1
|
Yu FH, Yin BF, Liu MY, Zhang WJ, Zhao ZD, Wang L, Li XT, Li PL, Li ZL, Xu RX, Ding L, Zhu H. Modulation of senescent Lepr + skeletal stem cells via suppression of leptin-induced STAT3‒FGF7 axis activation alleviates abnormal subchondral bone remodeling and osteoarthritis progression. Stem Cell Res Ther 2025; 16:227. [PMID: 40325465 PMCID: PMC12054238 DOI: 10.1186/s13287-025-04342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Recent studies have suggested that targeting senescent cells in joint tissues may alleviate osteoarthritis (OA) progression. However, this strategy encounters significant challenges, partially due to the high degree of cellular heterogeneity in osteoarthritic tissues. Moreover, little information is available on the role of skeletal stem cell (SSC) senescence, as compared to differentiated cells, in OA progression. METHODS In this study, single-cell RNA sequencing (scRNA-seq) on articular cartilages and subchondral bones of the knee joints of mice with post-traumatic osteoarthritis (PTOA) were performed. Further in vivo and in vitro studies were performed to reveal the role and mechanisims of senescent SSCs during the development of OA lesions and progression by microCT, pathological analysis, and functional gain and loss experiments. The one-way ANOVA was used in multiple group data analysis. RESULTS scRNA-seq and pathological data demonstrated that the leptin receptors (Lepr) positive SSCs underwent cellular senescence during OA progression. In addition, the leptin-Lepr signaling pathway induced signal transducer and activator of transcription 3 (STAT3) expression in SSCs, which consequently augmented the transcription of fibroblast growth factor 7 (FGF7). Further scRNA-seq and in vivo analyses revealed that FGF7 exacerbated abnormal bone remodeling in subchondral bones and OA progression by enhancing bone formation and suppressing bone resorption. In vitro analysis revealed that FGF7 induced the osteogenic differentiation of SSCs but inhibited osteoclastogenesis in a concentration-dependent manner. CONCLUSIONS In summary, our findings demonstrate that the leptin-Lepr signaling pathway promotes SSC senescence and exacerbates subchondral bone remodeling by activating the STAT3-FGF7 axis during OA progression, which may shed light on novel therapeutic strategies for OA.
Collapse
Affiliation(s)
- Fu-Hao Yu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Bo-Feng Yin
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ming-Yu Liu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Wen-Jing Zhang
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Zhi-Dong Zhao
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, People's Republic of China
| | - Lei Wang
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, People's Republic of China
| | - Xiao-Tong Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Pei-Lin Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Zhi-Ling Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Run-Xiang Xu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Li Ding
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China.
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
- Anhui Medical University, Hefei, People's Republic of China.
| | - Heng Zhu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China.
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
- School of Life Sciences, Hebei University, Baoding, People's Republic of China.
- Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
2
|
Chen L, Shi K, Ditzel N, Qiu W, Tencerova M, Nielsen LHD, Figeac F, Rauch A, Liu Y, Tao J, Sramkova V, Rossmeislova L, Kerckhofs G, Parac-Vogt TN, de Bournonville S, Andersen TL, Rydén M, Kassem M. KIAA1199 (CEMIP) regulates adipogenesis and whole-body energy metabolism. Bone Res 2025; 13:43. [PMID: 40169533 PMCID: PMC11961601 DOI: 10.1038/s41413-025-00415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
An increasing number of studies have characterized the bone as an endocrine organ, and that bone secreted factors may not only regulate local bone remodeling, but also other tissues and whole-body metabolic functions. The precise nature of these regulatory factors and their roles at bridging the bone, bone marrow adipose tissue, extramedullary body fat and whole-body energy homeostasis are being explored. In this study, we report that KIAA1199, a secreted factor produced from bone and bone marrow, previously described as an inhibitor of bone formation, also plays a role at promoting adipogenesis. KIAA1199-deficient mice exhibit reduced bone marrow adipose tissue, subcutaneous and visceral fat tissue mass, blood cholesterol, triglycerides, free fatty acids and glycerol, as well as improved insulin sensitivity in skeletal muscle, liver and fat. Moreover, these mice are protected from the detrimental effects of high-fat diet feeding, with decreased obesity, lower blood glucose and glucose tolerance, as well as decreased adipose tissue inflammation, insulin resistance and hepatic steatosis. In human studies, plasma levels of KIAA1199 or its expression levels in adipose tissue are positively correlated with insulin resistance and blood levels of cholesterol, triglycerides, free fatty acids, glycerol, fasting glucose and HOMA-IR. Mechanistically, KIAA1199 mediates its effects on adipogenesis through modulating osteopontin-integrin and AKT / ERK signaling. These findings provide evidence for the role of bone secreted factors on coupling bone, fat and whole-body energy homeostasis.
Collapse
Affiliation(s)
- Li Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark.
| | - Kaikai Shi
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Weimin Qiu
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Louise Himmelstrup Dreyer Nielsen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Alexander Rauch
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark
| | - Yuhang Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Jiuyuan Tao
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Veronika Sramkova
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Rossmeislova
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, KU Leuven, Leuven, Belgium
| | | | | | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Dk-5230, Denmark.
- Khalifa University, College of Medicine and Health Sciences & Biotechnology Center (BTC), Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Tao B, Shen X, Li G, Wu X, Yang Y, Sheng C, Zhang Y, Wang L, Zhao Z, Song Q, Yan D, Yan S, Xu Y, Yuan H, Zhou H, Liu J. New Evidence, Creative Insights, and Strategic Solutions: Advancing the Understanding and Practice of Diabetes Osteoporosis. J Diabetes 2025; 17:e70091. [PMID: 40265523 PMCID: PMC12015633 DOI: 10.1111/1753-0407.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Diabetes osteoporosis is a debilitating condition that significantly impacts human health. However, it is often underdiagnosed and not addressed in a timely or appropriate manner. METHODS Recent studies were reviewed to explore the roles of energy metabolism, sarcopeina, low-grade inflammation and gut microbiota in the development of diabetes osteoporosis. RESULTS Osteoporosis in diabetic patients differs from primary osteoporosis. Novel biomarkers and risk factors that are biologically, physiologically, and pathologically linked to the development of diabetes osteoporosis are emerging, necessitating a shift in strategies for diagnosis, risk stratification, and prevention of diabetes osteoporosis. CONCLUSIONS There is an urgent need to approach this disorder from a fresh perspective, initiating a range of basic research and clinical investigations.
Collapse
Affiliation(s)
- Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ximei Shen
- Department of Endocrinology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Guangfei Li
- Department of Orthopedics, Osteoporosis Clinical CenterThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiyu Wu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yuying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunxiang Sheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical UniversityNational Center for OrthopedicsBeijingChina
- JST Sarcopenia Research Centre, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan HospitalCapital Medical University, National Center for OrthopedicsBeijingChina
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Song
- Department of Radiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen UniversityShenzhen Clinical Research Center for Metabolic DiseasesShenzhenChina
| | - Sunjie Yan
- Department of Endocrinology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Youjia Xu
- Department of Orthopedics, Osteoporosis Clinical CenterThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Houde Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jianmin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic DiseasesRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
An Y, Zhang H, Zhang S, Zhang Y, Zheng L, Chen X, Tong W, Xu J, Qin L. Degradation products of magnesium implant synergistically enhance bone regeneration: Unraveling the roles of hydrogen gas and alkaline environment. Bioact Mater 2025; 46:331-346. [PMID: 39816475 PMCID: PMC11732853 DOI: 10.1016/j.bioactmat.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Biodegradable magnesium (Mg) implant generally provides temporary fracture fixation and facilitates bone regeneration. However, the exact effects of generated Mg ions (Mg2+), hydrogen gas (H2), and hydroxide ions (OH-) by Mg degradation on enhancing fracture healing are not fully understood. Here we investigate the in vivo degradation of Mg intramedullary nail (Mg-IMN), revealing the generation of these degradation products around the fracture site during early stages. Bulk-RNA seq indicates that H2 and alkaline pH increase periosteal cell proliferation, while Mg2+ may mainly enhance extracellular matrix formation and cell adhesion in the femur ex vivo. In vivo studies further reveal that H2, Mg2+ and alkaline pH individually generate comparable effects to the enhanced bone regeneration in the Mg-IMN group. Mechanistically, the degradation products elevate sensory calcitonin gene-related peptide (CGRP) and simultaneously suppress adrenergic factors in newly formed bone. H2 and Mg2+, instead of alkaline pH, increase CGRP synthesis and inhibit adrenergic receptors. Our findings, for the first time, elucidate that Mg2+, H2, and alkaline pH environment generated by Mg-IMN act distinctly and synergistically mediated by the skeletal interoceptive regulation to accelerate bone regeneration. These findings may advance the understanding on biological functions of Mg-IMN in fracture repair and even other bone disorders.
