and possible diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
36
|
Stokes T, Cen HH, Kapranov P, Gallagher IJ, Pitsillides AA, Volmar C, Kraus WE, Johnson JD, Phillips SM, Wahlestedt C, Timmons JA. Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. ADVANCED GENETICS (HOBOKEN, N.J.) 2023; 4:2200024. [PMID: 37288167 PMCID: PMC10242409 DOI: 10.1002/ggn2.202200024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 06/09/2023]
Abstract
Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.
Collapse
Affiliation(s)
- Tanner Stokes
- Faculty of ScienceMcMaster UniversityHamiltonL8S 4L8Canada
| | - Haoning Howard Cen
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | - Iain J Gallagher
- School of Applied SciencesEdinburgh Napier UniversityEdinburghEH11 4BNUK
| | | | | | | | - James D. Johnson
- Life Sciences InstituteUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | | | | | - James A. Timmons
- Miller School of MedicineUniversity of MiamiMiamiFL33136USA
- William Harvey Research InstituteQueen Mary University LondonLondonEC1M 6BQUK
- Augur Precision Medicine LTDStirlingFK9 5NFUK
| |
Collapse
|
37
|
Sherazi SAM, Abbasi A, Jamil A, Uzair M, Ikram A, Qamar S, Olamide AA, Arshad M, Fried PJ, Ljubisavljevic M, Wang R, Bashir S. Molecular hallmarks of long non-coding RNAs in aging and its significant effect on aging-associated diseases. Neural Regen Res 2023; 18:959-968. [PMID: 36254975 PMCID: PMC9827784 DOI: 10.4103/1673-5374.355751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is linked to the deterioration of many physical and cognitive abilities and is the leading risk factor for Alzheimer's disease. The growing aging population is a significant healthcare problem globally that researchers must investigate to better understand the underlying aging processes. Advances in microarrays and sequencing techniques have resulted in deeper analyses of diverse essential genomes (e.g., mouse, human, and rat) and their corresponding cell types, their organ-specific transcriptomes, and the tissue involved in aging. Traditional gene controllers such as DNA- and RNA-binding proteins significantly influence such programs, causing the need to sort out long non-coding RNAs, a new class of powerful gene regulatory elements. However, their functional significance in the aging process and senescence has yet to be investigated and identified. Several recent researchers have associated the initiation and development of senescence and aging in mammals with several well-reported and novel long non-coding RNAs. In this review article, we identified and analyzed the evolving functions of long non-coding RNAs in cellular processes, including cellular senescence, aging, and age-related pathogenesis, which are the major hallmarks of long non-coding RNAs in aging.
Collapse
Affiliation(s)
- Syed Aoun Mehmood Sherazi
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Asim Abbasi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Abdullah Jamil
- Department of Pharmacology, Government College University, Faisalabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shanzay Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Peter J. Fried
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center (KS 158), Harvard Medical School, Boston, MA, USA
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
38
|
Frørup C, Gerwig R, Svane CAS, Mendes Lopes de Melo J, Henriksen K, Fløyel T, Pociot F, Kaur S, Størling J. Characterization of the functional and transcriptomic effects of pro-inflammatory cytokines on human EndoC-βH5 beta cells. Front Endocrinol (Lausanne) 2023; 14:1128523. [PMID: 37113489 PMCID: PMC10126300 DOI: 10.3389/fendo.2023.1128523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
Objective EndoC-βH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-βH5 cells. Methods The sensitivity profile of EndoC-βH5 cells to the toxic effects of interleukin-1β (IL-1β), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing. Results Cytokines increased caspase-3/7 activity and cytotoxicity in EndoC-βH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-βH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusion Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-βH5 cells. This information should be useful for future studies using this novel beta-cell model.
