1
|
Feng Y, Qiu H, Chen D. Regulation of Stem Cell Function by NAD . Physiology (Bethesda) 2025; 40:0. [PMID: 39907078 DOI: 10.1152/physiol.00052.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), a coenzyme in cellular metabolism, has never ceased to capture the fascination of scientists since its discovery in 1906. The expansion of NAD+'s function from cellular metabolism to DNA repair, gene regulation, cell signaling, and aging reflects the central role of cellular metabolism in orchestrating the diverse cellular pathways. In the past decade, NAD+ has emerged as a key regulator of stem cells, opening the door to potential approaches for regenerative medicine. Here we reflect on how the field of NAD+ regulation of stem cells has evolved since a decade ago, when sirtuins, NAD+-dependent enzymes, were shown to be critical regulators of stem cells. We review the recent development on how NAD+ is regulated in stem cells to influence fate decision. We discuss the difference in NAD+ regulation of normal and cancer stem cells. Finally, we consider the consequences of NAD+ regulation of stem cells for health and diseases.
Collapse
Affiliation(s)
- Yufan Feng
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| | - Huixian Qiu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States
| |
Collapse
|
2
|
Sun Z, Zang Q, Xu C, Zhang X, Kang Z, Yang Y, Li L, Chen J. Discovery of novel Bis-amide analogue ST12 for the treatment of inflammatory bowel diseases (IBD) by inhibiting NLRP3 inflammasome activation. Bioorg Chem 2025; 159:108402. [PMID: 40154236 DOI: 10.1016/j.bioorg.2025.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Herein, we designed and synthesized a series of novel bis-amide small molecule anti-inflammatory agents, among them, compound ST12 showed most potent anti-inflammatory activity. ST12 effectively inhibited the production of nitric oxide (NO) (inhibition rate of 52.67 ± 0.03 % at 10 μM) and downregulated the mRNA levels of proinflammatory cytokines iNOS, IL-6, IL-1β and TNF-α in lipopolysaccharide (LPS) induced RAW264.7 cells. Furthermore, mechanism studies suggest that compound ST12 exerted anti-inflammatory effects by inhibiting the activation of the NLRP3 inflammasome. Importantly, ST12 effectively ameliorated DSS-induced colitis in vivo. Taken together, ST12 is worthy of further investigation as a small molecule anti-inflammatory agent for treatment of inflammatory bowel diseases (IBD).
Collapse
Affiliation(s)
- Zhiqiang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinru Zang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuewen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenghui Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Qin X, Lu F, Wan J, Teng X, Jin S, Xiao L, Xue H, Guo Q, Tian D, Wu Y. Hydrogen sulfide preserves the function of senescent endothelium through SIRT2 mediated inflammatory inhibition. J Mol Cell Cardiol 2025; 203:10-21. [PMID: 40209983 DOI: 10.1016/j.yjmcc.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Endothelial aging is an independent risk factor of cardiovascular diseases, and this study aims to explore the mechanism of endothelial aging. We first applied two animal aging models and two cellular aging models to observe the characteristics of senescent endothelium at the morphological, functional, and molecular levels. It was confirmed that the aging of endothelial cells was accompanied by activation of Nod like receptor protein 3 (NLRP3) inflammasome pathway, reduced levels of hydrogen sulfide (H2S) and sirtuin2 (SIRT2) activity. Endothelial specific knockout of cystathionine-γ-lyase (CSE) led to premature aging of blood vessels, and excessive activation of the SIRT2/NLRP3 inflammasome. Finally, H2S supplementation improved vascular and endothelial cell function, normalized inflammatory cytokine levels, and thereby reversed endothelial aging through SIRT2/NLRP3 mediated pathway. In this study, we found that the decrease in SIRT2 activity in aging endothelial cells increased the level of NLRP3 inflammasome and H2S inhibited inflammation to improve endothelial aging through the SIRT2/NLRP3 pathway. This provided H2S could be a new target for improving endothelial aging, and offered new strategies for defending human aging.
Collapse
Affiliation(s)
- Xueyuan Qin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; School of Clinical Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Fan Lu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Wan
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongmei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Danyang Tian
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China.
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
4
|
Xie D, Dong Y, Chi J, Li W, Liu C, Xu Y, Li Y, Wang J, Wu J, Wang R, Yang K, Yin X. Global Analysis of the Lysine Acetylome in Macrophages from Salt-sensitive Hypertensive Rats. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05265-6. [PMID: 40372655 DOI: 10.1007/s12010-025-05265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Research indicates that patients with salt-sensitive (SS) hypertension experience higher morbidity and target organ damage than in patients with non-SS hypertension. Dysregulated macrophage activation has been implicated in SS hypertension development, with lysine acetylation playing a role in modulating macrophage function. However, the role of macrophage acetylation patterns in SS hypertension remains unclear. This study aimed to investigate how acetylation regulates macrophage function and its role in the pathogenesis of SS hypertension. We employed quantitative acetylation proteomics to characterize the acetylome of bone marrow-derived macrophages in Dahl SS hypertensive rats fed either a high-salt or a low-salt diet. We identified 94 hyperacetylated and 49 hypoacetylated sites on 79 and 45 proteins, respectively, in the high-salt group. Notably, acetylation levels increased at lysine 20 (K20) and K46 on histone H2B, at K56 on H3, and at K77 and K79 on H4c2. We also identified conserved acetylation motifs, analyzed their Gene Ontology terms and pathways, and explored the protein-protein interactions of these differentially acetylated proteins using bioinformatics analyses. Finally, we validated the altered acetylation of H2, H3, H4, and several metabolic proteins using immunoprecipitation and western blotting. Overall, these findings offer insights into the role of lysine acetylation in macrophages from SS hypertensive rats, revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Di Xie
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116000, PR China
| | - Yanghong Dong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Jinyu Chi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Wanlin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Chunnan Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Yang Xu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Jingzhi Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Jinfeng Wu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Rui Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Kelaier Yang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China.
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, 518055, PR China.
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China.
- Department of Cardiology, Shenzhen University General Hospital, Shenzhen, 518055, PR China.
| |
Collapse
|
5
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
6
|
Xie Y, Cheng Q, Xu ML, Xue J, Wu H, Du Y. Itaconate: A Potential Therapeutic Strategy for Autoimmune Disease. Scand J Immunol 2025; 101:e70026. [PMID: 40289463 DOI: 10.1111/sji.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Itaconate is a metabolite of the Krebs cycle, and endogenous itaconate is driven by a variety of innate signals that inhibit the production of inflammatory cytokines. The key mechanism of action of itaconate was initially found to be the competitive inhibition of succinate dehydrogenase (SDH), which inhibits the production of inflammatory factors, as well as its antioxidant effects. With increasing research, it was discovered that it modifies cysteine residues of related proteins through the Michael addition, such as modifying the Kelch-like ECH-associated protein 1 (KEAP1) protein and activating the nuclear factor erythroid 2-related factor 2 (NRF2) signalling pathway, as well as glycolytic enzymes and cellular pathway-associated factors that attenuate inflammatory responses and oxidative stress. It also acts on a variety of immune cells, affecting their function and activity, and has been increasingly shown to play a therapeutic role in a variety of inflammatory and autoimmune diseases through a combination of these mechanisms. In conclusion, there has been a great breakthrough in the research of itaconate, from the initial industrial application to the redefinition of the biological functions of itaconate. However, with the deepening of the research, we also found that there are more questions: the mechanism of action of itaconate, more functions of itaconate, clinical application of itaconate, and the use of itaconate still needs to be solved.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Li Xu
- Department of Nephrology, The Third Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Li H, Hu Q, Zhu D, Wu D. The Role of NAD + Metabolism in Cardiovascular Diseases: Mechanisms and Prospects. Am J Cardiovasc Drugs 2025; 25:307-327. [PMID: 39707143 DOI: 10.1007/s40256-024-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a promising anti-aging molecule that plays a role in cellular energy metabolism and maintains redox homeostasis. Additionally, NAD+ is involved in regulating deacetylases, DNA repair enzymes, inflammation, and epigenetics, making it indispensable in maintaining the basic functions of cells. Research on NAD+ has become a hotspot, particularly regarding its potential in cardiovascular disease (CVD). Many studies have demonstrated that NAD+ plays a crucial role in the occurrence and development of CVD. This review summarizes the biosynthesis and consumption of NAD+, along with its precursors and their effects on raising NAD+ levels. We also discuss new mechanisms of NAD+ regulation in cardiovascular risk factors and its effects of NAD+ on atherosclerosis, aortic aneurysm, heart failure, hypertension, myocardial ischemia-reperfusion injury, diabetic cardiomyopathy, and dilated cardiomyopathy, elucidating different mechanisms and potential treatments. NAD+-centered therapy holds promising advantages and prospects in the field of CVD.
