1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Li X, Ding L, Nie H, Deng DYB. Calcium Signaling in Astrocytes and Its Role in the Central Nervous System Injury. Mol Neurobiol 2025:10.1007/s12035-025-05055-5. [PMID: 40419752 DOI: 10.1007/s12035-025-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS). Due to their extensive processes, they can interconnect with many neighboring cells and play critical roles in regulating synaptic plasticity, integrating neuronal signals, and maintaining the stability of the extracellular environment. These functions are largely dependent on calcium (Ca2+) signaling. In light of these considerations, the powerful functions of Ca2+ signaling in astrocytes have been actively studied in recent years. This review summarizes the mechanisms related to Ca2+ waves in astrocytes as well as their physiological and pathological functions mediated by various calcium signaling, the characteristics of calcium waves, and the role of Ca2+ in astrocytes in the CNS injuries of spinal cord injury (SCI) and traumatic brain injury (TBI) recently. However, inhibited L-type voltage-gated Ca2+ channels (LTCCs) activity and reduced Ca2+ concentration result in an opposite phenomenon that promoting or reducing astrogliosis. This highlights the importance of focusing not only on Ca2⁺ concentration but also on the downstream signaling pathways initiated by Ca2⁺. Therefore, we summarize diverse signaling pathways in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Xinyue Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
4
|
Zhang C, Lan X, Wang Q, Zheng Y, Cheng J, Han J, Li C, Cheng F, Wang X. Decoding ischemic stroke: Perspectives on the endoplasmic reticulum, mitochondria, and their crosstalk. Redox Biol 2025; 82:103622. [PMID: 40188640 PMCID: PMC12001122 DOI: 10.1016/j.redox.2025.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025] Open
Abstract
Stroke is known for its high disability and mortality rates. Ischemic stroke (IS), the most prevalent form, imposes a considerable burden on affected individuals. Nevertheless, existing treatment modalities are hindered by limitations, including narrow therapeutic windows, substantial adverse effects, and suboptimal neurological recovery. Clarifying the pathological mechanism of IS is a prerequisite for developing new therapeutic strategies. In this context, the functional disruption of mitochondria, the endoplasmic reticulum (ER), and the crosstalk mechanisms between them have garnered increasing attention for their contributory roles in the progression of IS. Therefore, this review provides a comprehensive summary of the current pathomechanisms associated with the involvement of the ER and mitochondria in IS, emphasising Ca2+ destabilization homeostasis, ER stress, oxidative stress, disordered mitochondrial quality control, and mitochondrial transfer. Additionally, this article highlights the functional interaction between the ER and mitochondria, as well as the mitochondrial-ER contacts (MERCs) that structurally connect mitochondria and the ER, aiming to provide ideas and references for the research and treatment of IS.
Collapse
Affiliation(s)
- Chuxin Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Lan
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jialin Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinhua Han
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changxiang Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhao X, Zhang S, Wu M, Zhang B, Wan G, Zhang M, Li J, Fei Z, Zhu G, Jiang S, Xiao M, Liu W, Zhao Z, Huang B, Ran J. High urea promotes mitochondrial fission and functional impairments in astrocytes inducing anxiety-like behavior in chronic kidney disease mice. Metab Brain Dis 2025; 40:186. [PMID: 40244426 DOI: 10.1007/s11011-025-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
High urea can induce depression and anxiety. Activation of astrocytes is closely associated with psychiatric disorders. However, the pathological mechanism of whether high urea affects astrocyte structure and function to induce anxiety-like behaviors remain unclear. We established a high-urea chronic kidney disease (CKD) mouse model and found that these mice exhibited elevated levels of anxiety through behavioral experiments. Immunofluorescence and transmission electron microscopy studies of astrocytes revealed a decrease in density and branching of mPFC astrocytes. Additionally, we observed a significant reduction in ATP and BDNF levels in the mPFC and primary astrocytes of CKD mice induced by high urea. Analysis of gene expression differences in astrocytes between WT and high-urea mice indicated alterations in mitochondrial dynamics-related signaling pathways in astrocytes. We established a high-urea primary astrocyte model to assess mitochondrial function and levels of fusion and fission proteins. Treatment of primary astrocytes with high urea led to mitochondrial fragmentation and downregulation of Mfn2 expression. These results suggested that high urea downregulates Mfn2 expression in mPFC astrocytes, induced mitochondrial fusion-fission abnormalities, disrupted astrocyte energy metabolism, and promoted high-urea-related anxiety. Mfn2 may represent a potential therapeutic target for high-urea-related anxiety.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Shengyao Zhang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Mengna Wu
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Binyun Zhang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Guoran Wan
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Zhang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Li
- Department of Stem Cell and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhuo Fei
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Guoqi Zhu
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Shaoqiu Jiang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Mohan Xiao
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Wanjia Liu
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhelun Zhao
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Boyue Huang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianhua Ran
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Wu FF, Liu BZ, Huang YQ, Zhu CL, Xia YL, Zhang KL, Li SJ, Yang YL, Wang YY. Anxa10 and neuropathic pain: Insights into dysregulation of endoplasmic reticulum-mitochondria contact tethering complex and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167856. [PMID: 40250776 DOI: 10.1016/j.bbadis.2025.167856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The stability of membrane contact sites is critically dependent on Endoplasmic Reticulum mitochondria contact tethering complexes (EMCTCs), and dysregulation of these sites has been implicated in neuropathic diseases. In this study, we examined the role of Annexin A10 (Anxa10), a calcium-dependent protein, in neuropathic pain by investigating its influence on EMCTCs dysregulation. Using RNA sequencing, western blotting, and behavioral assays, we observed that spared nerve injury (SNI)-induced neuropathic pain significantly increased Anxa10 expression levels within the spinal dorsal horn (SDH) of mice. By employing cell-specific gene regulation via the Cre/loxp system, we utilized loxp-modified adeno-associated virus vectors to modulate Anxa10 expression in GAD2-Cre (inhibitory neurons), vGlut2-Cre (excitatory neurons), and Fos-Cre (activity-induced neurons) transgenic mice. Our results demonstrated that specific down-regulation of Anxa10 in excitatory neurons within the SDH alleviated neuropathic pain, whereas up-regulation of Anxa10, regardless of cell type, induced spontaneous pain in mice. Ultrastructural analysis of the endoplasmic reticulum (ER) and mitochondria, as well as double immunofluorescence staining, revealed that downregulation of Anxa10 mitigated the SNI-induced reduction in ER-mitochondrial distance. Additionally, it attenuated the SNI-induced upregulation of key components of EMCTCs, including IP3R, GRP75, and VDAC1, while preventing the SNI-induced downregulation of NCX3 expression. Furthermore, we formulated and validated the hypothesis that SGK1 and PI3K are positioned downstream of Anxa10. The up-regulation of Anxa10 compromised mitochondrial integrity and disrupted mitochondrial networks, ultimately leading to elevated oxidative stress. Collectively, these findings suggest that Anxa10 represents a promising therapeutic target for correcting EMCTCs dysregulation and mitigating neuropathic pain.