Collapse
Affiliation(s)
- Yuanming An
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shi'an Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuantao Zhang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Xin Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Musculoskeletal Degeneration and Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Musculoskeletal Degeneration and Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Musculoskeletal Degeneration and Regeneration, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
6
|
Chen R, Wang S, Li L, Zhang H, Peng X, Fang H, Liu Y, Wang M. Association between physical activity energy expenditure and bone mineral density in U.S. adults: A cross-sectional analysis of NHANES 2011-2018. Public Health 2025; 240:195-202. [PMID: 39922031 DOI: 10.1016/j.puhe.2025.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Accepted: 01/21/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVES Osteoporosis is a global disease characterized by decreased bone mineral density (BMD) and impaired bone metabolism. The Physical Activity Metabolic Equivalent of Task (PA-MET) quantifies energy expenditure during physical activities. This study aims to investigate the relationship between energy expenditure, BMD, and the risk of developing osteoporosis. By exploring how varying levels of physical activity impact BMD, we seek to better understand the role of energy expenditure in osteoporosis prevention and management. STUDY DESIGN Cross-sectional study. METHODS This was a cross-sectional study that included 6599 adult participants who took part in the National Health and Nutrition Examination Survey (NHANES) from 2011 to March 2018. We used multivariate weighted linear model analysis to reveal the association between PA-MET levels and BMD. RESULTS Multivariable weighted linear model analysis showed a positive correlation between PA-MET and total BMD. Compared to the lower PA-MET group, the fourth quartile of the PA-MET group had a β = 0.02 (95 % CI, 0.01 to 0.03). Similarly, in the analysis with thoracic spine BMD as the outcome, the fourth quartile of the PA-MET group had a β = 0.02 (95 % CI, 0.01 to 0.02) compared to the lower PA-MET group. For lumbar spine BMD, the fourth quartile of the PA-MET group had a β = 0.02 (95 % CI, 0.01 to 0.03). In the analysis with trunk BMD as the outcome, the fourth quartile of the PA-MET group had a β = 0.02 (95 % CI, 0.02 to 0.03) compared to the lower PA-MET group. CONCLUSIONS Our results show that the energy expenditure from physical activity has a positive relationship with BMD, which serves as a protective factor against the risk of osteoporosis.
Collapse
Affiliation(s)
- Rui Chen
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Senlin Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, No.19 Yangshi Road, Chengdu, Sichuan, 610000, China
| | - Linke Li
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Hui Zhang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xi Peng
- College of Life Science, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Hongzhi Fang
- Department of Stomatology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610000, China
| | - Yanjun Liu
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, No.19 Yangshi Road, Chengdu, Sichuan, 610000, China.
| | - Mengyuan Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China; Department of Stomatology, The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610000, China.
| |
Collapse
|
7
|
Yu H, Yang S, Jiang T, Li T, Duan H, Li M. Repair mechanisms of bone system tissues based on comprehensive perspective of multi-omics. Cell Biol Toxicol 2025; 41:45. [PMID: 39966216 PMCID: PMC11836151 DOI: 10.1007/s10565-025-09995-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
Bone disorders affect more than half of the adult population worldwide who may have a poor quality of life and physical independence worldwide. Multi-omic techniques are increasingly adopted and applied to determine the molecular mechanisms of bone tissue repair, providing perspective towards personalized medical intervention. Data from genomics, epigenomics, transcriptomics, proteomics, glycomics, and lipidomics were combined to elucidate dynamic processes in bone repair. In this narrative review, the key role of genetic and epigenetic factors in regulating injured cellular responses is highlighted, and changes in RNA and protein expression during the healing phase, as well as glucolipid metabolism adaptation, are described in detail how the repair process is affected. In a word, the integration of multi-omic techniques in this review not only benefits the comprehensive identification of new biomarkers, but also facilitates the development of personalized treatment strategies of bone disorders to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Honghao Yu
- Departments of Spine Surgery, Shengjing Hospital of China Medical University, Shengyang, China
| | - Shize Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianlong Jiang
- Department of Orthopedic Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin, 300100, China.
| | - Hongmei Duan
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Minglei Li
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, China.
| |
Collapse
|
8
|
Cao X, Liu K, Yuan J, Hua Q, Rong K, Zhou T, He W, Pang Y, Yang X, Yu Y, Zhang P, Ma P, Cao Y, Zhao J, Morahan G, Xu J, Qin A. Transcriptional regulation of Rankl by Txnip-Ecd in aging and diabetic related osteoporosis. J Adv Res 2025:S2090-1232(25)00046-3. [PMID: 39826612 DOI: 10.1016/j.jare.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Bone homeostasis between osteoclast bone resorption and osteoblastic bone formation is tightly regulated by a series of factors such as the receptor activator of nuclear factor-κB ligand (RANKL). Denosumab that neutralizes RANKL is effective and widely applied in the treatment of postmenopausal osteoporosis. However, factors that participated in the RANKL-related bone remodeling process in primary and secondary osteoporosis are less known. OBJECTIVES Revealing the novel transcriptional regulatory mechanism of RANKL is of great significance for the treatment of osteoporosis. METHODS After differential expression genes (DEGs) intersection and screening, we generated Thioredoxin-interacting protein (Txnip) bone marrow-derived mesenchymal stromal cells (BMSCs) genetic knockout mice and performed bone histomorphometry and histological analysis. RNA-Sequencing, Western blotting and immunofluorescence staining verified Rankl downregulation. Co-immunoprecipitation and immunofluorescence staining were used for Rankl regulation mechanism exploration. A specific inhibitor was selected for treatment effect verification. RESULTS Txnip knockout in BMSCs impaired its osteogenic differentiation, suppressed Rankl expression and subsequent osteoclast formation and thus led to increased bone mass. The regulatory function of Txnip on Rankl expression was revealed for the first time through the novel transcription-related Ecdysoneless (Ecd)-P300 axis. Pharmacological inhibition of Txnip can effectively prevent bilateral ovariectomy (OVX)-induced osteoporosis. CONCLUSIONS Inhibition of Txnip is an alternative way to suppress Rankl-mediated osteoblast and osteoclast crosstalk. This interesting finding rendered Txnip an ideal therapeutic target for the treatment of both ovariectomy-induced and diabetes-induced osteoporosis.
