1
|
Malathi H, Khandelwal G, Gayathri S, Sahoo S, Sharma S. Toll-like receptors in kidney ischemia-reperfusion injury: Modulating macrophage responses for therapeutic insights. Pathol Res Pract 2025; 269:155940. [PMID: 40174275 DOI: 10.1016/j.prp.2025.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/16/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Kidney ischemia-reperfusion (I/R) injury is an acute clinical condition associated with inflammation and tissue damage during and after ischemia and reperfusion periods. In I/R injury, macrophages contribute to injury, and a family of proteins called toll-like receptors seem to have an immune modulatory role. When activated, TLRs initiate a series of signaling pathways, including MyD88 and TRIF. These pathways regulate the activation of tissue macrophages into either 'classically activated' M1 or 'alternatively activated' M2 phenotypes. Indeed, the relative abundance of these macrophage phenotypes defines the tissue injury level, which consequently requires reparative processes. The initial effector pro-inflammatory M1 macrophages aggravate tissue injury. Conversely, tissue reparative and anti-inflammatory M2 macrophages promote tissue repair and resolution-increased TLR signalling results in increased inflammation, prolonged healing and even renal failure. New evidence indicates that the change of macrophage responses through pharmacological targeting of the TLR pathways that regulate inflammation and tissue repair may have therapeutic implications. Some experimental treatment methods, in which early phases have been elaborated through experimental animal models, are TLR antagonists, small molecule inhibitors and nanotechnology-based delivery systems for Antisense oligonucleotide. Nevertheless, because the pathways regulated by TLRs and the subsets of macrophages are so countless and entangled, more extensive study is needed to provide more targeted actions. These findings shed light on the role and regulation of TLRs in macrophages during kidney I/R injury and investigate potential treatments with the potential to enhance care in this highly damaging condition.
Collapse
Affiliation(s)
- H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Gaurav Khandelwal
- Department of Nephrology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - S Gayathri
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Swati Sharma
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| |
Collapse
|
2
|
Wang C, Zhang Y, Liu T, Mi Z, Shi P, Wang Z, Li W, Wang H, Liu H, Zhang F. Insufficient CXCL13 secretion in leprosy foamy macrophages attenuates lymphocyte recruitment and antimicrobial protein production. Front Immunol 2025; 16:1541954. [PMID: 40264781 PMCID: PMC12011874 DOI: 10.3389/fimmu.2025.1541954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Background Pathogens trigger metabolic reprogramming, leading to the formation of foamy macrophages (FMs). This process provides a favorable environment for bacterial proliferation and enables bacteria to evade immune killing. Objective To elucidate the mechanisms by which pathogens escape immune surveillance and elimination via the formation of FMs. Methods We constructed a FM model using monocyte-derived macrophages (MDMs) that were incubated with oxidized low-density lipoprotein (oxLDL). Subsequently, we employed bulk RNA-sequencing (bulk RNA-seq) to comprehensively analyze the immune responses in MDMs and FMs against Mycobacterium leprae (M. leprae) infection in samples from 10 healthy individuals. Results We found that CXCL13, a component of the cytokine-cytokine receptor interaction pathway, was specifically upregulated in M. leprae infected MDMs, when compared with M. leprae infected FMs. Significantly, further functional analyses revealed that in vitro treatment with CXCL13 could enhance the expression of CXCR5, thereby promoting lymphocyte migration and secretion of antimicrobial proteins. Additionally, NLRP12 was found to be specifically and highly expressed in the NOD-like receptor signaling pathway, which was enriched in infected FMs. In macrophages, M. leprae infection increased CXCL13 expression via NF-κB signal pathway. Conversely, in FMs, mycobacteria induced upregulation of CXCL13 was suppressed by NLRP12 through the inhibition of p52 factor expression. Conclusion In conclusion, the NLRP12/NF-κB/CXCL13 axis is crucial for the immune response of FMs after mycobacterial infection. These findings contribute to a deeper understanding of the pathological mechanisms of mycobacterial infection.
Collapse
Affiliation(s)
- Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenchao Li
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Honglei Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Walczyńska-Dragon K, Kurek-Górecka A, Fiegler-Rudol J, Nitecka-Buchta A, Baron S. The Therapeutic Potential of Cannabidiol in the Management of Temporomandibular Disorders and Orofacial Pain. Pharmaceutics 2025; 17:328. [PMID: 40142992 PMCID: PMC11945290 DOI: 10.3390/pharmaceutics17030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Temporomandibular disorders (TMDs) are a group of conditions affecting the temporomandibular joint (TMJ) and associated muscles, leading to pain, restricted jaw movement, and impaired quality of life. Conventional treatments, including physical therapy, medications, and surgical interventions, have varying degrees of success and potential side effects. Cannabidiol (CBD), a non-psychoactive component of cannabis, has gained attention for its anti-inflammatory, analgesic, and anxiolytic properties. This study explores the potential role of CBD in TMD management. Methods: A review of existing literature was conducted (2007-2024), focusing on preclinical and clinical studies assessing the efficacy of CBD in pain modulation, inflammation reduction, and muscle relaxation. Relevant studies were sourced from PubMed, Scopus, and Web of Science databases. Additionally, potential mechanisms of action, including interactions with the endocannabinoid system, were analyzed. Results: Studies suggest that CBD exerts analgesic and anti-inflammatory effects by modulating CB1 and CB2 receptors, reducing cytokine release, and influencing neurotransmitter pathways. Preliminary clinical evidence indicates that CBD may alleviate TMD-related pain and muscle tension with minimal adverse effects. However, high-quality randomized controlled trials are limited. Conclusions: CBD demonstrates promise as a potential adjunctive treatment for TMD. Further research, including well-designed clinical trials, is necessary to establish its efficacy, optimal dosage, and long-term safety.
Collapse
Affiliation(s)
- Karolina Walczyńska-Dragon
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.N.-B.); (S.B.)
| | - Anna Kurek-Górecka
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Jakub Fiegler-Rudol
- Student Scientific Society at the Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland;
| | - Aleksandra Nitecka-Buchta
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.N.-B.); (S.B.)
| | - Stefan Baron
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (A.N.-B.); (S.B.)
| |
Collapse
|
4
|
Williams EG, Alissa M, Alsugoor MH, Albakri GS, Altamimi AA, Alabdullateef AA, Almansour NM, Aldakheel FM, Alessa S, Marber M. Integrative approaches to atrial fibrillation prevention and management: Leveraging gut health for improved cardiovascular outcomes in the aging population. Curr Probl Cardiol 2025; 50:102952. [PMID: 39626858 DOI: 10.1016/j.cpcardiol.2024.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
Atrial fibrillation (AF) is a prevalent clinical arrhythmia associated with a high incidence and severe complications such as cerebral embolism and heart failure. While the etiology and pathogenesis of AF involve numerous factors, recent research emphasizes the significant role of intestinal microbiota imbalance in the emergence and progression of AF, particularly among older adults. This review investigates the mechanisms by which intestinal flora and their metabolites contribute to the onset of AF in the elderly, highlighting novel interactions between gut health and cardiac function. Current literature often overlooks these critical connections, indicating a substantial research gap in understanding how dysbiosis may exacerbate AF and hinder recovery. Furthermore, exploring the bidirectional relationship between the gut microbiome and systemic inflammation in the context of AF provides a unique perspective that has yet to be thoroughly investigated. Future research should focus on longitudinal studies assessing gut microbiota composition and function in AF patients and consider probiotics or prebiotics as potential adjunctive therapies for mitigating AF. This comprehensive approach may pave the way for innovative treatments integrating cardiology with gastroenterology, enhancing patient outcomes through a holistic understanding of health.
Collapse
Affiliation(s)
- Emma Grace Williams
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112; 2 Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali A Altamimi
- Department of Medical Laboratory, Prince Sultan Air Base Hospital, Al-Kharj, Saudi Arabia
| | | | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Salem Alessa
- Department of Medical Laboratory, Al Kharj Military Industries Corporation Hospital, Al-kharj, Saudi Arabia
| | - Michael Marber
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
5
|
Sirajee R, El Khatib S, Dieleman LA, Salla M, Baksh S. ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer. J Clin Med 2025; 14:1620. [PMID: 40095546 PMCID: PMC11900543 DOI: 10.3390/jcm14051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these "disturbances". The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in "ImmunoMET Oncogenesis", a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state.
