1
|
Erdogan CS, Yavuz Y, Ozgun HB, Bilgin VA, Agus S, Kalkan UF, Yilmaz B. Fam163a knockdown and mitochondrial stress in the arcuate nucleus of hypothalamus reduce AgRP neuron activity and differentially regulate mitochondrial dynamics in mice. Acta Physiol (Oxf) 2025; 241:e70020. [PMID: 40071489 PMCID: PMC11897941 DOI: 10.1111/apha.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025]
Abstract
AIM Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus. METHODS Male C57BL/6 and AgRP-Cre mice received intracranial injections of either Fam163a shRNA, rotenone, or appropriate controls. Behavioral assessments included food intake, locomotor activity, and anxiety-like behaviors. qRT-PCR was used to quantify the expression of the genes related to food intake, mitochondrial biogenesis, dynamics, and oxidative stress. Blood glucose, serum insulin, and leptin levels were measured. Electrophysiological patch-clamp recordings were used to assess the AgRP neuronal activity. RESULTS Fam163a knockdown in the ARC increased the cumulative food intake in short term (first 7 days) without altering the 25-day food intake and significantly increased the Pomc mRNA expression. Fam163a silencing significantly reduced leptin levels. Both Fam163a knockdown and rotenone significantly reduced the firing frequency of AgRP neurons. Neither Fam163a silencing nor rotenone altered locomotor or anxiety-like behaviors. Fam163a knockdown and rotenone differentially altered the expression of mitochondrial biogenesis-, mitophagy-, fusion-, and oxidative stress-related genes. CONCLUSION Hypothalamic FAM163A may play a role in modulating AgRP neuronal activity through regulating mitochondrial biogenesis, dynamics, and redox state. These findings provide insights into the role of FAM163A and mitochondrial stress in the central regulation of metabolism.
Collapse
Affiliation(s)
| | - Yavuz Yavuz
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of Neuroscience and PharmacologyThe University of Iowa Carver College of MedicineIowa CityUSA
| | - Huseyin Bugra Ozgun
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Volkan Adem Bilgin
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Sami Agus
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of PhysiologyAugusta UniversityAugustaGeorgiaUSA
| | - Ugur Faruk Kalkan
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
| | - Bayram Yilmaz
- Department of PhysiologyFaculty of Medicine, Yeditepe UniversityIstanbulTurkey
- Department of Physiology, Faculty of MedicineDokuz Eylül UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| |
Collapse
|
2
|
Luo XD, Tang S, Luo XY, Quzhen L, Xia RH, Wang XW. Mitochondrial regulation of obesity by POMC neurons. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167682. [PMID: 39837429 DOI: 10.1016/j.bbadis.2025.167682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Pro-opiomelanocortin (POMC) neurons, nestled in the hypothalamus, play a pivotal role in the intricate coordination of energy homeostasis and metabolic pathways. These neurons' mitochondria, often hailed as the cell's powerhouses, are crucial for maintaining cellular energy equilibrium and metabolic functionality. Recent research has illuminated the complex interplay between mitochondrial dynamics and POMC neuronal activity, underscoring their critical involvement in the pathogenesis of a spectrum of metabolic disorders, notably obesity and diabetes. This comprehensive review delves into the molecular mechanisms that underlie how mitochondrial function within POMC neurons modulates metabolic regulation. We dissect the impact of mitochondrial dynamics, encompassing fusion, fission, mitophagy, and biogenesis, on the regulation of POMC neuronal activity. Furthermore, we scrutinize the role of mitochondrial dysfunction in POMC neurons in the etiology of obesity, identifying key therapeutic targets within these pathways. We offer an in-depth perspective on the indispensable role of POMC neuronal mitochondria in metabolic regulation and chart future research directions to bridge the existing knowledge gaps in this field.
Collapse
Affiliation(s)
- Xing-Dan Luo
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Si Tang
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Xiang-Yun Luo
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Luosang Quzhen
- The Central Hospital of Qusong County, Shannan, Tibet Autonomous Region 856300, China
| | - Ruo-Han Xia
- Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, China.
| | - Xian-Wang Wang
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Shannan Maternal and Child Health Hospital, Shannan, Xizang 856100, China.
| |
Collapse
|
3
|
Whitehead M, Harvey JP, Sladen PE, Becchi G, Singh K, Sun YJ, Burgoyne T, Duchen MR, Yu-Wai-Man P, Cheetham ME. Disruption of mitochondrial homeostasis and permeability transition pore opening in OPA1 iPSC-derived retinal ganglion cells. Acta Neuropathol Commun 2025; 13:28. [PMID: 39948685 PMCID: PMC11823152 DOI: 10.1186/s40478-025-01942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, characterised by the selective loss of retinal ganglion cells (RGCs). Over 60% of DOA cases are caused by pathogenic variants in the OPA1 gene, which encodes a dynamin-related GTPase protein. OPA1 plays a key role in the maintenance of the mitochondrial network, mitochondrial DNA integrity and bioenergetic function. However, our current understanding of how OPA1 dysfunction contributes to vision loss in DOA patients has been limited by access to patient-derived RGCs. Here, we used induced pluripotent stem cell (iPSC)-RGCs to study how OPA1 dysfunction affects cellular homeostasis in human RGCs. iPSCs derived from a DOA+ patient with the OPA1 R445H variant and isogenic CRISPR-Cas9-corrected iPSCs were differentiated to iPSC-RGCs. Defects in mitochondrial networks and increased levels of reactive oxygen species were observed in iPSC-RGCs carrying OPA1 R445H. Ultrastructural analyses also revealed changes in mitochondrial shape and cristae structure, with decreased endoplasmic reticulum (ER): mitochondrial contact length in DOA iPSC-RGCs. Mitochondrial membrane potential was reduced and its maintenance was also impaired following inhibition of the F1Fo-ATP synthase with oligomycin, suggesting that mitochondrial membrane potential is maintained in DOA iPSC-RGCs through reversal of the ATP synthase and ATP hydrolysis. These impairments in mitochondrial structure and function were associated with defects in cytosolic calcium buffering following ER calcium release and store-operated calcium entry, and following stimulation with the excitatory neurotransmitter glutamate. In response to mitochondrial calcium overload, DOA iPSC-RGCs exhibited increased sensitivity to opening of the mitochondrial permeability transition pore. These data reveal novel aspects of DOA pathogenesis in R445H patient-derived RGCs. The findings suggest a mechanism in which primary defects in mitochondrial network dynamics disrupt core mitochondrial functions, including bioenergetics, calcium homeostasis, and opening of the permeability transition pore, which may contribute to vision loss in DOA patients.