Collapse
Affiliation(s)
- Caroline Frørup
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Joana Mendes Lopes de Melo
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Kristine Henriksen
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Luo HT, He Q, Yang W, He F, Dong J, Hu CF, Yang XF, Li N, Li FR. Single-cell analyses reveal distinct expression patterns and roles of long non-coding RNAs during hESC differentiation into pancreatic progenitors. Stem Cell Res Ther 2023; 14:38. [PMID: 36907881 PMCID: PMC10010006 DOI: 10.1186/s13287-023-03259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Deep understanding the differentiation process of human embryonic stem cells (hESCs) is essential for developing cell-based therapeutic strategy. Substantial efforts have been made to investigate protein-coding genes, yet it remains lacking comprehensive characterization of long non-coding RNAs (lncRNAs) during this process. METHODS hESCs were passaged every 5-6 days and had maintained stable karyotype even until the 50th generation. Pancreatic progenitor specification of in vitro differentiation from hESCs was performed and modified. The nuclei were stained with 4,6-Diamidino-2-phenylindole (DAPI). Droplet-based platform (10X Genomics) was applied to generate the single-cell RNA sequencing (scRNA-seq) data. The quality of the filtered read pairs was evaluated by using FastQC. Batch effects were removed using the size factor method. Dimension reduction and unsupervised clustering analyses were performed using Seurat R package. The Monocle 2 and MetaCell algorithms were used to order single cells on a pseudotime course and partition the scRNA-seq data into metacells, respectively. Co-expression network was constructed using WGCNA. Module- and hub-based methods were adopted to predict the functions of lncRNAs. RESULTS A total of 77,382 cells during the differentiation process of hESCs toward pancreatic progenitors were sequenced. According to the single-cell map, the cells from different time points were authenticated to constitute a relatively homogeneous population, in which a total of 7382 lncRNAs could be detected. Through further analyzing the time course data, conserved and specific expression features of lncRNAs during hESC differentiation were revealed. Based upon pseudotime analysis, 52 pseudotime-associated lncRNAs that grouped into three distinct expression patterns were identified. We also implemented MetaCell algorithm and network-based methods to explore the functional mechanisms of these lncRNAs. Totally, 464 lncRNAs, including 49 pseudotime-associated lncRNAs were functionally annotated by either module-based or hub-based methods. Most importantly, we demonstrated that the lncRNA HOTAIRM1, which co-localized and co-expressed with several HOX genes, may play crucial role in the generation of pancreatic progenitors through regulation of exocytosis and retinoic acid receptor signaling pathway. CONCLUSIONS Our single-cell analyses provide valuable data resources for biological researchers and novel insights into hESC differentiation processes, which will guide future endeavors to further elucidate the roles of lncRNAs.
Collapse
Affiliation(s)
- Hai-Tao Luo
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China.,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qian He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,School of Food and Drug, Shenzhen Polytechnic, Shenzhen, 518055, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China.,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Wei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China.,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China.,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Chao-Feng Hu
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fei Yang
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China. .,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ning Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China. .,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China. .,Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, Shenzhen, 518020, China. .,Health Medicine Institute, Southern University of Science and Technology, Shenzhen, 518055, China. .,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
40
|
Suárez R, Chapela SP, Álvarez-Córdova L, Bautista-Valarezo E, Sarmiento-Andrade Y, Verde L, Frias-Toral E, Sarno G. Epigenetics in Obesity and Diabetes Mellitus: New Insights. Nutrients 2023; 15:nu15040811. [PMID: 36839169 PMCID: PMC9963127 DOI: 10.3390/nu15040811] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
A long-term complication of obesity is the development of type 2 diabetes (T2D). Patients with T2D have been described as having epigenetic modifications. Epigenetics is the post-transcriptional modification of DNA or associated factors containing genetic information. These environmentally-influenced modifications, maintained during cell division, cause stable changes in gene expression. Epigenetic modifications of T2D are DNA methylation, acetylation, ubiquitylation, SUMOylation, and phosphorylation at the lysine residue at the amino terminus of histones, affecting DNA, histones, and non-coding RNA. DNA methylation has been shown in pancreatic islets, adipose tissue, skeletal muscle, and the liver. Furthermore, epigenetic changes have been observed in chronic complications of T2D, such as diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. Recently, a new drug has been developed which acts on bromodomains and extraterminal (BET) domain proteins, which operate like epigenetic readers and communicate with chromatin to make DNA accessible for transcription by inhibiting them. This drug (apabetalone) is being studied to prevent major adverse cardiovascular events in people with T2D, low HDL cholesterol, chronic kidney failure, and recent coronary events. This review aims to describe the relationship between obesity, long-term complications such as T2D, and epigenetic modifications and their possible treatments.