Collapse
Affiliation(s)
- Reshma Sirajee
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Sami El Khatib
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Kuwait City 32093, Kuwait
| | - Levinus A. Dieleman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Mohamed Salla
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
| | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Division of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Women and Children’s Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| |
Collapse
|
6
|
Xu ZX, Zhang JL, Li FZ, Xu B, Xia J, Wang P, Xie GJ. AnMei decoction ameliorates cognitive impairment in rats with chronic sleep deprivation by mitigating hippocampal neuroinflammation and restoring synaptic architecture. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119101. [PMID: 39537118 DOI: 10.1016/j.jep.2024.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
SIGNIFICANCE OF ETHNOPHARMACOLOGY AnMei Decoction (AMD) is a renowned herbal prescription that has been widely demonstrated to have positive therapeutic effects on sleep disorders, depression, and cognitive impairments. However, the molecular mechanisms underlying AMD's resistance to sleep deprivation-induced cognitive impairment remain to be further investigated. RESEARCH OBJECTIVE To clarify whether AMD may alleviate neuroinflammation by inhibiting NLRP3/Caspase1 signaling pathway and repair neuronal damage by regulating BDNF/TrkB pathway, thereby improving cognitive dysfunction in rats with chronic sleep deprivation. MATERIALS AND METHODS LC-MS/MS was used to detect the active components in AMD. After behavioral tests, HE staining, Nissl staining, immunofluorescence, immunohistochemistry, transmission electron microscopy, and Golgi staining were performed to assess the effects of AMD on chronic sleep deprivation. Western blot was used to detect the expression of hippocampal proteins NLRP3, Caspase-1, BDNF, p-TrkB, TrkB, Bax, Bcl-2, GAP43, PSD95, SNAP25, SYN, STX1A, and VAMP2. Hippocampal transcriptome sequencing was employed to observe differentially expressed genes after AMD intervention. RESULTS A total of 15 active components were identified from the AMD extract. AMD effectively improved the exploration and learning and memory abilities of sleep-deprived rats. AMD reduced neuroinflammation by inhibiting the NLRP3/Caspase-1 pathway and repaired neuronal damage by regulating the BDNF/TrkB pathway. Simultaneously, AMD upregulated the expression of BDNF, p-TrkB, Bcl-2, GAP43, PSD95, SNAP25, SYN, STX1A, and VAMP2 proteins and inhibited the expression of NLRP3, Caspase-1, and Bax proteins. Analysis of GO and KEGG pathway enrichment for the differentially expressed inflammation-related pathways may be involved in the therapeutic mechanism of AMD on sleep deprivation. CONCLUSION AMD can effectively inhibit the NLRP3/Caspase1 signaling pathway to alleviate neuroinflammation, regulate the BDNF/TrkB pathway to maintain hippocampal neuronal viability, repair synaptic structural damage, and improve cognitive impairment in the sleep deprivation model.
Collapse
Affiliation(s)
- Zi-Xuan Xu
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Jun-Lu Zhang
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Fei-Zhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430006, China.
| | - Bo Xu
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Jing Xia
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Ping Wang
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China.
| | - Guang-Jing Xie
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430006, China; College of Physical Education and Health, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
7
|
Yesitayi G, Wang Q, Wang M, Ainiwan M, Kadier K, Aizitiaili A, Ma Y, Ma X. LPS-LBP complex induced endothelial cell pyroptosis in aortic dissection is associated with gut dysbiosis. Microbes Infect 2025; 27:105406. [PMID: 39168178 DOI: 10.1016/j.micinf.2024.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Acute aortic dissection (AAD) is the most severe traumatic disease affecting the aorta. Pyroptosis-mediated vascular wall inflammation is a crucial trigger for AAD, and the exact mechanism requires further investigation. In this study, our proteomic analysis showed that Lipopolysaccharide (LPS)-binding protein (LBP) was significantly upregulated in the plasma and aortic tissue of patients with AAD. Further, 16S rRNA sequencing of stool samples suggested that patients with AAD exhibit gut dysbiosis, which may lead to an impaired intestinal barrier and LPS leakage. By comparing with control mice, we found that LBP, including Pyrin Domain Containing Protein3 (NLRP3), the CARD-containing adapter apoptosis-associated speck-like protein (ASC), and Cleaved caspase-1, were upregulated in the AAD aorta, whereas gut intestinal barrier-related proteins were downregulated. Moreover, treated with LBPK95A (an LBP inhibitor) attenuated the incidence of AAD, the expression levels of pyroptosis-related factors, and the extent of vascular pathological changes compared to those in AAD mice. In addition, LPS and LBP treatment of human umbilical vein endothelial cells (HUVECs) activated TLR4 signaling and intracellular reactive oxygen species (ROS) production, which stimulated NLRP3 inflammasome formation and mediated pyroptosis in endothelial cells. Our findings showed that gut dysbiosis mediates pyroptosis by the LPS-LBP complex, thus providing new insights into developing AAD.
Collapse
Affiliation(s)
- Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Qi Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Mengmeng Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Kaisaierjiang Kadier
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Yitong Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
8
|
Li D, Hu Q, Zhan Z, Zhang X, Zeng W, Liu L, Wu K, Yu M. Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice. Exp Eye Res 2025; 251:110235. [PMID: 39798846 DOI: 10.1016/j.exer.2025.110235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury. After unilateral ONC, visual acuity in the injured eye declined, along with thinning of the retinal nerve fiber layer, and the latency and amplitude of FVEPs decreased. Furthermore, neuronal loss and degeneration were observed in the contralateral SC and V1 region, accompanied by astrocytic activation. Additionally, protein markers C3, and Serping1 for A1 astrocytes, which had neurotoxic effects and S100A10, and PTX3 for A2 astrocytes, which promoted tissue repair, were increased in the two regions. A1 astrocytes were mainly present in the early stages of observation, while A2 astrocytes were mainly increased later. Notably, NLRC4, GSDMD-N, cleaved caspase-1 expression, and IL-1β, IL-18 secretion increased in the contralateral SC and V1 region. Collectively, our findings reveal that A1 (neurotoxic) and A2 astrocytes (neuroprotective), NLRC4-mediated neuronal pyroptosis are enhanced in SC and V1 region contralateral to the ONC eye. The primary visual cortex responds to injury later than the superior colliculus after ONC, with less pronounced damage changes. Reactive astrocytes and NLRC4 inflammasome may act as promising targets for the prevention and treatment of optic nerve injury.
Collapse
Affiliation(s)
- Deling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Qinyuan Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Xinyi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Weiting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Liling Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
9
|
Nehme R, Chervet A, Decombat C, Habanjar O, Longechamp L, Rousset A, Chalard P, Gainche M, Senejoux F, Fraisse D, Filaire E, Berthon JY, Diab-Assaf M, Delort L, Caldefie-Chezet F. Selected Plant Extracts Regulating the Inflammatory Immune Response and Oxidative Stress: Focus on Quercus robur. Nutrients 2025; 17:510. [PMID: 39940368 PMCID: PMC11820342 DOI: 10.3390/nu17030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Inflammation is a vital response of the immune system, frequently linked to the development and progression of numerous chronic and autoimmune diseases. Targeting inflammation represents an attractive strategy to prevent and treat these pathologies. In this context, many pathways, including pro-inflammatory cytokines secretion, NFκB activation, reactive oxygen species (ROS) production, inflammasome activation and arachidonic acid metabolism could be highlighted and addressed. Several plant materials have traditionally been used as effective and non-harmful anti-inflammatory agents. However, well-established scientific evidence is lacking, and their mechanisms of action remain unclear. The current article compares the effects of seven plant extracts, including Quercus robur L. (Oak), Plantago lanceolata L. (narrowleaf plantain), Plantago major L. (broadleaf plantain), Helichrysum stoechas L. (immortelle or helichrysum), Leontopodium nivale alpinum Cass. (edelweiss), Medicago sativa L. (alfafa) and Capsella bursa-pastoris Moench (shepherd's purse) on different inflammatory pathways. Results: All of the plant extracts significantly affected ROS production, but their action on cytokine production was more variable. As the Quercus robur extract showed the highest efficacy in our models, it was subsequently assessed on several inflammatory signaling pathways. Quercus robur significantly decreased the secretion of IFNγ, IL-17a, IL-12, IL-2, IL-1β and IL-23 in stimulated human leucocytes, and the expression of TNFα, IL-6, IL-8, IL-1β and CXCL10 in M1-like macrophages. Additionally, a significant reduction in PGE2 secretion, COX2, NLRP3, caspase1 and STAT3 expression and NFκB p65 phosphorylation was observed. Conclusions: Our results clearly indicate that Quercus robur has a potent anti-inflammatory effect, making it a promising candidate for both the treatment and prevention of inflammation and related diseases, thereby promoting overall well-being.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Arthur Chervet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Lucie Longechamp
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Amandine Rousset
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France; (A.R.); (J.-Y.B.)