Collapse
Affiliation(s)
- Huimin Li
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxun Hu
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Dan Wu
- Department of Pharmacy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
8
|
Zhang Z, Huo P, Lei X, Xue H, Yang X, Le J, Zhang S. Metformin activates SIRT2 to improve insulin resistance and promote granulosa cell glycolysis in a rat model of polycystic ovary syndrome. Reprod Biomed Online 2025; 50:104750. [PMID: 40199656 DOI: 10.1016/j.rbmo.2024.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
RESEARCH QUESTION What is the mechanism by which metformin enhances insulin sensitivity, improves granulosa cell glycolysis and induces ovulation in a rat model of polycystic ovary syndrome (PCOS)? DESIGN Analysis of the GSE168404 gene expression profile in the Gene Expression Omnibus database revealed increased levels of IGF1 and decreased levels of glycolytic enzymes (HK2, LDHA, PKM2) in the granulosa cells of PCOS patients. To explore the effects of metformin on the imbalance in glycolysis induced by insulin resistance (IR), experiments were conducted using Sprague-Dawley rats and KGN cells (human ovarian granulosa cells). Oestrous cycles were monitored in control, PCOS model (induced by letrozole and a high-fat diet) and metformin-treated PCOS groups. Analyses of body weight, hormone concentrations and biochemical, histopathological, immunohistochemical and glycolytic pathways were performed. KGN cells were used to model insulin resistance with insulin, and AGK2 was used specifically to inhibit sirtuin 2 (SIRT2), while metformin was applied. RESULTS Metformin significantly improved insulin resistance in PCOS rats, reduced insulin-like growth factor 1 (IGF1) protein and mRNA expression (all P ≤ 0.0348) and increased IGF1 receptor (IGF1R) impression (all P ≤ 0.0361). Insulin inhibited glycolytic activity in KGN cells, but metformin attenuated this effect (all P ≤ 0.0255). Metformin reversed the inhibition of SIRT2 in PCOS rat ovaries (all P ≤ 0.0483) and restored glycolysis in KGN cells treated by AGK2 (all P ≤ 0.0369). CONCLUSION Metformin enhances insulin sensitivity and restores glycolysis by regulating SIRT2, which may improve follicular development and reduce ovarian damage in PCOS rats, offering a potential clinical treatment strategy for PCOS.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Peng Huo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, China
| | - Xiuli Yang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianghua Le
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China..
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China..
| |
Collapse
|
9
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025:10.1038/s41423-025-01284-9. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Li X, Lu S, Huang CK. The Complexity of SIRT2 in Chronic Liver Disease: Liver SIRT2 Promotes Hepatocellular Carcinoma Development. Cell Mol Gastroenterol Hepatol 2025:101512. [PMID: 40280175 DOI: 10.1016/j.jcmgh.2025.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Xinjian Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Shaolei Lu
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chiung-Kuei Huang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
11
|
Barthez M, Xue B, Zheng J, Wang Y, Song Z, Mu WC, Wang CL, Guo J, Yang F, Ma Y, Wei X, Ye C, Sims N, Martinez-Sobrido L, Perlman S, Chen D. SIRT2 suppresses aging-associated cGAS activation and protects aged mice from severe COVID-19. Cell Rep 2025; 44:115562. [PMID: 40220296 PMCID: PMC12074670 DOI: 10.1016/j.celrep.2025.115562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/11/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Aging-associated vulnerability to coronavirus disease 2019 (COVID-19) remains poorly understood. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected aged mice lacking SIRT2, a cytosolic NAD+-dependent deacetylase, develop more severe disease and show increased mortality, while treatment with an NAD+ booster, 78c, protects aged mice from lethal infection. Mechanistically, we demonstrate that SIRT2 modulates the acetylation of cyclic GMP-AMP synthase (cGAS), an immune sensor for cytosolic DNA, and suppresses aging-associated cGAS activation and inflammation. Furthermore, we show that SARS-CoV-2 infection-induced inflammation is mediated at least in part by ORF3a, which triggers mtDNA release and cGAS activation. Collectively, our study reveals a molecular basis for aging-associated susceptibility to COVID-19 and suggests therapeutic approaches to protect aged populations from severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marine Barthez
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Biyun Xue
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Yifei Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiayue Guo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fanghan Yang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuze Ma
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuetong Wei
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicholas Sims
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Metabolic Biology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA; Endocrinology Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Wang B, Yu R, Zhang Z, Peng Y, Li L. Exosomes secreted from adipose-derived stem cells inhibit M1 macrophage polarization ameliorate chronic endometritis by regulating SIRT2/NLRP3. Mol Cell Biochem 2025:10.1007/s11010-025-05283-2. [PMID: 40257720 DOI: 10.1007/s11010-025-05283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Chronic endometritis (CE) is a key factor in adverse pregnancy outcomes such as miscarriage and infertility. Macrophages are an important immune cell type that secrete pro-inflammatory and anti-inflammatory cytokines that are essential for maintaining endometrial function. This study aimed to investigate the key mechanisms by which exosomes derived from adipose-derived mesenchymal stem cells (ADSCs) regulate macrophage polarization through the sirtuin 2 (SIRT2)/NOD-like receptor pyrin containing 3 (NLRP3) axis and exert a protective effect on CE. Exosomes were obtained from ADSCs (ADSCs-exo) using the classical ultracentrifugation method and characterized using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. ADSCs-exo protective effects on CE mice and RAW 264.7 cells and its related molecular mechanisms were investigated using real-time quantitative polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, flow cytometry, immunofluorescence, immunoprecipitation, hematoxylin and eosin staining, and immunohistochemistry. ADSCs-exo significantly inhibited M1 macrophage polarization, as evidenced by a 54% reduction in tumor necrosis factor alfa (TNF-α), a 46% reduction in interleukin 1β (IL-1β), and a 36% reduction in interleukin 6 (IL-6) levels in LPS-induced RAW264.7 cells. In vivo, ADSCs-exo treatment reduced the expression of TNF-α by 50%, IL-1β by 58%, and IL-6 by 49% in the uterine tissues of CE mice. Moreover, ADSCs-exo upregulated the expression of SIRT2, promoted the deacetylation modification of NLRP3 to inhibit NLRP3 inflammasome activation, and further suppressed M1 macrophage polarization. However, these trends were reversed after SIRT2 silencing. Our experimental results demonstrate that ADSCs-exo alleviate CE by regulating the SIRT2/NLRP3 axis to inhibit M1 macrophage polarization. This provides a potential theoretical basis for the therapeutic role of stem cells in CE.
Collapse
Affiliation(s)
- Bin Wang
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Ruizhu Yu
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Zhao Zhang
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Yuhong Peng
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China.
| | - Li Li
- Department of Rheumatology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China.
| |
Collapse
|
13
|
Lee EJ, Park S, Jeong KS. Sirt2 deficiency aggravates intramuscular adipose tissue infiltration and impairs myogenesis with aging in male mice. Biogerontology 2025; 26:93. [PMID: 40257511 DOI: 10.1007/s10522-025-10238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Sarcopenia, closely associated with other diseases such as diabetes, metabolic syndrome, and osteoporosis, significantly impacts aging populations. It is characterized by muscle atrophy, increased intramuscular adipose tissue, impaired myogenesis, chronic low-grade inflammation, and reduced muscle function. The mechanisms behind aging muscle remain incompletely understood. This study aims to elucidate the role of Sirt2 in the aging process of skeletal muscles and enhance our understanding of the underlying mechanisms. Sirt2 expression was reduced in aging muscle of male mice by 40%, compared to young muscle. Aged male Sirt2 knockout mice exhibit increased intramuscular adipose tissue infiltration by 8.5-fold changes. Furthermore, the deletion of Sirt2 exacerbated myogenesis impairment in aged muscle by decreasing the expression of Pax7 (50%) and NogoA (80%), compared to age- and sex- matched counterparts, emphasizing the role of Sirt2 in pathology of aging muscle. Additionally, long-term Sirt2 deletion affected other Sirtuin subfamily members, with decreased expressions of Sirt1 (65%), Sirt4 (94%), and Sirt5 (71%), and increased expressions of Sirt6 (4.6-fold) and Sirt7 (2.8-fold) in old male Sirt2 knockout mice, while there was no difference of these gene expression in young male mice. This study underscores the critical need for a deeper investigation into Sirt2, promising new insights that could lead to targeted therapies for sarcopenia, ultimately improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02115, USA.
| | - SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Companion Animal Health, Daegu Haany University, Gyeongsan, 38610, Republic of Korea.
- Stellamed Co., LTD, Daegu, 41504, Republic of Korea.
| |
Collapse
|
14
|
Tang T, Hao J, Yang Q, Bao G, Wang ZP. Lipoprotein profile as a predictor of type 2 diabetes with sarcopenia: a cross-sectional study. Endocrine 2025:10.1007/s12020-025-04226-7. [PMID: 40232325 DOI: 10.1007/s12020-025-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
PURPOSE This study investigated the relationship between lipoprotein profiles and sarcopenia in patients with type 2 diabetes mellitus (T2DM). The objective is to provide a solid theoretical foundation and treatment strategies for clinical prevention and management of diabetes, particularly in individuals with concurrent sarcopenia. METHODS In this study, we selected inpatients aged over 60 years diagnosed with T2DM who were admitted to the Department of Geriatrics at Qinghai University Affiliated Hospital from July 2023 to June 2024 as research subjects. We collected general patient data, including gender, age, ethnicity, height, weight, and calculated body mass index (BMI). Key indices measured included glycated hemoglobin (HbA1c), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoproteins A and B (ApoA and ApoB), phospholipids, lipoprotein(a) [Lp(a)], very low-density lipoprotein (VLDL), and free fatty acids (FFA). Additionally, we assessed limb skeletal muscle mass, grip strength, walking speed, and calculated the appendicular skeletal muscle mass index (ASMI). Based on Asian diagnostic criteria for sarcopenia, patients were categorized into a non-sarcopenic group or a group with T2DM combined with sarcopenia. Baseline laboratory data along with ASMI measurements, grip strength assessments, and walking speeds were statistically analyzed for both groups. RESULTS Compared with T2DM patients without sarcopenia, the levels of HbA1c, Lp(a), FFA, serum albumin, TC, TG, HDL-C, ApoA and VLDL in type 2 diabetic patients with sarcopenia were statistically significant (all P < 0.05). When multivariate adjustments were made for these clinical features, age (OR = 1.18, 95%CI: 1.11-1.25, P < 0.001), BMI (OR = 0.81, 95%CI: 0.72-0.92, P < 0.001), ApoA (OR = 0.03, 95%CI: 0.00-0.90, P = 0.043), Lp(a) > = 15.5 mg/dL (OR = 3.14, 95%CI: 1.51-6.54, P = 0.002) and FFA > = 0.48 g/L (OR = 4.11, 95%CI: 1.97-8.57, P < 0.001) were independent predictors of diabetes mellitus with sarcopenia. ROC curve analysis showed that free fatty acids (AUC = 0.721, 95%CI: 0.660-0.782, P < 0.001) in T2DM with sarcopenia has good predictive value judgment. CONCLUSION Age, BMI, ApoA, Lp(a), and FFA were independent predictors of T2DM with sarcopenia. Serum free fatty acids have a good predictive value in the judgment of T2DM complicated with sarcopenia.