Collapse
Affiliation(s)
- Xiankun Cao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kexin Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jinbo Yuan
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia 6009, Australia
| | - Qi Hua
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenxin He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Centre National de la Recherche Scientifique-Laboratoire International Associé (CNRS-LIA) Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yichuan Pang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200011, China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yating Yu
- Department of Orthopedic and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Cao
- Department of Orthopedic and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia; Australian Centre for Advancing Diabetes Innovations, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia 6009, Australia; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
9
|
Curtis EM, Miguel M, McEvoy C, Ticinesi A, Torre C, Al-Daghri N, Alokail M, Bałkowiec-Iskra E, Bruyère O, Burlet N, Cavalier E, Cerreta F, Clark P, Cherubini A, Cooper C, D'Amelio P, Fuggle N, Gregson C, Halbout P, Kanis JA, Kaufman J, Laslop A, Maggi S, Maier A, Matijevic R, McCloskey E, Ormarsdóttir S, Yerro CP, Radermecker RP, Rolland Y, Singer A, Veronese N, Rizzoli R, Reginster JY, Harvey NC. Impact of dementia and mild cognitive impairment on bone health in older people. Aging Clin Exp Res 2024; 37:5. [PMID: 39725855 PMCID: PMC11671436 DOI: 10.1007/s40520-024-02871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/20/2024] [Indexed: 12/28/2024]
Abstract
Mild cognitive impairment, dementia and osteoporosis are common diseases of ageing and, with the increasingly ageing global population, are increasing in prevalence. These conditions are closely associated, with shared risk factors, common underlying biological mechanisms and potential direct causal pathways. In this review, the epidemiological and mechanistic links between mild cognitive impairment, dementia and skeletal health are explored. Discussion will focus on how changes in brain and bone signalling can underly associations between these conditions, and will consider the molecular and cellular drivers in the context of inflammation and the gut microbiome. There is a complex interplay between nutritional changes, which may precede or follow the onset of mild cognitive impairment (MCI) or dementia, and bone health. Polypharmacy is common in patients with MCI or dementia, and there are difficult prescribing decisions to be made due to the elevated risk of falls associated with many drugs used for associated problems, which can consequently increase fracture risk. Some medications prescribed for cognitive impairment may directly impact bone health. In addition, patients may have difficulty remembering medication without assistance, meaning that osteoporosis drugs may be prescribed but not taken. Cognitive impairment may be improved or delayed by physical activity and exercise, and there is evidence for the additional benefits of physical activity on falls and fractures. Research gaps and priorities with the aim of reducing the burden of osteoporosis and fractures in people with MCI or dementia will also be discussed.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Mario Miguel
- Centro de Estudos Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Claire McEvoy
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Carla Torre
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Majed Alokail
- Biochemistry Department, College of Science, KSU, Riyadh, Kingdom of Saudi Arabia
| | - Ewa Bałkowiec-Iskra
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products & CHMP, SAWP, CNSWP, PCWP, ETF (European Medicines Agency) Member, Warsaw, Poland
| | - Olivier Bruyère
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Department of Physical Activity and Rehabilitation Sciences, University of Liège, Liège, Belgium
| | - Nansa Burlet
- Research Unit in Epidemiology, University of Liege, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, CHU de Liège, Liège, Belgium
| | - Francesca Cerreta
- Digital Health and Geriatrics, European Medicines Agency, Amsterdam, The Netherlands
| | - Patricia Clark
- Clinical Epidemiology Unit, Hospital Infantil Federico Gómez-Facultad de Medicina, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA Istituto Nazionale di Ricovero e Cura per Anziani, Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Patrizia D'Amelio
- Department of Medicine, Service of Geriatric Medicine & Geriatric Rehabilitation, University of Lausanne Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicholas Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Celia Gregson
- Musculoskeletal Research Unit, Bristol Medical School, Learning and Research Building, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
- The Health Research Unit of Zimbabwe (THRU ZIM), The Biomedical Research and Training Institute, Harare, Zimbabwe
| | | | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - Jean Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Andrea Laslop
- Scientific Office, Austrian Medicines and Medical Devices Agency, Vienna, Austria
| | | | - Andrea Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Department of Human Movement Sciences, at AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Radmila Matijevic
- Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Eugene McCloskey
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- MRC Versus Arthritis Centre for Integrated Research in Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
| | - Sif Ormarsdóttir
- Medicine Assessment and Licencing, Icelandic Medicines Agency, Reykjavik, Iceland
| | | | - Régis P Radermecker
- Department of Diabetes, Nutrition and Metabolic Disorders, Clinical Pharmacology, University of Liege, CHU de Liège, Liège, Belgium
| | - Yves Rolland
- HealthAge, CHU Toulouse, CERPOP UMR 1295, Inserm, Université Paul Sabatier, Toulouse, France
| | - Andrea Singer
- Departments of Obstetrics & Gynecology and Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jean-Yves Reginster
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK.
| |
Collapse
|
10
|
Tao J, Li H, Wang H, Tan J, Yang X. Metabolic dysfunction-associated fatty liver disease and osteoporosis: the mechanisms and roles of adiposity. Osteoporos Int 2024; 35:2087-2098. [PMID: 39136721 DOI: 10.1007/s00198-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been renamed metabolic dysfunction-associated fatty liver disease (MAFLD) by international consensus. Both MAFLD and osteoporosis are highly prevalent metabolic diseases. Recent evidence indicates that NAFLD increases the risk of low bone mineral density and osteoporosis, likely mediated by obesity. NAFLD has a close association with obesity and other metabolic disorders. Although obesity was previously thought to protect against bone loss, it now heightens osteoporotic fracture risk. This overview summarizes current clinical correlations between obesity, NAFLD, and osteoporosis, with a focus on recent insights into potential mechanisms interconnecting these three conditions. This study reviewed the scientific literature on the relationship between obesity, nonalcoholic fatty liver disease, and osteoporosis as well as the scientific literature that reveals the underlying pathophysiologic mechanisms between the three. Emerging evidence suggests obesity plays a key role in mediating the relationship between NAFLD and osteoporosis. Accumulating laboratory evidence supports plausible pathophysiological links between obesity, NAFLD, and osteoporosis, including inflammatory pathways, insulin resistance, gut microbiota dysbiosis, bone marrow adiposity, and alterations in insulin-like growth factor-1 signaling. Adiposity has important associations with NAFLD and osteoporosis, the underlying pathophysiologic mechanisms between the three may provide new therapeutic targets for this complex patient population.
Collapse
Affiliation(s)
- Jie Tao
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Li
- Department of Health Management Center, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Juan Tan
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Xiaozhong Yang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
11
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
13
|
Zur Y, Katchkovsky S, Itzhar A, Abramovitch-Dahan CV, Stepensky D, Papo N, Levaot N. Preventing osteoporotic bone loss in mice by promoting balanced bone remodeling through M-CSF RGD, a dual antagonist to c-FMS and αvβ3 receptors. Int J Biol Macromol 2024; 282:136821. [PMID: 39447795 DOI: 10.1016/j.ijbiomac.2024.136821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Osteoporosis is a common, age-related disease caused by imbalanced bone remodeling. Current treatments either shut down bone resorption or robustly stimulate bone formation. Here, we describe a novel compound that inhibits osteoclast activity without causing apparent disruptions to bone formation by targeting both c-FMS (i.e., osteoclast differentiation) and αvβ3 integrin (i.e., osteoclastic bone resorption) receptors. We show that human serum albumin (HSA)-conjugated M-CSFRGD protein (M-CSFRGD-HSA) effectively inhibits the activity of both receptors, with a three-fold higher serum half-life compared to the unconjugated M-CSFRGD. We then treated ovariectomized mice with different doses of M-CSFRGD-HSA, alendronate, or a monospecific control protein. The bispecific M-CSFRGD-HSA was superior to a monospecific control in alleviating bone loss and reducing osteoclast distribution and function. M-CSFRGD-HSA and alendronate effectively prevented ovariectomy-induced bone loss, but M-CSFRGD-HSA had a milder inhibitory effect on osteoclast distribution and activity. Moreover, alendronate halted bone formation, while M-CSFRGD-HSA-treated mice showed an increased level of serum amino-terminal propeptide of type I collagen, a bone formation marker. Our data indicate that the mild reduction in osteoclast activity facilitated by the bispecific M-CSFRGD-HSA allows the maintenance of certain levels of bone formation and may be superior to treatments that induce osteoclast depletion.
Collapse
Affiliation(s)
- Yuval Zur
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amit Itzhar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
14
|
Winckel T, Friedrich N, Zylla S, Fenzlaff M, Schöpfel J, Gauß KF, Petersmann A, Nauck M, Völzke H, Hannemann A. Bone turnover: the role of lipoproteins in a population-based study. Lipids Health Dis 2024; 23:302. [PMID: 39300501 DOI: 10.1186/s12944-024-02290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Dyslipidemia has been associated with reduced bone mineral density and osteoporotic fractures, but the relation between lipid and bone metabolism remains poorly understood. Analysing the effects of lipoprotein subclasses on bone turnover may provide valuable insights into this association. We therefore examined whether lipoprotein subclasses, measured by proton nuclear magnetic resonance (1H-NMR) spectroscopy, are associated with bone turnover markers (BTMs) and with the ultrasound-based bone stiffness index. METHODS Data from 1.349 men and 1.123 women, who participated in the population-based Study of Health in Pomerania-TREND were analysed. Serum intact amino-terminal propeptide of type I procollagen (P1NP, bone formation) and carboxy-terminal telopeptide of type I collagen (CTX, bone resorption) concentrations were measured. Associations between the lipoprotein data and the BTMs or the stiffness index were investigated using linear regression models. RESULTS The triglyceride or cholesterol content in very-low-density lipoprotein and intermediate-density lipoprotein particles was inversely associated with both BTMs, with effect estimates being slightly higher for CTX than for P1NP. The triglyceride content in low-density lipoprotein and high-density lipoprotein particles and the Apo-A2 content in high-density lipoprotein particles was further inversely associated with the BTMs. Associations with the ultrasound-based bone stiffness index were absent. CONCLUSIONS Consistent inverse associations of triglycerides with bone turnover were observed, which argue for a protective effect on bone health, at least in the normal range. Yet, the presented associations did not translate into effects on the ultrasound-based bone stiffness. Further, there was no relevant gain of information by assessing the lipoprotein subclasses. Nevertheless, our study highlights the close relations between lipid and bone metabolism in the general population.