| | - Pierre Chalard
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (P.C.); (M.G.)
| | - Mael Gainche
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont Auvergne INP, CNRS, 63000 Clermont-Ferrand, France; (P.C.); (M.G.)
| | - Francois Senejoux
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Didier Fraisse
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Edith Filaire
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Jean-Yves Berthon
- Greentech, Biopôle Clermont-Limagne, 63360 Saint-Beauzire, France; (A.R.); (J.-Y.B.)
| | - Mona Diab-Assaf
- Faculty of Sciences II, Lebanese University Fanar, Beirut 1500, Lebanon;
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (R.N.); (A.C.); (C.D.); (O.H.); (L.L.); (F.S.); (D.F.); (E.F.); (L.D.)
| |
Collapse
|
10
|
Li JP, Qiu S, Tai GJ, Liu YM, Wei W, Fu MM, Fang PQ, Otieno JN, Battulga T, Li XX, Xu M. NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction. Cardiovasc Diabetol 2025; 24:6. [PMID: 39762890 PMCID: PMC11705910 DOI: 10.1186/s12933-024-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown. METHODS A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated. Chip and Luciferase assay revealed CEBPB regulated the transcriptional expression of Nlrp3 as a transcription factor in EPC stimulated by high glucose (HG) or advanced glycation end products (AGEs). CO-IP results suggested that USP14 selectively suppressed NLRP3 degradation. KEGG enrichment revealed PI3K/ Akt/mTOR signaling showed striking significance in the entire pathway. RESULTS In our study, wild-type, Nlrp3 knockout and Nlrp3 overexpressed EPC, intracardiac injections effectively improved cardiac function, increased angiogenesis, and reduced infarct size in mice with myocardial infarction. However, in the HFD/STZ-induced diabetic mice model combined with myocardial infarction, Nlrp3 knockout EPC significantly restored angiogenic capacity. Mechanically, CEBPB regulated the transcriptional level of Nlrp3 as a transcription factor in EPC. Meanwhile, we found that USP14 selectively suppressed NLRP3 protein degradation through the USP motif on the NACHT domain in mediating inflammasome activation. Cardiac functional outcomes in recipient mice after intramyocardial injection of shNlrp3 EPC overexpressing CEBPB or USP14 validated the modulation of EPC function by regulating Nlrp3 transcription or post-translational modification. Furthermore, KEGG enrichment and validation at the protein levels revealed PI3K/ Akt/mTOR cascade might be a downstream signal for NLRP3 inflammasome. CONCLUSION Our study provides a new understanding of how diabetes affected progenitor cell-mediated cardiac repair and identifies NLRP3 as a new therapeutic target for improving myocardial infarction repair in inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Yi-Ming Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Meng-Meng Fu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Pan-Qi Fang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Joseph Nicolao Otieno
- Director Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, 24210, Ulaanbaatar, Mongolia
| | - Xiao-Xue Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, 87 Ding Jiaqiao, Nanjing, 210009, People's Republic of China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
11
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
12
|
Luo J, Zhou Y, Wang M, Zhang J, Jiang E. Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation. Cell Commun Signal 2024; 22:596. [PMID: 39695742 DOI: 10.1186/s12964-024-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activation of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipitates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles in immune responses and inflammation. This review examines the molecular architecture and composition of various types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT process and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflammasomes and related factors in HSCT.
Collapse
Affiliation(s)
- Jieya Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunxia Zhou
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300051, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
13
|
Chen RM, Emming S, Cinnamon R, Cameron JP, Schroder K, Kobe B, Robertson AAB. The design, synthesis, and biological evaluation of 5,6,7,8-tetrahydropteridines as anti-inflammatory compounds. Org Biomol Chem 2024; 23:174-182. [PMID: 39526339 DOI: 10.1039/d4ob01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The NLRP3 inflammasome is implicated in the pathogenesis of a wide array of inflammatory diseases including cancer, type II diabetes, atherosclerosis, gout, and neurodegenerative disease. Research has shown that Bruton's tyrosine kinase (BTK) is a critical regulator of the NLRP3 inflammasome and that the pharmacological inhibition of BTK using the FDA-approved inhibitor ibrutinib diminishes NLRP3-dependent inflammatory response. Herein, we describe our pursuit towards novel anti-inflammatory compounds using a scaffold-hopping approach. In our drug discovery efforts, we identified 5,6,7,8-tetrahydropteridines as underutilized scaffolds in medicinal chemistry. We report the synthesis of 5,6,7,8-tetrahydropteridines with potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Rachel M Chen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| | - Roseanna Cinnamon
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
| | - Jacob P Cameron
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, 4072, Australia
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
14
|
Wang Z, Guo L, Yuan C, Zhu C, Li J, Zhong H, Mao P, Li J, Cui L, Dong J, Liu K, Meng X, Zhu G, Wang H. Staphylococcus pseudintermedius induces pyroptosis of canine corneal epithelial cells by activating the ROS-NLRP3 signalling pathway. Virulence 2024; 15:2333271. [PMID: 38515339 PMCID: PMC10984133 DOI: 10.1080/21505594.2024.2333271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Staphylococcus pseudintermedius (S. pseudintermedius) is a common pathogen that causes canine corneal ulcers. However, the pathogenesis remained unclear. In this study, it has been demonstrated that S. pseudintermedius invaded canine corneal epithelial cells (CCECs) intracellularly, mediating oxidative damage and pyroptosis by promoting the accumulation of intracellular reactive oxygen species (ROS) and activating the NLRP3 inflammasome. The canine corneal stroma was infected with S. pseudintermedius to establish the canine corneal ulcer model in vivo. The intracellular infectious model in CCECs was established in vitro to explore the mechanism of the ROS - NLRP3 signalling pathway during the S. pseudintermedius infection by adding NAC or MCC950. Results showed that the expression of NLRP3 and gasdermin D (GSDMD) proteins increased significantly in the infected corneas (p < 0.01). The intracellular infection of S. pseudintermedius was confirmed by transmission electron microscopy and immunofluorescent 3D imaging. Flow cytometry analysis revealed that ROS and pyroptosis rates increased in the experimental group in contrast to the control group (p < 0.01). Furthermore, NAC or MCC950 inhibited activation of the ROS - NLRP3 signalling pathway and pyroptosis rate significantly, by suppressing pro-IL-1β, cleaved-IL-1β, pro-caspase-1, cleaved-caspase-1, NLRP3, GSDMD, GSDMD-N, and HMGB1 proteins. Thus, the research confirmed that oxidative damage and pyroptosis were involved in the process of CCECs infected with S. pseudintermedius intracellularly by the ROS - NLRP3 signalling pathway. The results enrich the understanding of the mechanisms of canine corneal ulcers and facilitate the development of new medicines and prevention measures.
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Chengcheng Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Mao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Fan H, Fu Q, Du G, Qin L, Shi X, Wang D, Yang Y. Microglial Mayhem NLRP3 Inflammasome's Role in Multiple Sclerosis Pathology. CNS Neurosci Ther 2024; 30:e70135. [PMID: 39690733 DOI: 10.1111/cns.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION This review delves into the intricate relationship between NLR inflammasomes, particularly the NLRP3 inflammasome, and the immune-mediated neurodegenerative disease, multiple sclerosis (MS). While the precise etiology of MS remains elusive, compelling research underscores the pivotal role of the immune response in disease progression. Notably, recent investigations highlight the significant involvement of NLRP3 inflammasomes in various autoimmune diseases, prompting an in-depth exploration of their impact on MS. METHOD The review focuses on elucidating the activation mechanism of NLRP3 inflammasomes within microglia/macrophages (MG/MФ), examining how this activation promotes an inflammatory response that exacerbates neuronal damage in MS. A comprehensive analysis of existing literature and research findings forms the basis for understanding the intricate interplay between NLRP3 inflammasomes and MS pathogenesis. RESULTS Synthesizing current research, the review provides insight into the pivotal role played by NLR inflammasomes, specifically NLRP3, in MS. Emphasis is placed on the inflammatory response orchestrated by activated MG/MФ, elucidating the cascade that perpetuates neuronal damage in the disease. CONCLUSIONS This review concludes by consolidating key findings and offering a nuanced perspective on the role of NLRP3 inflammasomes in MS pathogenesis. The detailed exploration of the activation process within MG/MФ provides a foundation for understanding the disease's underlying mechanisms. Furthermore, the review sets the stage for potential therapeutic strategies targeting NLRP3 inflammasomes in the pursuit of MS treatment.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Qizhi Fu
- Department of Intensive Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ling Qin
- Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yanhui Yang
- Department of Emergency Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
17
|
Santana PT, de Lima IS, da Silva e Souza KC, Barbosa PHS, de Souza HSP. Persistent Activation of the P2X7 Receptor Underlies Chronic Inflammation and Carcinogenic Changes in the Intestine. Int J Mol Sci 2024; 25:10874. [PMID: 39456655 PMCID: PMC11507540 DOI: 10.3390/ijms252010874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Aberrant signaling through damage-associated molecular patterns (DAMPs) has been linked to several health disorders, attracting considerable research interest over the last decade. Adenosine triphosphate (ATP), a key extracellular DAMP, activates the purinergic receptor P2X7, which acts as a danger sensor in immune cells and is implicated in distinct biological functions, including cell death, production of pro-inflammatory cytokines, and defense against microorganisms. In addition to driving inflammation mediated by immune and non-immune cells, the persistent release of endogenous DAMPs, including ATP, has been shown to result in epigenetic modifications. In intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC), consequent amplification of the inflammatory response and the resulting epigenetic reprogramming may impact the development of pathological changes associated with specific disease phenotypes. P2X7 is overexpressed in the gut mucosa of patients with IBD, whereas the P2X7 blockade prevents the development of chemically induced experimental colitis. Recent data suggest a role for P2X7 in determining gut microbiota composition. Regulatory mechanisms downstream of the P2X7 receptor, combined with signals from dysbiotic microbiota, trigger intracellular signaling pathways and inflammasomes, intensify inflammation, and foster colitis-associated CRC development. Preliminary studies targeting the ATP-P2X7 pathway have shown favorable therapeutic effects in human IBD and experimental colitis.