Collapse
Affiliation(s)
- Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China.
| | - Bo-Zhi Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yun-Qiang Huang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Chang-Lei Zhu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Lu Xia
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Kun-Long Zhang
- Department of Rehabilitation and Physical Therapy, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Basic Medical Science Education, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Dudek KA, Paton SEJ, Binder LB, Collignon A, Dion-Albert L, Cadoret A, Lebel M, Lavoie O, Bouchard J, Kaufmann FN, Clavet-Fournier V, Manca C, Guzmán M, Campbell M, Turecki G, Mechawar N, Flamand N, Lavoie-Cardinal F, Silvestri C, Di Marzo V, Menard C. Astrocytic cannabinoid receptor 1 promotes resilience by dampening stress-induced blood-brain barrier alterations. Nat Neurosci 2025; 28:766-782. [PMID: 40016352 PMCID: PMC11976283 DOI: 10.1038/s41593-025-01891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
Blood-brain barrier (BBB) alterations contribute to stress vulnerability and the development of depressive behaviors. In contrast, neurovascular adaptations underlying stress resilience remain unclear. Here we report that high expression of astrocytic cannabinoid receptor 1 (CB1) in the nucleus accumbens (NAc) shell, particularly in the end-feet ensheathing blood vessels, is associated with resilience during chronic social stress in adult male mice. Viral-mediated overexpression of Cnr1 in astrocytes of the NAc shell results in baseline anxiolytic effects and dampens stress-induced anxiety- and depression-like behaviors in male mice. It promotes the expression of vascular-related genes and reduces astrocyte inflammatory response and morphological changes following an immune challenge with the cytokine interleukin-6, linked to stress susceptibility and mood disorders. Physical exercise and antidepressant treatment increase the expression of astrocytic Cnr1 in the perivascular region in male mice. In human tissue from male donors with major depressive disorder, we observe loss of CNR1 in the NAc astrocytes. Our findings suggest a role for the astrocytic endocannabinoid system in stress responses via modulation of the BBB.
Collapse
Affiliation(s)
- Katarzyna A Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Sam E J Paton
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Adeline Collignon
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Alice Cadoret
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Lavoie
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Jonathan Bouchard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Valerie Clavet-Fournier
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Claudia Manca
- Faculty of Medicine and Quebec Heart and Lung Institute, Université Laval, Quebec City, Quebec, Canada
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, CIBERNED and IRYCIS, Madrid, Spain
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gustavo Turecki
- Department of Psychiatry, McGill University and Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Naguib Mechawar
- Department of Psychiatry, McGill University and Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Nicolas Flamand
- Faculty of Medicine and Quebec Heart and Lung Institute, Université Laval, Quebec City, Quebec, Canada
| | - Flavie Lavoie-Cardinal
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Cristoforo Silvestri
- Faculty of Medicine and Quebec Heart and Lung Institute, Université Laval, Quebec City, Quebec, Canada
| | - Vincenzo Di Marzo
- Faculty of Medicine and Quebec Heart and Lung Institute, Université Laval, Quebec City, Quebec, Canada
- Faculty of Agricultural and Food Sciences, INAF and NUTRISS Center, Quebec City, Quebec, Canada
- Joint International Research Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition between Université Laval, Quebec City, Quebec, Canada
- Consiglio Nazionale Delle Ricerche, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
8
|
Chen C, Dai G, Fan M, Wang X, Niu K, Gao W. Mitochondria-associated endoplasmic reticulum membranes and myocardial ischemia: from molecular mechanisms to therapeutic strategies. J Transl Med 2025; 23:277. [PMID: 40050915 PMCID: PMC11884070 DOI: 10.1186/s12967-025-06262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Myocardial ischemia has the highest disease burden among all cardiovascular diseases making it a significant challenge to the global public health. It can result in myocardial cell damage and death due to impaired mitochondrial and endoplasmic reticulum (ER) functions. These two organelles are important regulators of cell death. In recent years, research has shifted from isolated studies of individual organelles to a more integrative approach, with a particular focus on their membrane contact sites-Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs). These dynamic microdomains play a crucial role in regulating material exchange and signal transduction between the endoplasmic reticulum and mitochondria. This review comprehensively describes the intricate structure of MAMs and their multifaceted roles in cellular pathophysiological processes. Particular focus was directed at the far-reaching effects of MAMs in regulating key pathological events including calcium homeostasis, mitochondrial dysfunction, ER stress, oxidative stress, and autophagy in ischemic heart disease (IHD). The potential treatment targets and regulatory mechanisms of MAMs were discussed and summarized, providing novel research directions and treatment approaches for improving myocardial ischemia-related diseases.
Collapse
Affiliation(s)
- Chen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guohua Dai
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Maoxia Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xingmeng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaibin Niu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wulin Gao
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Chen J, Shi G, Yu L, Shan W, Sun J, Guo A, Wu J, Tang T, Zhang X, Wang Q. 3-HKA Promotes Vascular Remodeling After Stroke by Modulating the Activation of A1/A2 Reactive Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412667. [PMID: 39854137 PMCID: PMC11923925 DOI: 10.1002/advs.202412667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified. Supplementation with 3-HKA improved long-term neurological recovery, reduced infarct volume, and increased ipsilateral cerebral blood flow after distal middle cerebral artery occlusion (MCAO). 3-HKA promoted angiogenesis, functional blood vessel formation, and blood-brain barrier (BBB) repair. Moreover, 3-HKA inhibited A1-like (neurotoxic) astrocyte activation but promoted A2-like (neuroprotective) astrocyte polarization. Proteomic analysis revealed that 3-HKA inhibited AIM2 inflammasome activation after stroke, and co-labeling studies indicated that AIM2 expression typically increased in astrocytes at 7 and 14 days after stroke. Consistently, in co-cultures of primary mouse brain microvascular endothelial cells and astrocytes, 3-HKA promoted angiogenesis after oxygen-glucose deprivation (OGD). AIM2 overexpression in astrocytes abrogated 3-HKA-driven vascular remodeling in vitro and in vivo, suggesting that 3-HKA may regulate astrocyte-mediated vascular remodeling by impeding AIM2 inflammasome activation. In conclusion, 3-HKA may promote post-stroke vascular remodeling by regulating A1/A2 astrocyte activation, thereby improving long-term neurological recovery, suggesting that supplementation with 3-HKA may be an efficient therapy for stroke.
Collapse
Affiliation(s)
- Jun‐Min Chen
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Guang Shi
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Lu‐Lu Yu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
| | - Wei Shan
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| | - Jing‐Yu Sun
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - An‐Chen Guo
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
- Beijing Key Laboratory of Drug and Device Research and Development for Cerebrovascular DiseasesBeijing100070China
| | - Jian‐Ping Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100070China
| | - Tie‐Shan Tang
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Xiang‐Jian Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuang050000China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio‐cerebrovascular DiseaseShijiazhuang050000China
| | - Qun Wang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
- China National Clinical Research Center for Neurological DiseasesBeijing100070China
- Beijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| |
Collapse
|
10
|
Joaquim M, Altin S, Bulimaga MB, Simões T, Nolte H, Bader V, Franchino CA, Plouzennec S, Szczepanowska K, Marchesan E, Hofmann K, Krüger M, Ziviani E, Trifunovic A, Chevrollier A, Winklhofer KF, Motori E, Odenthal M, Escobar-Henriques M. Mitofusin 2 displays fusion-independent roles in proteostasis surveillance. Nat Commun 2025; 16:1501. [PMID: 39929801 PMCID: PMC11811173 DOI: 10.1038/s41467-025-56673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Mitochondria are essential organelles and their functional state dictates cellular proteostasis. However, little is known about the molecular gatekeepers involved, especially in absence of external stress. Here we identify a role of MFN2 in quality control independent of its function in organellar shape remodeling. MFN2 ablation alters the cellular proteome, marked for example by decreased levels of the import machinery and accumulation of the kinase PINK1. Moreover, MFN2 interacts with the proteasome and cytosolic chaperones, thereby preventing aggregation of newly translated proteins. Similarly to MFN2-KO cells, patient fibroblasts with MFN2-disease variants recapitulate excessive protein aggregation defects. Restoring MFN2 levels re-establishes proteostasis in MFN2-KO cells and rescues fusion defects of MFN1-KO cells. In contrast, MFN1 loss or mitochondrial shape alterations do not alter protein aggregation, consistent with a fusion-independent role of MFN2 in cellular homeostasis. In sum, our findings open new possibilities for therapeutic strategies by modulation of MFN2 levels.