Collapse
Affiliation(s)
- Todd Winckel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Stephanie Zylla
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marc Fenzlaff
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Juliane Schöpfel
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
| | - Karen Friederike Gauß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Oldenburg, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, D-17475, Greifswald, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
| |
Collapse
|
15
|
Warensjö Lemming E, Byberg L, Höijer J, Baron JA, Wolk A, Michaëlsson K. Meat consumption and the risk of hip fracture in women and men: two prospective Swedish cohort studies. Eur J Nutr 2024; 63:1819-1833. [PMID: 38632144 PMCID: PMC11329405 DOI: 10.1007/s00394-024-03385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE To study the association between meat intake (predominantly red and processed meats) and the risk of hip fracture, as well as the association between meat intake and biomarkers of inflammation, oxidative stress, bone turnover, body composition, and bone mineral density (BMD). METHODS Data from the Swedish Mammography Cohort and the Cohort of Swedish men (n = 83,603, 54% men) with repeated investigations and their respective clinical sub-cohorts was utilised. Incident hip fractures were ascertained through individual linkage to registers. Associations were investigated using multivariable Cox and linear regression analyses. RESULTS During up to 23 years of follow-up (mean 18.2 years) and 1,538,627 person-years at risk, 7345 participants (2840 men) experienced a hip fracture. Each daily serving of meat intake conferred a hazard ratio (HR) of 1.03 (95% confidence interval [CI] 1.00; 1.06) for hip fracture. In quintile 5, compared to quintile 2, the HR was 1.11 (95% CI 1.01; 1.21) among all participants. In the sub-cohorts, meat intake was directly associated with circulating levels of interleukin-6, C-reactive protein, leptin, ferritin, parathyroid hormone, and calcium. CONCLUSION A modest linear association was found between a higher meat intake and the risk of hip fractures. Our results from the sub-cohorts further suggest that possible mechanisms linking meat intake and hip fracture risk may be related to the regulation of bone turnover, subclinical inflammation, and oxidative stress. Although estimates are modest, limiting red and processed meat intake in a healthy diet is advisable to prevent hip fractures.
Collapse
Affiliation(s)
- Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden.
- Department of Food Studies, Nutrition and Dietetics, Uppsala University, Uppsala, Sweden.
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala Science Park, MTC/Epihubben, Dag Hammarskjölds väg 14B, 751 83, Uppsala, Sweden
| |
Collapse
|
16
|
Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X, Wang Q, Zhou Q. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomater 2024; 11:rbae082. [PMID: 39055307 PMCID: PMC11272180 DOI: 10.1093/rb/rbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.
Collapse
Affiliation(s)
- Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Jialin Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hao Xu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
17
|
Ding P, Gao C, Zhou J, Mei J, Li G, Liu D, Li H, Liao P, Yao M, Wang B, Lu Y, Peng X, Jiang C, Yin J, Huang Y, Zheng M, Gao Y, Zhang C, Gao J. Mitochondria from osteolineage cells regulate myeloid cell-mediated bone resorption. Nat Commun 2024; 15:5094. [PMID: 38877020 PMCID: PMC11178781 DOI: 10.1038/s41467-024-49159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Interactions between osteolineage cells and myeloid cells play important roles in maintaining skeletal homeostasis. Herein, we find that osteolineage cells transfer mitochondria to myeloid cells. Impairment of the transfer of mitochondria by deleting MIRO1 in osteolineage cells leads to increased myeloid cell commitment toward osteoclastic lineage cells and promotes bone resorption. In detail, impaired mitochondrial transfer from osteolineage cells alters glutathione metabolism and protects osteoclastic lineage cells from ferroptosis, thus promoting osteoclast activities. Furthermore, mitochondrial transfer from osteolineage cells to myeloid cells is involved in the regulation of glucocorticoid-induced osteoporosis, and glutathione depletion alleviates the progression of glucocorticoid-induced osteoporosis. These findings reveal an unappreciated mechanism underlying the interaction between osteolineage cells and myeloid cells to regulate skeletal metabolic homeostasis and provide insights into glucocorticoid-induced osteoporosis progression.
Collapse
Affiliation(s)
- Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Chenyi Jiang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Jimin Yin
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Translational Research, Medical School, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
18
|
D’Amato G, Brescia V, Fontana A, Natale MP, Lovero R, Varraso L, Di Serio F, Simonetti S, Muggeo P, Faienza MF. Biomarkers and Biochemical Indicators to Evaluate Bone Metabolism in Preterm Neonates. Biomedicines 2024; 12:1271. [PMID: 38927478 PMCID: PMC11201126 DOI: 10.3390/biomedicines12061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of the present study was to evaluate the concentrations of some bone turnover markers in preterm neonates with uncomplicated clinical course in the first month of life. Samples from 13 preterm neonates were collected at three different times: at birth (T0) from umbilical cord blood (UCB); and at 15 (T1) and 30 (T2) days of life from peripheral blood (PB). The concentrations of calcium (Ca), phosphate (P), total alkaline phosphatase (ALP), Collagen Type 1 Amino-terminal Propeptide (PINP), osteocalcin (OC), Collagen Type 1 Carboxyl-Terminal Telopeptide (CTX) and Leptin were assessed. A statistically significant difference for ALP concentration at birth versus T1 and T2 was found. An evident increase in the median concentrations of CTX, OC and PINP from T0 to T2 were observed. A significant difference was also found for Leptin concentration at T0 compared to T1. In preterm infants, in the absence of acute or chronic medical conditions and without risk factors for metabolic bone disease (MBD) of prematurity, there is a significant increase in bone turnover markers during the first month of life. The knowledge of the variations in these markers in the first weeks of life, integrated by the variations in the biochemical indicators of bone metabolism, could help in recognizing any conditions at risk of developing bone diseases.
Collapse
Affiliation(s)
- Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy; (G.D.); (M.P.N.)
| | - Vincenzo Brescia
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (A.F.); (R.L.); (L.V.); (F.D.S.)
| | - Antonietta Fontana
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (A.F.); (R.L.); (L.V.); (F.D.S.)
| | - Maria Pia Natale
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy; (G.D.); (M.P.N.)
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (A.F.); (R.L.); (L.V.); (F.D.S.)
| | - Lucia Varraso
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (A.F.); (R.L.); (L.V.); (F.D.S.)
| | - Francesca Di Serio
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (A.F.); (R.L.); (L.V.); (F.D.S.)
| | - Simonetta Simonetti
- Clinical Pathology and Neonatal Screening, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy;
| | - Paola Muggeo
- Department of Pediatric Oncology and Hematology, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy;
| |
Collapse
|
19
|
Li S, Liu G, Hu S. Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology. Front Immunol 2024; 15:1396122. [PMID: 38817601 PMCID: PMC11137183 DOI: 10.3389/fimmu.2024.1396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
As the world population ages, osteoporosis, the most common disease of bone metabolism, affects more than 200 million people worldwide. The etiology is an imbalance in bone remodeling process resulting in more significant bone resorption than bone remodeling. With the advent of the osteoimmunology field, the immune system's role in skeletal pathologies is gradually being discovered. The cytokine interferon-gamma (IFN-γ), a member of the interferon family, is an important factor in the etiology and treatment of osteoporosis because it mediates bone remodeling. This review starts with bone remodeling process and includes the cellular and key signaling pathways of bone remodeling. The effects of IFN-γ on osteoblasts, osteoclasts, and bone mass are discussed separately, while the overall effects of IFN-γ on primary and secondary osteoporosis are summarized. The net effect of IFN-γ on bone appears to be highly dependent on the environment, dose, concentration, and stage of cellular differentiation. This review focuses on the mechanisms of bone remodeling and bone immunology, with a comprehensive discussion of the relationship between IFN-γ and osteoporosis. Finding the paradoxical balance of IFN-γ in bone immunology and exploring the potential of its clinical application provide new ideas for the clinical treatment of osteoporosis and drug development.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Taizhou University Affiliated Wenling Hospital, Wenling, Zhejiang, China
| |
Collapse
|
20
|
Liang W, Wei T, Hu L, Chen M, Tong L, Zhou W, Duan X, Zhao X, Zhou W, Jiang Q, Xiao G, Zou W, Chen D, Zou Z, Bai X. An integrated multi-omics analysis reveals osteokines involved in global regulation. Cell Metab 2024; 36:1144-1163.e7. [PMID: 38574738 DOI: 10.1016/j.cmet.2024.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Bone secretory proteins, termed osteokines, regulate bone metabolism and whole-body homeostasis. However, fundamental questions as to what the bona fide osteokines and their cellular sources are and how they are regulated remain unclear. In this study, we analyzed bone and extraskeletal tissues, osteoblast (OB) conditioned media, bone marrow supernatant (BMS), and serum, for basal osteokines and those responsive to aging and mechanical loading/unloading. We identified 375 candidate osteokines and their changes in response to aging and mechanical dynamics by integrating data from RNA-seq, scRNA-seq, and proteomic approaches. Furthermore, we analyzed their cellular sources in the bone and inter-organ communication facilitated by them (bone-brain, liver, and aorta). Notably, we discovered that senescent OBs secrete fatty-acid-binding protein 3 to propagate senescence toward vascular smooth muscle cells (VSMCs). Taken together, we identified previously unknown candidate osteokines and established a dynamic regulatory network among them, thus providing valuable resources to further investigate their systemic roles.