Collapse
Affiliation(s)
- Michael Whitehead
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Joshua P Harvey
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Paul E Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Giada Becchi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, Gower St, London, WC1E 6BT, UK
| | | | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, Gower St, London, WC1E 6BT, UK
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0XY, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Michael E Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
4
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
5
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Wang Z, Zhang Q, Jiang Y, Zhou J, Tian Y. ASI-RIM neuronal axis regulates systemic mitochondrial stress response via TGF-β signaling cascade. Nat Commun 2024; 15:8997. [PMID: 39426950 PMCID: PMC11490647 DOI: 10.1038/s41467-024-53093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yayun Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100093, Beijing, China.
| |
Collapse
|
7
|
Zhang Y, Li X, Lu S, Guo H, Zhang Z, Zheng H, Zhang C, Zhang J, Wang K, Pei F, Duan L. Stress triggers gut dysbiosis via CRH-CRHR1-mitochondria pathway. NPJ Biofilms Microbiomes 2024; 10:93. [PMID: 39349483 PMCID: PMC11442948 DOI: 10.1038/s41522-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stress can lead to gut dysbiosis in brain-gut axis disordered diseases as irritable bowel syndrome (IBS), yet the mechanisms how stress transfer from the brain to the gut and disrupt gut microbiota remain elusive. Here we describe a stress-responsive brain-to-gut axis which impairs colonocytes' mitochondria to trigger gut dysbiosis. Patients with IBS exhibit significantly increased facultative anaerobes and decreased obligate anaerobes, related to increased serum corticotropin-releasing hormone (CRH) level and defected colonocytes' mitochondria ultrastructure. Mice exposed to acute stress experienced enhanced CRH-CRH receptor type 1 (CRHR1) signaling, which impaired mitochondria and epithelium hypoxia in the colon, subsequently triggered gut dysbiosis. Antagonizing CRHR1 expression to inhibit cAMP/Ras/MAPK signaling or activating mitochondria respiration conferred resilience against stress-induced mitochondria damaging and epithelium hypoxia impairment, ultimately improving gut dysbiosis. These results suggest that the CRH-CRHR1-mitochondria pathway plays a pivotal role in stress-induced gut dysbiosis that could be therapeutically targeted for stress-induced gastrointestinal diseases. Yiming Zhang et.al report that psychological stress activated Corticotropin-releasing hormone (CRH)-CRH receptor type 1 (CRHR1)-mitochondria pathway to trigger gut dysbiosis and reveal CRHR1 upregulation damages mitochondria via cAMP/Ras/MAPK signaling in colonocytes.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Siqi Lu
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Huaizhu Guo
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Zhuangyi Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Haonan Zheng
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Kun Wang
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China
| | - Fei Pei
- Department of Pathology, Peking University Third Hospital, Peking University School of Basic Medical Sciences, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Haidian District, Beijing, China.
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Haidian District, Beijing, China.
| |
Collapse
|
8
|
Jiang X, Liu K, Luo P, Li Z, Xiao F, Jiang H, Wu S, Tang M, Yuan F, Li X, Shu Y, Peng B, Chen S, Ni S, Guo F. Hypothalamic SLC7A14 accounts for aging-reduced lipolysis in white adipose tissue of male mice. Nat Commun 2024; 15:7948. [PMID: 39261456 PMCID: PMC11391058 DOI: 10.1038/s41467-024-52059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
The central nervous system has been implicated in the age-induced reduction in adipose tissue lipolysis. However, the underlying mechanisms remain unclear. Here, we show the expression of SLC7A14 is reduced in proopiomelanocortin (POMC) neurons of aged mice. Overexpression of SLC7A14 in POMC neurons alleviates the aging-reduced lipolysis, whereas SLC7A14 deletion mimics the age-induced lipolysis impairment. Metabolomics analysis reveals that POMC SLC7A14 increased taurochenodeoxycholic acid (TCDCA) content, which mediates the SLC7A14 knockout- or age-induced WAT lipolysis impairment. Furthermore, SLC7A14-increased TCDCA content is dependent on intestinal apical sodium-dependent bile acid transporter (ASBT), which is regulated by intestinal sympathetic afferent nerves. Finally, SLC7A14 regulates the intestinal sympathetic afferent nerves by inhibiting mTORC1 signaling through inhibiting TSC1 phosphorylation. Collectively, our study suggests the function for central SLC7A14 and an upstream mechanism for the mTORC1 signaling pathway. Moreover, our data provides insights into the brain-gut-adipose tissue crosstalk in age-induced lipolysis impairment.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Kan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peixiang Luo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zi Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fei Xiao
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Haizhou Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shangming Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Tang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoying Li
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Bo Peng
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Shihong Ni
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Ahola S, Pazurek LA, Mayer F, Lampe P, Hermans S, Becker L, Amarie OV, Fuchs H, Gailus-Durner V, de Angelis MH, Riedel D, Nolte H, Langer T. Opa1 processing is dispensable in mouse development but is protective in mitochondrial cardiomyopathy. SCIENCE ADVANCES 2024; 10:eadp0443. [PMID: 39093974 PMCID: PMC11296347 DOI: 10.1126/sciadv.adp0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Mitochondrial fusion and fission accompany adaptive responses to stress and altered metabolic demands. Inner membrane fusion and cristae morphogenesis depends on optic atrophy 1 (Opa1), which is expressed in different isoforms and is cleaved from a membrane-bound, long to a soluble, short form. Here, we have analyzed the physiological role of Opa1 isoforms and Opa1 processing by generating mouse lines expressing only one cleavable Opa1 isoform or a non-cleavable variant thereof. Our results show that expression of a single cleavable or non-cleavable Opa1 isoform preserves embryonic development and the health of adult mice. Opa1 processing is dispensable under metabolic and thermal stress but prolongs life span and protects against mitochondrial cardiomyopathy in OXPHOS-deficient Cox10-/- mice. Mechanistically, loss of Opa1 processing disturbs the balance between mitochondrial biogenesis and mitophagy, suppressing cardiac hypertrophic growth in Cox10-/- hearts. Our results highlight the critical regulatory role of Opa1 processing, mitochondrial dynamics, and metabolism for cardiac hypertrophy.
Collapse
Affiliation(s)
- Sofia Ahola
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Fiona Mayer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Philipp Lampe
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Steffen Hermans
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg
| | - Dietmar Riedel
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, Jin H, Tuo B. Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med 2024; 54:59. [PMID: 38785162 PMCID: PMC11188982 DOI: 10.3892/ijmm.2024.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post‑translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism‑related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non‑alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.