Collapse
Affiliation(s)
- Ting Tang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
| | - Junjie Hao
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qingyan Yang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
| | - Guodan Bao
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
- Research Center of High-altitude Medicine, School of Medicine, Qinghai University, Xining, China
| | - Zhong-Ping Wang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China.
- Research Center of High-altitude Medicine, School of Medicine, Qinghai University, Xining, China.
| |
Collapse
|
15
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
16
|
Hou D, Liu S, Sun Y, Liu C, Shang X, Pei L, Chen G. Estimated Glucose Disposal Rate Associated With Risk of Frailty and Likelihood of Reversion. J Cachexia Sarcopenia Muscle 2025; 16:e13814. [PMID: 40245241 PMCID: PMC12005398 DOI: 10.1002/jcsm.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Estimated glucose disposal rate (eGDR) is a simple and effective measure for insulin resistance, which is associated with higher risk of frailty. We aim to analyse the associations of eGDR with frailty risk and its reversibility. METHODS A population-based longitudinal study was conducted of 11 670 participants from the China Health and Retirement Longitudinal Study and 19 355 participants from the Health and Retirement Study. Frailty was assessed by the frailty index and reversibility was measured by transitions from frailty at baseline to non-frailty during follow-up. The eGDR was divided into Q1, Q2, Q3 and Q4 according to the quartiles. Multi-state Markov model was performed to evaluate the effects of eGDR on transitions among non-frailty, frailty and death. Cox regression model was used to estimate eGDR associated with the risk of frailty and the likelihood of reversion. RESULTS In Chinese population characterized by a median age of 60 years (IQR: 54-66) with 6119 women (52.43%), compared with the Q1 level of eGDR, participants exposure to Q3 and Q4 level decreased the probability of transitioning from non-frailty to frailty by 22% (HR = 0.78, 95% CI: 0.69-0.88) and 25% (HR = 0.75, 95% CI: 0.66-0.86), respectively. But its Q2, Q3 and Q4 levels increased the probability of transitioning from frailty to non-frailty by 24% (HR = 1.24, 95% CI: 1.06-1.44), 39% (HR = 1.39, 95% CI: 1.19-1.64) and 33% (HR = 1.33, 95% CI: 1.13-1.58). In American population with a median age of 63 years (IQR: 56-72) and 11 189 women (57.81%), its Q2, Q3 and Q4 levels decreased the probability of transitioning from non-frailty to frailty by 17% (HR = 0.83, 95% CI: 0.77-0.89), 24% (HR = 0.76, 95% CI: 0.70-0.82) and 46% (HR = 0.54, 95% CI: 0.49-0.59), respectively. The probability of revising frailty increased by 25% (HR = 1.25, 95% CI: 1.13-1.38), 36% (HR = 1.36, 95% CI: 1.22-1.51) and 48% (HR = 1.48, 95% CI: 1.30-1.69) for levels Q2, Q3 and Q4. As shown in the prospective analysis, increased eGDR levels from Q2 to Q4 were associated with decreased frailty risk and higher likelihood of reversion, as evidenced by the dose-response relationship revealed by restricted cubic spline analysis. CONCLUSIONS Higher levels of eGDR were associated with a reduced risk of frailty, delayed transition from non-frailty to frailty and an increased likelihood of reversion. eGDR emerges as a promising predictor for early frailty detection, prognosis assessment and a potential therapeutic target for intervention strategies.
Collapse
Affiliation(s)
- Dingchun Hou
- Institute of Population ResearchPeking UniversityBeijingChina
| | - Shangjun Liu
- Institute of Population ResearchPeking UniversityBeijingChina
| | - Yumei Sun
- School of NursingPeking UniversityBeijingChina
| | - Chang Liu
- School of Sport ScienceBeijing Sport UniversityBeijingChina
| | - Xue Shang
- School of NursingPeking UniversityBeijingChina
| | - Lijun Pei
- Institute of Population ResearchPeking UniversityBeijingChina
| | - Gong Chen
- Institute of Population ResearchPeking UniversityBeijingChina
- Institute of Ageing StudiesPeking UniversityBeijingChina
| |
Collapse
|
17
|
Li Q, Xiao N, Zhang H, Liang G, Lin Y, Qian Z, Yang X, Yang J, Fu Y, Zhang C, Liu A. Systemic aging and aging-related diseases. FASEB J 2025; 39:e70430. [PMID: 40022602 DOI: 10.1096/fj.202402479rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Aging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single-organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ-organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short-chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence-associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age-related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age-related diseases to provide therapeutic targets for delaying aging.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Nanyin Xiao
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Heng Zhang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zonghao Qian
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yanguang Fu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
18
|
Asare Y, Yan G, Schlegl C, Prestel M, van der Vorst EPC, Teunissen AJP, Aronova A, Tosato F, Naser N, Caputo J, Prevot G, Azzun A, Wefers B, Wurst W, Schneider M, Forne I, Bidzhekov K, Naumann R, van der Laan SW, Brandhofer M, Cao J, Roth S, Malik R, Tiedt S, Mulder WJM, Imhof A, Liesz A, Weber C, Bernhagen J, Dichgans M. A cis-regulatory element controls expression of histone deacetylase 9 to fine-tune inflammasome-dependent chronic inflammation in atherosclerosis. Immunity 2025; 58:555-567.e9. [PMID: 39879983 DOI: 10.1016/j.immuni.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/03/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Common genetic variants in a conserved cis-regulatory element (CRE) at histone deacetylase (HDAC)9 are a major risk factor for cardiovascular disease, including stroke and coronary artery disease. Given the consistency of this association and its proinflammatory properties, we examined the mechanisms whereby HDAC9 regulates vascular inflammation. HDAC9 bound and mediated deacetylation of NLRP3 in the NACHT and LRR domains leading to inflammasome activation and lytic cell death. Targeted deletion of the critical CRE in mice increased Hdac9 expression in myeloid cells to exacerbate inflammasome-dependent chronic inflammation. In human carotid endarterectomy samples, increased HDAC9 expression was associated with atheroprogression and clinical plaque instability. Incorporation of TMP195, a class IIa HDAC inhibitor, into lipoprotein-based nanoparticles to target HDAC9 at the site of myeloid-driven vascular inflammation stabilized atherosclerotic plaques, implying a lower risk of plaque rupture and cardiovascular events. Our findings link HDAC9 to atherogenic inflammation and provide a paradigm for anti-inflammatory therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Yaw Asare
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany.
| | - Guangyao Yan
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christina Schlegl
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Matthias Prestel
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), LMU, Munich, Germany; Institute for Molecular Cardiovascular Research (IMCAR), Aachen-Maastricht Institute for CardioRenal Disease (AMICARE) & Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arailym Aronova
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Federica Tosato
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Nawraa Naser
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Julio Caputo
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Geoffrey Prevot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Azzun
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benedikt Wefers
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Munich, Germany
| | - Wolfgang Wurst
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Melanie Schneider
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Ignasi Forne
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center, LMU, Martinsried, Germany
| | - Kiril Bidzhekov
- Institute for Cardiovascular Prevention (IPEK), LMU, Munich, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division of Laboratory, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Markus Brandhofer
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Willem J M Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Laboratory of Chemical Biology, Nijmegen, the Netherlands
| | - Axel Imhof
- Protein Analysis Unit, Faculty of Medicine, Biomedical Center, LMU, Martinsried, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), Munich, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany.
| |
Collapse
|
19
|
Ramírez-Gallegos I, Tárraga López PJ, Paublini Oliveira H, López-González ÁA, Martorell Sánchez C, Martínez-Almoyna-Rifá E, Ramírez-Manent JI. Relationship Between Metabolic Age Determined by Bioimpedance and Insulin Resistance Risk Scales in Spanish Workers. Nutrients 2025; 17:945. [PMID: 40289929 PMCID: PMC11945281 DOI: 10.3390/nu17060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction: Metabolic age (MA) is the difference between an individual's actual age and the age of their body based on physiological and biological factors. It is an indicator that reflects a person's physical and biological state, regardless of chronological age. Insulin resistance (IR) is a health disorder in which tissues exhibit a reduced response to the circulating glucose uptake stimulated by insulin. Objective: The aim of this study is to evaluate the association between MA, determined through bioelectrical impedance analysis, and the risk of IR, assessed using validated scales, in a cohort of Spanish workers. Methodology: A descriptive cross-sectional study was conducted on 8590 Spanish workers to assess the association between MA and a set of sociodemographic variables, health habits, and IR risk scales such as the Triglyceride-Glucose Index (TyG Index), Metabolic Score for Insulin Resistance (METS-IR), and Single Point Insulin Sensitivity Estimator (SPISE). Results: All analyzed variables were associated with MA values, with the strongest associations observed for IR risk scale values (OR 4.88 [95% CI 4.12-5.65] for METS-IR, 4.42 [95% CI 3.70-5.15] for SPISE, and 3.42 [95% CI 2.97-3.87] for the TyG Index) and physical activity. Conclusions: Metabolic age is influenced by sociodemographic variables such as age, sex, and social class; health habits such as smoking, physical activity, and adherence to the Mediterranean diet; and by IR risk scale values.