Collapse
Affiliation(s)
- Wenquan Liang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tiantian Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Le Hu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meijun Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liping Tong
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wu Zhou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingwei Duan
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
21
|
Jin X, Sun X, Ma X, Qin Z, Gao X, Kang X, Li H, Sun H. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1. Cell Mol Life Sci 2024; 81:204. [PMID: 38700532 PMCID: PMC11072260 DOI: 10.1007/s00018-023-05043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 05/24/2024]
Abstract
The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xulei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Ma
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zixuan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongzhi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
23
|
Wang ZX, Lin X, Cao J, Liu YW, Luo ZW, Rao SS, Wang Q, Wang YY, Chen CY, Zhu GQ, Li FXZ, Tan YJ, Hu Y, Yin H, Li YY, He ZH, Liu ZZ, Yuan LQ, Zhou Y, Wang ZG, Xie H. Young osteocyte-derived extracellular vesicles facilitate osteogenesis by transferring tropomyosin-1. J Nanobiotechnology 2024; 22:208. [PMID: 38664789 PMCID: PMC11046877 DOI: 10.1186/s12951-024-02367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Xiao Lin
- The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, Zhejiang, China
| | - Yi-Yi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi-Juan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Yin Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - You-You Li
- Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
| | - Zheng-Zhao Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong Zhou
- Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zheng-Guang Wang
- Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Angmedicine, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Jahn D, Knapstein PR, Otto E, Köhli P, Sevecke J, Graef F, Graffmann C, Fuchs M, Jiang S, Rickert M, Erdmann C, Appelt J, Revend L, Küttner Q, Witte J, Rahmani A, Duda G, Xie W, Donat A, Schinke T, Ivanov A, Tchouto MN, Beule D, Frosch KH, Baranowsky A, Tsitsilonis S, Keller J. Increased β 2-adrenergic signaling promotes fracture healing through callus neovascularization in mice. Sci Transl Med 2024; 16:eadk9129. [PMID: 38630849 DOI: 10.1126/scitranslmed.adk9129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the β2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.
Collapse
Affiliation(s)
- Denise Jahn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Paul Richard Knapstein
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Ellen Otto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Paul Köhli
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 13353 Berlin, Germany
| | - Jan Sevecke
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Frank Graef
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 13353 Berlin, Germany
| | - Christine Graffmann
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Melanie Fuchs
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Shan Jiang
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Mayla Rickert
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Cordula Erdmann
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Jessika Appelt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Lawik Revend
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
| | - Quin Küttner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
| | - Jason Witte
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Georg Duda
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Weixin Xie
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Antonia Donat
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Thorsten Schinke
- University Medical Center Hamburg-Eppendorf, Department of Osteology and Biomechanics, 20251 Hamburg, Germany
| | - Andranik Ivanov
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Mireille Ngokingha Tchouto
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karl-Heinz Frosch
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Anke Baranowsky
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Serafeim Tsitsilonis
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| |
Collapse
|
25
|
Wang T, Chen X, Yang G, Shi X. Selection of Leptin Surrogates by a General Phenotypic Screening Method for Receptor Agonists. Biomolecules 2024; 14:457. [PMID: 38672473 PMCID: PMC11047824 DOI: 10.3390/biom14040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
There is a high demand for agonist biomolecules such as cytokine surrogates in both biological and medicinal research fields. These are typically sourced through natural ligand engineering or affinity-based screening, followed by individual functional validation. However, efficient screening methods for identifying rare hits within immense libraries are very limited. In this research article, we introduce a phenotypic screening method utilizing biological receptor activation-dependent cell survival (BRADS). This method offers a high-throughput, low-background, and cost-effective approach that can be implemented in virtually any biochemical laboratory setting. As a proof-of-concept, we successfully identified a surrogate for human leptin following a two-week cell culture process, without the need for specialized high-throughput equipment or reagents. This surrogate effectively emulates the activity of native human leptin in cell validation assays. Our findings not only underscore the effectiveness of BRADS but also suggest its potential applicability to a broad range of biological receptors, including Notch and GPCRs.
Collapse
Affiliation(s)
- Tao Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xixi Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (T.W.); (X.C.); (G.Y.)
| |
Collapse
|
26
|
Angelozzi M, Karvande A, Lefebvre V. SOXC are critical regulators of adult bone mass. Nat Commun 2024; 15:2956. [PMID: 38580651 PMCID: PMC10997656 DOI: 10.1038/s41467-024-47413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.
Collapse
Affiliation(s)
- Marco Angelozzi
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
28
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
29
|
Yang T, Liu S, Ma H, Lai H, Wang C, Ni K, Lu Y, Li W, Hu X, Zhou Z, Lou C, He D. Carnitine functions as an enhancer of NRF2 to inhibit osteoclastogenesis via regulating macrophage polarization in osteoporosis. Free Radic Biol Med 2024; 213:174-189. [PMID: 38246515 DOI: 10.1016/j.freeradbiomed.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tao Yang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Shijie Liu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Haiwei Ma
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Hehuan Lai
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chengdi Wang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Kainan Ni
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Weiqing Li
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Xingyu Hu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Zhiguo Zhou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China
| | - Chao Lou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| | - Dengwei He
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, 323000, PR China.
| |
Collapse
|
30
|
Hu Y, Li X, Chen X, Wang S, Cao L, Zhang H, Zhang Y, Wang Z, Yu B, Tong P, Zhou Q, Niu F, Yang W, Zhang W, Chen S, Yang Q, Shen T, Zhang P, Zhang Y, Miao J, Lin H, Wang J, Wang L, Ma X, Liu H, Stambler I, Bai L, Liu H, Jing Y, Liu G, Wang X, Wang D, Shi Z, Zhao RC, Su J. Expert consensus on Prospective Precision Diagnosis and Treatment Strategies for Osteoporotic Fractures. Aging Dis 2024; 16:AD.2023.1223. [PMID: 38502589 PMCID: PMC11745450 DOI: 10.14336/ad.2023.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/23/2023] [Indexed: 03/21/2024] Open
Abstract
Osteoporotic fractures are the most severe complications of osteoporosis, characterized by poor bone quality, difficult realignment and fixation, slow fracture healing, and a high risk of recurrence. Clinically managing these fractures is relatively challenging, and in the context of rapid aging, they pose significant social hazards. The rapid advancement of disciplines such as biophysics and biochemistry brings new opportunities for future medical diagnosis and treatment. However, there has been limited attention to precision diagnosis and treatment strategies for osteoporotic fractures both domestically and internationally. In response to this, the Chinese Medical Association Orthopaedic Branch Youth Osteoporosis Group, Chinese Geriatrics Society Geriatric Orthopaedics Committee, Chinese Medical Doctor Association Orthopaedic Physicians Branch Youth Committee Osteoporosis Group, and Shanghai Association of Integrated Traditional Chinese and Western Medicine Osteoporosis Professional Committee have collaborated to develop this consensus. It aims to elucidate emerging technologies that may play a pivotal role in both diagnosis and treatment, advocating for clinicians to embrace interdisciplinary approaches and incorporate these new technologies into their practice. Ultimately, the goal is to improve the prognosis and quality of life for elderly patients with osteoporotic fractures.