Collapse
Affiliation(s)
- Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ting Tao
- Department of Burns and Plastic Surgery, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
11
|
Zhang W, Liu D, Yuan M, Zhu LQ. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases. Ageing Res Rev 2024; 97:102307. [PMID: 38614368 DOI: 10.1016/j.arr.2024.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
12
|
Regina-Ferreira L, Valdivieso-Rivera F, Angelim MKSC, Menezes Dos Reis L, Furino VO, Morari J, Maia de Sousa L, Consonni SR, Sponton CH, Moraes-Vieira PM, Velloso LA. Inhibition of Crif1 protects fatty acid-induced POMC neuron-like cell-line damage by increasing CPT-1 function. Am J Physiol Endocrinol Metab 2024; 326:E681-E695. [PMID: 38597829 DOI: 10.1152/ajpendo.00420.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Hypothalamic proopiomelanocortin (POMC) neurons are sensors of signals that reflect the energy stored in the body. Inducing mild stress in proopiomelanocortin neurons protects them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift toward greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.NEW & NOTEWORTHY Saturated fats can damage hypothalamic neurons resulting in positive energy balance, and this is mitigated by mild cellular stress; however, the mechanisms behind this protective effect are unknown. Using a proopiomelanocortin cell line, we show that under exposure to a high concentration of palmitate, the partial inhibition of the mitochondrial protein Crif1 results in protection due to a metabolic shift warranted by the increased expression and activity of the mitochondrial fatty acid transporter CPT-1.
Collapse
Affiliation(s)
| | - Fernando Valdivieso-Rivera
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Monara K S C Angelim
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | - Larissa Menezes Dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | | | - Joseane Morari
- Obesity and Comorbidities Research Center, São Paulo, Brazil
| | - Lizandra Maia de Sousa
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Sílvio Roberto Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Carlos H Sponton
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, São Paulo, Brazil
| | - Lício A Velloso
- Obesity and Comorbidities Research Center, São Paulo, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, São Paulo, Brazil
| |
Collapse
|
13
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Wu Q, Liu Z, Li B, Liu YE, Wang P. Immunoregulation in cancer-associated cachexia. J Adv Res 2024; 58:45-62. [PMID: 37150253 PMCID: PMC10982873 DOI: 10.1016/j.jare.2023.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Cancer-associated cachexia is a multi-organ disorder associated with progressive weight loss due to a variable combination of anorexia, systemic inflammation and excessive energy wasting. Considering the importance of immunoregulation in cachexia, it still lacks a complete understanding of the immunological mechanisms in cachectic progression. AIM OF REVIEW Our aim here is to describe the complex immunoregulatory system in cachexia. We summarize the effects and translational potential of the immune system on the development of cancer-associated cachexia and we attempt to conclude with thoughts on precise and integrated therapeutic strategies under the complex immunological context of cachexia. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight the inflammatory factors and additional mediators that have been identified to modulate this syndrome. Second, we decipher the potential role of immune checkpoints in tissue wasting. Third, we discuss the multilayered insights in cachexia through the immunometabolic axis, immune-gut axis and immune-nerve axis.
Collapse
Affiliation(s)
- Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yu-E Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University.
| |
Collapse
|
15
|
You W, Knoops K, Boesten I, Berendschot TTJM, van Zandvoort MAMJ, Benedikter BJ, Webers CAB, Reutelingsperger CPM, Gorgels TGMF. A time window for rescuing dying retinal ganglion cells. Cell Commun Signal 2024; 22:88. [PMID: 38297331 PMCID: PMC10832163 DOI: 10.1186/s12964-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration and death cause vision loss in patients with glaucoma. Regulated cell death, once initiated, is generally considered to be an irreversible process. Recently, we showed that, by timely removing the cell death stimulus, stressed neuronal PC12 cells can recover from phosphatidylserine (PS) exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation, mitochondrial membrane potential loss, and retraction of neurites, all hallmarks of an activated cell death program. Whether the cell death process can be reversed in neurons of the central nervous system, like RGCs, is still unknown. Here, we studied reversibility of the activated cell death program in primary rat RGCs (prRGCs). METHODS prRGCs were exposed to ethanol (5%, vol/vol) to induce cell death. At different stages of the cell death process, ethanol was removed by washing and injured prRGCs were further cultured in fresh medium to see whether they recovered. The dynamics of single cells were monitored by high-resolution live-cell spinning disk microscopy. PS exposure, mitochondrial structure, membrane potential, and intracellular Ca2+ were revealed by annexin A5-FITC, Mito-tracker, TMRM, and Fluo 8-AM staining, respectively. The distribution of cytochrome c was investigated by immunofluorescence. The ultrastructure of mitochondria was studied by electron microscopy. RESULTS Analysis of temporal relationships between mitochondrial changes and PS exposure showed that fragmentation of the mitochondrial network and loss of mitochondrial membrane potential occurred before PS exposure. Mitochondrial changes proceeded caspase-independently, while PS exposure was caspase dependent. Interestingly, prRGCs recovered quickly from these mitochondrial changes but not from PS exposure at the plasma membrane. Correlative light and electron microscopy showed that stress-induced decrease in mitochondrial area, length and cristae number was reversible. Intracellular Ca2+ was elevated during this stage of reversible mitochondrial injury, but there was no sign of mitochondrial cytochrome c release. CONCLUSIONS Our study demonstrates that RGCs with impaired mitochondrial structure and function can fully recover if there is no mitochondrial cytochrome c release yet, and no PS is exposed at the plasma membrane. This finding indicates that there is a time window for rescuing dying or injured RGCs, by simply removing the cell death stimulus. Video Abstract.
Collapse
Affiliation(s)
- Wenting You
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Kèvin Knoops
- The Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Iris Boesten
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Marc A M J van Zandvoort
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands
- Institute of Molecular Cardiovascular Research (IMCAR), Universitätsklinikum Aachen, 52074, Aachen, Germany
| | - Birke J Benedikter
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, 6229 ER, The Netherlands.
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht UMC+, Maastricht University Medical Center+, Maastricht, 6229 HX, The Netherlands.
| |
Collapse
|
16
|
Jiang C, Huang H, Yang X, Le Q, Liu X, Ma L, Wang F. Targeting mitochondrial dynamics of morphine-responsive dopaminergic neurons ameliorates opiate withdrawal. J Clin Invest 2024; 134:e171995. [PMID: 38236644 PMCID: PMC10904060 DOI: 10.1172/jci171995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Converging studies demonstrate the dysfunction of the dopaminergic neurons following chronic opioid administration. However, the therapeutic strategies targeting opioid-responsive dopaminergic ensembles that contribute to the development of opioid withdrawal remain to be elucidated. Here, we used the neuronal activity-dependent Tet-Off system to label dopaminergic ensembles in response to initial morphine exposure (Mor-Ens) in the ventral tegmental area (VTA). Fiber optic photometry recording and transcriptome analysis revealed downregulated spontaneous activity and dysregulated mitochondrial respiratory, ultrastructure, and oxidoreductase signal pathways after chronic morphine administration in these dopaminergic ensembles. Mitochondrial fragmentation and the decreased mitochondrial fusion gene mitofusin 1 (Mfn1) were found in these ensembles after prolonged opioid withdrawal. Restoration of Mfn1 in the dopaminergic Mor-Ens attenuated excessive oxidative stress and the development of opioid withdrawal. Administration of Mdivi-1, a mitochondrial fission inhibitor, ameliorated the mitochondrial fragmentation and maladaptation of the neuronal plasticity in these Mor-Ens, accompanied by attenuated development of opioid withdrawal after chronic morphine administration, without affecting the analgesic effect of morphine. These findings highlighted the plastic architecture of mitochondria as a potential therapeutic target for opioid analgesic-induced substance use disorders.