Collapse
Affiliation(s)
- Mariana Joaquim
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Selver Altin
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maria-Bianca Bulimaga
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty of the University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- MPI for Biology of Ageing, 50931, Cologne, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany, and Cluster of Excellence RESOLV, Bochum, Germany
| | - Camilla Aurora Franchino
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Solenn Plouzennec
- University of Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- ReMedy International Research Agenda Unit, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783, Warsaw, Poland
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Ziviani
- Deparment of Biology, University of Padova, Padova, Italy
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Arnaud Chevrollier
- University of Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany, and Cluster of Excellence RESOLV, Bochum, Germany
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty of the University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Zellmer JC, Tarantino MB, Kim M, Lomoio S, Maesako M, Hajnóczky G, Bhattacharyya R. Stabilization of mitochondria-associated endoplasmic reticulum membranes regulates Aβ generation in a three-dimensional neural model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14417. [PMID: 39713841 PMCID: PMC11848173 DOI: 10.1002/alz.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION We previously demonstrated that regulating mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) affects axonal Aβ generation in a well-characterized three-dimensional (3D) neural Alzheimer's disease (AD) model. MAMs vary in thickness and length, impacting their functions. Here, we examined the effect of MAM thickness on Aβ in our 3D neural model of AD. METHODS We employed fluorescence resonance energy transfer (FRET) or fluorescence-based MAM stabilizers, electron microscopy, Aβ enzyme-linked immunosorbent assay (ELISA), and live-cell imaging with kymography to assess how stabilizing MAMs of different gap widths influence Aβ production and MAM axonal mobility. RESULTS Stabilizing tight MAMs (∼6 nm gap width) significantly increased Aβ levels, whereas basal (∼25 nm) and loose MAMs (∼40 nm) maintained or reduced Aβ levels, respectively. Tight MAMs reduced mitochondrial axonal velocity compared to basal MAMs, while loose MAMs showed severely reduced axonal distribution. DISCUSSION Our findings suggest that stabilizing MAMs of specific gap widths, particularly in axons, without complete destabilization could be an effective therapeutic strategy for AD. HIGHLIGHTS The stabilization of MAMs exacerbates or ameliorates Aβ generation from AD neurons in a MAM gap width-dependent manner. A specific stabilization threshold within the MAM gap width spectrum shifts the amyloidogenic process to non-amyloidogenic. Tight MAMs slow down mitochondrial axonal transport compared to lose MAMs offering a quantitative method for measuring MAM stabilization.
Collapse
Affiliation(s)
- Jacob C. Zellmer
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Marina B. Tarantino
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Michelle Kim
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Selene Lomoio
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Masato Maesako
- Alzheimer's Disease Research UnitMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital/Harvard Medical SchoolCharlestownMassachusettsUSA
| | - György Hajnóczky
- MitoCare CenterDepartment of PathologyAnatomy & Cell BiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Raja Bhattacharyya
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| |
Collapse
|
12
|
Paing YMM, Lee SH. Protective effects of enzymatically digested velvet antler polypeptides on mitochondria in primary astrocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:164-178. [PMID: 39974783 PMCID: PMC11833196 DOI: 10.5187/jast.2023.e135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2025]
Abstract
Traditionally, velvet antler (VA) has been used as a medicine or dietary supplement in East Asia. It contains biologically active compounds that exert anti-inflammatory, anti-fatigue, anti-aging, and anticancer effects. Although demand for VA has increased globally, its supply and consumption are limited due to the low recovery of its bioactive compounds from traditional decoctions. Therefore, alternative extraction methods are required to enrich the active compounds and enhance their biological efficacy. The extract has been reported to protect against neuropathological conditions in brain cells and suppress oxidative stress and neuroinflammation-crucial for the initiation or progression of neurodegenerative diseases. Therefore, VA is a potential therapeutic agent for neurodegenerative diseases. However, the beneficial effects of VA on astrocytes, which are the predominant glial cells in the brain, remain unclear. In the present study, we investigated the protective effects of enzymatically digested VA extract (YC-1101) on the mitochondria in astrocytes, which are essential organelles regulating oxidative stress. Proteomic and metabolomic results using liquid chromatography-mass spectrometry (LC-MS/MS) identified enriched bioactive ingredients in YC-1101 compared to hot water extract of VA. YC-1101 displayed significant protective effects against mitochondrial stressors in astrocytes compared with other health functional ingredients. Altogether, our results showed improved bioactive efficacy of YC-1101 and its protective role against mitochondrial stressors in astrocytes.