Collapse
Affiliation(s)
- Patricia Teixeira Santana
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| | - Isadora Schmukler de Lima
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Karen Cristina da Silva e Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Pedro Henrique Sales Barbosa
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
| | - Heitor Siffert Pereira de Souza
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; (P.T.S.); (I.S.d.L.); (K.C.d.S.e.S.); (P.H.S.B.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
| |
Collapse
|
18
|
Liao Y, Yang P, Yang C, Zhuang K, Fahira A, Wang J, Liu Z, Yan L, Huang Z. Clinical signature and associated immune metabolism of NLRP1 in pan-cancer. J Cell Mol Med 2024; 28:e70100. [PMID: 39318060 PMCID: PMC11422451 DOI: 10.1111/jcmm.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammations have been linked to tumours, suggesting a potential association between NLRP1 and cancer. Nevertheless, a systematic assessment of NLRP1's role across various cancer types currently absent. A comprehensive bioinformatic analysis was conducted to determine whether NLRP1 exhibits prognostic relevance linked to immune metabolism across various cancers. The study leveraged data from the TCGA and GTEx databases to explore the clinical significance, metabolic features, and immunological characteristics of NLRP1, employing various tools such as R, GEPIA, STRING and TISIDB. NLRP1 exhibited differential expression patterns across various cancers, with elevated expression correlating with a more favourable prognosis in lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD). Downregulation of NLRP1 reduced tumour metabolic activity in LUAD. Moreover, the mutational signature of NLRP1 was linked to a favourable prognosis. Interestingly, high NLRP1 expression inversely correlated with tumour stemness while positively correlating with tumour immune infiltration in various cancers including LUAD and PAAD. Through extensive big data analysis, we delved into the role of NLRP1 across various tumour types, constructing a comprehensive role map of its involvement in pan-cancer scenarios. Our findings highlight the potential of NLRP1 as a promising therapeutic target specifically in LUAD and PAAD.
Collapse
Affiliation(s)
- Yong Liao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Pinglian Yang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Cui Yang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kai Zhuang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Lin Yan
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
19
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
20
|
Zhu G, Yu H, Peng T, Yang K, Xu X, Gu W. Glycolytic enzyme PGK1 promotes M1 macrophage polarization and induces pyroptosis of acute lung injury via regulation of NLRP3. Respir Res 2024; 25:291. [PMID: 39080660 PMCID: PMC11290129 DOI: 10.1186/s12931-024-02926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Acute lung injury (ALI) is characterized by an unregulated inflammatory reaction, often leading to severe morbidity and ultimately death. Excessive inflammation caused by M1 macrophage polarization and pyroptosis has been revealed to have a critical role in ALI. Recent study suggests that glycolytic reprogramming is important in the regulation of macrophage polarization and pyroptosis. However, the particular processes underlying ALI have yet to be identified. In this study, we established a Lipopolysaccharide(LPS)-induced ALI model and demonstrated that blocking glycolysis by using 2-Deoxy-D-glucose(2-DG) significantly downregulated the expression of M1 macrophage markers and pyroptosis-related genes, which was consistent with the in vitro results. Furthermore, our research has revealed that Phosphoglycerate Kinase 1(PGK1), an essential enzyme in the glycolysis pathway, interacts with NOD-, LRR- and pyrin domain-containing protein 3(NLRP3). We discovered that LPS stimulation improves the combination of PGK1 and NLRP3 both in vivo and in vitro. Interestingly, the absence of PGK1 reduces the phosphorylation level of NLRP3. Based on in vitro studies with mice bone marrow-derived macrophages (BMDMs), we further confirmed that siPGK1 plays a protective role by inhibiting macrophage pyroptosis and M1 macrophage polarization. The PGK1 inhibitor NG52 suppresses the occurrence of excessive inflammation in ALI. In general, it is plausible to consider a therapeutic strategy that focuses on modulating the relationship between PGK1 and NLRP3 as a means to mitigate the activation of inflammatory macrophages in ALI.
Collapse
Affiliation(s)
- Guiyin Zhu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Haiyang Yu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Tian Peng
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Kun Yang
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Xue Xu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China
| | - Wen Gu
- 1Department of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang road, shanghai, 200092, China.
| |
Collapse
|
21
|
D’Silva NJ, Pandiyan P. Neuroimmune cell interactions and chronic infections in oral cancers. Front Med (Lausanne) 2024; 11:1432398. [PMID: 39050547 PMCID: PMC11266022 DOI: 10.3389/fmed.2024.1432398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammation is a process that is associated with the activation of distal immunosuppressive pathways that have evolved to restore homeostasis and prevent excessive tissue destruction. However, long-term immunosuppression resulting from systemic and local inflammation that may stem from dysbiosis, infections, or aging poses a higher risk for cancers. Cancer incidence and progression dramatically increase with chronic infections including HIV infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from resident microbiota and infections in the context of inflammation are needed and underway. Here, we discuss chronic infections and potential neuro-immune interactions that could establish immunomodulatory programs permissive for tumor growth and progression.
Collapse
Affiliation(s)
- Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Center for AIDS Research, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
22
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
23
|
Abdel-Hamed AR, Wahba AS, Khodeer DM, Abdel-Kader MS, Badr JM, Mahgoub S, Hal DM. Metabolomic Profiling and In Vivo Antiepileptic Effect of Zygophyllum album Aerial Parts and Roots Crude Extracts against Pentylenetetrazole-Induced Kindling in Mice. Metabolites 2024; 14:316. [PMID: 38921451 PMCID: PMC11205424 DOI: 10.3390/metabo14060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The chemical profiles of both Zygophyllum album (Z. album) aerial parts and roots extracts were evaluated with LC-ESI-TOF-MS/MS analysis. Twenty-four compounds were detected. Among them, some are detected in both the aerial parts and the roots extracts, and others were detected in the aerial parts only. The detected compounds were mainly flavonoids, phenolic compounds, triterpenes and other miscellaneous compounds. Such compounds contribute to the diverse pharmacological activities elicited by the Z. album species. This study aimed to elucidate the antiepileptic effect of Z. album aerial parts and roots crude extracts against pentylenetetrazole (PTZ)-induced kindling in mice. Male albino mice were divided into four groups, eight animals each. All groups, except the control group, were kindled with PTZ (35 mg/kg i.p.), once every alternate day for a total of 15 injections. One group was left untreated (PTZ group). The remaining two groups were treated prior to PTZ injection with either Z. album aerial parts or roots crude extract (400 mg/kg, orally). Pretreatment with either extract significantly reduced the seizure scores, partially reversed the histological changes in the cerebral cortex and exerted antioxidant/anti-inflammatory efficacy evinced by elevated hippocampal total antioxidant capacity and SOD and catalase activities, parallel to the decrement in MDA content, iNOS activity and the TXNIB/NLRP3 axis with a subsequent decrease in caspase 1 activation and a release of IL-1β and IL-18. Moreover, both Z. album extracts suppressed neuronal apoptosis via upregulating Bcl-2 expression and downregulating that of Bax, indicating their neuroprotective and antiepileptic potential. Importantly, the aerial parts extract elicited much more antiepileptic potential than the roots extract did.