Collapse
Affiliation(s)
- Changyou Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Han Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Qiumin Le
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
17
|
Mandatori S, Liu Y, Marturia-Navarro J, Hadi M, Henriksen K, Zheng J, Rasmussen LM, Rizza S, Kaestner KH, Issazadeh-Navikas S. PRKAG2.2 is essential for FoxA1 + regulatory T cell differentiation and metabolic rewiring distinct from FoxP3 + regulatory T cells. SCIENCE ADVANCES 2023; 9:eadj8442. [PMID: 38117896 PMCID: PMC10732530 DOI: 10.1126/sciadv.adj8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Forkhead box A1 (FoxA1)+ regulatory T cells (Tregs) exhibit distinct characteristics from FoxP3+ Tregs while equally effective in exerting anti-inflammatory properties. The role of FoxP3+ Tregs in vivo has been challenged, motivating a better understanding of other Tregs in modulating hyperactive immune responses. FoxA1+ Tregs are generated on activation of the transcription factor FoxA1 by interferon-β (IFNβ), an anti-inflammatory cytokine. T cell activation, expansion, and function hinge on metabolic adaptability. We demonstrated that IFNβ promotes a metabolic rearrangement of FoxA1+ Tregs by enhancing oxidative phosphorylation and mitochondria clearance by mitophagy. In response to IFNβ, FoxA1 induces a specific transcription variant of adenosine 5'-monophosphate-activated protein kinase (AMPK) γ2 subunit, PRKAG2.2. This leads to the activation of AMPK signaling, thereby enhancing mitochondrial respiration and mitophagy by ULK1-BNIP3. This IFNβ-FoxA1-PRKAG2.2-BNIP3 axis is pivotal for their suppressive function. The involvement of PRKAG2.2 in FoxA1+ Treg, not FoxP3+ Treg differentiation, underscores the metabolic differences between Treg populations and suggests potential therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Sara Mandatori
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joana Marturia-Navarro
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mahdieh Hadi
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Henriksen
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jin Zheng
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Munk Rasmussen
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Cho CH, Patel S, Rajbhandari P. Adipose tissue lipid metabolism: lipolysis. Curr Opin Genet Dev 2023; 83:102114. [PMID: 37738733 DOI: 10.1016/j.gde.2023.102114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
White adipose tissue stores fatty acid (FA) as triglyceride in the lipid droplet organelle of highly specialized cells known as fat cells or adipocytes. Depending on the nutritional state and energy demand, hormonal and biochemical signals converge on activating an elegant and fundamental process known as lipolysis, which involves triglyceride hydrolysis to FAs. Almost six decades of work have vastly expanded our knowledge of lipolysis from enzymatic processes to complex protein assembly, disassembly, and post-translational modification. Research in recent decades ushered in the discovery of new lipolytic enzymes and coregulators and the characterization of numerous factors and signaling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels. This review will discuss recent developments with particular emphasis on the past two years in enzymatic lipolytic pathways and transcriptional regulation of lipolysis. We will summarize the positive and negative regulators of lipolysis, the adipose tissue microenvironment in lipolysis, and the systemic effects of lipolysis. The dynamic nature of adipocyte lipolysis is emerging as an essential regulator of metabolism and energy balance, and we will discuss recent developments in this area.
Collapse
Affiliation(s)
- Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Diabetes, Obesity, and Metabolism Institute, Department of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place New York, NY 10029 USA.
| |
Collapse
|
19
|
Hammerschmidt P, Steculorum SM, Bandet CL, Del Río-Martín A, Steuernagel L, Kohlhaas V, Feldmann M, Varela L, Majcher A, Quatorze Correia M, Klar RFU, Bauder CA, Kaya E, Porniece M, Biglari N, Sieben A, Horvath TL, Hornemann T, Brodesser S, Brüning JC. CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice. Nat Commun 2023; 14:7824. [PMID: 38016943 PMCID: PMC10684560 DOI: 10.1038/s41467-023-42595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
Dysregulation of hypothalamic ceramides has been associated with disrupted neuronal pathways in control of energy and glucose homeostasis. However, the specific ceramide species promoting neuronal lipotoxicity in obesity have remained obscure. Here, we find increased expression of the C16:0 ceramide-producing ceramide synthase (CerS)6 in cultured hypothalamic neurons exposed to palmitate in vitro and in the hypothalamus of obese mice. Conditional deletion of CerS6 in hypothalamic neurons attenuates high-fat diet (HFD)-dependent weight gain and improves glucose metabolism. Specifically, CerS6 deficiency in neurons expressing pro-opiomelanocortin (POMC) or steroidogenic factor 1 (SF-1) alters feeding behavior and alleviates the adverse metabolic effects of HFD feeding on insulin sensitivity and glucose tolerance. POMC-expressing cell-selective deletion of CerS6 prevents the diet-induced alterations of mitochondrial morphology and improves cellular leptin sensitivity. Our experiments reveal functions of CerS6-derived ceramides in hypothalamic lipotoxicity, altered mitochondrial dynamics, and ER/mitochondrial stress in the deregulation of food intake and glucose metabolism in obesity.
Collapse
Affiliation(s)
- Philipp Hammerschmidt
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sophie M Steculorum
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Max Planck Institute for Metabolism Research, Research Group Neurocircuit Wiring and Function, Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Cécile L Bandet
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Almudena Del Río-Martín
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vivien Kohlhaas
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marvin Feldmann
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Adam Majcher
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Marta Quatorze Correia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Rhena F U Klar
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
| | - Corinna A Bauder
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ecem Kaya
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Marta Porniece
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nasim Biglari
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Sieben
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Tamas L Horvath
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., BML 330, New Haven, CT, 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger. Achucarro Basque Center for Neuroscience, Leioa, 48940, Spain
- Ikerbasque-Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thorsten Hornemann
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931, Cologne, Germany.