Collapse
Affiliation(s)
- Yan Hu
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaoqun Li
- First Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiao Chen
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Liehu Cao
- Luodian Hospital, Baoshan District, Shanghai, China.
| | - Hao Zhang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yunfei Zhang
- Tangdu Hospital Air Force Medical University, Xi’an, China.
| | - Zhiwei Wang
- Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Baoqing Yu
- Shanghai Pudong New Area People’s Hospital, Shanghai, China.
| | - Peijian Tong
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China.
| | - Qiang Zhou
- Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Feng Niu
- First Bethune Hospital of Jilin University, Changchun, China.
| | - Weiguo Yang
- HKU Li Ka Shing Faculty of Medicine, Hongkong, China.
| | - Wencai Zhang
- First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Shijie Chen
- Third Xiangya Hospital of Central South University, Changsha, China.
| | | | - Tao Shen
- Shengjing Hospital of Chinese Medical University, Shenyang, China.
| | - Peng Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yong Zhang
- Tangdu Hospital Air Force Medical University, Xi’an, China.
| | - Jun Miao
- Tianjin Hospital, Tianjin, China.
| | | | - Jinwu Wang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Wang
- Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xin Ma
- Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Hongjian Liu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ilia Stambler
- Department of Science, Technology and Society, Bar Ilan University, Ramat Gan, Israel.
- International Society on Aging and Disease, Bryan, TX, USA.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| | - Guohui Liu
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xinglong Wang
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, USA.
| | - Dongliang Wang
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhongmin Shi
- Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China.
| | - Robert Chunhua Zhao
- International Society on Aging and Disease, Bryan, TX, USA.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Jiacan Su
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
31
|
Guo Q, Zhao H, Dong Z, Cheng H, Zhu M, Fang Z. Inhibiting Glutaminase Exerts Opposite Effects on Ovariectomy-Induced and Age-Related Reductions in Murine Bone Mass. Aging Dis 2024; 16:AD.2024.0201. [PMID: 38377021 PMCID: PMC11745427 DOI: 10.14336/ad.2024.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Recent studies have provided links between glutamine metabolism and bone remodeling, but little is known about its role in primary osteoporosis progression. We aimed to determine the effects of inhibiting glutaminase (GLS) on two types of primary osteoporosis and elucidate the related metabolism. To address this issue, age-related and ovariectomy (OVX)-induced bone loss mouse models were used to study the in vivo effects of CB-839, a potent and selective GLS inhibitor, on bone mass and bone turnover. We also studied the metabolic profile changes related with aging and GLS inhibition in primary bone marrow stromal cells (BMSC) and that related with OVX and GLS inhibition in primary bone marrow-derived monocytes (BMM). Besides, we studied the possible metabolic processes mediating GLS blockade effects during aging-impaired osteogenic differentiation and RANKL-induced osteoclast differentiation respectively via in vitro rescue experiments. We found that inhibiting GLS via CB-839 prevented OVX-induced bone loss while aggravated age-related bone loss. Further investigations showed that effects of CB-839 treatment on bone mass were associated with alterations of bone turnover. Moreover, CB-839 treatment altered metabolic profile in different orientations between BMSC of aged mice and BMM of ovariectomized mice. In addition, rescue experiments revealed that different metabolic processes mediated glutaminase blockade effects between aging-impaired osteogenic differentiation and RANKL-induced osteoclast differentiation. Taken together, our data demonstrated the different outcomes caused by CB-839 treatment between two types of osteoporosis in mice, which were tightly connected to the suppressive effects on both aging-impaired osteoblastogenesis and OVX-enhanced osteoclastogenesis mediated by different metabolic processes downstream of glutaminolysis.
Collapse
Affiliation(s)
- Qian Guo
- Correspondence should be addressed to: Dr. Qian Guo (E-mail: ) and Dr. Zhong Fang (E-mail: .), Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | | | | | - Haozhe Cheng
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopedic Surgery and Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
33
|
Li LJ, Zhong XX, Tan GZ, Song MX, Li P, Liu ZX, Xiong SC, Yang DQ, Liang ZJ. Investigation of causal relationships between cortical structure and osteoporosis using two-sample Mendelian randomization. Cereb Cortex 2024; 34:bhad529. [PMID: 38216542 DOI: 10.1093/cercor/bhad529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (β = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (β = -0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain-bone interaction.
Collapse
Affiliation(s)
- Long-Jun Li
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xian-Xing Zhong
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, PR China
| | - Guo-Zhi Tan
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ming-Xi Song
- Department of Education and Research, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, PR China
| | - Pian Li
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhen-Xin Liu
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Si-Cheng Xiong
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Da-Qi Yang
- The Third Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zu-Jian Liang
- Department of Preventive Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, PR China
| |
Collapse
|
34
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
35
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
36
|
Florence GE, Oosthuyse T, Bosch AN. Skeletal site-specific effects of jump training on bone mineral density in adults: a systematic review and meta-analysis. J Sports Sci 2023; 41:2063-2076. [PMID: 38305252 DOI: 10.1080/02640414.2024.2312052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Preserving or preventing declines in bone mineral density (BMD) is imperative. As jumping is a high-impact bone-loading action, this meta-analysis evaluated the efficacy of jump training to improve BMD and bone turnover relative to non-jumping controls in men and women > 18 years, following Preferred Reported Items for Systematic Reviews and Meta-Analysis guidelines. PubMed and COCHRANE Library databases were searched until February 2022. Fifteen articles (19 jumping-trials) met the predetermined search criteria. Eighteen trials were included for BMD data (n = 666 participants). There was a significant small-moderate effect of jumping on femoral neck BMD (%mean difference: 95%CI, +1.50%: 0.83%; 2.17%, p < 0.0001), that remained significant after sub-analysis by age for both younger (+1.81%: 0.98%; 2.65%) and older adults (+1.03%: 0.02%; 2.03%). BMD of total hip (+1.26%: 0.56%; 1.96% vs + 0.06%: -0.96%; 1.08%), and trochanter (+0.84%: 0.20%; 1.48% vs -0.16%: -1.08%; 0.76%) increased significantly with jump training only in younger adults and non-significantly at the lumbar spine (+0.84%: -0.02%; 1.7% vs -0.09%: -0.96%; 0.77%) only in younger but not older adults, respectively. The BMD response to jump training appears to be site-specific, with the highest sensitivity at the femoral neck. No dose-response effect suggests moderate certainty of a gain in femoral neck BMD when performing the median jump-load of 50 jumps four times weekly.
Collapse
Affiliation(s)
- Gabriella E Florence
- Institute of Sport and Exercise Medicine, Division of Orthopaedic Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Tanja Oosthuyse
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Health through Physical Activity, Lifestyle and Sport Research Centre, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew N Bosch
- Health through Physical Activity, Lifestyle and Sport Research Centre, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
37
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
38
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
39
|
Williamson A, da Silva A, do Carmo JM, Le Maitre C, Hall JE, Aberdein N. Impact of leptin deficiency on male tibia and vertebral body 3D bone architecture independent of changes in body weight. Physiol Rep 2023; 11:10.14814/phy2.15832. [PMID: 37786973 PMCID: PMC10546263 DOI: 10.14814/phy2.15832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Leptin an adipokine with potent effects on energy balance and body weight plays an important role in defining bone architecture in growing mammals. However, major changes in body weight can also influence morphology of trabecular and cortical bone. Therefore, we examined the impact of leptin deficiency on tibia and vertebral body 3D bone architecture independent of changes in body weight. Furthermore, advances in computational 3D image analysis suggest that average morphological values may mask regional specific differences in trabecular bone thickness. The study utilized leptin-deficient Ob/Ob mice (n = 8) weight-paired to C57BL/6 (C57) control mice (n = 8) which were split into either lean or obese groups for 24 ± 2 weeks. Whole tibias and L3 vertebrae were fixed before high resolution microcomputed tomography (μCT) scanning was performed. Leptin deficiency independent of body weight reduced tibia cortical bone volume, trabecular bone volume/tissue volume, number, and mineral density. Mean tibia trabecular thickness showed no significant differences between all groups; however, significant changes in trabecular thickness were found when analyzed by region. This study demonstrates that leptin deficiency significantly impacts tibia and vertebral body trabecular and cortical bone 3D architecture independent of changes in body weight.