Collapse
Affiliation(s)
- Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (A.R.A.-H.); (A.S.W.)
| | - Alaa S. Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (A.R.A.-H.); (A.S.W.)
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (J.M.B.); (D.M.H.)
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig 44511, Egypt;
| | - Dina M. Hal
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (J.M.B.); (D.M.H.)
| |
Collapse
|
24
|
Oh JM, Yoon H, Joo JY, Im WT, Chun S. Therapeutic potential of ginseng leaf extract in inhibiting mast cell-mediated allergic inflammation and atopic dermatitis-like skin inflammation in DNCB-treated mice. Front Pharmacol 2024; 15:1403285. [PMID: 38841363 PMCID: PMC11150533 DOI: 10.3389/fphar.2024.1403285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Ginseng leaves are known to contain high concentrations of bioactive compounds, such as ginsenosides, and have potential as a treatment for various conditions, including fungal infections, cancer, obesity, oxidative stress, and age-related diseases. This study assessed the impact of ginseng leaf extract (GLE) on mast cell-mediated allergic inflammation and atopic dermatitis (AD) in DNCB-treated mice. GLE reduced skin thickness and lymph node nodules and suppressed the expression and secretion of histamine and pro-inflammatory cytokines. It also significantly lowered the production of inflammatory response mediators including ROS, leukotriene C4 (LTC4), prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). GLE inhibited the phosphorylation of MAPKs (ERK, P38, JNK) and the activation of NF-κB, which are both linked to inflammatory cytokine expression. We demonstrated that GLE's inhibitory effect on mast cell-mediated allergic inflammation is due to the blockade of the NF-κB and inflammasome pathways. Our findings suggest that GLE can be an effective therapeutic agent for mast-cell mediated and allergic inflammatory conditions.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - HyunHo Yoon
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong, Gyeonggi-do, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
25
|
Fang C, Zuo K, Liu Z, Xu L, Yang X. Disordered GPR43/NLRP3 expression in peripheral leukocytes of patients with atrial fibrillation is associated with intestinal short chain fatty acids levels. Eur J Med Res 2024; 29:233. [PMID: 38622672 PMCID: PMC11017637 DOI: 10.1186/s40001-024-01825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1β were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1β, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1β levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1β release in human THP-1 cells in vitro. CONCLUSIONS Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.
Collapse
Affiliation(s)
- Chen Fang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Kun Zuo
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Zheng Liu
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Xinchun Yang
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
26
|
Mencarelli A, Bist P, Choi HW, Khameneh HJ, Mortellaro A, Abraham SN. Anaphylactic degranulation by mast cells requires the mobilization of inflammasome components. Nat Immunol 2024; 25:693-702. [PMID: 38486019 DOI: 10.1038/s41590-024-01788-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2024] [Indexed: 04/11/2024]
Abstract
The inflammasome components NLRP3 and ASC are cytosolic proteins, which upon sensing endotoxins or danger cues, form multimeric complexes to process interleukin (IL)-1β for secretion. Here we found that antigen (Ag)-triggered degranulation of IgE-sensitized mast cells (MCs) was mediated by NLRP3 and ASC. IgE-Ag stimulated NEK7 and Pyk2 kinases in MCs to induce the deposition of NLRP3 and ASC on granules and form a distinct protein complex (granulosome) that chaperoned the granules to the cell surface. MCs deficient in NLRP3 or ASC did not form granulosomes, degranulated poorly in vitro and did not evoke systemic anaphylaxis in mice. IgE-Ag-triggered anaphylaxis was prevented by an NLRP3 inhibitor. In endotoxin-primed MCs, pro-IL-1β was rapidly packaged into granules after IgE-Ag stimulation and processed within granule remnants by proteases after degranulation, causing lethal anaphylaxis in mice. During IgE-Ag-mediated degranulation of endotoxin-primed MCs, granulosomes promoted degranulation, combined with exteriorization and processing of IL-1β, resulting in severe inflammation.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science and Research (A*Star), Singapore, Singapore
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Soman N Abraham
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
27
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 PMCID: PMC10933493 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Guo Y, Song J, Yan M, Chen Y, Huang L, Liu J, He Y, Lü Y, Yu W. The role of NLRP6 in the development and progression of neurological diseases. Mol Biol Rep 2024; 51:351. [PMID: 38400865 DOI: 10.1007/s11033-024-09293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
The nervous system possesses the remarkable ability to undergo changes in order to store information; however, it is also susceptible to damage caused by invading pathogens or neurodegenerative processes. As a member of nucleotide-binding oligomerization domain-like receptor (NLR) family, the NLRP6 inflammasome serves as a cytoplasmic innate immune sensor responsible for detecting microbe-associated molecular patterns. Upon activation, NLRP6 can recruit the adapter protein apoptosis-associated speck-like protein (ASC) and the inflammatory factors caspase-1 or caspase-11. Consequently, inflammasomes are formed, facilitating the maturation and secretion of pro-inflammatory cytokines such as inflammatory factors-18 (IL-18) and inflammatory factors-1β (IL-1β). Precise regulation of NLRP6 is crucial for maintaining tissue homeostasis, as dysregulated inflammasome activation can contribute to the development of various diseases. Furthermore, NLRP6 may also play a role in the regulation of extraintestinal diseases. In cells of the brain, such as astrocytes and neurons, NLRP6 inflammasome are also present. Here, the assembly and subsequent activation of caspase-1 mediated by NLRP6 contribute to disease progression. This review aims to discuss the structure and function of NLRP6, explain clearly the mechanisms that induce and activate NLRP6, and explore its role within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Yiming Guo
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Mengyu Yan
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yingxi Chen
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lihong Huang
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiarui Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yurou He
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, No. 1, Yixuayuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
29
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
30
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
31
|
Yang W, Wang Y, Tao K, Li R. Metabolite itaconate in host immunoregulation and defense. Cell Mol Biol Lett 2023; 28:100. [PMID: 38042791 PMCID: PMC10693715 DOI: 10.1186/s11658-023-00503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic states greatly influence functioning and differentiation of immune cells. Regulating the metabolism of immune cells can effectively modulate the host immune response. Itaconate, an intermediate metabolite derived from the tricarboxylic acid (TCA) cycle of immune cells, is produced through the decarboxylation of cis-aconitate by cis-aconitate decarboxylase in the mitochondria. The gene encoding cis-aconitate decarboxylase is known as immune response gene 1 (IRG1). In response to external proinflammatory stimulation, macrophages exhibit high IRG1 expression. IRG1/itaconate inhibits succinate dehydrogenase activity, thus influencing the metabolic status of macrophages. Therefore, itaconate serves as a link between macrophage metabolism, oxidative stress, and immune response, ultimately regulating macrophage function. Studies have demonstrated that itaconate acts on various signaling pathways, including Keap1-nuclear factor E2-related factor 2-ARE pathways, ATF3-IκBζ axis, and the stimulator of interferon genes (STING) pathway to exert antiinflammatory and antioxidant effects. Furthermore, several studies have reported that itaconate affects cancer occurrence and development through diverse signaling pathways. In this paper, we provide a comprehensive review of the role IRG1/itaconate and its derivatives in the regulation of macrophage metabolism and functions. By furthering our understanding of itaconate, we intend to shed light on its potential for treating inflammatory diseases and offer new insights in this field.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
32
|
Wu X, Yi X, Zhao B, Zhi Y, Xu Z, Cao Y, Cao X, Pang J, Yung KKL, Zhang S, Liu S, Zhou P. The volume regulated anion channel VRAC regulates NLRP3 inflammasome by modulating itaconate efflux and mitochondria function. Pharmacol Res 2023; 198:107016. [PMID: 38006980 DOI: 10.1016/j.phrs.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
The NLRP3 inflammasome is a supramolecular complex that is linked to sterile and pathogen-dependent inflammation, and its excessive activation underlies many diseases. Ion flux disturbance and cell volume regulation are both reported to mediate NLRP3 inflammasome activation, but the underlying orchestrating signaling remains not fully elucidated. The volume-regulated anion channel (VRAC), formed by LRRC8 proteins, is an important constituent that controls cell volume by permeating chloride and organic osmolytes in response to cell swelling. We now demonstrate that Lrrc8a, the essential component of VRAC, plays a central and specific role in canonical NLRP3 inflammasome activation. Moreover, VRAC acts downstream of K+ efflux for NLRP3 stimuli that require K+ efflux. Mechanically, our data demonstrate that VRAC modulates itaconate efflux and damaged mitochondria production for NLRP3 inflammasome activation. Further in vivo experiments show mice with Lrrc8a deficiency in myeloid cells were protected from lipopolysaccharides (LPS)-induced endotoxic shock. Taken together, this work identifies VRAC as a key regulator of NLRP3 inflammasome and innate immunity by regulating mitochondrial adaption for macrophage activation and highlights VRAC as a prospective drug target for the treatment of NLRP3 inflammasome and itaconate related diseases.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Yi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxing Zhi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Key Laboratory of Psychiatric Disorders of Guangdong Province, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ken Kin Lam Yung
- Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
33
|
K C PB, Maharjan A, Acharya M, Lee D, Kusma S, Gautam R, Kwon JT, Kim C, Kim K, Kim H, Heo Y. Polytetrafluorethylene microplastic particles mediated oxidative stress, inflammation, and intracellular signaling pathway alteration in human derived cell lines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165295. [PMID: 37419366 DOI: 10.1016/j.scitotenv.2023.165295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Microplastics (MPs) are now widely distributed across the aerial, terrestrial, and aquatic environments. Thus, exposure to MPs via the oral, inhalation, or dermal routes is inevitable. Polytetrafluoroethylene (PTFE)-MPs is mainly used for manufacturing nonstick cookware, semiconductors, and medical devices; however, their toxicity has been rarely studied. In the present study, six different human cell lines, which are representative of tissues and cells that directly or indirectly come into contact with MPs, were exposed to two different sizes of irregular shape PTFE-MPs (with an average diameter of 6.0 or 31.7 μm). PTFE-MPs-mediated cytotoxicity, oxidative stress, and changes in proinflammatory cytokine production were then evaluated. We found that the PTFE-MPs did not induce cytotoxicity under any of the experimental conditions. However, PTFE-MPs (especially average diameter of 6.0 μm) induced nitric oxide and reactive oxygen species production in all the cell lines tested. Moreover, both sizes of PTFE-MPs increased the secretion of tumor necrosis factor alpha and interleukin-6 from the U937 macrophage cell line and the A549 lung epithelial cell line, respectively. In addition, PTFE-MPs activated the MAPK signaling pathways, especially the ERK pathway, in A549 and U937 cells, and in the THP-1 dendritic cell line. We also found that the expression of the NLRP3 inflammasome was reduced in the U937 and THP-1 cell lines following treatment with the PTFE-MPs sized 31.7 μm average diameter. Furthermore, expression of the apoptosis regulator, BCL2, was markedly increased in the A549 and U937 cell lines. Thus, although PTFE-MPs exert different effects on different cell types, our findings suggest that PTFE-MPs-associated toxicity may be specifically linked to the activation of the ERK pathway, which ultimately induces oxidative stress and inflammation.
Collapse
Affiliation(s)
- Pramod Bahadur K C
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Anju Maharjan
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - Sarina Kusma
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ravi Gautam
- Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea
| | - Jung-Taek Kwon
- Environmental Health Research Department, National Institute of Environmental Research, 22689 Incheon, Republic of Korea.
| | - ChangYul Kim
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea.
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Center, 41061 Daegu, Republic of Korea; College of Veterinary Medicine, Kyungpook National University, 41566 Daegu, Republic of Korea.
| | - HyoungAh Kim
- College of Medicine, Department of Preventive Medicine, The Catholic University of Korea, 06591 Seoul, Republic of Korea.
| | - Yong Heo
- Graduate School Department of Toxicology, Daegu Catholic University, Gyeongsan 38430, Republic of Korea; Department of Occupational Health, College of Bio and Medical Sciences, Daegu Catholic University, 38430 Gyeongsan, Republic of Korea.
| |
Collapse
|
34
|
Fu X, Li J, Wu Y, Mao C, Jiang Y. PAR2 deficiency tunes inflammatory microenvironment to magnify STING signalling for mitigating cancer metastasis via anionic CRISPR/Cas9 nanoparticles. J Control Release 2023; 363:733-746. [PMID: 37827223 DOI: 10.1016/j.jconrel.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Metastasis is one of the most significant causes for deterioration of breast cancer, contributing to the clinical failure of anti-tumour drugs. Excessive inflammatory responses intensively promote the occurrence and development of tumour, while protease-activated receptor 2 (PAR2) as a cell membrane receptor actively participates in both tumour cell functions and inflammatory responses. However, rare investigations linked PAR2-mediated inflammatory environment to tumour progression. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is an emerging and powerful gene editing technique and can be applied for probing the new role of PAR2 in breast cancer metastasis, but it still needs the development of an efficient and safe delivery system. This work constructed anionic bovine serum albumin (BSA) nanoparticles to encapsulate CRISPR/Cas9 plasmid encoding PAR2 sgRNA and Cas9 (tBSA/Cas9-PAR2) for triggering PAR2 deficiency. tBSA/Cas9-PAR2 remarkably promoted CRISPR/Cas9 to enter and transfect both inflammatory and cancer cells, initiating precise PAR2 gene editing in vitro and in vivo. PAR2 deficiency by tBSA/Cas9-PAR2 effectively suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signalling in inflammatory microenvironment to magnify stimulator of interferon genes (STING) signalling, reactive oxygen species (ROS) accumulation and epithelial-mesenchymal transition (EMT) reversal, consequently preventing breast cancer metastasis. Therefore, this study not only demonstrated the involvement and underlying mechanism of PAR2 in tumour progression via modulating inflammatory microenvironment, but also suggested PAR2 deficiency by tBSA/Cas9-PAR2 as an attractive therapeutic strategy candidate for breast cancer metastasis.
Collapse
Affiliation(s)
- Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianbin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
35
|
Liu QJ, Yuan W, Yang P, Shao C. Role of glycolysis in diabetic atherosclerosis. World J Diabetes 2023; 14:1478-1492. [PMID: 37970130 PMCID: PMC10642412 DOI: 10.4239/wjd.v14.i10.1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
Diabetes mellitus is a kind of typical metabolic disorder characterized by elevated blood sugar levels. Atherosclerosis (AS) is one of the most common complications of diabetes. Modern lifestyles and trends that promote overconsumption and unhealthy practices have contributed to an increase in the annual incidence of diabetic AS worldwide, which has created a heavy burden on society. Several studies have shown the significant effects of glycolysis-related changes on the occurrence and development of diabetic AS, which may serve as novel thera-peutic targets for diabetic AS in the future. Glycolysis is an important metabolic pathway that generates energy in various cells of the blood vessel wall. In particular, it plays a vital role in the physiological and pathological activities of the three important cells, Endothelial cells, macrophages and vascular smooth muscle cells. There are lots of similar mechanisms underlying diabetic and common AS, the former is more complex. In this article, we describe the role and mechanism underlying glycolysis in diabetic AS, as well as the therapeutic targets, such as trained immunity, microRNAs, gut microbiota, and associated drugs, with the aim to provide some new perspectives and potentially feasible programs for the treatment of diabetic AS in the foreseeable future.
Collapse
Affiliation(s)
- Qian-Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Ping Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
36
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Shi C, Wan Y, He A, Wu X, Shen X, Zhu X, Yang J, Zhou Y. Urinary metabolites associate with the presence of diabetic kidney disease in type 2 diabetes and mediate the effect of inflammation on kidney complication. Acta Diabetol 2023; 60:1199-1207. [PMID: 37184672 PMCID: PMC10359369 DOI: 10.1007/s00592-023-02094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
AIMS Diabetic kidney disease (DKD) is the one of the leading causes of end-stage kidney disease. Unraveling novel biomarker signatures capable to identify patients with DKD is favorable for tackle the burden. Here, we investigated the possible association between urinary metabolites and the presence of DKD in type 2 diabetes (T2D), and further, whether the associated metabolites improve discrimination of DKD and mediate the effect of inflammation on kidney involvement was evaluated. METHODS Two independent cohorts comprising 192 individuals (92 DKD) were analyzed. Urinary metabolites were analyzed by targeted metabolome profiling and inflammatory cytokine IL-18 were measured by ELISA. Differentially expressed metabolites were selected and mediation analysis was carried out. RESULTS Seven potential metabolite biomarkers (i.e., S-Adenosyl-L-homocysteine, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid) were identified using the discovery and validation design. In the pooled analysis, propionic acid, oxoadipic acid, leucine, isovaleric acid, isobutyric acid, and indole-3-carboxylic acid were markedly and independently associated with DKD. The composite index of 7 potential metabolite biomarkers (CMI) mediated 32.99% of the significant association between the inflammatory IL-18 and DKD. Adding the metabolite biomarkers improved the discrimination of DKD. CONCLUSIONS In T2D, several associated urinary metabolites were identified to improve the prediction of DKD. Whether interventions aimed at reducing CMI also reduce the risk of DKD especially in patients with high IL-18 needs further investigations.