Collapse
Affiliation(s)
- Ignacio Ramírez-Gallegos
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
| | - Pedro Juan Tárraga López
- Faculty of Medicine, University of Castilla la Mancha, 02071 Albacete, Castilla-La Mancha, Spain;
| | - Hernán Paublini Oliveira
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
| | - Ángel Arturo López-González
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- Faculty of Dentistry, University School ADEMA, 07009 Palma, Balearic Islands, Spain
- IDISBA, Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
| | - Cristina Martorell Sánchez
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- Faculty of Medicine, University of Castilla la Mancha, 02071 Albacete, Castilla-La Mancha, Spain;
| | - Emilio Martínez-Almoyna-Rifá
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- Faculty of Medicine, University of Castilla la Mancha, 02071 Albacete, Castilla-La Mancha, Spain;
| | - José Ignacio Ramírez-Manent
- ADEMA-Health Group University Institute of Health Sciences Research (IUNICS), 07120 Palma, Balearic Islands, Spain; (I.R.-G.); (H.P.O.); (C.M.S.); (E.M.-A.-R.); (J.I.R.-M.)
- IDISBA, Balearic Islands Health Research Institute Foundation, 07010 Palma, Balearic Islands, Spain
- Balearic Islands Health Service, 07010 Palma, Balearic Islands, Spain
- Faculty of Medicine, University of the Balearic Islands, 07010 Palma, Balearic Islands, Spain
| |
Collapse
|
20
|
Newman PP, Schmitt BL, Maurmann RM, Pence BD. Polysaccharides with Arabinose: Key Players in Reducing Chronic Inflammation and Enhancing Immune Health in Aging. Molecules 2025; 30:1178. [PMID: 40076400 PMCID: PMC11901799 DOI: 10.3390/molecules30051178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Aging is associated with a decline in physiological performance leading to increased inflammation and impaired immune function. Polysaccharides (PLs) found in plants, fruits, and fungi are emerging as potential targets for therapeutic intervention, but little is known about their effects on chronic inflammation and aging. This review aims to highlight the current advances related to the use of PLs, with the presence of arabinose, to attenuate oxidative stress and chronic and acute inflammation, and their immunomodulatory effects associated with antioxidant status in monocytes, macrophages, and neutrophil infiltration, and leukocyte rolling adhesion in neutrophils. In addition, recent studies have shown the importance of investigating the 'major' monosaccharide, such as arabinose, present in several of these polysaccharides, and with described effects on gut microbiome, glucose, inflammation, allergy, cancer cell proliferation, neuromodulation, and metabolic stress. Perspectives and opportunities for further investigation are provided. By promoting a balanced immune response and reducing inflammation, PLs with arabinose or even arabinose per se may alleviate the immune dysregulation and inflammation seen in the elderly, therefore providing a promising strategy to mitigate a variety of diseases.
Collapse
Affiliation(s)
- Patricia Pantoja Newman
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (B.L.S.); (R.M.M.)
| | | | | | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (B.L.S.); (R.M.M.)
| |
Collapse
|
21
|
Tian H, Zheng J, Wang F, Zhang W, Chen Y, Wang X, Wang X, Xi J, Hu J, Zhang Y. NLRP3 inflammasome promotes functional repair after spinal cord injury in mice by regulating autophagy and its mechanism. Int Immunopharmacol 2025; 149:114230. [PMID: 39922115 DOI: 10.1016/j.intimp.2025.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Inflammation at the injury site exacerbates tissue cell death following a spinal cord injury (SCI). Studies show that NLRP3 inflammasomes are crucial in the inflammation following Spinal Cord Injury, and NLRP3 inflammasomes have been shown to promote cells to undergo excessive autophagy in other diseases. Moreover, excessive autophagy levels could hinder functional repair post-SCI. In this regard, we hypothesized that inhibiting NLRP3 inflammasomes could reduce autophagy levels at the injury site, thus promoting functional repair post-SCI. METHODS Herein, a mouse SCI model was used for in vivo experiments, and an in vitro neuroinflammatory model created using LPS-activated BV2 cells was used for in vitro experiments. Histopathological staining was used to assess tissue repair. Western Blot (WB) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) were used to detect changes in relevant autophagy molecules, macrophage polarization-related markers and downstream inflammatory factors, and Immunofluorescence (IF) was used to detect changes in macrophage polarization. RESULTS Following SCI, the inhibition of NLRP3 inflammasomes resulting from intraperitoneal injection of MCC950 significantly reduced autophagy levels at the injury site, resulting in both histological and behavioral improvements. In addition, the phosphorylation of mTOR during inhibition of NLRP3 inflammasomes to reduce autophagy levels further improved the immune microenvironment at the injury site, and M2-type macrophages were significantly upregulated M2-type macrophages. Moreover, in vitro experiments yielded results consistent with those of in vivo experiments regarding changes in autophagy-related indexes and polarization-related markers. CONCLUSIONS Inhibition of NLRP3 inflammasomes can reduce autophagy level at the injury site to promote functional recovery and play a neuroprotective role. Moreover, phosphorylation of mTOR during the process of inhibition of NLRP3 inflammasomes to reduce autophagy, leading to reduced autophagy levels, could improve the immune microenvironment at the injury site, thus promoting functional recovery and histopathological repair post-SCI.
Collapse
Affiliation(s)
- Haozhe Tian
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Juan Zheng
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Fangli Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Wenjing Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China
| | - Yuqing Chen
- School of Laboratory Medicine Bengbu Medical University Bengbu China
| | - Xiangshu Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Xiaoxuan Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China.
| | - Yuxin Zhang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China.
| |
Collapse
|
22
|
Du J, Ji Q, Dong L, Wang L, Xin G. HDAC4-AS1/CTCF Transcriptionally Represses HDAC4 Under Stress, Whereas HDAC4 Inhibits Stress-Induced Syncytiotrophoblast Cellular Pyroptosis by Deacetylating NLRP3 and GSDMD. Cell Biochem Funct 2025; 43:e70064. [PMID: 40103178 DOI: 10.1002/cbf.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/27/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Our previous study reported that histone deacetylase 4 (HDAC4) expression is significantly downregulated in placental tissues of pre-eclampsia (PE) pregnancies. Cellular pyroptosis is a key event in the pathogenesis of PE that induces the release of factors into the maternal circulation. The aim of this study is to analyze the role and related molecular mechanisms of HDAC4 in PE trophoblast cell pyroptosis. Hypoxia and lipopolysaccharide (LPS)/ATP-treated immortalized human placental villous trophoblast cells HTR-8/SVneo were utilized to mimic the placental trophoblast cell state in PE. Both hypoxia and LPS/ATP treatments induced significant HTR-8/SVneo cell pyroptosis, whereas HDAC4 overexpression inhibited the induced cell pyroptosis. HDAC4 could bind to NLRP3 and GSDMD proteins, and lead to a decrease in acetylated NLRP3 and GSDMD proteins, thereby inhibiting cell pyroptosis. Hypoxia and LPS/ATP treatment significantly upregulated HDAC4-AS1 levels in HRT-8/SVneo cells. HDAC4-AS1 could bind to HDAC4 gene promoter sequences as well as CTCF protein. HDAC4-AS1 overexpression recruited the enrichment of CTCF on HDAC4 promoter sequences and further repressed HDAC4 transcription and expression. Targeting the transcriptional regulatory mechanism of HDAC4-AS1/HDAC4 may be able to ameliorate the clinical symptoms of PE maternal by inhibiting cellular pyroptosis in syncytiotrophoblast cells under stress.