Collapse
Affiliation(s)
- Alexander Williamson
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - Alexandre da Silva
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jussara M. do Carmo
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Christine L. Le Maitre
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - John E. Hall
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nicola Aberdein
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| |
Collapse
|
40
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
41
|
Liu T, Melkus G, Ramsay T, Sheikh A, Laneuville O, Trudel G. Bone marrow adiposity modulation after long duration spaceflight in astronauts. Nat Commun 2023; 14:4799. [PMID: 37558686 PMCID: PMC10412640 DOI: 10.1038/s41467-023-40572-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Space travel requires metabolic adaptations from multiple systems. While vital to bone and blood production, human bone marrow adipose (BMA) tissue modulation in space is unknown. Here we show significant downregulation of the lumbar vertebrae BMA in 14 astronauts, 41 days after landing from six months' missions on the International Space Station. Spectral analyses indicated depletion of marrow adipose reserves. We then demonstrate enhanced erythropoiesis temporally related to low BMA. Next, we demonstrated systemic and then, local lumbar vertebrae bone anabolism temporally related to low BMA. These support the hypothesis that BMA is a preferential local energy source supplying the hypermetabolic bone marrow postflight, leading to its downregulation. A late postflight upregulation abolished the lower BMA of female astronauts and BMA modulation amplitude was higher in younger astronauts. The study design in the extreme environment of space can limit these conclusions. BMA modulation in astronauts can help explain observations on Earth.
Collapse
Affiliation(s)
- Tammy Liu
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8M2, Canada
| | - Gerd Melkus
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON, K1H 8M2, Canada
| | - Tim Ramsay
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, K1H 8M2, Canada
| | - Adnan Sheikh
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON, K1H 8M2, Canada
| | - Odette Laneuville
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8M2, Canada.
- Department of Medicine, Division of Physical Medicine and Rehabilitation, The Ottawa Hospital, Ottawa, ON, K1H 8M2, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M2, Canada.
| |
Collapse
|
42
|
Khosla S. Evidence in Humans for Bone as an Endocrine Organ Regulating Energy Metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 31:100471. [PMID: 37576432 PMCID: PMC10417886 DOI: 10.1016/j.coemr.2023.100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
There is increasing evidence from animal models that bone, in addition to its traditional function of providing structural support for the organism, has a rich network of interactions with multiple other tissues. This perspective focuses on evidence from human studies demonstrating that bone is an endocrine organ regulating energy metabolism, with the specific examples being osteocalcin, lipocalin 2, RANKL, and sclerostin. Conversely, animal studies have also demonstrated that a key hormone regulating energy metabolism, leptin, regulates bone metabolism via the sympathetic nervous system. Studies in humans have established a role for the sympathetic nervous system in regulating bone turnover; indeed, the potential therapeutic benefit of targeting this pathway in humans to prevent postmenopausal bone loss is currently being evaluated.
Collapse
Affiliation(s)
- Sundeep Khosla
- Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Jahn D, Knapstein PR, Otto E, Köhli P, Sevecke J, Graef F, Graffmann C, Fuchs M, Jiang S, Rickert M, Erdmann C, Appelt J, Revend L, Küttner Q, Witte J, Rahmani A, Duda G, Xie W, Donat A, Schinke T, Ivanov A, Tchouto MN, Beule D, Frosch KH, Baranowsky A, Tsitsilonis S, Keller J. Increased beta2-adrenergic signaling is a targetable stimulus essential for bone healing by promoting callus neovascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548550. [PMID: 37502964 PMCID: PMC10369985 DOI: 10.1101/2023.07.14.548550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Traumatic brain injury (TBI) is associated with a hyperadrenergic state and paradoxically causes systemic bone loss while accelerating fracture healing. Here, we identify the beta2-adrenergic receptor (Adrb2) as a central mediator of these skeletal manifestations. While the negative effects of TBI on the unfractured skeleton can be explained by the established impact of Adrb2 signaling on bone formation, Adrb2 promotes neovascularization of the fracture callus under conditions of high sympathetic tone, including TBI and advanced age. Mechanistically, norepinephrine stimulates the expression of Vegfa and Cgrp primarily in periosteal cells via Adrb2, both of which synergistically promote the formation of osteogenic type-H vessels in the fracture callus. Accordingly, the beneficial effect of TBI on bone repair is abolished in mice lacking Adrb2 or Cgrp, and aged Adrb2-deficient mice without TBI develop fracture nonunions despite high bone formation in uninjured bone. Pharmacologically, the Adrb2 antagonist propranolol impairs, and the agonist formoterol promotes fracture healing in aged mice by regulating callus neovascularization. Clinically, intravenous beta-adrenergic sympathomimetics are associated with improved callus formation in trauma patients with long bone fractures. Thus, Adrb2 is a novel target for promoting bone healing, and widely used beta-blockers may cause fracture nonunion under conditions of increased sympathetic tone. Abstract Figure
Collapse
|
44
|
Fu Y, Batushansky A, Kinter M, Huebner JL, Kraus VB, Griffin TM. Effects of Leptin and Body Weight on Inflammation and Knee Osteoarthritis Phenotypes in Female Rats. JBMR Plus 2023; 7:e10754. [PMID: 37457883 PMCID: PMC10339097 DOI: 10.1002/jbm4.10754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 07/18/2023] Open
Abstract
Leptin is a proinflammatory adipokine that contributes to obesity-associated osteoarthritis (OA), especially in women. However, the extent to which leptin causes knee OA separate from the effect of increased body weight is not clear. We hypothesized that leptin is necessary to induce knee OA in obese female rats but not sufficient to induce knee OA in lean rats lacking systemic metabolic inflammation. The effect of obesity without leptin signaling was modeled by comparing female lean Zucker rats to pair fed obese Zucker rats, which possess mutant fa alleles of the leptin receptor gene. The effect of leptin without obesity was modeled in female F344BN F1 hybrid rats by systemically administering recombinant rat leptin versus saline for 23 weeks via osmotic pumps. Primary OA outcomes included cartilage histopathology and subchondral bone micro-computed tomography. Secondary outcomes included targeted cartilage proteomics, serum inflammation, and synovial fluid inflammation following an acute intra-articular challenge with interleukin-1β (IL-1β). Compared to lean Zucker rats, obese Zucker rats developed more severe tibial osteophytes and focal cartilage lesions in the medial tibial plateau, with modest changes in proximal tibial epiphysis trabecular bone structure. In contrast, exogenous leptin treatment, which increased plasma leptin sixfold without altering body weight, caused mild generalized cartilage fibrillation and reduced Safranin O staining compared to vehicle-treated animals. Leptin also significantly increased subchondral and trabecular bone volume and bone mineral density in the proximal tibia. Cartilage metabolic and antioxidant enzyme protein levels were substantially elevated with leptin deficiency and minimally suppressed with leptin treatment. In contrast, leptin treatment induced greater changes in systemic and local inflammatory mediators compared to leptin receptor deficiency, including reduced serum IL-6 and increased synovial fluid IL-1β. In conclusion, rat models that separately elevate leptin or body weight develop distinct OA-associated phenotypes, revealing how obesity increases OA pathology through both leptin-dependent and independent pathways. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yao Fu
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Albert Batushansky
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael Kinter
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma Center for GeroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Janet L. Huebner
- Duke Molecular Physiology InstituteDuke University, School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
| | - Virginia B. Kraus
- Duke Molecular Physiology InstituteDuke University, School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
- Division of Rheumatology, Department of MedicineDuke University, School of Medicine, Duke UniversityDurhamNorth CarolinaUSA
| | - Timothy M. Griffin
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma Center for GeroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Veterans Affairs Medical CenterOklahoma CityOklahomaUSA
| |
Collapse
|
45
|
Delsmann J, Schmidt B, Oheim R, Amling M, Rolvien T, Siebert U. Bone mineral density and microarchitecture change during skeletal growth in harbor seals (Phoca vitulina) from the German coast. Sci Rep 2023; 13:7196. [PMID: 37137898 PMCID: PMC10156659 DOI: 10.1038/s41598-023-33911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Across species, the skeletal system shares mutual functions, including the protection of inner organs, structural basis for locomotion, and acting as an endocrine organ, thus being of pivotal importance for survival. However, insights into skeletal characteristics of marine mammals are limited, especially in the growing skeleton. Harbor seals (Phoca vitulina) are common marine mammals in the North and Baltic Seas and are suitable indicators of the condition of their ecosystem. Here, we analyzed whole-body areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and lumbar vertebrae by high-resolution peripheral quantitative computed tomography (HR-pQCT) in neonate, juvenile, and adult harbor seals. Along skeletal growth, an increase in two-dimensional aBMD by DXA was paralleled by three-dimensional volumetric BMD by HR-pQCT, which could be attributed to an increasing trabecular thickness while trabecular number remained constant. Strong associations were observed between body dimensions (weight and length) and aBMD and trabecular microarchitecture (R2 = 0.71-0.92, all p < 0.001). To validate the results of the DXA measurement (i.e., the standard method used worldwide to diagnose osteoporosis in humans), we performed linear regression analyses with the three-dimensional measurements from the HR-pQCT method, which revealed strong associations between the two imaging techniques (e.g., aBMD and Tb.Th: R2 = 0.96, p < 0.0001). Taken together, our findings highlight the importance of systematic skeletal investigations in marine mammals during growth, illustrating the high accuracy of DXA in this context. Regardless of the limited sample size, the observed trabecular thickening is likely to represent a distinct pattern of vertebral bone maturation. As differences in nutritional status, among other factors, are likely to affect skeletal health, it appears essential to routinely perform skeletal assessments in marine mammals. Placing the results in the context of environmental exposures may allow effective measures to protect their populations.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25746, Büsum, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25746, Büsum, Germany.