Collapse
Affiliation(s)
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang
University, Seoul 06974, Korea
| |
Collapse
|
13
|
Tonelli E, Malecka J, Barberis E, Romano C, Pessolano E, Talmon M, Genazzani AA, Casali C, Biggiogera M, Manfredi M, Tapella L, Lim D, Dematteis G. Remodelling of Cellular Protein Homeostasis by Enhanced ER-Mitochondrial Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251329704. [PMID: 40177215 PMCID: PMC11963730 DOI: 10.1177/25152564251329704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/26/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Alterations of endoplasmic reticulum (ER)-mitochondrial interaction have been associated with different pathological conditions, including neurodegenerative diseases, characterized by dysregulation of protein homeostasis. However, little is known about how enhanced ER-mitochondrial tethering affects cellular proteostatic machinery. Here, we transiently overexpressed synthetic ER-mitochondrial linkers (EMLs), stabilizing the ER-mitochondrial distance at ≤5 nm (denominated as 5 nm-EML) and ∼10 nm (10 nm-EML), in HeLa cells. No alterations were found in cell growth, although metabolic activity and total ATP were significantly reduced. In EML-expressing cells, global protein synthesis was significantly reduced, accompanied by a reduction of total PERK and eIF2α protein levels, but increased p-eIF2α. Unfolded protein response (UPR) markers ATF4 and ATF6 were upregulated, suggesting that enhanced ER-mitochondrial tethering deranges protein synthesis and induces a low-grade ER stress/UPR. To further investigate ER-mitochondrial tethering-induced protein dyshomeostasis, we performed shotgun mass spectrometry proteomics followed by bioinformatic analysis. Analysis of highly changed proteins and the most significantly overrepresented gene ontology (GO) terms revealed that ≤5 nm tethering preferentially affected the expression of proteins involved in RNA processing and splicing and proteasomal protein degradation, while ∼10 nm tethering preferentially affected protein translation. Both EMLs affected expression of proteins involved in mitochondrial bioenergetics and metabolism, defense against oxidative stress, ER protein homeostasis, signaling and secretion. Finally, lipidomic analysis suggests that 5 nm-EML and 10 nm-EML differentially affect lipid homeostasis. Altogether, our results suggest that enhanced ER-mitochondrial tethering leads to a profound remodeling of cellular protein homeostasis, which may play a key role in pathogenesis of Alzheimer's and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Tonelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Justyna Malecka
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elettra Barberis
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Camilla Romano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | | | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
14
|
Zhou Z, Bai Y, Gu X, Ren H, Xi W, Wang Y, Bian L, Liu X, Shen L, Xiang X, Huang W, Luo Z, Han B, Yao H. Membrane Associated RNA-Containing Vesicles Regulate Cortical Astrocytic Microdomain Calcium Transients in Awake Ischemic Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404391. [PMID: 39444078 PMCID: PMC11633488 DOI: 10.1002/advs.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Indexed: 10/25/2024]
Abstract
Astrocytic processes minutely regulate neuronal activity via tripartite synaptic structures. The precision-tuning of the function of astrocytic processes is garnering increasing attention because of its significance in promoting brain repair following ischemic stroke. Microdomain calcium (Ca2+) transients in astrocytic processes are pivotal for the functional regulation of these processes. However, the understanding of the alterations and regulatory mechanism of microdomain Ca2+ transients during stroke remains limited. In the present study, a fast high-resolution, miniaturized two-photon microscopy is used to show that the levels of astrocytic microdomain Ca2+ transients are significantly reduced in the peri-infarct area of awake ischemic stroke mice. This finding correlated with the behavioral deficits shown by these mice under freely-moving conditions. Mitochondrial Ca2+ activity is an important factor driving the microdomain Ca2+ transients. DEAD Box 1 (DDX1) bound to circSCMH1 (a circular RNA involved in vascular post-stroke repair) facilitates the formation of membrane-associated RNA-containing vesicles (MARVs) and enhances the activity of astrocytic microdomain Ca2+ transients, thereby promoting behavioral recovery. These results show that targeting astrocytic microdomain Ca2+ transients is a potential therapeutic approach in stroke intervention.
Collapse
Affiliation(s)
- Zhongqiu Zhou
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Bai
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiaochun Gu
- Jiangsu Key Laboratory of Molecular and Functional ImagingDepartment of RadiologyZhongda HospitalMedical School of Southeast UniversityNanjing210009China
| | - Hui Ren
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Wen Xi
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yu Wang
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Liang Bian
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xue Liu
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Shen
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenhui Huang
- Department of Molecular PhysiologyCenter for Integrative Physiology and Molecular MedicineUniversity of Saarland66421HomburgGermany
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Bing Han
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Honghong Yao
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Institute of Life SciencesKey Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjing210096China
| |
Collapse
|
15
|
Lu YW, Wang YJ, Wang Z, Ren S, Gong XJ, Hu JN, Zhang JT, Li W. Ginsenoside Rg2 alleviates astrocyte inflammation and ameliorates the permeability of the Alzheimer's disease related blood-brain barrier. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156063. [PMID: 39305744 DOI: 10.1016/j.phymed.2024.156063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Damage to the blood-brain barrier (BBB) is vital for the development of Alzheimer's disease (AD). Ginsenoside Rg2 (G-Rg2) has been shown to improve a variety of brain injuries, but whether G-Rg2 can improve the BBB leakage related to AD is still unclear. PURPOSE Illuminate the effect and mechanism of G-Rg2 on AD-related BBB damage. To clarify the role of G-Rg2 in Toll-like receptor pathway and oxidative stress pathway and its effect on tight junction proteins (TJs) expression in vivo and in vitro experiments. METHODS AND RESULTS In our research, the tightness of the BBB was improved and the inflammatory pathway was suppressed after 4 weeks of treatment with G-Rg2 (10 mg kg-1 and 20 mg kg-1) in aluminum trichloride (AlCl3) plus d-galactose (D-gal) caused AD mice (p < 0.05; p < 0.01). Concurrently, the stability of TJs in mouse brain endothelial cells (bEnd3) was improved after okadaic acid (OA) -induced AD model cells were pretreated with G-Rg2 (5 μM, 10 μM, and 20 μM) for 24 h (p < 0.05; p < 0.01). The oxidative stress pathway and Toll-like receptor pathway in mouse astrocyte-cerebellum (MA-c) were inhibited (p < 0.05; p < 0.01). Meanwhile, in vitro interaction model results showed that G-Rg2 reduced the activation of MA-c, thereby alleviating the degradation of TJs in bEnd3 (p < 0.05; p < 0.01). The co-culture system of MA-c and bEnd3 further clearly demonstrated that G-Rg2 (20 μM) could improve their interaction and enhance BBB tightness. CONCLUSION This study suggests that G-Rg2 can inhibit the TLR4/MyD88/MMP9 inflammatory pathway by reducing the activation of MA-c and the binding of TLR4 to MyD88, thereby decreasing the secretion of inflammatory factors and matrix metalloproteinases (MMPs), hence maintaining the stability of TJs in bEnd3, which may be one of the mechanisms of G-Rg2 in reducing AD-related BBB damage.
Collapse
Affiliation(s)
- Ya-Wei Lu
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Zi Wang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Shen Ren
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiao-Jie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China.
| | - Wei Li
- College of Chinese Medicinal Materials, National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Jilin Agricultural University, Changchun 130118, PR China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
16
|
Lu L, Ye J, Yi D, Qi T, Luo T, Wu S, Yang L, Li L, Zhang H, Chen D. Runx2 Suppresses Astrocyte Activation and Astroglial Scar Formation After Spinal Cord Injury in Mice. Mol Neurobiol 2024; 61:10820-10829. [PMID: 38789894 PMCID: PMC11584425 DOI: 10.1007/s12035-024-04212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/29/2024] [Indexed: 05/26/2024]
Abstract
After spinal cord injury, astrocytes undergo a reactive process and form an astroglial scar, which impedes the regeneration of axons. The role of Runx2 in promoting the transformation of astrocytes in the central nervous system is well-established. However, it remains unclear whether Runx2 also plays a role in the development of astroglial scar, and the precise underlying mechanism has yet to be identified. Recently, our study using cell culture and animal models has demonstrated that Runx2 actually suppresses astrocyte activation and the formation of astroglial scar following injury. The initial results demonstrated an increase in the expression of Runx2 in astrocytes following in vivo injury. Subsequently, the overexpression of Runx2 resulted in the inhibition of astrocyte activation, reduction in the total area of astroglial scar, and restoration of neural function after 14 days of injury. However, these effects were reversed by CADD522. These findings indicate that Runx2 could potentially serve as a therapeutic intervention for spinal cord injury (SCI). Furthermore, our findings suggest that the Nuclear-matrix-targeting signal (NMTS) of Runx2 is associated with its effect. In summary, the study's results propose that targeting Runx2 may be a promising treatment approach for reactive astrocytes and astroglial scar in the recovery of SCI.