Collapse
Affiliation(s)
- Rosario Suárez
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Sebastián P. Chapela
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABE, Argentina
- Hospital Británico de Buenos Aires, Equipo de Soporte Nutricional, Buenos Aires C1280AEB, Argentina
- Correspondence: ; Tel.: +54-91168188308
| | - Ludwig Álvarez-Córdova
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
- Carrera de Nutrición y Dietética, Facultad de Ciencias Médicas, Universidad Católica De Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Estefanía Bautista-Valarezo
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Yoredy Sarmiento-Andrade
- School of Medicine, Universidad Técnica Particular de Loja, Calle París, San Cayetano Alto, Loja 110101, Ecuador
| | - Ludovica Verde
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Gerardo Sarno
- “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, Scuola Medica Salernitana, 84131 Salerno, Italy
| |
Collapse
|
41
|
Viloria K, Nasteska D, Ast J, Hasib A, Cuozzo F, Heising S, Briant LJB, Hewison M, Hodson DJ. GC-Globulin/Vitamin D-Binding Protein Is Required for Pancreatic α-Cell Adaptation to Metabolic Stress. Diabetes 2023; 72:275-289. [PMID: 36445949 DOI: 10.2337/db22-0326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
GC-globulin (GC), or vitamin D-binding protein, is a multifunctional protein involved in the transport of circulating vitamin 25(OH)D and fatty acids, as well as actin scavenging. In the pancreatic islets, the gene encoding GC, GC/Gc, is highly localized to glucagon-secreting α-cells. Despite this, the role of GC in α-cell function is poorly understood. We previously showed that GC is essential for α-cell morphology, electrical activity, and glucagon secretion. We now show that loss of GC exacerbates α-cell failure during metabolic stress. High-fat diet-fed GC-/- mice have basal hyperglucagonemia, which is associated with decreased α-cell size, impaired glucagon secretion and Ca2+ fluxes, and changes in glucose-dependent F-actin remodelling. Impairments in glucagon secretion can be rescued using exogenous GC to replenish α-cell GC levels, increase glucagon granule area, and restore the F-actin cytoskeleton. Lastly, GC levels decrease in α-cells of donors with type 2 diabetes, which is associated with changes in α-cell mass, morphology, and glucagon expression. Together, these data demonstrate an important role for GC in α-cell adaptation to metabolic stress.
Collapse
Affiliation(s)
- Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Annie Hasib
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Silke Heising
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - Linford J B Briant
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Martin Hewison
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, U.K
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| |
Collapse
|
42
|
Bele S, Wokasch AS, Gannon M. Epigenetic modulation of cell fate during pancreas development. TRENDS IN DEVELOPMENTAL BIOLOGY 2023; 16:1-27. [PMID: 38873037 PMCID: PMC11173269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Epigenetic modifications to DNA and its associated proteins affect cell plasticity and cell fate restrictions throughout embryonic development. Development of the vertebrate pancreas is characterized by initial is an over-lapping expression of a set of transcriptional regulators in a defined region of the posterior foregut endoderm that collectively promote pancreas progenitor specification and proliferation. As development progresses, these transcription factors segregate into distinct pancreatic lineages, with some being maintained in specific subsets of terminally differentiated pancreas cell types throughout adulthood. Here we describe the progressive stages and cell fate restrictions that occur during pancreas development and the relevant known epigenetic regulatory events that drive the dynamic expression patterns of transcription factors that regulate pancreas development. In addition, we highlight how changes in epigenetic marks can affect susceptibility to pancreas diseases (such as diabetes), adult pancreas cell plasticity, and the ability to derive replacement insulin-producing β cells for the treatment of diabetes.