Collapse
Affiliation(s)
- Juan Du
- Jinan maternity and Child care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qinghong Ji
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lihua Dong
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lanlan Wang
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Gang Xin
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
23
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
24
|
Guo X, Su Y, Du Y, Zhang F, Yu W, Ren W, Li S, Kuang H, Wu L. Vinegar-processed Schisandra chinensis polysaccharide ameliorates type 2 diabetes via modulation serum metabolic profiles, gut microbiota, and fecal SCFAs. Int J Biol Macromol 2025; 294:139514. [PMID: 39761882 DOI: 10.1016/j.ijbiomac.2025.139514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/21/2025]
Abstract
Numerous studies indicate that Schisandra chinensis (Turcz.) Baill (SC) has anti-type 2 diabetes mellitus (T2DM) effects, and its processed products are commonly used in clinical practice. However, limited reports exist on the mechanisms of polysaccharides from its vinegar products and their role in T2DM. We purified a novel polysaccharide from vinegar-processed Schisandra chinensis (VSC) and used intestinal microbiota 16S rRNA analysis and metabolomics to study changes in T2DM mice after vinegar-processed Schisandra chinensis polysaccharide (VSP) intervention, aiming to elucidate how VSP alleviates T2DM. VSP has shown significant therapeutic effects in T2DM mice, which can regulate the imbalance of glucose and lipid metabolism, alleviate pancreatic and liver damage, restore the integrity of the intestinal barrier, and inhibit the inflammatory response. Serum metabolomics and microbiological analysis showed that VSP could significantly regulate 104 endogenous metabolites and rectify gut microbiota disorders in T2DM mice. Additionally, VSP enhanced the levels of short-chain fatty acids (SCFAs) and the expression of GPR41/43 in the colon of T2DM mice. Correlation analysis revealed significant correlations among specific gut microbiota, serum metabolites, and fecal SCFAs. Overall, these findings will provide a basis for further VSP development.
Collapse
Affiliation(s)
- Xingyu Guo
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Yang Su
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Yongqiang Du
- Heilongjiang Province Healthcare Security Administration, Harbin 150036, China
| | - Fan Zhang
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Wenting Yu
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Wenchen Ren
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Shanshan Li
- Heilongjiang Province Health Management Service Evaluation Center, Harbin 150030, China
| | - Haixue Kuang
- School of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin 150040, China
| | - Lun Wu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
25
|
Sola-Sevilla N, Garmendia-Berges M, Mera-Delgado MC, Puerta E. Context-dependent role of sirtuin 2 in inflammation. Neural Regen Res 2025; 20:682-694. [PMID: 38886935 PMCID: PMC11433891 DOI: 10.4103/nrr.nrr-d-23-02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3 (NLRP3). However, whether sirtuin 2-mediated pathways induce a pro- or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases.
Collapse
Affiliation(s)
- Noemí Sola-Sevilla
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Maider Garmendia-Berges
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - MCarmen Mera-Delgado
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Elena Puerta
- Department of Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
26
|
Jiao J, Gao F, Zhao H, Jiang M, Zhou Y, Liu D, Fang S, Gao D, Wang Z, Yang Z, Yuan H. Exploring the Plasma Proteome: Identifying Hub Proteins linking Aging, Homeostasis, and Organ Function. Int J Med Sci 2025; 22:1109-1123. [PMID: 40027189 PMCID: PMC11866526 DOI: 10.7150/ijms.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
As effectors of interactions between genes and the environment, plasma proteins can monitor homeostasis and reflect the aging state of an organism. However, biomarkers of aging that are associated with homeostasis are still unclear. This study investigates the phenotype-related plasma proteome profiles of healthy individuals and to identify proteins that are specifically related to aging and physiological indices and their expression patterns across the lifespan. From September 2020 to March 2021, 71 participants aged over 20 to 100 years were enrolled in this cross-sectional study. Data were analyzed from April 2021 to December 2023. The plasma proteome was analyzed to identify proteins that are specifically related to aging and their expression patterns across the lifespan. Then, hub proteins were screened through correlation of aging proteins with physiological and biochemical phenotypes. Based on levels of plasma proteins, physiological indices are associated with age. Additionally, these differences in protein expression correlate with age and physiological indices. Finally, we identified 20 hub proteins that correlate with both physiological indices and age, and these proteins are involved in oxidative stress, inflammation and metabolism. Bibliometric analysis confirmed that 8 hub proteins (CD44, CD14, IGF2, CFD, LBP, IGFBP3, EFEMP1, and AHSG) associated with age affect organ function by mediating homeostasis. Plasma proteins associated with both age and physiological indices are involved in oxidative stress, inflammation, and metabolism. This is the first investigation to link aging and homeostasis based on plasma proteins.
Collapse
Affiliation(s)
- Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, P.R. China
| | - Fei Gao
- Department of Research & Development, Beijing IPE Center for Clinical Laboratory CO, Beijing 100176, P.R. China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yan Zhou
- General Practice Department, Beijing Hospital, Beijing 100730, P.R. China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Zhaoping Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, P.R. China
| |
Collapse
|
27
|
Zuo CY, Zhang CS, Zhang HX, Gou CY, Lei H, Tian FW, Wang ZX, Yin HY, Yu SG. Moxibustion Alleviates Inflammation via SIRT5-mediated Post-translational Modification and Macrophage Polarization. Inflammation 2025:10.1007/s10753-025-02239-y. [PMID: 39899130 DOI: 10.1007/s10753-025-02239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Macrophage polarisation is influenced by Sirtuin5 (SIRT5), which is crucial for regulating anti-inflammatory processes. Moxibustion, a traditional Chinese medicine therapy, exerts anti-inflammatory effects by altering the succinate/α-ketoglutarate (α-KG) ratio, an indicator of the M1 to M2 macrophage shift. Glutamate dehydrogenase 1 (GLUD1), a key enzyme involved in α-KG production, is desuccinylated by SIRT5. Currently, the potential influence of moxibustion on SIRT5-GLUD1-α-KG-mediated macrophage polarization in inflammatory diseases remains unexplored. C57BL/6 J and Sirt5 knockout mice were used as complete Freund's adjuvant (CFA)-induced adjuvant arthritis models. Moxibustion and acupoint injections of MC3482 were administered. Paw capacity asssays and ELISA were performed to quantify inflammatory effects and the expression of succinate, and α-KG expressions. Flow cytometry (FCM) and immunofluorescence were used to assesss the expression of M1- and M2-like macrophages. LC-MS/MS-based proteomic analysis was performed, and GLUD1 was identified desuccinylated protein associated with SIRT5. Western blotting and immunoprecipitation (IP) were used to detect SIRT5, GLUD1, and succinylated GLUD1expressions. Moxibustion and the SIRT5-mediated desuccinylation inhibitor MC3482 decreased inflammation by increasing the number of M2 macrophages and reducing the number of M1 macrophage in the CFA model. The potential mechanism may be related to the effects of moxibustion and SIRT5 inhibition, which inverted succinate and α-KG levels in the CFA group, resulting in low succinate, high α-KG, and increased GLUD1 succinylation after treatment. These findings suggest that the anti-inflammatory effects moxibustion are related to the impact of macrophage conversion after SIRT5-mediated post-translational modification.
Collapse
Affiliation(s)
- Chuan-Yi Zuo
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China.
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Han-Xiao Zhang
- Faculty of Medicine, Université Paris-Saclay, 94800, Villejuif, France
| | - Chun-Yan Gou
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Hong Lei
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Feng-Wei Tian
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Zhu-Xing Wang
- Department of Acupuncture, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
28
|
Jiang H, Xie Y, Hu Z, Lu J, Zhang J, Li H, Zeng K, Peng W, Yang C, Huang J, Han Z, Bai X, Yu X. VANGL2 alleviates inflammatory bowel disease by recruiting the ubiquitin ligase MARCH8 to limit NLRP3 inflammasome activation through OPTN-mediated selective autophagy. PLoS Biol 2025; 23:e3002961. [PMID: 39899477 PMCID: PMC11790156 DOI: 10.1371/journal.pbio.3002961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 12/01/2024] [Indexed: 02/05/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and potentially life-threatening inflammatory disease of gastroenteric tissue characterized by episodes of intestinal inflammation, but the underlying mechanisms remain elusive. Here, we explore the role and precise mechanism of Van-Gogh-like 2 (VANGL2) during the pathogenesis of IBD. VANGL2 decreases in IBD patients and dextran sulfate sodium (DSS)-induced colitis in mice. Myeloid VANGL2 deficiency exacerbates the progression of DSS-induced colitis in mice and specifically enhances the activation of NLRP3 inflammasome in macrophages. NLRP3-specific inhibitor MCC950 effectively alleviates DSS-induced colitis in VANGL2 deficient mice. Mechanistically, VANGL2 interacts with NLRP3 and promotes the autophagic degradation of NLRP3 through enhancing the K27-linked polyubiquitination at lysine 823 of NLRP3 by recruiting E3 ligase MARCH8, leading to optineurin (OPTN)-mediated selective autophagy. Notably, decreased VANGL2 in the peripheral blood mononuclear cells from IBD patients results in overt NLRP3 inflammasome activation and sustained inflammation. Taken together, this study demonstrates that VANGL2 acts as a repressor of IBD progression by inhibiting NLRP3 inflammasome activation and provides insights into the crosstalk between inflammation and autophagy in preventing IBD.
Collapse
Affiliation(s)
- Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopaedics, Yue Bei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenqiang Peng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Yang
- Department of Orthopaedics, Yue Bei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junsheng Huang
- First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Youth Medical Association of Macao, Macao, China
| | - Zelong Han
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Imai SI. NAD World 3.0: the importance of the NMN transporter and eNAMPT in mammalian aging and longevity control. NPJ AGING 2025; 11:4. [PMID: 39870672 PMCID: PMC11772665 DOI: 10.1038/s41514-025-00192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Over the past five years, systemic NAD+ (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD+-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.0, was then proposed in 2016, emphasizing the importance of the inter-tissue communications between the hypothalamus and peripheral tissues including adipose tissue and skeletal muscle. There has been significant progress in our understanding of the importance of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, and nicotinamide phosphoribosyltransferase (NAMPT), particularly extracellular NAMPT (eNAMPT). With these exciting developments, the further reformulated version of the concept, the NAD World 3.0, is now proposed, featuring multi-layered feedback loops mediated by NMN and eNAMPT for mammalian aging and longevity control.