Collapse
Affiliation(s)
- Leilei Lu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiazong Ye
- Department of Ultrasound, Dongtou District People's Hospital, Wenzhou, Zhejiang, 325700, China
| | - Dafa Yi
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tengfei Qi
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tong Luo
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Silei Wu
- The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
17
|
Sukhorukov VS, Baranich TI, Egorova AV, Akateva AV, Okulova KM, Ryabova MS, Skvortsova KA, Dmitriev OV, Mudzhiri NM, Voronkov DN, Illarioshkin SN. Mitochondrial Dynamics in Brain Cells During Normal and Pathological Aging. Int J Mol Sci 2024; 25:12855. [PMID: 39684566 DOI: 10.3390/ijms252312855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity. Emerging therapeutic strategies that target mitochondrial dynamics, including various pharmacological agents, demonstrate potential for restoring mitochondrial balance and enhancing neuroprotection. This growing body of research underscores the importance of mitochondrial health in developing effective interventions for neurodegenerative conditions. This review highlights well-established links between the disruption of mitochondrial dynamics and the development of neurodegenerative processes. We also discuss different therapeutic strategies that target mitochondrial function in neurons that have been proposed as perspective neuroprotective treatments.
Collapse
Affiliation(s)
- Vladimir S Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Tatiana I Baranich
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anna V Egorova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anastasia V Akateva
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Kseniia M Okulova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Maria S Ryabova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Krisitina A Skvortsova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Oscar V Dmitriev
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Natalia M Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Dmitry N Voronkov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
18
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Wang W, Yang H, Fan Z, Shi R. NQO1 promotes osteogenesis and suppresses angiogenesis in DPSCs via MAPK pathway modulation. Stem Cell Res Ther 2024; 15:306. [PMID: 39285500 PMCID: PMC11406740 DOI: 10.1186/s13287-024-03929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.
Collapse
Affiliation(s)
- Wanqing Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
20
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Sathyamurthy VH, Nagarajan Y, Parvathi VD. Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS): A New Axis in Neuronal Degeneration and Regeneration. Mol Neurobiol 2024; 61:6528-6538. [PMID: 38321352 DOI: 10.1007/s12035-024-03971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Mitochondria-Endoplasmic Reticulum Contact Sites (MERCS) are dynamic structures whose physiological interaction is vital to direct life and death of the cell. A bevy of tethering proteins, mitofusin-1/2 (Mfn-1/2), glucose-regulated protein-75 (Grp-75), voltage-dependent anion channel-1 (VDAC1), and dynamic-related protein-1 (Drp1), plays an integral role in establishing and regulating this intricate intracellular communication. Dysregulation of this interplay leads to various neurodegenerative disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), stroke, traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Although there is an absence of a well-defined molecular background that dictates the pathway of MERCS, adequate exploration has resulted in preliminary data that suggests its cardinal role in neuroregeneration. The juxtaposition of mitochondria and ER has a critical function in cell senescence, thus regulating regeneration. Axonal regeneration and brain tissue regeneration, using reactive astrocytes, are studied most extensively. Overexpression of Grp-75 promoted axonal regeneration post a nerve injury. Attempts have been made to exploit MERCS as potential therapeutic drug targets for enhancing neuroregeneration and impeding neurodegeneration. Novel strategies have been developed to aid the delivery of mitochondria into the neuronal cell body, which in turn establishes a network with the presiding ER resulting in contact site formation. The fascinating aspect of this mechanism is that despite the lack of inherent regenerative capacity in neurons, it can be induced by modifying MERCS.
Collapse
Affiliation(s)
- Vijaya Harini Sathyamurthy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Yoghalakshmi Nagarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| |
Collapse
|
22
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
23
|
Ayala DA, Matarazzo A, Seaberg BL, Patel M, Tijerina E, Matthews C, Bizi G, Brown A, Ta A, Rimer M, Srinivasan R. Heterogeneous brain region-specific responses to astrocytic mitochondrial DNA damage in mice. Sci Rep 2024; 14:18586. [PMID: 39127716 PMCID: PMC11316820 DOI: 10.1038/s41598-024-69499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.
Collapse
Affiliation(s)
- Daniela A Ayala
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
- Graduate Program in Medical Sciences, Texas A&M University, Bryan, TX, 77843, USA
| | - Anthony Matarazzo
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
- Graduate Program in Genetics and Genomics, Texas A&M University, Bryan, TX, 77843, USA
| | - Bonnie L Seaberg
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Misha Patel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Eliana Tijerina
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Camryn Matthews
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Gabriel Bizi
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Ashton Brown
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Alan Ta
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA.
- Graduate Program in Genetics and Genomics, Texas A&M University, Bryan, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, 77843, USA.
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA.
- Graduate Program in Medical Sciences, Texas A&M University, Bryan, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, 77843, USA.
| |
Collapse
|
24
|
Shen K, Shi Y, Wang X, Leung SWS. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024; 16:1513-1534. [PMID: 39122454 PMCID: PMC12096933 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Susan WS Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
25
|
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J. Regulation of blood-brain barrier integrity by Dmp1-expressing astrocytes through mitochondrial transfer. SCIENCE ADVANCES 2024; 10:eadk2913. [PMID: 38941455 PMCID: PMC11212732 DOI: 10.1126/sciadv.adk2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.
Collapse
Affiliation(s)
- Delin Liu
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Linjing Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - John Papadimitriou
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Pathology, Pathwest, Nedlands, Western Australia 6009, Australia
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jun Yuan
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Peilin Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| |
Collapse
|
26
|
Kochan SMV, Malo MC, Jevtic M, Jahn-Kelleter HM, Wani GA, Ndoci K, Pérez-Revuelta L, Gaedke F, Schäffner I, Lie DC, Schauss A, Bergami M. Enhanced mitochondrial fusion during a critical period of synaptic plasticity in adult-born neurons. Neuron 2024; 112:1997-2014.e6. [PMID: 38582081 DOI: 10.1016/j.neuron.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.
Collapse
Affiliation(s)
- Sandra M V Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Meret Cepero Malo
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Milica Jevtic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hannah M Jahn-Kelleter
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Gulzar A Wani
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Kristiano Ndoci
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Laura Pérez-Revuelta
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine, 50931 Cologne, Germany; Institute of Genetics, University of Cologne, Cologne 50674, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany.