| |
Collapse
|
46
|
Rozentryt PJ, Niedziela JT, Gąsior M. Bones in heart failure: missing piece of the body wasting puzzle. Eur J Heart Fail 2023; 25:724-726. [PMID: 36991309 DOI: 10.1002/ejhf.2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Affiliation(s)
- Piotr J Rozentryt
- Department of Chronic Diseases and Civilisation-Related Threads, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Bytom, Poland
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Centre for Heart Disease, Zabrze, Poland
| | - Jacek T Niedziela
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Centre for Heart Disease, Zabrze, Poland
| | - Mariusz Gąsior
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Centre for Heart Disease, Zabrze, Poland
| |
Collapse
|
47
|
Villanueva-Carmona T, Cedó L, Madeira A, Ceperuelo-Mallafré V, Rodríguez-Peña MM, Núñez-Roa C, Maymó-Masip E, Repollés-de-Dalmau M, Badia J, Keiran N, Mirasierra M, Pimenta-Lopes C, Sabadell-Basallote J, Bosch R, Caubet L, Escolà-Gil JC, Fernández-Real JM, Vilarrasa N, Ventura F, Vallejo M, Vendrell J, Fernández-Veledo S. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab 2023; 35:601-619.e10. [PMID: 36977414 DOI: 10.1016/j.cmet.2023.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Collapse
Affiliation(s)
- Teresa Villanueva-Carmona
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lídia Cedó
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Madeira
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - M-Mar Rodríguez-Peña
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria Repollés-de-Dalmau
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud, Hospital Universitari Sant Joan de Reus, IISPV, Reus 43204, Spain
| | - Noelia Keiran
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mercedes Mirasierra
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Joan Sabadell-Basallote
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ramón Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta, IISPV, Tortosa 43500, Spain
| | - Laura Caubet
- General and Digestive Surgery Service, Hospital Sant Pau i Santa Tecla, Institut d'Investigació Sanitària Pere Virgili, Tarragona 43003, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona 08041, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Salt 17190, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona 17004, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Bellvitge - IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mario Vallejo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
48
|
Nagasaki K, Nagasaki A, Taylor JM, Kear BD, Ma Y, Somerman MJ, Gavrilova O. The RGD region of bone sialoprotein affects metabolic activity in mice. FRONTIERS IN DENTAL MEDICINE 2023; 4:1124084. [PMID: 39916931 PMCID: PMC11797800 DOI: 10.3389/fdmed.2023.1124084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/23/2023] [Indexed: 02/09/2025] Open
Abstract
Introduction Bone sialoprotein (BSP) is a key regulator of mineralized tissue formation. Previously, we generated BSP-KAE knock-in mice (KAEKI mice) by substituting a non-function KAE (lysine-alanine-glutamic acid) for the integrin-binding RGD (arginine-glycine-aspartic acid) sequence and reported a vital role of the BSP-RGD motif in modulating the periodontal ligament (PDL). Specifically, a histological disorganization of the PDL was noted, resulting in a weakened function of the PDL as measured by dynamic mechanical analysis. Intriguingly, also noted was a weight gain as KAEKI mice aged. While several proteins associated with mineralized tissues are reported to affect energy metabolism, the metabolic role of the BSP-RGD region has yet to be elucidated. Here we focus on defining the role of the BSP-RGD region in metabolic activity. Methods Body weight, body composition, and caloric intake were measured in wild type (WT) and KAEKI mice. Energy expenditure was estimated using energy balance technique. Epididymal fat, interscapular fat, and liver were harvested for histological analysis. The systemic metabolic phenotype was assessed by sera analyses, insulin tolerance and glucose tolerance tests. Results The results showed that KAEKI mice developed mild obesity starting from 13 weeks postnatal (wpn). The increase in body weight correlated with an increase in lean mass and visceral adiposity. Histological examination revealed adipocyte hypertrophy in white epididymal fat and interscapular brown fat in KAEKI vs. WT mice at 17 wpn. Metabolic profiling indicated that KAEKI mice had dyslipidemia and hyperleptinemia but no significant changes in glucose metabolism. Energy balance analyses revealed that hyperphagia preceded weight gain in KAEKI mice. Conclusion These data suggest that the RGD region of BSP affects energy metabolism by regulating food intake, with further studies warranted to uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Karin Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Atsuhiro Nagasaki
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jocelyn M. Taylor
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bernice D. Kear
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yinyan Ma
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Martha J. Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
49
|
The Influence of Adipokines on Radiographic Damage in Inflammatory Rheumatic Diseases. Biomedicines 2023; 11:biomedicines11020536. [PMID: 36831072 PMCID: PMC9953013 DOI: 10.3390/biomedicines11020536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Inflammatory rheumatic diseases (IRDs) are complex immune-mediated diseases that are characterized by chronic inflammation of the joints. Rheumatoid arthritis (RA) and spondyloarthritis (SpA), including axial SpA (ax SpA) and psoriatic arthritis (PsA), are the most common forms of IRD. Both RA and ax SpA are characterized by a chronic course with progressive structural modifications, namely, cartilage damage and bone erosions in RA and osteoproliferative changes with spinal ossifications in ax SpA. The adipose tissue is involved in the pathophysiology of IRDs via the release of several proteins, namely, adipokines. Several adipokines with pro-inflammatory effects have been identified, such as leptin, adiponectin, visfatin and resistin. In this review, we discuss the role that adipokines may play in the structural modifications of the peripheral joints and/or axial skeleton. In RA, the role of leptin in structural damage remains controversial, while adiponectin and its high-molecular-weight isoform are known to have an influence on the development of bone erosions and radiographic progression. Resistin also appears to be a potent detrimental adipokine for the joints in RA. In ax SpA, visfatin seems to be an attractive candidate for radiographic progression, while leptin and adiponectin have negative effects on radiographic progression.
Collapse
|
50
|
Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci 2023; 24:ijms24021422. [PMID: 36674935 PMCID: PMC9860943 DOI: 10.3390/ijms24021422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Excess body weight is frequently associated with low-grade inflammation. Evidence indicates a relationship between obesity and cancer, as well as with other diseases, such as diabetes and non-alcoholic fatty liver disease, in which inflammation and the actions of various adipokines play a role in the pathological mechanisms involved in these disorders. Leptin is mainly produced by adipose tissue in proportion to fat stores, but it is also synthesized in other organs, where leptin receptors are expressed. This hormone performs numerous actions in the brain, mainly related to the control of energy homeostasis. It is also involved in neurogenesis and neuroprotection, and central leptin resistance is related to some neurological disorders, e.g., Parkinson's and Alzheimer's diseases. In peripheral tissues, leptin is implicated in the regulation of metabolism, as well as of bone density and muscle mass. All these actions can be affected by changes in leptin levels and the mechanisms associated with resistance to this hormone. This review will present recent advances in the molecular mechanisms of leptin action and their underlying roles in pathological situations, which may be of interest for revealing new approaches for the treatment of diseases where the actions of this adipokine might be compromised.
Collapse
|