Collapse
Affiliation(s)
- Shilpak Bele
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Anthony S. Wokasch
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, 2213 Garland Avenue, Nashville, TN, 37232, USA
- Department of Veterans Affairs Tennessee Valley Authority, Research Division, 1310 24 Avenue South, Nashville, TN, 37212, USA
- Department of Molecular Physiology and Biophysics, 2213 Garland Avenue, Nashville, TN, 37232, USA
| |
Collapse
|
43
|
Bhattacharya A. Epigenetic modifications and regulations in gastrointestinal diseases. EPIGENETICS IN ORGAN SPECIFIC DISORDERS 2023:497-543. [DOI: 10.1016/b978-0-12-823931-5.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
45
|
Surveying lncRNA-lncRNA cooperations reveals dominant effect on tumor immunity cross cancers. Commun Biol 2022; 5:1324. [PMID: 36463330 PMCID: PMC9719535 DOI: 10.1038/s42003-022-04249-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can crosstalk with each other by post-transcriptionally co-regulating genes involved in the same or similar functions; however, the regulatory principles and biological insights in tumor-immune are still unclear. Here, we show a multiple-step model to identify lncRNA-lncRNA immune cooperation based on co-regulating functional modules by integrating multi-omics data across 20 cancer types. Moreover, lncRNA immune cooperative networks (LICNs) are constructed, which are likely to modulate tumor-immune microenvironment by regulating immune-related functions. We highlight conserved and rewired network hubs which can regulate interactions between immune cells and tumor cells by targeting ligands and activating or inhibitory receptors such as PDCD1, CTLA4 and CD86. Immune cooperative lncRNAs (IC-lncRNAs) playing central roles in many cancers also tend to target known anticancer drug targets. In addition, these IC-lncRNAs tend to be highly expressed in immune cell populations and are significantly correlated with immune cell infiltration. The similar immune mechanisms cross cancers are revealed by the LICNs. Finally, we identify two subtypes of skin cutaneous melanoma with different immune context and prognosis based on IC-lncRNAs. In summary, this study contributes to a comprehensive understanding of the cooperative behaviours of lncRNAs and accelerating discovery of lncRNA-based biomarkers in cancer.
Collapse
|
46
|
Guo WH, Guo Q, Liu YL, Yan DD, Jin L, Zhang R, Yan J, Luo XH, Yang M. Mutated lncRNA increase the risk of type 2 diabetes by promoting β cell dysfunction and insulin resistance. Cell Death Dis 2022; 13:904. [PMID: 36302749 PMCID: PMC9613878 DOI: 10.1038/s41419-022-05348-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Islet β cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet β cell specific Mut-Reg1cp knock-in have more severe β cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in β cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.
Collapse
Affiliation(s)
- Wan-Hui Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Qi Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Ya-Lin Liu
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Dan-Dan Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Li Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Jing Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Xiang-Hang Luo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Mi Yang
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| |
Collapse
|
47
|
Beucher A, Miguel-Escalada I, Balboa D, De Vas MG, Maestro MA, Garcia-Hurtado J, Bernal A, Gonzalez-Franco R, Vargiu P, Heyn H, Ravassard P, Ortega S, Ferrer J. The HASTER lncRNA promoter is a cis-acting transcriptional stabilizer of HNF1A. Nat Cell Biol 2022; 24:1528-1540. [PMID: 36202974 PMCID: PMC9586874 DOI: 10.1038/s41556-022-00996-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/16/2022] [Indexed: 11/08/2022]
Abstract
The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A. Using mouse and human models, we show that HASTER maintains cell-specific physiological HNF1A concentrations through positive and negative feedback loops. Pancreatic β cells from Haster mutant mice consequently showed variegated HNF1A silencing or overexpression, resulting in hyperglycaemia. HASTER-dependent negative feedback was essential to prevent HNF1A binding to inappropriate genomic regions. We demonstrate that the HASTER promoter DNA, rather than the lncRNA, modulates HNF1A promoter-enhancer interactions in cis and thereby regulates HNF1A transcription. Our studies expose a cis-regulatory element that is unlike classic enhancers or silencers, it stabilizes the transcription of its target gene and ensures the fidelity of a cell-specific transcription factor program. They also show that disruption of a mammalian lncRNA promoter can cause diabetes mellitus.