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
20
|
Li Y, Liang J, Tian X, Chen Q, Zhu L, Wang H, Liu Z, Dai X, Bian C, Sun C. Intermittent fasting promotes adipocyte mitochondrial fusion through Sirt3-mediated deacetylation of Mdh2. Br J Nutr 2023; 130:1473-1486. [PMID: 36815302 DOI: 10.1017/s000711452300048x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fat deposition and lipid metabolism are closely related to the morphology, structure and function of mitochondria. The morphology of mitochondria between fusion and fission processes is mainly regulated by protein posttranslational modification. Intermittent fasting (IF) promotes high expression of Sirtuin 3 (Sirt3) and induces mitochondrial fusion in high-fat diet (HFD)-fed mice. However, the mechanism by which Sirt3 participates in mitochondrial protein acetylation during IF to regulate mitochondrial fusion and fission dynamics remains unclear. This article demonstrates that IF promotes mitochondrial fusion and improves mitochondrial function in HFD mouse inguinal white adipose tissue. Proteomic sequencing revealed that IF increased protein deacetylation levels in HFD mice and significantly increased Sirt3 mRNA and protein expression. After transfecting with Sirt3 overexpression or interference vectors into adipocytes, we found that Sirt3 promoted adipocyte mitochondrial fusion and improved mitochondrial function. Furthermore, Sirt3 regulates the JNK-FIS1 pathway by deacetylating malate dehydrogenase 2 (MDH2) to promote mitochondrial fusion. In summary, our study indicates that IF promotes mitochondrial fusion and improves mitochondrial function by upregulating the high expression of Sirt3 in HFD mice, promoting deacetylation of MDH2 and inhibiting the JNK-FIS1 pathway. This research provides theoretical support for studies related to energy limitation and animal lipid metabolism.
Collapse
Affiliation(s)
- Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Qi Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Longbo Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Han Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xulei Dai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chenqi Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| |
Collapse
|
21
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524176. [PMID: 36711707 PMCID: PMC9882235 DOI: 10.1101/2023.01.16.524176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Paula P. Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Virly Y. Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Juan C. Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Bridget E. Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Current address: Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China
| | - Julie L. McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Current address: Massachusetts Institute of Technology, Biology, Cambridge, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Leillani L. Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Harvard Medical School, Boston, USA
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| |
Collapse
|
22
|
Chen J, Shao J, Wang Y, Wu K, Huang M. OPA1, a molecular regulator of dilated cardiomyopathy. J Cell Mol Med 2023; 27:3017-3025. [PMID: 37603376 PMCID: PMC10568666 DOI: 10.1111/jcmm.17918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1 (a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.
Collapse
Affiliation(s)
- Jiaqi Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jianan Shao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yaoyao Wang
- Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular DiseasesBeijingChina
| | - Kangxiang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mingyuan Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
23
|
Huang D, Chen S, Xiong D, Wang H, Zhu L, Wei Y, Li Y, Zou S. Mitochondrial Dynamics: Working with the Cytoskeleton and Intracellular Organelles to Mediate Mechanotransduction. Aging Dis 2023; 14:1511-1532. [PMID: 37196113 PMCID: PMC10529762 DOI: 10.14336/ad.2023.0201] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 05/19/2023] Open
Abstract
Cells are constantly exposed to various mechanical environments; therefore, it is important that they are able to sense and adapt to changes. It is known that the cytoskeleton plays a critical role in mediating and generating extra- and intracellular forces and that mitochondrial dynamics are crucial for maintaining energy homeostasis. Nevertheless, the mechanisms by which cells integrate mechanosensing, mechanotransduction, and metabolic reprogramming remain poorly understood. In this review, we first discuss the interaction between mitochondrial dynamics and cytoskeletal components, followed by the annotation of membranous organelles intimately related to mitochondrial dynamic events. Finally, we discuss the evidence supporting the participation of mitochondria in mechanotransduction and corresponding alterations in cellular energy conditions. Notable advances in bioenergetics and biomechanics suggest that the mechanotransduction system composed of mitochondria, the cytoskeletal system, and membranous organelles is regulated through mitochondrial dynamics, which may be a promising target for further investigation and precision therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Zhang L, Luo Y, Lv L, Chen S, Liu G, Zhao T. TRAP1 inhibits MARCH5-mediated MIC60 degradation to alleviate mitochondrial dysfunction and apoptosis of cardiomyocytes under diabetic conditions. Cell Death Differ 2023; 30:2336-2350. [PMID: 37679468 PMCID: PMC10589223 DOI: 10.1038/s41418-023-01218-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondrial dysfunction and cell death play important roles in diabetic cardiomyopathy, but the underlying mechanisms remain unclear. Here, we report that mitochondrial dysfunction and cell apoptosis are prominent features of primary cardiomyocytes after exposure to high glucose/palmitate conditions. The protein level of MIC60, a core component of mitochondrial cristae, is decreased via ubiquitination and degradation under these conditions. Exogenous expression of MIC60 alleviates cristae disruption, mitochondrial dysfunction and apoptosis. Moreover, we identified MARCH5 as an E3 ubiquitin ligase that specifically targets MIC60 in this process. Indeed, MARCH5 mediates K48-linked ubiquitination of MIC60 at Lys285 to promote its degradation. Mutation of the ubiquitination site in MIC60 or the MIC60-interacting motifs in MARCH5 abrogates MARCH5-mediated MIC60 ubiquitination and degradation. Silencing MARCH5 significantly alleviates high glucose/palmitate-induced mitochondrial dysfunction and apoptosis in primary cardiomyocytes. In addition to E3 ubiquitin ligases, molecular chaperones also play important roles in protein stability. We previously reported that the mitochondrial chaperone TRAP1 inhibits the ubiquitination of MIC60, but the detailed mechanism is unknown. Here, we find that TRAP1 performs this function by competing with MARCH5 for binding to MIC60. Our findings provide new insights into the mechanism underlying mitochondrial dysfunction in cardiomyocytes in diabetic cardiomyopathy. MARCH5 promotes ubiquitination of MIC60 to induce MIC60 degradation, mitochondrial dysfunction and apoptosis in cardiomyocytes under diabetic conditions. TRAP1 inhibits MARCH5-mediated ubiquitination by competitively interacting with MIC60.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yuanyuan Luo
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Linyan Lv
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Siyong Chen
- Department of Endocrinology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Guihua Liu
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Tongfeng Zhao
- Department of Endocrinology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
25
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
26
|
von der Malsburg A, Sapp GM, Zuccaro KE, von Appen A, Moss FR, Kalia R, Bennett JA, Abriata LA, Dal Peraro M, van der Laan M, Frost A, Aydin H. Structural mechanism of mitochondrial membrane remodelling by human OPA1. Nature 2023; 620:1101-1108. [PMID: 37612504 PMCID: PMC10875962 DOI: 10.1038/s41586-023-06441-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.