| |
Collapse
|
27
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
28
|
CHEN Y, DING M, HUANG C, ZHENG Y, LIU F. Chang'an decoction alleviates endoplasmic reticulum stress by regulating mitofusin 2 to improve colitis. J TRADIT CHIN MED 2024; 44:427-436. [PMID: 38767626 PMCID: PMC11077150 DOI: 10.19852/j.cnki.jtcm.20240308.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To evaluate the protective effects of Chang'an decoction (, CAD) on colitis, and investigate the potential mechanisms underlying these effects from the perspectives of endoplasmic reticulum (ER) stress induced by mitofusin 2 (MFN2). METHODS The composition of CAD was identified by liquid chromatography-mass spectrometry technology. A mice model of dextran sulfate sodium (DSS) induced colitis was established and therapeutic effects of CAD were determined by detecting body weight, disease activity index, colon length and histopathological changes. Then, the expression levels of MFN2, ER stress markers and Nucleotide-binding domain and leucine-rich repeat protein3 (NLRP3) relevant proteins were detected by polymerase chain reaction (PCR), Western blot, immunohistochemistry and immunofluorescence staining. Subsequently, knockdown and overexpression cell model were constructed to further investigate the underlying mechanism of MFN2 mediating ER stress and energy metabolism by PCR, Western blot, electron microscopy and reactive oxygen species (ROS) staining. Finally, inflammatory indicator and tight junction proteins were measured by PCR and immunofluorescence staining to evaluate the protective effects of CAD. RESULTS Results showed that the indispensable regulatory role of MFN2 in mediating ER stress and mitochondrial damage was involved in the protective effects of CAD on colitis in mice fed with DSS. Network pharmacology analysis also revealed CAD may play a protective effect on colitis by affecting mitochondrial function. In addition, our data also suggested a causative role for MFN2 in the development of inflammatory responses and energy metabolic alterations by constructing a knockdown and overexpression cell model whereby alter proper ER-mitochondria interaction in Caco-2 cells. Furthermore, relative expression analyses of ER stress markers and NLRP3 inflammasome showed the onset of ER stress and activation of NLRP3 inflammasome, which is consistent with the above findings. In contrast, intervention of CAD could improve the mucosal barrier integrity and colonic inflammatory response effectively through inhibiting ER stress response mediated by MFN2. CONCLUSION CAD could alleviate ER stress by regulating MFN2 to exert therapeutic effects on DSS-induced colitis, which might provide an effective natural therapeutic approach for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Youlan CHEN
- 1 Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Mingming DING
- 3 Department of Oncology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201900, China
| | - Chaoyuan HUANG
- 4 the First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yiyuan ZHENG
- 2 Department of Gastroenterology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fengbin LIU
- 2 Department of Gastroenterology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- 5 Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
29
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
30
|
Ayala DA, Matarazzo A, Seaberg BL, Patel M, Tijerina E, Matthews C, Bizi G, Brown A, Ta A, Rimer M, Srinivasan R. Heterogeneous brain region-specific responses to astrocytic mitochondrial DNA damage in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596517. [PMID: 38853966 PMCID: PMC11160752 DOI: 10.1101/2024.05.29.596517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Astrocytes use Ca 2+ signals to regulate multiple aspects of normal and pathological brain function. Astrocytes display context-specific diversity in their functions, and in their response to noxious stimuli between brain regions. Indeed, astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on their ATP generation and Ca 2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca 2+ signaling in astrocytes, the extent of this regulation into the rich diversity of astrocytes in different brain regions remains largely unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for proper astrocyte function, however, few insights into possible diverse responses to this noxious stimulus from astrocytes in different brain areas were reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI, which expresses the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two distinct brain regions, the dorsolateral striatum, and the hippocampal dentate gyrus, and we show that Mito-PstI can induce astrocytic mtDNA loss in vivo , but with remarkable brain-region-dependent differences on mitochondrial dynamics, spontaneous Ca 2+ fluxes and astrocytic as well as microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca 2+ signaling in a brain-region-selective manner.
Collapse
|
31
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
32
|
Koupourtidou C, Schwarz V, Aliee H, Frerich S, Fischer-Sternjak J, Bocchi R, Simon-Ebert T, Bai X, Sirko S, Kirchhoff F, Dichgans M, Götz M, Theis FJ, Ninkovic J. Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex. Nat Commun 2024; 15:2866. [PMID: 38570482 PMCID: PMC10991294 DOI: 10.1038/s41467-024-46625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.
Collapse
Affiliation(s)
- Christina Koupourtidou
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Veronika Schwarz
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Hananeh Aliee
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Frerich
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Judith Fischer-Sternjak
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Riccardo Bocchi
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tatiana Simon-Ebert
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
| | - Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Diseases, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Jovica Ninkovic
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany.
| |
Collapse
|
33
|
Zhang Y, Gu S, Du J, Huang G, Shi J, Lu X, Wang J, Yang W, Guo X, Zhao C. Plant microphenotype: from innovative imaging to computational analysis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:802-818. [PMID: 38217351 PMCID: PMC10955502 DOI: 10.1111/pbi.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 01/15/2024]
Abstract
The microphenotype plays a key role in bridging the gap between the genotype and the complex macro phenotype. In this article, we review the advances in data acquisition and the intelligent analysis of plant microphenotyping and present applications of microphenotyping in plant science over the past two decades. We then point out several challenges in this field and suggest that cross-scale image acquisition strategies, powerful artificial intelligence algorithms, advanced genetic analysis, and computational phenotyping need to be established and performed to better understand interactions among genotype, environment, and management. Microphenotyping has entered the era of Microphenotyping 3.0 and will largely advance functional genomics and plant science.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shenghao Gu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiawei Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
34
|
Yu Y, Chen R, Mao K, Deng M, Li Z. The Role of Glial Cells in Synaptic Dysfunction: Insights into Alzheimer's Disease Mechanisms. Aging Dis 2024; 15:459-479. [PMID: 37548934 PMCID: PMC10917533 DOI: 10.14336/ad.2023.0718] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impacts a substantial number of individuals globally. Despite its widespread prevalence, there is currently no cure for AD. It is widely acknowledged that normal synaptic function holds a key role in memory, cognitive abilities, and the interneuronal transfer of information. As AD advances, symptoms including synaptic impairment, decreased synaptic density, and cognitive decline become increasingly noticeable. The importance of glial cells in the formation of synapses, the growth of neurons, brain maturation, and safeguarding the microenvironment of the central nervous system is well recognized. However, during AD progression, overactive glial cells can cause synaptic dysfunction, neuronal death, and abnormal neuroinflammation. Both neuroinflammation and synaptic dysfunction are present in the early stages of AD. Therefore, focusing on the changes in glia-synapse communication could provide insights into the mechanisms behind AD. In this review, we aim to provide a summary of the role of various glial cells, including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells, in regulating synaptic dysfunction. This may offer a new perspective on investigating the underlying mechanisms of AD.
Collapse
Affiliation(s)
- Yang Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Ran Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Kaiyue Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Maoyan Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
35
|
Li J, Zhang Y, Zhang D, Wang W, Xie H, Ruan J, Jin Y, Li T, Li X, Zhao B, Zhang X, Lin J, Shi H, Jia JM. Ca 2+ oscillation in vascular smooth muscle cells control myogenic spontaneous vasomotion and counteract post-ischemic no-reflow. Commun Biol 2024; 7:332. [PMID: 38491167 PMCID: PMC10942987 DOI: 10.1038/s42003-024-06010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.