Collapse
Affiliation(s)
- Anthony Beucher
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Irene Miguel-Escalada
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Diego Balboa
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Matías G De Vas
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Miguel Angel Maestro
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Javier Garcia-Hurtado
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Aina Bernal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Roser Gonzalez-Franco
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Holger Heyn
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Philippe Ravassard
- Biotechnology and Biotherapy Team, Institut du Cerveau et de la Moelle, CNRS UMR7225, INSERM U975, University Pierre et Marie Curie, Paris, France
| | - Sagrario Ortega
- Transgenics Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Jorge Ferrer
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.
| |
Collapse
|
48
|
The Emerging Role of Noncoding RNA Regulation of the Ferroptosis in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3595745. [PMID: 36187333 PMCID: PMC9519351 DOI: 10.1155/2022/3595745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular disease (CVD) is a significant public health issue due to its high prevalence and considerable contribution to the global disease burden. Recent studies suggest that genetic factors, including noncoding RNAs, have an important role in the progression of CVD. Noncoding RNA plays a critical role in genetic programming and gene regulation during development. Ferroptosis is a form of iron-dependent regulated cell death (RCD), which is mainly caused by increased lipid hydroperoxide and redox imbalance. Ferroptosis is essentially different from other forms of RCD in morphology and mechanism, such as apoptosis, autophagic cell death, pyroptosis, and necroptosis. Much evidence suggested ferroptosis is involved in the development of various CVDs, especially in cardiac ischemia/reperfusion injury, heart failure, and aortic dissection. Here, we review the latest findings based on noncoding RNA regulation of ferroptosis and its involvement in the pathogenesis of CVD and related treatments, aimed at providing insights into the impact of noncoding RNA regulation of ferroptosis for CVD.
Collapse
|
49
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Aladel A, Verma AK, Dabeer S, Ahmad I, Alshahrani MY, AboHassan MS, Khan MI, Almutairi MG, Beg MMA. Association of lncRNA LINC01173 Expression with Vitamin-D and Vitamin B12 Level Among Type 2 Diabetes Patients. Diabetes Metab Syndr Obes 2022; 15:2535-2543. [PMID: 36016630 PMCID: PMC9397532 DOI: 10.2147/dmso.s369012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) has risen to become the world's most serious public health problem in recent years, and the role of long noncoding RNAs (lncRNAs) in the onset and progression of T2DM, as well as special attention to vitamins, has gotten a lot of attention recently. METHODS The aim of the study was to analyze lncRNA LINC01173 expression along with assessment of vitamin-D and B12 among the T2DM cases. Quantitative RT-PCR was used to analyze the expression of lncRNA LINC01173. Vitamin-D and B12 were analyzed by chemiluminescence-based assay. RESULTS The present study observed that the T2DM cases had 6.67-fold increased lncRNA LINC01173 expression compared to healthy controls. Expression of lncRNA LINC01173 was found to be associated with hypertension (p=0.03), wound healing (p=0.04), and blurred vision (p<0.0001). It was observed that the T2DM cases with vitamin-D deficiency had a significant association with fasting glucose level (p=0.01) and HbA1C level (p=0.01) among the T2DM cases. The association of lncRNA LINC01173 with vitamin-D was analyzed and it was observed that the vitamin-D deficient cases had higher lncRNA LINC01173 expression compared to insufficient T2DM cases (p=0.01) and sufficient T2DM cases (p=0.0006). It was also observed that the T2DM cases with smoking had a 8.33-fold lncRNA LINC01173 expression while non-smokers had a 5.43-fold lncRNA LINC01173 expression (p<0.0001). CONCLUSION The study concluded that the increased lncRNA LINC01173 expression was observed to be linked with alteration in vitamin-D level and smoking habit. Altered expression of lncRNA LINC01173 expression was linked with fasting glucose and HbA1C alteration. Collectively, lncRNA LINC01173 expression, vitamin-D alteration, as well as smoking habit may cause the disease severity and increase the pathogenesis of disease.
Collapse
Affiliation(s)
- Alanoud Aladel
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amit K Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Sadaf Dabeer
- Division of Endocrinology Metabolism, and Lipids, School of Medicine, Emory University, Atlanta, GA, USA
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad S AboHassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraidah, Saudi Arabia
| | - Malak Ghazi Almutairi
- Department of Nutrition, Almethnab General Hospital, Qassim Health Cluster, Ministry of Health, Al Mithnab, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan
- Centre for Promotion of Medical Research, Bishkek, Kyrgyzstan
| |
Collapse
|