Collapse
Affiliation(s)
- Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, St. Louis, Missouri, USA.
- Institute for Research on Productive Aging (IRPA), Tokyo, Japan.
| |
Collapse
|
30
|
Parmar UPS, Surico PL, Mori T, Singh RB, Cutrupi F, Premkishore P, Gallo Afflitto G, Di Zazzo A, Coassin M, Romano F. Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants (Basel) 2025; 14:152. [PMID: 40002339 PMCID: PMC11852319 DOI: 10.3390/antiox14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision impairment worldwide, primarily driven by oxidative stress and inflammation. This review examines the role of antioxidants in mitigating oxidative damage, emphasizing both their therapeutic potential and limitations in AMD management. Key findings underscore the efficacy of specific antioxidants, including vitamins C and E, lutein, zeaxanthin, and Coenzyme Q10, in slowing AMD progression. Landmark studies such as AREDS and AREDS2 have shaped current antioxidant formulations, although challenges persist, including patient variability and long-term safety concerns. Emerging therapies, such as mitochondrial-targeted antioxidants and novel compounds like saffron and resveratrol, offer promising avenues for AMD treatment. Complementary lifestyle interventions, including antioxidant-rich diets and physical activity, further support holistic management approaches. This review highlights the critical role of antioxidants in AMD therapy, advocating for personalized strategies to optimize patient outcomes.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
- Department of Sense Organs, La Sapienza University, 00185 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Rohan Bir Singh
- Department of Health and Medical Sciences, Adelaide Medical School, Adelaide, SA 5000, Australia
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Pramila Premkishore
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, 00128 Rome, Italy
| | - Francesco Romano
- Eye Clinic, Department of Biomedical and Clinical Sciences, Ospedale Luigi Sacco, University of Milan, 20157 Milan, Italy
| |
Collapse
|
31
|
Chen L, Li D, Zhan Z, Quan J, Peng J, Huang Z, Yi B. Sirtuin 2 exacerbates renal tubule injury and inflammation in diabetic mice via deacetylation of c-Jun/c-Fos. Cell Mol Life Sci 2025; 82:45. [PMID: 39833479 PMCID: PMC11747030 DOI: 10.1007/s00018-024-05567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients. Therefore, this study explored the specific role of SIRT2 in DN and its regulatory relationship with inflammatory response. Increased expression of SIRT2 was observed in kidney tissues of DN mice and in HK2 cells induced by HG/PA. SIRT2 knockout mice alleviated microalbuminuria, inflammatory responses, and kidney damage induced by HFD/STZ. In HK2 cells, reducing SIRT2 expression or inhibiting its acetylase activity alleviated the inflammatory response induced by HG/PA, whereas overexpression of SIRT2 exacerbated this response. Further investigation revealed that SIRT2 directly interacts with c-Jun/c-Fos, promoting their deacetylation. And inhibitors of c-Jun/c-Fos partially reversed the upregulation of inflammatory factors caused by SIRT2 overexpression. Meanwhile, disrupting SIRT2 reduced the binding activity between AP-1 and the MCP-1 promoter, while overexpressing SIRT2 further increased their binding activity in HK2 cells. Interestingly, SIRT2 increased its phosphorylation while deacetylating c-Jun, leading to nuclear accumulation of p-c-Jun. In conclusion, SIRT2 knockout can alleviate kidney injury and inflammatory response in HFD/STZ mice. The mechanism is related to the increased acetylation of c-Jun/c-Fos in renal tubular epithelial cells, accompanied by crosstalk between c-Jun phosphorylation and acetylation. Blocking SIRT2 could therefore be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Li Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Jingjing Quan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Juan Peng
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.
- Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, China.
| |
Collapse
|
32
|
Liu Y, Wang Y, Yan P, Cui N, Xu K, Liu D, Tian Y, Cao L. NLRP3 Inflammasome-Mediated Osteoarthritis: The Role of Epigenetics. BIOLOGY 2025; 14:71. [PMID: 39857301 PMCID: PMC11761621 DOI: 10.3390/biology14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The prevalence of osteoarthritis (OA) notably surges with age and weight gain. The most common clinical therapeutic drugs are painkillers, yet they cannot impede the deteriorating course of OA. Thus, understanding OA's pathogenesis and devising effective therapies is crucial. It is generally recognized that inflammation, pyroptosis, and OA progression are tightly linked. The activation of NLRP3 inflammasome can lead to the discharge of the pro-inflammatory cytokines Interleukin-1β and IL-18, intensifying subsequent inflammatory reactions and promoting OA development. Conversely, the imbalance caused by deacetylase-regulated NLRP3 inflammasome underlies the chronic mild inflammation related to degenerative diseases. Therefore, this article expounds on the mechanism of OA pathogenesis and the role of histone deacetylases (HDACs) in NLRP3 inflammasome-triggered OA, and illustrates the application of HDAC inhibitors in OA, striving to provide more insights into novel OA treatment approaches.
Collapse
Affiliation(s)
- Yuzhou Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ying Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Ping Yan
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Ning Cui
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (P.Y.); (N.C.)
| | - Kejin Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Y.L.); (Y.W.); (K.X.)
| | - Da Liu
- Public Laboratory Centre, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Yuan Tian
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Lingling Cao
- Clinical School of Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| |
Collapse
|
33
|
Li Y, Wang X, Ren Y, Han BZ, Xue Y. Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review. Crit Rev Food Sci Nutr 2025:1-26. [PMID: 39757837 DOI: 10.1080/10408398.2024.2448768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation. This review explores the food hazards, including microbial and abiotic factors, that may trigger NLRP3-mediated illnesses and inflammation. It also highlights bioactive compounds in food that can suppress NLRP3 inflammasome activation through various mechanisms, linking its activation and inhibition to different pathways. Especially, this review provided further insight into NLRP3-related targets where food bioactive compounds can interact to block the NLRP3 inflammasome activation process, as well as mechanisms on how these compounds facilitate inactivation processes.
Collapse
Affiliation(s)
- Yabo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyi Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Xia F, Hu Y, Wang Y, Xue M, Zhu L, Li Y, Zhang Y, Wang S, Wang R, Yuan Q, He Y, Yuan D, Zhang J, Yuan C. Total saponins from Panax japonicus mediate the paracrine interaction between adipocytes and macrophages to promote lipolysis in the adipose tissue during aging via the NLRP3 inflammasome/GDF3/ATGL axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156304. [PMID: 39662098 DOI: 10.1016/j.phymed.2024.156304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Adipocytic lipolysis is strongly related to the increase of visceral fat, decrease of exercise capacity, and various other metabolic syndromes during aging. It is significantly influenced by the paracrine relationship between adipocytes and the adipose tissue macrophages (ATMs), and the cytokines secreted by ATMs have endocrine effects on adjacent tissues. We previously reported that the total saponins from Panax japonicus (TSPJs) can enhance lipid metabolism. In this work, we for the first time proved that TSPJs promoted adipocytic lipolysis by preventing NLRP3 activation in ATMs to inhibit the expression of GDF3. The decrease of GDF3 by TSPJs restored the expression of the adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (p-HSL), both of which are known to decrease with aging. Thus, the NLRP3 inflammasome/GDF3/ATGL axis may be a worthy target in developing future clinical solutions for aging-related obesity.