Collapse
Affiliation(s)
- Caifeng Shi
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Yemeng Wan
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Aiqin He
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xiaomei Wu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xinjia Shen
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Xueting Zhu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, No. 262 N Zhongshan Road, Nanjing, 210003, Jiangsu, China.
| |
Collapse
|
38
|
Luo T, Jia X, Feng WD, Wang JY, Xie F, Kong LD, Wang XJ, Lian R, Liu X, Chu YJ, Wang Y, Xu AL. Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy. Acta Pharmacol Sin 2023; 44:1867-1878. [PMID: 37142684 PMCID: PMC10462717 DOI: 10.1038/s41401-023-01094-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of NLRP3 inflammasome activation produces potent therapeutic effects in a wide array of inflammatory diseases. Bergapten (BeG), a furocoumarin phytohormone present in many herbal medicines and fruits, exibits anti-inflammatory activity. In this study we characterized the therapeutic potential of BeG against bacterial infection and inflammation-related disorders, and elucidated the underlying mechanisms. We showed that pre-treatment with BeG (20 μM) effectively inhibited NLRP3 inflammasome activation in both lipopolysaccharides (LPS)-primed J774A.1 cells and bone marrow-derived macrophages (BMDMs), evidenced by attenuated cleaved caspase-1 and mature IL-1β release, as well as reduced ASC speck formation and subsequent gasdermin D (GSDMD)-mediated pyroptosis. Transcriptome analysis revealed that BeG regulated the expression of genes involved in mitochondrial and reactive oxygen species (ROS) metabolism in BMDMs. Moreover, BeG treatment reversed the diminished mitochondrial activity and ROS production after NLRP3 activation, and elevated the expression of LC3-II and enhanced the co-localization of LC3 with mitochondria. Treatment with 3-methyladenine (3-MA, 5 mM) reversed the inhibitory effects of BeG on IL-1β, cleaved caspase-1 and LDH release, GSDMD-N formation as well as ROS production. In mouse model of Escherichia coli-induced sepsis and mouse model of Citrobacter rodentium-induced intestinal inflammation, pre-treatment with BeG (50 mg/kg) significantly ameliorated tissue inflammation and injury. In conclusion, BeG inhibits NLRP3 inflammasome activation and pyroptosis by promoting mitophagy and maintaining mitochondrial homeostasis. These results suggest BeG as a promising drug candidate for the treatment of bacterial infection and inflammation-related disorders.
Collapse
Affiliation(s)
- Tong Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wan-di Feng
- Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin-Yong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling-Dong Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Jiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Lian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ying-Jie Chu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - An-Long Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
39
|
Qian N, Distefano R, Ilieva M, Madsen JH, Rennie S, Uchida S. Systematic Analysis of Long Non-Coding RNAs in Inflammasome Activation in Monocytes/Macrophages. Noncoding RNA 2023; 9:50. [PMID: 37736896 PMCID: PMC10514883 DOI: 10.3390/ncrna9050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
The NLRP3 inflammasome plays a pivotal role in regulating inflammation and immune responses. Its activation can lead to an inflammatory response and pyroptotic cell death. This is beneficial in the case of infections, but excessive activation can lead to chronic inflammation and tissue damage. Moreover, while most of the mammalian genome is transcribed as RNAs, only a small fraction codes for proteins. Among non-protein-coding RNAs, long non-coding RNAs (lncRNAs) have been shown to play key roles in regulating gene expression and cellular processes. They interact with DNA, RNAs, and proteins, and their dysregulation can provide insights into disease mechanisms, including NLRP3 inflammasome activation. Here, we systematically analyzed previously published RNA sequencing (RNA-seq) data of NLRP3 inflammasome activation in monocytes/macrophages to uncover inflammasome-regulated lncRNA genes. To uncover the functional importance of inflammasome-regulated lncRNA genes, one inflammasome-regulated lncRNA, ENSG00000273124, was knocked down in an in vitro model of macrophage polarization. The results indicate that silencing of ENSG00000273124 resulted in the up-regulation tumor necrosis factor (TNF), suggesting that this lncRNA might be involved in pro-inflammatory response in macrophages. To make our analyzed data more accessible, we developed the web database InflammasomeDB.
Collapse
Affiliation(s)
- Na Qian
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (N.Q.); (R.D.); (S.R.)
| | - Rebecca Distefano
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (N.Q.); (R.D.); (S.R.)
| | - Mirolyuba Ilieva
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (M.I.); (J.H.M.)
| | - Jens Hedelund Madsen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (M.I.); (J.H.M.)
| | - Sarah Rennie
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (N.Q.); (R.D.); (S.R.)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark; (M.I.); (J.H.M.)
| |
Collapse
|
40
|
Alijagic A, Hedbrant A, Persson A, Larsson M, Engwall M, Särndahl E. NLRP3 inflammasome as a sensor of micro- and nanoplastics immunotoxicity. Front Immunol 2023; 14:1178434. [PMID: 37143682 PMCID: PMC10151538 DOI: 10.3389/fimmu.2023.1178434] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely investigated effects on human innate immunity. If they follow a similar course of action as other, more thoroughly investigated particulates, MNPs may penetrate epithelial barriers, potentially triggering a cascade of signaling events leading to cell damage and inflammation. Inflammasomes are intracellular multiprotein complexes and stimulus-induced sensors critical for mounting inflammatory responses upon recognition of pathogen- or damage-associated molecular patterns. Among these, the NLRP3 inflammasome is the most studied in terms of activation via particulates. However, studies delineating the ability of MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we address the issue of MNPs source and fate, highlight the main concepts of inflammasome activation via particulates, and explore recent advances in using inflammasome activation for assessment of MNP immunotoxicity. We also discuss the impact of co-exposure and MNP complex chemistry in potential inflammasome activation. Development of robust biological sensors is crucial in order to maximize global efforts to effectively address and mitigate risks that MNPs pose for human health.
Collapse
Affiliation(s)
- Andi Alijagic
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
41
|
Park OJ, Ha YE, Sim JR, Lee D, Lee EH, Kim SY, Yun CH, Han SH. Butyrate potentiates Enterococcus faecalis lipoteichoic acid-induced inflammasome activation via histone deacetylase inhibition. Cell Death Discov 2023; 9:107. [PMID: 36977666 PMCID: PMC10050190 DOI: 10.1038/s41420-023-01404-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Enterococcus faecalis, a Gram-positive opportunistic pathogen having lipoteichoic acid (LTA) as a major virulence factor, is closely associated with refractory apical periodontitis. Short-chain fatty acids (SCFAs) are found in the apical lesion and may affect inflammatory responses induced by E. faecalis. In the current study, we investigated inflammasome activation by E. faecalis LTA (Ef.LTA) and SCFAs in THP-1 cells. Among SCFAs, butyrate in combination with Ef.LTA markedly enhanced caspase-1 activation and IL-1β secretion whereas these were not induced by Ef.LTA or butyrate alone. Notably, LTAs from Streptococcus gordonii, Staphylococcus aureus, and Bacillus subtilis also showed these effects. Activation of TLR2/GPCR, K+ efflux, and NF-κB were necessary for the IL-1β secretion induced by Ef.LTA/butyrate. The inflammasome complex comprising NLRP3, ASC, and caspase-1 was activated by Ef.LTA/butyrate. In addition, caspase-4 inhibitor diminished IL-1β cleavage and release, indicating that non-canonical activation of the inflammasome is also involved. Ef.LTA/butyrate induced Gasdermin D cleavage, but not the release of the pyroptosis marker, lactate dehydrogenase. This indicated that Ef.LTA/butyrate induces IL-1β production without cell death. Trichostatin A, a histone deacetylase (HDAC) inhibitor, enhanced Ef.LTA/butyrate-induced IL-1β production, indicating that HDAC is engaged in the inflammasome activation. Furthermore, Ef.LTA and butyrate synergistically induced the pulp necrosis that accompanies IL-1β expression in the rat apical periodontitis model. Taken all these results together, Ef.LTA in the presence of butyrate is suggested to facilitate both canonical- and non-canonical inflammasome activation in macrophages via HDAC inhibition. This potentially contributes to dental inflammatory diseases such as apical periodontitis, particularly associated with Gram-positive bacterial infection.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Eun Ha
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ri Sim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Hye Lee
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sun-Young Kim
- Department of Conservative Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green Bio Science Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
43
|
Bian Z, Zhang Q, Qin Y, Sun X, Liu L, Liu H, Mao L, Yan Y, Liao W, Zha L, Sun S. Sodium Butyrate Inhibits Oxidative Stress and NF-κB/NLRP3 Activation in Dextran Sulfate Sodium Salt-Induced Colitis in Mice with Involvement of the Nrf2 Signaling Pathway and Mitophagy. Dig Dis Sci 2023. [PMID: 36867295 DOI: 10.1007/s10620-023-07845-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Sodium butyrate (NaB) is a short-chain fatty acid produced by intestinal microbial fermentation of dietary fiber, and has been shown to be effective in inhibiting ulcerative colitis (UC). However, how NaB regulates inflammation and oxidative stress in the pathogenesis of UC is not clear. AIMS The purpose of this study was to use a dextran sulfate sodium salt (DSS)-induced murine colitis model, and determine the effects of NaB and the related molecular mechanisms. METHODS Colitis model was induced in mice by administration of 2.5%(wt/vol) DSS. 0.1 M NaB in drinking water, or intraperitoneal injection of NaB (1 g/kg body weight) was given during the study period. In vivo imaging was performed to detect abdominal reactive oxygen species (ROS). Western blotting and RT-PCR were used to determine the levels of target signals. RESULTS The results showed that NaB decreases the severity of colitis as determined by an improved survival rate, colon length, spleen weight, disease activity index (DAI), and histopathological changes. NaB reduced oxidative stress as determined by a reduction in abdominal ROS chemiluminescence signaling, inhibition of the accumulation of myeloperoxidase and malondialdehyde, and restoration of glutathione activity. NaB activated the COX-2/Nrf2/HO-1 pathway by increasing the expressions of COX-2, Nrf2, and HO-1 proteins. NaB inhibited the phosphorylation of NF-κB and activation of NLRP3 inflammasomes, and reduced the secretion of corresponding inflammatory factors. Furthermore, NaB promoted the occurrence of mitophagy via activating the expression of Pink1/Parkin. CONCLUSIONS In conclusion, our results indicate that NaB improves colitis by inhibiting oxidative stress and NF-κB/NLRP3 activation, which may be via COX-2/Nrf2/HO-1 activation and mitophagy.