Collapse
Affiliation(s)
- Alexander von der Malsburg
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University Medical School, Homburg, Germany
| | - Gracie M Sapp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Kelly E Zuccaro
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Alexander von Appen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank R Moss
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Altos Labs, Bay Area Institute of Science, San Francisco, CA, USA
| | - Raghav Kalia
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy A Bennett
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University Medical School, Homburg, Germany
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Altos Labs, Bay Area Institute of Science, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
27
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants (Basel) 2023; 12:1517. [PMID: 37627512 PMCID: PMC10451443 DOI: 10.3390/antiox12081517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrion, known as the "powerhouse" of the cell, regulates ion homeostasis, redox state, cell proliferation and differentiation, and lipid synthesis. The inner mitochondrial membrane (IMM) controls mitochondrial metabolism and function. It possesses high levels of proteins that account for ~70% of the membrane mass and are involved in the electron transport chain, oxidative phosphorylation, energy transfer, and ion transport, among others. The mitochondrial matrix volume plays a crucial role in IMM remodeling. Several ion transport mechanisms, particularly K+ and Ca2+, regulate matrix volume. Small increases in matrix volume through IMM alterations can activate mitochondrial respiration, whereas excessive swelling can impair the IMM topology and initiates mitochondria-mediated cell death. The opening of mitochondrial permeability transition pores, the well-characterized phenomenon with unknown molecular identity, in low- and high-conductance modes are involved in physiological and pathological increases of matrix volume. Despite extensive studies, the precise mechanisms underlying changes in matrix volume and IMM structural remodeling in response to energy and oxidative stressors remain unknown. This review summarizes and discusses previous studies on the mechanisms involved in regulating mitochondrial matrix volume, IMM remodeling, and the crosstalk between these processes.
Collapse
Affiliation(s)
| | | | | | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (N.E.)
| |
Collapse
|
28
|
Haspula D, Cui Z. Neurochemical Basis of Inter-Organ Crosstalk in Health and Obesity: Focus on the Hypothalamus and the Brainstem. Cells 2023; 12:1801. [PMID: 37443835 PMCID: PMC10341274 DOI: 10.3390/cells12131801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Precise neural regulation is required for maintenance of energy homeostasis. Essential to this are the hypothalamic and brainstem nuclei which are located adjacent and supra-adjacent to the circumventricular organs. They comprise multiple distinct neuronal populations which receive inputs not only from other brain regions, but also from circulating signals such as hormones, nutrients, metabolites and postprandial signals. Hence, they are ideally placed to exert a multi-tier control over metabolism. The neuronal sub-populations present in these key metabolically relevant nuclei regulate various facets of energy balance which includes appetite/satiety control, substrate utilization by peripheral organs and glucose homeostasis. In situations of heightened energy demand or excess, they maintain energy homeostasis by restoring the balance between energy intake and expenditure. While research on the metabolic role of the central nervous system has progressed rapidly, the neural circuitry and molecular mechanisms involved in regulating distinct metabolic functions have only gained traction in the last few decades. The focus of this review is to provide an updated summary of the mechanisms by which the various neuronal subpopulations, mainly located in the hypothalamus and the brainstem, regulate key metabolic functions.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Zhenzhong Cui
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
29
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
30
|
Bian X, Fan N, Li M, Han D, Li J, Fan L, Li X, Kong L, Tang H, Ding S, Song F, Li S, Cheng W. An ER-Horse Detonating Stress Cascade for Hepatocellular Carcinoma Nanotherapy. ACS NANO 2023; 17:4896-4912. [PMID: 36811530 DOI: 10.1021/acsnano.2c11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persisting and excessive endoplasmic reticulum stress (ERS) can evoke rapid cell apoptosis. Therapeutic interference of ERS signaling holds enormous potential for cancer nanotherapy. Herein, a hepatocellular carcinoma (HCC) cell-derived ER vesicle (ERV) encapsulating siGRP94, denoted as ER-horse, has been developed for precise HCC nanotherapy. Briefly, ER-horse, like the Trojan horse, was recognized via homotypic camouflage, imitated the physiological function of ER, and exogenously opened the Ca2+ channel. Consequently, the mandatory pouring-in of extracellular Ca2+ triggered the aggravated stress cascade (ERS and oxidative stress) and apoptosis pathway with the inhibition of unfolded protein response by siGRP94. Collectively, our findings provide a paradigm for potent HCC nanotherapy via ERS signaling interference and exploring therapeutic interference of physiological signal transduction pathways for precision cancer therapy.
Collapse
Affiliation(s)
- Xintong Bian
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Meng Li
- The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Siqiao Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
31
|
Mitochondrial cristae in health and disease. Int J Biol Macromol 2023; 235:123755. [PMID: 36812974 DOI: 10.1016/j.ijbiomac.2023.123755] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.
Collapse
|
32
|
Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023; 13:metabo13010086. [PMID: 36677011 PMCID: PMC9865135 DOI: 10.3390/metabo13010086] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Obesity is defined as abnormal and excessive fat accumulation, and it is a risk factor for developing metabolic and neurodegenerative diseases and cognitive deficits. Obesity is caused by an imbalance in energy homeostasis resulting from increased caloric intake associated with a sedentary lifestyle. However, the entire physiopathology linking obesity with neurodegeneration and cognitive decline has not yet been elucidated. During the progression of obesity, adipose tissue undergoes immune, metabolic, and functional changes that induce chronic low-grade inflammation. It has been proposed that inflammatory processes may participate in both the peripheral disorders and brain disorders associated with obesity, including the development of cognitive deficits. In addition, mitochondrial dysfunction is related to inflammation and oxidative stress, causing cellular oxidative damage. Preclinical and clinical studies of obesity and metabolic disorders have demonstrated mitochondrial brain dysfunction. Since neuronal cells have a high energy demand and mitochondria play an important role in maintaining a constant energy supply, impairments in mitochondrial activity lead to neuronal damage and dysfunction and, consequently, to neurotoxicity. In this review, we highlight the effect of obesity and high-fat diet consumption on brain neuroinflammation and mitochondrial changes as a link between metabolic dysfunction and cognitive decline.