Collapse
Affiliation(s)
- Fangqi Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mengzhen Xue
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Leiqi Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuanyang Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
35
|
Cai Z, Bai L, Li Q, Li Y, Cai X, Lin Y. Gene-Activating Framework Nucleic Acid-Targeted Upregulating Sirtuin-1 to Modulate Osteoimmune Microenvironment for Diabetic Osteoporosis Therapeutics. ACS NANO 2024; 18:35214-35229. [PMID: 39689347 DOI: 10.1021/acsnano.4c08727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Diabetic osteoporosis, a prevalent chronic complication of diabetes, is marked by reduced bone mass, increased bone fragility, and susceptibility to fractures. A significant cause of this condition is the disruption of osteoblastic homeostasis due to prolonged hyperglycemia, which impedes bone regeneration and remodeling. Despite its prevalence, no effective treatments specifically target diabetic osteoporosis. Recently, small-activating RNA (saRNA) therapy has attracted attention for its targeting capacity, high efficacy, and minimal side effects. However, RNA's inherent properties, such as structural instability, susceptibility to degradation, and poor penetration, limit its applications. To address these limitations, a gene-activating tetrahedral framework nucleic acid (tFNA) with sirtuin-1 (SIRT1) gene activation function is developed, termed Tsa. Tsa exhibits an RNA-protecting effect and can effectively penetrate cell membranes to upregulate SIRT1 gene expression. At the histological level, Tsa treatment alleviates diabetic osteoporosis by increasing bone trabecular density and promoting new bone formation. At the cellular level, it switches macrophage polarization toward the anti-inflammatory M2 phenotype while inhibiting the inflammatory M1 phenotype, creating a favorable bone immune microenvironment for osteoblasts. At the genetic level, Tsa activates SIRT1 expression, which deacetylates Acetyl-p65 to block the NF-κB pathway and restore the osteoimmune environment. Overall, this research demonstrates a nanodrug "Tsa", capable of activating SIRT1 and modulating the bone immune environment, thereby showcasing its immense potential for diabetic osteoporosis treatment.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
| | - Long Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qiumei Li
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu 610041, Sichuan, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
37
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
38
|
Yang M, Qin Z, Lin Y, Ma D, Sun C, Xuan H, Cui X, Ma W, Zhu X, Han L. HDAC10 switches NLRP3 modification from acetylation to ubiquitination and attenuates acute inflammatory diseases. Cell Commun Signal 2024; 22:615. [PMID: 39707387 DOI: 10.1186/s12964-024-01992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The NOD-like receptor protein (NLRP)3 inflammasome is at the signaling hub center to instigate inflammation in response to pathogen infection or oxidative stress, and its tight control is pivotal for immune defense against infection while avoiding parallel intensive inflammatory tissue injury. Acetylation of NLRP3 is critical for the full activation of NLRP3 inflammasome, while the precise regulation of the acetylation and deacetylation circuit of NLRP3 protein remained to be fully understood. METHODS The interaction between histone deacetylase 10 (HDAC10) and NLRP3 was detected by immunoprecipitation and western blot in the HDAC10 and NLRP3 overexpressing cells. The role of HDAC10 in NLRP3 inflammasome activation was measured by immunofluorescence, real-time PCR and immunoblotting assay in peritoneal macrophages and bone marrow-derived macrophages after the stimulation with LPS and ATP. To investigate the role of HDAC10 in NLRP3-involved inflammatory diseases, the Hdac10 knockout (Hdac10-/-) mice were used to construct the LPS-induced acute endotoxemia model and folic acid-induced acute tubular necrosis model. Tissue injury level was analyzed by hematoxylin and eosin staining, and the serum level of IL-1β was measured by enzyme-linked immunosorbent assay (ELISA). The conservative analysis and immunoprecipitation assay were performed to screen the precise catalytic site regulated by HDAC10 responsible for the switching from the acetylation to ubiquitination of NLRP3. RESULTS Here we demonstrated that HDAC10 directly interacted with NLRP3 and induced the deacetylation of NLRP3, thus leading to the inhibition of NLRP3 inflammasome and alleviation of NLRP3 inflammasome-mediated acute inflammatory injury. Further investigation demonstrated that HDAC10 directly induced the deacetylation of NLRP3 at K496 residue, thus switching NLRP3 acetylation to the ubiquitination modification, resulting in the proteasomal degradation of NLRP3 protein. Thus, this study identified HDAC10 as a new eraser for NLRP3 acetylation, and HDAC10 attenuated NLRP3 inflammasome involved acute inflammation via directly deacetylating NLRP3. CONCLUSIONS This study indicated that HDAC10 switched NLRP3 modification from acetylation to ubiquitination and attenuated acute inflammatory diseases, thus it provided a potential therapeutic strategy for NLRP3 inflammasome-associated diseases by targeting HDAC10.
Collapse
Affiliation(s)
- Min Yang
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Zhenzhi Qin
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Yueke Lin
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Dapeng Ma
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Caiyu Sun
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Haocheng Xuan
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Xiuling Cui
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Wei Ma
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Xinyi Zhu
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China
| | - Lihui Han
- Department of Immunology, School of Basic Medical Sciences, Cheeloo college of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
39
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
40
|
Chen T, Bai D, Gong C, Cao Y, Yan X, Peng R. Hydrogen sulfide mitigates mitochondrial dysfunction and cellular senescence in diabetic patients: Potential therapeutic applications. Biochem Pharmacol 2024; 230:116556. [PMID: 39332692 DOI: 10.1016/j.bcp.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Diabetes induces a pro-aging state characterized by an increased abundance of senescent cells in various tissues, heightened chronic inflammation, reduced substance and energy metabolism, and a significant increase in intracellular reactive oxygen species (ROS) levels. This condition leads to mitochondrial dysfunction, including elevated oxidative stress, the accumulation of mitochondrial DNA (mtDNA) damage, mitophagy defects, dysregulation of mitochondrial dynamics, and abnormal energy metabolism. These dysfunctions result in intracellular calcium ion (Ca2+) homeostasis disorders, telomere shortening, immune cell damage, and exacerbated inflammation, accelerating the aging of diabetic cells or tissues. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, plays a crucial role in maintaining mitochondrial function and mitigating the aging process in diabetic cells. This article systematically explores the specific mechanisms by which H2S regulates diabetes-induced mitochondrial dysfunction to delay cellular senescence, offering a promising new strategy for improving diabetes and its complications.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dacheng Bai
- Guangdong Institute of Mitochondrial Biomedicine, Room 501, Coolpad Building, No.2 Mengxi Road, High-tech Industrial Park, Nanshan District, Shenzhen, Guangdong Province 518000, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
41
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
42
|
Ma Y, Nong W, Zhong O, Liu K, Lei S, Wang C, Chen X, Lei X. Nicotinamide mononucleotide improves the ovarian reserve of POI by inhibiting NLRP3-mediated pyroptosis of ovarian granulosa cells. J Ovarian Res 2024; 17:236. [PMID: 39593096 PMCID: PMC11590476 DOI: 10.1186/s13048-024-01534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common clinical problem, but there is currently no effective treatment. NLRP3 inflammasome-induced pyroptosis is thought to be a possible mechanism of POI. Nicotinamide mononucleotide (NMN) has a certain anti-inflammatory effect, providing a promising approach for the treatment of POI. METHODS Thirty female Sprague Dawley rats were randomly divided into a control group (n = 10) and a POI group (n = 20). Cyclophosphamide (CTX) was administered for 2 weeks to induce POI. Then the POI group was divided into two groups: the CTX-POI group (n = 10), which was given saline; and the CTX-POI + NMN group (n = 10), which was given NMN at a dose of 500 mg/kg/day for 21 consecutive days. At the end of the study, the serum hormone concentrations of each group were determined, and each group was subjected to biochemical, histopathological, and immunohistochemical analyses. In the in vitro experiment, cell pyroptosis was simulated by using lipopolysaccharide (LPS) and nigricin (Nig), and then KGN cells were treated with NMN, MCC950, and AGK2, and the levels of Nicotinamide adenine dinucleotide (NAD+) and inflammatory factors Interleukin-18(IL-18) and Interleukin-1β(IL-1β) in the cell supernatants were detected, and the levels of pyroptosis-related factors in the cells were determined. RESULTS In POI rats, NMN treatments can improve blood hormone levels and partially improve the number of follicles, enhance ovarian reserve function and ovarian index.The evidence is that the increase in NAD+ levels and the activation of SIRT2 expression can reduce the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, IL-18, and IL-1β in the ovary. CONCLUSION NMN improves CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, providing a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Department of Reproductive Medicine Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ou Zhong
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Siyuan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Chen Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China.
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China.
| |
Collapse
|
43
|
Liu K, Wei H, Nong W, Peng H, Li Y, Lei X, Zhang S. Nampt/SIRT2/LDHA pathway-mediated lactate production regulates follicular dysplasia in polycystic ovary syndrome. Free Radic Biol Med 2024; 225:776-793. [PMID: 39489197 DOI: 10.1016/j.freeradbiomed.2024.10.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Decreased nicotinamide adenine dinucleotide (NAD+) content has been shown to contribute to metabolic dysfunction during aging, including polycystic ovary syndrome (PCOS). However, the effect of NAD+ on ovulatory dysfunction in PCOS by regulating glycolysis has not been reported. Based on the observations of granulosa cells (GCs) transcriptome data from the Gene Expression Omnibus (GEO) database, the signal pathways including glycolysis and nicotinate-nicotinamide metabolism were significantly enriched, and most genes of the above pathway like LDHA and SIRT2 were down-regulated in PCOS patients. Therefore, the PCOS rat model was established by combining letrozole with a high-fat diet (HFD), we demonstrate that in vivo supplementation of nicotinamide mononucleotide (NMN) significantly improves the ovulatory dysfunction by facilitating the follicular development, promoting luteal formation, as well the fertility in PCOS rats. Furthermore, target energy metabolomics and transcriptome results showed that NMN supplementation ameliorates the lactate production by activating glycolytic process in the ovary. In vitro, when NAD+ synthesis and SIRT2 expression were inhibited, lactate content in KGN cells was decreased and LDHA expression was significantly inhibited. We confirmed that FK866 can enhance the acetylation of LDHA on 293T cells by Co-immunoprecipitation (Co-IP) assay. We also observed that inhibition of NAD+ synthesis can reduce the activity and increase the apoptosis of KGN cells. Overall, these benefits of NMN were elucidated and the Nampt/SIRT2/LDHA pathway mediated lactate production in granulosa cells played an important role in the improvement of follicular development disorders in PCOS. This study will provide experimental evidence for the clinical application of NMN in the treatment of PCOS in the future.
Collapse
Affiliation(s)
- Ke Liu
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China; Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China.
| | - Huimei Wei
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China; Gynecology Department, Maoming People's Hospital, Maoming, 525000, China.
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Department of Reproductive Medicine Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Huo Peng
- School of Public Health, Guilin Medical University, Guilin, 541001, China.
| | - Youzhu Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang Hunan, 421001, China.