Collapse
Affiliation(s)
- Zhongbo Bian
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiuyu Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yong Qin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaodie Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lulin Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Huahuan Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Suxia Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
44
|
Deng J, Jiang Y, Chen ZB, Rhee JW, Deng Y, Wang ZV. Mitochondrial Dysfunction in Cardiac Arrhythmias. Cells 2023; 12:679. [PMID: 36899814 PMCID: PMC10001005 DOI: 10.3390/cells12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Electrophysiological and structural disruptions in cardiac arrhythmias are closely related to mitochondrial dysfunction. Mitochondria are an organelle generating ATP, thereby satisfying the energy demand of the incessant electrical activity in the heart. In arrhythmias, the homeostatic supply-demand relationship is impaired, which is often accompanied by progressive mitochondrial dysfunction leading to reduced ATP production and elevated reactive oxidative species generation. Furthermore, ion homeostasis, membrane excitability, and cardiac structure can be disrupted through pathological changes in gap junctions and inflammatory signaling, which results in impaired cardiac electrical homeostasis. Herein, we review the electrical and molecular mechanisms of cardiac arrhythmias, with a particular focus on mitochondrial dysfunction in ionic regulation and gap junction action. We provide an update on inherited and acquired mitochondrial dysfunction to explore the pathophysiology of different types of arrhythmias. In addition, we highlight the role of mitochondria in bradyarrhythmia, including sinus node dysfunction and atrioventricular node dysfunction. Finally, we discuss how confounding factors, such as aging, gut microbiome, cardiac reperfusion injury, and electrical stimulation, modulate mitochondrial function and cause tachyarrhythmia.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunqiu Jiang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Department of Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
45
|
Tian K, Yang Y, Zhou K, Deng N, Tian Z, Wu Z, Liu X, Zhang F, Jiang Z. The role of ROS-induced pyroptosis in CVD. Front Cardiovasc Med 2023; 10:1116509. [PMID: 36873396 PMCID: PMC9978107 DOI: 10.3389/fcvm.2023.1116509] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death in the world and seriously threatens human health. Pyroptosis is a new type of cell death discovered in recent years. Several studies have revealed that ROS-induced pyroptosis plays a key role in CVD. However, the signaling pathway ROS-induced pyroptosis has yet to be fully understood. This article reviews the specific mechanism of ROS-mediated pyroptosis in vascular endothelial cells, macrophages, and cardiomyocytes. Current evidence shows that ROS-mediated pyroptosis is a new target for the prevention and treatment of cardiovascular diseases such as atherosclerosis (AS), myocardial ischemia-reperfusion injury (MIRI), and heart failure (HF).
Collapse
Affiliation(s)
- Kaijiang Tian
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Yu Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Nianhua Deng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Zhen Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Zefan Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Xiyan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| | - Fan Zhang
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
46
|
Role of C-terminal domain of Mycobacterium tuberculosis PE6 (Rv0335c) protein in host mitochondrial stress and macrophage apoptosis. Apoptosis 2023; 28:136-165. [PMID: 36258102 PMCID: PMC9579591 DOI: 10.1007/s10495-022-01778-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
Abstract
PE/PPE proteins of Mycobacterium tuberculosis (Mtb) target the host organelles to dictate the outcome of infection. This study investigated the significance of PE6/Rv0335c protein's unique C-terminal in causing host mitochondrial perturbations and apoptosis. In-silico analysis revealed that similar to eukaryotic apoptotic Bcl2 proteins, Rv0335c had disordered, hydrophobic C-terminal and two BH3-like motifs in which one was located at C-terminal. Also, Rv0335c's N terminal had mitochondrial targeting sequence. Since, C-terminal of Bcl2 proteins are crucial for mitochondria targeting and apoptosis; it became relevant to evaluate the role of Rv0335c's C-terminal domain in modulating host mitochondrial functions and apoptosis. To confirm this, in-vitro experiments were conducted with Rv0335c whole protein and Rv0335c∆Cterm (C-terminal domain deleted Rv0335c) protein. Rv0335c∆Cterm caused significant reduction in mitochondrial perturbations and Caspase-mediated apoptosis of THP1 macrophages in comparison to Rv0335c. However, the deletion of C-terminal domain didn't affect Rv0335c's ability to localize to mitochondria. Nine Ca2+ binding residues were predicted within Rv0335c and four of them were at the C-terminal. In-vitro studies confirmed that Rv0335c caused significant increase in intracellular calcium influx whereas Rv0335c∆Cterm had insignificant effect on Ca2+ influx. Rv0335c has been reported to be a TLR4 agonist and, we observed a significant reduction in the expression of TLR4-HLA-DR-TNF-α in response to Rv0335c∆Cterm protein also suggesting the role of Rv0335c's C-terminal domain in host-pathogen interaction. These findings indicate the possibility of Rv0335c as a molecular mimic of eukaryotic Bcl2 proteins which equips it to cause host mitochondrial perturbations and apoptosis that may facilitate pathogen persistence.
Collapse
|
47
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
48
|
Yuan P, Shen F, Zhang J, Ouyang S, Chen Y, Zou W, Zhou Q. Triclosan Reprograms Immunometabolism and Activates the Inflammasome in Human Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:428-439. [PMID: 36546883 DOI: 10.1021/acs.est.2c05254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To gather enough energy to respond to harmful stimuli, most immune cells quickly shift their metabolic profile. This process of immunometabolism plays a critical role in the regulation of immune cell function. Triclosan, a synthetic antibacterial component present in a wide range of consumer items, has been shown to cause immunotoxicity in a number of organisms. However, it is unclear whether and how triclosan impacts immunometabolism. Here, human macrophages were used as model cells to explore the modulatory effect of triclosan on immunometabolism. Untargeted metabolomics using integrated liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed that triclosan changed the global metabolic profile of macrophages. Furthermore, Seahorse energy analysis and 13C isotope-based metabolic flux analysis revealed that triclosan decreased mitochondrial respiratory activity and promoted a metabolic transition from oxidative phosphorylation to glycolysis. Triclosan also polarizes macrophages to the proinflammatory M1 phenotype and activates the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing receptor 3 (NLRP3) inflammasome, which is consistent with triclosan-induced metabolic phenotypic modifications. Collectively, these findings showed that triclosan exposure at micromolar concentrations caused metabolic reprogramming in macrophages, which triggered an inflammatory response. These findings are important for understanding the immunotoxicity caused by triclosan, which is necessary for determining the risk posed by triclosan in the environment.
Collapse
Affiliation(s)
- Peng Yuan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Fengge Shen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Junqiang Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuming Chen
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
49
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
50
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|