Collapse
|
33
|
Liu Y, Guo YF, Peng H, Zhou HY, Su T, Yang M, Guo Q, Ye X, Huang Y, Jiang TJ. Hypothalamic Hnscr regulates glucose balance by mediating central inflammation and insulin signal. Cell Prolif 2023; 56:e13332. [PMID: 36042571 DOI: 10.1111/cpr.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Hypothalamic dysfunction leads to glucose metabolic imbalance; however, the mechanisms still need clarification. Our current study was to explore the role of hypothalamic Hnscr in glucose metabolism. MATERIALS AND METHODS Using Hnscr knockout or htNSC-specific Hnscr overexpression mice, we evaluated the effects of Hnscr on glucose metabolism through GTTs, ITTs, serum indicator measurements, etc. Immunofluorescence staining and Western blotting were performed to test inflammation levels and insulin signalling in hypothalamus. Conditioned medium intervene were used to investigate the effects of htNSCs on neuronal cell line. We also detected the glucose metabolism of mice with htNSCs implantation. RESULTS Hnscr expression decreased in the hypothalamus after high-fat diet feed. Hnscr-null mice displayed aggravated systematic insulin resistance, while mice with htNSC-specific Hnscr overexpression had the opposite phenotype. Notably, Hnscr-null mice had increased NF-κB signal in htNSCs, along with enhanced inflammation and damaged insulin signal in neurons located in arcuate nucleus of hypothalamus. The secretions, including sEVs, of Hnscr-deficient htNSCs mediated the detrimental effects on the CNS cell line. Locally implantation with Hnscr-depleted htNSCs disrupted glucose homeostasis. CONCLUSIONS This study demonstrated that decreased Hnscr in htNSCs led to systematic glucose imbalance through activating NF-κB signal and dampening insulin signal in hypothalamic neurons.
Collapse
Affiliation(s)
- Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiao Ye
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Liu Y, Zhou J, Zhang N, Wu X, Zhang Q, Zhang W, Li X, Tian Y. Two sensory neurons coordinate the systemic mitochondrial stress response via GPCR signaling in C. elegans. Dev Cell 2022; 57:2469-2482.e5. [DOI: 10.1016/j.devcel.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
35
|
Li J, Cui J, Tian Y. Neuron-periphery mitochondrial stress communication in aging and diseases. LIFE MEDICINE 2022; 1:168-178. [PMID: 39871928 PMCID: PMC11749785 DOI: 10.1093/lifemedi/lnac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 01/29/2025]
Abstract
The nervous system is the central hub of the body, detecting environmental and internal stimuli to regulate organismal metabolism via communications to the peripheral tissues. Mitochondria play an essential role in neuronal activity by supplying energy, maintaining cellular metabolism, and buffering calcium levels. A variety of mitochondrial conditions are associated with aging and age-related neurological disorders. Beyond regulating individual neuron cells, mitochondria also coordinate signaling in tissues and organs during stress conditions to mediate systemic metabolism and enable organisms to adapt to such stresses. In addition, peripheral organs and immune cells can also produce signaling molecules to modulate neuronal function. Recent studies have found that mitokines released upon mitochondrial stresses affect metabolism and the physiology of different tissues and organs at a distance. Here, we summarize recent advances in understanding neuron-periphery mitochondrial stress communication and how mitokine signals contribute to the systemic regulation of metabolism and aging with potential implications for therapeutic strategies.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
36
|
Puente-Ruiz SC, Jais A. Reciprocal signaling between adipose tissue depots and the central nervous system. Front Cell Dev Biol 2022; 10:979251. [PMID: 36200038 PMCID: PMC9529070 DOI: 10.3389/fcell.2022.979251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, various dietary and social factors led to the development of increased brain sizes alongside large adipose tissue stores. Complex reciprocal signaling mechanisms allow for a fine-tuned interaction between the two organs to regulate energy homeostasis of the organism. As an endocrine organ, adipose tissue secretes various hormones, cytokines, and metabolites that signal energy availability to the central nervous system (CNS). Vice versa, the CNS is a critical regulator of adipose tissue function through neural networks that integrate information from the periphery and regulate sympathetic nerve outflow. This review discusses the various reciprocal signaling mechanisms in the CNS and adipose tissue to maintain organismal energy homeostasis. We are focusing on the integration of afferent signals from the periphery in neuronal populations of the mediobasal hypothalamus as well as the efferent signals from the CNS to adipose tissue and its implications for adipose tissue function. Furthermore, we are discussing central mechanisms that fine-tune the immune system in adipose tissue depots and contribute to organ homeostasis. Elucidating this complex signaling network that integrates peripheral signals to generate physiological outputs to maintain the optimal energy balance of the organism is crucial for understanding the pathophysiology of obesity and metabolic diseases such as type 2 diabetes.
Collapse
|
37
|
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z, Yu T. Lactate metabolism in human health and disease. Signal Transduct Target Ther 2022; 7:305. [PMID: 36050306 PMCID: PMC9434547 DOI: 10.1038/s41392-022-01151-3] [Citation(s) in RCA: 523] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao’s research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Collapse
Affiliation(s)
- Xiaolu Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaotong Lin
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China
| | - Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Jian-Xun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
38
|
Katashima CK, de Oliveira Micheletti T, Braga RR, Gaspar RS, Goeminne LJE, Moura-Assis A, Crisol BM, Brícola RS, Silva VRR, de Oliveira Ramos C, da Rocha AL, Tavares MR, Simabuco FM, Matheus VA, Buscaratti L, Marques-Souza H, Pazos P, Gonzalez-Touceda D, Tovar S, del Carmen García M, Neto JCR, Curi R, Hirabara SM, Brum PC, Prada PO, de Moura LP, Pauli JR, da Silva ASR, Cintra DE, Velloso LA, Ropelle ER. Evidence for a neuromuscular circuit involving hypothalamic interleukin-6 in the control of skeletal muscle metabolism. SCIENCE ADVANCES 2022; 8:eabm7355. [PMID: 35905178 PMCID: PMC9337767 DOI: 10.1126/sciadv.abm7355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/15/2022] [Indexed: 05/31/2023]
Abstract
Hypothalamic interleukin-6 (IL6) exerts a broad metabolic control. Here, we demonstrated that IL6 activates the ERK1/2 pathway in the ventromedial hypothalamus (VMH), stimulating AMPK/ACC signaling and fatty acid oxidation in mouse skeletal muscle. Bioinformatics analysis revealed that the hypothalamic IL6/ERK1/2 axis is closely associated with fatty acid oxidation- and mitochondrial-related genes in the skeletal muscle of isogenic BXD mouse strains and humans. We showed that the hypothalamic IL6/ERK1/2 pathway requires the α2-adrenergic pathway to modify fatty acid skeletal muscle metabolism. To address the physiological relevance of these findings, we demonstrated that this neuromuscular circuit is required to underpin AMPK/ACC signaling activation and fatty acid oxidation after exercise. Last, the selective down-regulation of IL6 receptor in VMH abolished the effects of exercise to sustain AMPK and ACC phosphorylation and fatty acid oxidation in the muscle after exercise. Together, these data demonstrated that the IL6/ERK axis in VMH controls fatty acid metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Carlos Kiyoshi Katashima
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Thayana de Oliveira Micheletti
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rodrigo Stellzer Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ludger J. E. Goeminne