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China.
| |
Collapse
|
44
|
Wen S, Arakawa H, Yokoyama S, Shirasaka Y, Higashida H, Tamai I. Functional identification of soluble uric acid as an endogenous inhibitor of CD38. eLife 2024; 13:RP96962. [PMID: 39527634 PMCID: PMC11554305 DOI: 10.7554/elife.96962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Excessive elevation or reduction of soluble uric acid (sUA) levels has been linked to some of pathological states, raising another subject that sUA at physiological levels may be essential for the maintenance of health. Yet, the fundamental physiological functions and molecular targets of sUA remain largely unknown. Using enzyme assays and in vitro and in vivo metabolic assays, we demonstrate that sUA directly inhibits the hydrolase and cyclase activities of CD38 via a reversible non-competitive mechanism, thereby limiting nicotinamide adenine dinucleotide (NAD+) degradation. CD38 inhibition is restricted to sUA in purine metabolism, and a structural comparison using methyl analogs of sUA such as caffeine metabolites shows that 1,3-dihydroimidazol-2-one is the main functional group. Moreover, sUA at physiological levels prevents crude lipopolysaccharide (cLPS)-induced systemic inflammation and monosodium urate (MSU) crystal-induced peritonitis in mice by interacting with CD38. Together, this study unveils an unexpected physiological role for sUA in controlling NAD+ availability and innate immunity through CD38 inhibition, providing a new perspective on sUA homeostasis and purine metabolism.
Collapse
Affiliation(s)
- Shijie Wen
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa UniversityKanazawaJapan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiKanazawaJapan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa UniversityKanazawaJapan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa UniversityKanazawaJapan
| |
Collapse
|
45
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
46
|
Ren Y, Wu K, He Y, Zhang H, Ma J, Li C, Ruan Y, Zhang J, Wen Y, Wu X, Chen S, Qiu H, Zhang Y, Zhou L, Ou Z, Liang J, Wang Z. The role of NLRP3 inflammasome-mediated neuroinflammation in chronic noise-induced impairment of learning and memory ability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117183. [PMID: 39437517 DOI: 10.1016/j.ecoenv.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Noise pollution pervades daily working and living environment, becoming a serious public health problem. In addition to causing auditory impairment, noise independently contributes to cognitive decline as a risk factor. Though neuroinflammation plays an important role in noise-induced cognitive deficits, the mechanisms underlying noise-induced neuroinflammation in the hippocampus are still poorly understood. Glial hyperactivation of the NLRP3 inflammasome contributes to various neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). However, whether the NLRP3 inflammasome plays a role in noise-induced cognitive impairment remains to be further investigated. METHODS Adult male Wistar rats were exposed to 100 dB white noise (4 h/day) for 30 days with or without injection of the NLRP3 inhibitor MCC950 (10 mg/kg/day). The Morris water maze (MWM) test and the open field test (OFT) were performed to evaluate learning and memory ability of rats. HE staining was used to explore hippocampal pathological changes, while immunohistochemical staining was employed to evaluate the number and morphology of microglia and astrocytes. The mRNA levels of the NLRP3 inflammasome in the hippocampus were examined by Real-time PCR. The protein levels of NLRP3 inflammasome, inflammatory cytokines, p-Tau-S396, and amyloid-β (Aβ) 42 in the hippocampus were examined by Western blot. Immunofluorescence was used to observe the distribution of NLRP3 in glial cells and neurons, and the assembly of the NLRP3 inflammasome. RESULTS We found that noise exposure induced learning and memory impairment in rats, mainly related to the activation of microglia and astrocytes in hippocampus region. Noise exposure increased the protein levels of p-Tau-S396, Aβ42, ionized calcium binding adapter molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α) in hippocampus. Furthermore, the hippocampus of noise-exposed rats showed elevated protein levels of NLRP3, ASC and cleaved caspase-1. The co-labeled immunofluorescence levels of Iba-1 or GFAP with NLRP3 significantly increased in the dentate gyrus (DG) region of the hippocampus. NLRP3 inhibitor MCC950 intervention reversed chronic noise-induced activation of NLRP3 inflammasome, AD-like pathologies and impairment of learning and memory in rats. CONCLUSIONS The NLRP3 inflammasome-mediated neuroinflammation played an essential role in chronic noise-induced cognitive dysfunction. These results provide novel strategies for the prevention and treatment of cognitive deficits caused by chronic noise.
Collapse
Affiliation(s)
- Yixian Ren
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Kangyong Wu
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Yongke He
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hangqian Zhang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Jialao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Caixia Li
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yanmei Ruan
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Ying Wen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xian Wu
- Health Management Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siran Chen
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Heng Qiu
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Yifan Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Liping Zhou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Jiabin Liang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Zhou YR, Dang JJ, Yang QC, Sun ZJ. The regulation of pyroptosis by post-translational modifications: molecular mechanisms and therapeutic targets. EBioMedicine 2024; 109:105420. [PMID: 39476537 PMCID: PMC11564932 DOI: 10.1016/j.ebiom.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pyroptosis, a type of programmed cell death mediated by gasdermin family proteins, releases a large amount of immune stimulatory substances, which further contribute to inflammation and elicit an adaptive immune response against tumours and pathogens. And it occurs through multiple pathways that involve the activation of specific caspases and the cleavage of gasdermins. Post-translational modifications (PTMs) could influence the chemical properties of the modified residues and neighbouring regions, ultimately affecting the activity, stability, and functions of proteins to regulate pyroptosis. Many studies have been conducted to explore the influence of PTMs on the regulation of pyroptosis. In this review, we provide a comprehensive summary of different types of PTMs that influence pyroptosis, along with their corresponding modifying enzymes. Moreover, it elaborates on the specific contributions of different PTMs to pyroptosis and delves into how the regulation of these modifications can be leveraged for therapeutic interventions in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Rao Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Jun-Jie Dang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
48
|
Chen L, Huang L, Gu Y, Li C, Sun P, Xiang Y. Novel post-translational modifications of protein by metabolites with immune responses and immune-related molecules in cancer immunotherapy. Int J Biol Macromol 2024; 277:133883. [PMID: 39033895 DOI: 10.1016/j.ijbiomac.2024.133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 06/30/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Tumour immunotherapy is an effective and essential treatment for cancer. However, the heterogeneity of tumours and the complex and changeable tumour immune microenvironment (TME) creates many uncertainties in the clinical application of immunotherapy, such as different responses to tumour immunotherapy and significant differences in individual efficacy. It makes anti-tumour immunotherapy face many challenges. Immunometabolism is a critical determinant of immune cell response to specific immune effector molecules, significantly affecting the effects of tumour immunotherapy. It is attributed mainly to the fact that metabolites can regulate the function of immune cells and immune-related molecules through the protein post-translational modifications (PTMs) pathway. This study systematically summarizes a variety of novel protein PTMs including acetylation, propionylation, butyrylation, succinylation, crotonylation, malonylation, glutarylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, benzoylation, lactylation and isonicotinylation in the field of tumour immune regulation and immunotherapy. In particular, we elaborate on how different PTMs in the TME can affect the function of immune cells and lead to immune evasion in cancer. Lastly, we highlight the potential treatment with the combined application of target-inhibited protein modification and immune checkpoint inhibitors (ICIs) for improved immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, PR China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou 350001, Fujian, PR China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China; National Clinical Research Center for Obstetric & Gynecologic Diseases, PR China.
| |
Collapse
|
49
|
Song Z, Park SH, Mu WC, Feng Y, Wang CL, Wang Y, Barthez M, Maruichi A, Guo J, Yang F, Lin AW, Heydari K, Chini CCS, Chini EN, Jang C, Chen D. An NAD +-dependent metabolic checkpoint regulates hematopoietic stem cell activation and aging. NATURE AGING 2024; 4:1384-1393. [PMID: 39044033 PMCID: PMC11565225 DOI: 10.1038/s43587-024-00670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
How hematopoietic stem cells (HSCs) maintain metabolic homeostasis to support tissue repair and regeneration throughout the lifespan is elusive. Here, we show that CD38, an NAD+-dependent metabolic enzyme, promotes HSC proliferation by inducing mitochondrial Ca2+ influx and mitochondrial metabolism in young mice. Conversely, aberrant CD38 upregulation during aging is a driver of HSC deterioration in aged mice due to dysregulated NAD+ metabolism and compromised mitochondrial stress management. The mitochondrial calcium uniporter, a mediator of mitochondrial Ca2+ influx, also supports HSC proliferation in young mice yet drives HSC decline in aged mice. Pharmacological inactivation of CD38 reverses HSC aging and the pathophysiological changes of the aging hematopoietic system in aged mice. Together, our study highlights an NAD+ metabolic checkpoint that balances mitochondrial activation to support HSC proliferation and mitochondrial stress management to enhance HSC self-renewal throughout the lifespan, and links aberrant Ca2+ signaling to HSC aging.
Collapse
Affiliation(s)
- Zehan Song
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, CA, USA
| | - Sang Hee Park
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Wei-Chieh Mu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- Endocrinology Graduate Program, University of California, Berkeley, CA, USA
| | - Yufan Feng
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Chih-Ling Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Yifei Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- Metabolic Biology Graduate Program, University of California, Berkeley, CA, USA
| | - Marine Barthez
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Ayane Maruichi
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- Endocrinology Graduate Program, University of California, Berkeley, CA, USA
| | - Jiayue Guo
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Fanghan Yang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
- Endocrinology Graduate Program, University of California, Berkeley, CA, USA
| | - Anita Wong Lin
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Kartoosh Heydari
- Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Claudia C S Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Eduardo N Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Danica Chen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA.
- Metabolic Biology Graduate Program, University of California, Berkeley, CA, USA.
- Endocrinology Graduate Program, University of California, Berkeley, CA, USA.
| |
Collapse
|
50
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|