Collapse
Affiliation(s)
- Jinze Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wentao Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiao Jin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoxuan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
36
|
Tu P, Pan Y, Wang L, Li B, Sun X, Liang Z, Liu M, Zhao Z, Wu C, Wang J, Wang Z, Song Y, Zhang Y, Ma Y, Guo Y. CD62E- and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis. Biomater Res 2024; 28:0006. [PMID: 38439927 PMCID: PMC10911934 DOI: 10.34133/bmr.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Background: In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. Methods: We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. Results: ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Bin Li
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xiaoxian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhongqing Liang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education,
Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Acupuncture and Tuina, School of Health and Rehabilitation,
Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zitong Zhao
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Zhifang Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, P.R. China
| | - Yu Song
- Zhangjiagang First People’s Hospital Affiliated to Soochow University, Zhangjiagang 215638, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| |
Collapse
|
37
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
38
|
Zhu J, Shao A, Wang C, Zeng C, Wang H. Inhibition of endoplasmic reticulum stress restores the balance of renal RAS components and lowers blood pressure in the spontaneously hypertensive rats. Clin Exp Hypertens 2023; 45:2202367. [PMID: 37144334 DOI: 10.1080/10641963.2023.2202367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of hypertension. However, the underlying mechanisms for lowering blood pressure (BP) by suppressing ER stress remain unclear. Here, we hypothesized that inhibition of ER stress could restore the balance between RAS components and lower BP in spontaneously hypertensive rats (SHRs). METHODS Wistar-Kyoto (WKY) rats and SHRs received vehicle or 4-PBA, an ER stress inhibitor, in the drinking water for 4 weeks. BP was measured by tail-cuff plethysmography, and the expression of RAS components was examined by Western blot. RESULTS Compared with vehicle-treated WKY rats, vehicle-treated SHRs exhibited higher blood pressure and increased renal ER stress and oxidative stress, accompanied by impaired diuresis and natriuresis. Moreover, SHRs had higher ACE and AT1R and lower AT2R, ACE2, and MasR expressions in the kidney. Interestingly, 4-PBA treatment improved impaired diuresis and natriuresis and lowered blood pressure in SHRs, accompanied by reducing ACE and AT1R protein expression and increasing AT2R, ACE2, and MasR expression in the kidneys of SHRs. In addition, these changes were associated with the reduction of ER stress and oxidative stress. CONCLUSIONS These results suggest that the imbalance of renal RAS components was associated with increased ER stress in SHRs. Inhibition of ER stress with 4-PBA reversed the imbalance of renal RAS components and restored the impaired diuresis and natriuresis, which, at least in part, explains the blood pressure-lowering effects of 4-PBA in hypertension.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, Shanghai Hospital Wanzhou District, Chongqing, China
| | - Anjing Shao
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan Wang
- Department of Surgery, Third People's Hospital, Kaizhou District, Chongqing, China
| | - Chensi Zeng
- Department of Hematology, Chongqing Cancer Hospital, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
39
|
Christie IN, Theparambil SM, Braga A, Doronin M, Hosford PS, Brazhe A, Mascarenhas A, Nizari S, Hadjihambi A, Wells JA, Hobbs A, Semyanov A, Abramov AY, Angelova PR, Gourine AV. Astrocytes produce nitric oxide via nitrite reduction in mitochondria to regulate cerebral blood flow during brain hypoxia. Cell Rep 2023; 42:113514. [PMID: 38041814 PMCID: PMC7615749 DOI: 10.1016/j.celrep.2023.113514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.
Collapse
Affiliation(s)
- Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Maxim Doronin
- College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Alexey Brazhe
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation; Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russian Federation
| | - Alexander Mascarenhas
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK; Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, and Faculty of Life Sciences and Medicine, King's College London, London SE5 9NT, UK
| | - Jack A Wells
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Adrian Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing 314001, China; Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Moscow 117997, Russian Federation
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
40
|
Neikirk K, Lopez EG, Marshall AG, Alghanem A, Krystofiak E, Kula B, Smith N, Shao J, Katti P, Hinton A. Call to action to properly utilize electron microscopy to measure organelles to monitor disease. Eur J Cell Biol 2023; 102:151365. [PMID: 37864884 DOI: 10.1016/j.ejcb.2023.151365] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
This review provides an overview of the current methods for quantifying mitochondrial ultrastructure, including cristae morphology, mitochondrial contact sites, and recycling machinery and a guide to utilizing electron microscopy to effectively measure these organelles. Quantitative analysis of mitochondrial ultrastructure is essential for understanding mitochondrial biology and developing therapeutic strategies for mitochondrial-related diseases. Techniques such as transmission electron microscopy (TEM) and serial block face-scanning electron microscopy, as well as how they can be combined with other techniques including confocal microscopy, super-resolution microscopy, and correlative light and electron microscopy are discussed. Beyond their limitations and challenges, we also offer specific magnifications that may be best suited for TEM analysis of mitochondrial, endoplasmic reticulum, and recycling machinery. Finally, perspectives on future quantification methods are offered.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Edgar-Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ahmad Alghanem
- King Abdullah International Medical Research Center (KAIMRC), Ali Al Arini, Ar Rimayah, Riyadh 11481, Saudi Arabia
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester 14642, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
41
|
Zhan R, Meng X, Tian D, Xu J, Cui H, Yang J, Xu Y, Shi M, Xue J, Yu W, Hu G, Li K, Ge X, Zhang Q, Zhao M, Du J, Guo X, Xu W, Gao Y, Yao C, Chen F, Chen Y, Shan W, Zhu Y, Ji L, Pan B, Yu Y, Li W, Zhao X, He Q, Liu X, Huang Y, Liao S, Zhou B, Chui D, Chen YE, Sun Z, Dong E, Wang Y, Zheng L. NAD + rescues aging-induced blood-brain barrier damage via the CX43-PARP1 axis. Neuron 2023; 111:3634-3649.e7. [PMID: 37683629 DOI: 10.1016/j.neuron.2023.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/17/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Blood-brain barrier (BBB) function deteriorates during aging, contributing to cognitive impairment and neurodegeneration. It is unclear what drives BBB leakage in aging and how it can be prevented. Using single-nucleus transcriptomics, we identified decreased connexin 43 (CX43) expression in cadherin-5+ (Cdh5+) cerebral vascular cells in naturally aging mice and confirmed it in human brain samples. Global or Cdh5+ cell-specific CX43 deletion in mice exacerbated BBB dysfunction during aging. The CX43-dependent effect was not due to its canonical gap junction function but was associated with reduced NAD+ levels and mitochondrial dysfunction through NAD+-dependent sirtuin 3 (SIRT3). CX43 interacts with and negatively regulates poly(ADP-ribose) polymerase 1 (PARP1). Pharmacologic inhibition of PARP1 by olaparib or nicotinamide mononucleotide (NMN) supplementation rescued NAD+ levels and alleviated aging-associated BBB leakage. These findings establish the endothelial CX43-PARP1-NAD+ pathway's role in vascular aging and identify a potential therapeutic strategy to combat aging-associated BBB leakage with neuroprotective implications.
Collapse
Affiliation(s)
- Rui Zhan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Xia Meng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Dongping Tian
- Department of Pathology, Medical College, Shantou University, Shantou, China
| | - Jie Xu
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Hongtu Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Jialei Yang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Mingming Shi
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Jing Xue
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Weiwei Yu
- Peking University Shenzhen Hospital, Beijing, China
| | - Gaofei Hu
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Ke Li
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xiaoxiao Ge
- Beijing Institute Brain Disorders, Capital Medical University, Beijing, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Jianyong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Xin Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Wenli Xu
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Yang Gao
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fan Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Chen
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wenguang Li
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuyang Zhao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center, Tsinghua University, Beijing, China
| | - Yue Huang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Shengyou Liao
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dehua Chui
- Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology and Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Sun
- Department of Medicine and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Erdan Dong
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing, China.
| | - Yongjun Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China; The Institute of Systems Biomedicine, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China.
| |
Collapse
|
42
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
43
|
Abstract
Astrocyte endfeet enwrap the entire vascular tree within the central nervous system, where they perform important functions in regulating the blood-brain barrier (BBB), cerebral blood flow, nutrient uptake, and waste clearance. Accordingly, astrocyte endfeet contain specialized organelles and proteins, including local protein translation machinery and highly organized scaffold proteins, which anchor channels, transporters, receptors, and enzymes critical for astrocyte-vascular interactions. Many neurological diseases are characterized by the loss of polarization of specific endfoot proteins, vascular dysregulation, BBB disruption, altered waste clearance, or, in extreme cases, loss of endfoot coverage. A role for astrocyte endfeet has been demonstrated or postulated in many of these conditions. This review provides an overview of the development, composition, function, and pathological changes of astrocyte endfeet and highlights the gaps in our knowledge that future research should address.