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Moura-Assis
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Barbara Moreira Crisol
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Rafael S. Brícola
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Vagner Ramon R. Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
| | - Camila de Oliveira Ramos
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Rosolen Tavares
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Valquiria Aparecida Matheus
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Lucas Buscaratti
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Henrique Marques-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Patricia Pazos
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - David Gonzalez-Touceda
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sulay Tovar
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María del Carmen García
- Department of Physiology, Research Center of Molecular Medicine and Chronic Diseases (CIMUS) and CIBER Fisiopatología Obesidad y Nutrición (CB 06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO), University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jose Cesar Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil
| | - Patrícia Oliveira Prada
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Pretol, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomic, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| | - Licio A. Velloso
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeria, São Paulo 13484-350, Brazil
- Faculty of Medical Sciences, Department of Internal Medicine, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- CEPECE—Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil
| |
Collapse
|
39
|
Zhu D, Li X, Tian Y. Mitochondrial-to-nuclear communication in aging: an epigenetic perspective. Trends Biochem Sci 2022; 47:645-659. [DOI: 10.1016/j.tibs.2022.03.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
|
40
|
Leyrer-Jackson JM, Hood LE, Olive MF. Sex differences and the lack of effects of chemogenetic manipulation of pro-opiomelanocortin (POMC) neurons on alcohol consumption in male and female mice. Brain Res 2022; 1786:147901. [PMID: 35367433 DOI: 10.1016/j.brainres.2022.147901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
The endogenous opioid system has been implicated in the rewarding and reinforcing effects of alcohol. Pro-opiomelanocortin (POMC) neurons located within the arcuate nucleus of the hypothalamus (ArcN) secrete multiple peptides associated with alcohol consumption, including β-endorphin (β-END), α-melanocyte stimulating hormone (α-MSH), and adrenocorticotropic hormone (ACTH). In this study, we utilized chemogenetics to bidirectionally modulate ArcN POMC neurons to determine their role in alcohol and saccharin consumption and regional levels of POMC-derived peptides. Male and female POMC-cre mice were infused with viral vectors designed for cre-dependent expression of either excitatory and inhibitory DREADDs or a control vector into the ArcN. Following recovery, animals were allowed to consume alcohol or saccharin using the drinking-in-the-dark (DID) paradigm of binge-like intake for 4 consecutive days. Prior to the final test session, animals were injected with clozapine-N-oxide (2.5 mg/kg, i.p.) for DREADD activation. Following the last DID session, animals were euthanized and the ArcN, VTA, amygdala and NAc were dissected and assessed for POMC peptide expression utilizing western blotting. We found that female mice consumed more alcohol than males during DID sessions 2-4, and that chemogenetic activation had no effect on alcohol or saccharin consumption in either sex. We found that β-END expression within the ArcN positively correlated with alcohol consumption. Given the molecular and functional heterogeneity of ArcN POMC neurons, future studies are needed to assess the effects of modulation of specific subpopulations of these neurons within the ArcN on consumption of rewarding substances such as alcohol and saccharin.
Collapse
Affiliation(s)
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
41
|
Cartes-Saavedra B, Macuada J, Lagos D, Arancibia D, Andrés ME, Yu-Wai-Man P, Hajnóczky G, Eisner V. OPA1 Modulates Mitochondrial Ca 2+ Uptake Through ER-Mitochondria Coupling. Front Cell Dev Biol 2022; 9:774108. [PMID: 35047497 PMCID: PMC8762365 DOI: 10.3389/fcell.2021.774108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA), a disease that causes blindness and other neurological disorders, is linked to OPA1 mutations. OPA1, dependent on its GTPase and GED domains, governs inner mitochondrial membrane (IMM) fusion and cristae organization, which are central to oxidative metabolism. Mitochondrial dynamics and IMM organization have also been implicated in Ca2+ homeostasis and signaling but the specific involvements of OPA1 in Ca2+ dynamics remain to be established. Here we studied the possible outcomes of OPA1 and its ADOA-linked mutations in Ca2+ homeostasis using rescue and overexpression strategies in Opa1-deficient and wild-type murine embryonic fibroblasts (MEFs), respectively and in human ADOA-derived fibroblasts. MEFs lacking Opa1 required less Ca2+ mobilization from the endoplasmic reticulum (ER) to induce a mitochondrial matrix [Ca2+] rise ([Ca2+]mito). This was associated with closer ER-mitochondria contacts and no significant changes in the mitochondrial calcium uniporter complex. Patient cells carrying OPA1 GTPase or GED domain mutations also exhibited altered Ca2+ homeostasis, and the mutations associated with lower OPA1 levels displayed closer ER-mitochondria gaps. Furthermore, in Opa1 -/- MEF background, we found that acute expression of OPA1 GTPase mutants but no GED mutants, partially restored cytosolic [Ca2+] ([Ca2+]cyto) needed for a prompt [Ca2+]mito rise. Finally, OPA1 mutants' overexpression in WT MEFs disrupted Ca2+ homeostasis, partially recapitulating the observations in ADOA patient cells. Thus, OPA1 modulates functional ER-mitochondria coupling likely through the OPA1 GED domain in Opa1 -/- MEFs. However, the co-existence of WT and mutant forms of OPA1 in patients promotes an imbalance of Ca2+ homeostasis without a domain-specific effect, likely contributing to the overall ADOA progress.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Josefa Macuada
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Lagos
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duxan Arancibia
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María E. Andrés
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Verónica Eisner
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Gottschalk B, Madreiter-Sokolowski CT, Graier WF. Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics. Cell Calcium 2022; 101:102517. [PMID: 34915234 DOI: 10.1016/j.ceca.2021.102517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
OPA1 and MICU1 are both involved in the regulation of mitochondrial Ca2+ uptake and the stabilization of the cristae junction, which separates the inner mitochondrial membrane into the interboundary membrane and the cristae membrane. In this mini-review, we focus on the synergetic control of OPA1 and MICU1 on the cristae junction that serves as a fundamental regulator of multiple mitochondrial functions. In particular, we point to the critical role of an adaptive cristae junction permeability in mitochondrial Ca2+ signaling, spatial H+ gradients and mitochondrial membrane potential, metabolic activity, and apoptosis. These characteristics bear on a distinct localization of the oxidative phosphorylation machinery, the FoF1-ATPase, and mitochondrial Ca2+uniporter (MCU) within sections of the inner mitochondrial membrane isolated by the cristae junction and regulated by proteins like OPA1 and MICU1. We specifically focus on the impact of MICU1-regulated cristae junction on the activity and distribution of MCU within the complex ultrastructure of mitochondria.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria
| | - Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria; BioTechMed, Graz.
| |
Collapse
|