Collapse
Affiliation(s)
- Blanca Díaz-Castro
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK;
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| | - Anusha Mishra
- Department of Neurology Jungers Center for Neurosciences Research and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA;
| |
Collapse
|
44
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
45
|
Sovrani V, Bobermin LD, Sesterheim P, Rezena E, Cioccari MS, Netto CA, Gonçalves CA, Leipnitz G, Quincozes-Santos A. Glioprotective effects of resveratrol in hypothalamic astrocyte cultures obtained from interferon receptor knockout (IFNα/βR -/-) mice. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00777-z. [PMID: 37353697 DOI: 10.1007/s11626-023-00777-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 06/25/2023]
Abstract
Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/β-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/βR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Ester Rezena
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Sinhorelli Cioccari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neurotoxicidade e Glioproteção (LABGLIO), Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600 - Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
46
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
47
|
Jiang RQ, Li QQ, Sheng R. Mitochondria associated ER membranes and cerebral ischemia: Molecular mechanisms and therapeutic strategies. Pharmacol Res 2023; 191:106761. [PMID: 37028777 DOI: 10.1016/j.phrs.2023.106761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in mammalian cells. The physical connection between them is mitochondria associated ER membranes (MAM). In recent years, studies on endoplasmic reticulum and mitochondria have shifted from independent division to association and comparison, especially MAM has gradually become a research hotspot. MAM connects the two organelles, not only to maintain their independent structure and function, but also to promote metabolism and signal transduction between them. This paper reviews the morphological structure and protein localization of MAM, and briefly analyzes the functions of MAM in regulating Ca2+ transport, lipid synthesis, mitochondrial fusion and fission, endoplasmic reticulum stress and oxidative stress, autophagy and inflammation. Since ER stress and mitochondrial dysfunction are important pathological events in neurological diseases including ischemic stroke, MAM is likely to play an important role in cerebral ischemia by regulating the signaling of the two organelles and the crosstalk of the two pathological events.
Collapse
Affiliation(s)
- Rui-Qi Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
48
|
Zarate SM, Huntington TE, Bagher P, Srinivasan R. Aging reduces calreticulin expression and alters spontaneous calcium signals in astrocytic endfeet of the mouse dorsolateral striatum. NPJ AGING 2023; 9:5. [PMID: 37002232 PMCID: PMC10066375 DOI: 10.1038/s41514-023-00102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Aging-related impairment of the blood brain barrier (BBB) and neurovascular unit (NVU) increases the risk for neurodegeneration. Among various cells that participate in BBB and NVU function, calcium signals in astrocytic endfeet are crucial for maintaining BBB and NVU integrity. To assess if aging is associated with altered calcium signals within astrocytic endfeet of the dorsolateral striatum (DLS), we expressed GCaMP6f in DLS astrocytes of young (3-4 months), middle-aged (12-15 months) and aging (20-30 months) mice. Compared to endfeet in young mice, DLS endfeet in aging mice demonstrated decreased calreticulin expression, and alterations to both spontaneous membrane-associated and mitochondrial calcium signals. While young mice required both extracellular and endoplasmic reticulum calcium sources for endfoot signals, middle-aged and aging mice showed heavy dependence on endoplasmic reticulum calcium. Thus, astrocytic endfeet show significant changes in calcium buffering and sources throughout the lifespan, which is important for understanding mechanisms by which aging impairs the BBB and NVU.
Collapse
Affiliation(s)
- Sara M Zarate
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Taylor E Huntington
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, 77843, USA
| | - Pooneh Bagher
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University School of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
49
|
Mitochondrial Ca2+ handling as a cell signaling hub: lessons from astrocyte function. Essays Biochem 2023; 67:63-75. [PMID: 36636961 DOI: 10.1042/ebc20220094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Astrocytes are a heterogenous population of macroglial cells spread throughout the central nervous system with diverse functions, expression signatures, and intricate morphologies. Their subcellular compartments contain a distinct range of mitochondria, with functional microdomains exhibiting widespread activities, such as controlling local metabolism and Ca2+ signaling. Ca2+ is an ion of utmost importance, both physiologically and pathologically, and participates in critical central nervous system processes, including synaptic plasticity, neuron-astrocyte integration, excitotoxicity, and mitochondrial physiology and metabolism. The mitochondrial Ca2+ handling system is formed by the mitochondrial Ca2+ uniporter complex (MCUc), which mediates Ca2+ influx, and the mitochondrial Na+/Ca2+ exchanger (NCLX), responsible for most mitochondrial Ca2+ efflux, as well as additional components, including the mitochondrial permeability transition pore (mtPTP). Over the last decades, mitochondrial Ca2+ handling has been shown to be key for brain homeostasis, acting centrally in physiopathological processes such as astrogliosis, astrocyte-neuron activity integration, energy metabolism control, and neurodegeneration. In this review, we discuss the current state of knowledge regarding the mitochondrial Ca2+ handling system molecular composition, highlighting its impact on astrocytic homeostasis.
Collapse
|
50
|
Xu BT, Li MF, Chen KC, Li X, Cai NB, Xu JP, Wang HT. Mitofusin-2 mediates cannabidiol-induced neuroprotection against cerebral ischemia in rats. Acta Pharmacol Sin 2023; 44:499-512. [PMID: 36229600 PMCID: PMC9958179 DOI: 10.1038/s41401-022-01004-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
Cannabidiol (CBD) reportedly exerts protective effects against many psychiatric disorders and neurodegenerative diseases, but the mechanisms are poorly understood. In this study, we explored the molecular mechanism of CBD against cerebral ischemia. HT-22 cells or primary cortical neurons were subjected to oxygen-glucose deprivation insult followed by reoxygenation (OGD/R). In both HT-22 cells and primary cortical neurons, CBD pretreatment (0.1, 0.3, 1 μM) dose-dependently attenuated OGD/R-induced cell death and mitochondrial dysfunction, ameliorated OGD/R-induced endoplasmic reticulum (ER) stress, and increased the mitofusin-2 (MFN2) protein level in HT-22 cells and primary cortical neurons. Knockdown of MFN2 abolished the protective effects of CBD. CBD pretreatment also suppressed OGD/R-induced binding of Parkin to MFN2 and subsequent ubiquitination of MFN2. Overexpression of Parkin blocked the effects of CBD in reducing MFN2 ubiquitination and reduced cell viability, whereas overexpressing MFN2 abolished Parkin's detrimental effects. In vivo experiments were conducted on male rats subjected to middle cerebral artery occlusion (MCAO) insult, and administration of CBD (2.5, 5 mg · kg-1, i.p.) dose-dependently reduced the infarct volume and ER stress in the brains. Moreover, the level of MFN2 within the ischemic penumbra of rats was increased by CBD treatment, while the binding of Parkin to MFN2 and the ubiquitination of MFN2 was decreased. Finally, short hairpin RNA against MFN2 reversed CBD's protective effects. Together, these results demonstrate that CBD protects brain neurons against cerebral ischemia by reducing MFN2 degradation via disrupting Parkin's binding to MFN2, indicating that MFN2 is a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Bing-Tian Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Neurology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Meng-Fan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Chun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ning-Bo Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiang-Ping Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| | - Hai-Tao Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
| |
Collapse
|