1
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
2
|
Wang M, Guo Y, Liu Y, Ma S, Zhang J, Li Y, Liu H, Lu L. UBXD8 promotes lung cancer progression and activates the HIF-1α pathway. Biochem Pharmacol 2025:117078. [PMID: 40562127 DOI: 10.1016/j.bcp.2025.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/14/2025] [Accepted: 06/23/2025] [Indexed: 06/28/2025]
Abstract
UBXD8, a ubiquitin regulatory X domain-containing protein, higher expression of UBXD8 was associated with advanced tumor stages and reduced survival rates. In this study, we found that knockdown of UBXD8 resulted in a significant decline in non-small cell lung cancer (NSCLC) cell proliferation and migratory capacity in vitro, as well as a reduction in tumor growth within xenograft models, suggesting its potential as a prognostic marker. Moreover, hypoxia-inducible factor (HIF) signaling orchestrates cellular responses to hypoxia and plays a vital role in tumorigenesis. We identify UBXD8 as a positive modulator of HIF signaling. UBXD8 contributed to the stabilization and increased expression of HIF-1α protein, leading to the upregulation of its downstream target genes. Furthermore, metabolic analysis indicated that the absence of UBXD8 elevated levels of unsaturated fatty acids, underscoring its function in lipid metabolic processes. Collectively, these findings revealed a significant role for UBXD8 in tumor development and HIF-1α regulation.
Collapse
Affiliation(s)
- Miaomiao Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yingsen Guo
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shanpeng Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jingfang Zhang
- Department of Pathology, Shandong First Medical University, Jinan, Shandong 250062, China
| | - Yun Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
3
|
Liu X, Li J, Du R, Qiao Q, Liu S, Bo Z, Chen R, Dong Y, Xiao X, Pan Y, Jiang H, Wang R, Wang Y, Yue D. C1QBP Promotes Prostate Cancer Progression and Lipid Accumulation by Negatively Regulating ALDH9A1. Mol Carcinog 2025; 64:997-1012. [PMID: 40099576 DOI: 10.1002/mc.23904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Prostate cancer (PCa) relies heavily on lipid metabolism for energy acquisition, and lipid metabolic reprogramming plays a crucial role in its progression. Here, we utilized publicly available PCa databases and immunohistochemistry to evaluate C1QBP expression in PCa. We found that C1QBP is highly expressed in PCa, potentially due to promoter hypomethylation. Functional assays showed that C1QBP promotes cell proliferation, migration, and lipid accumulation in PCa cells. We identified differentially expressed proteins associated with C1QBP by using liquid chromatography-tandem mass spectrometry. Functional enrichment analysis revealed that C1QBP affects lipid metabolism and negatively regulates the lipid metabolism-related molecule ALDH9A1. Furthermore, ALDH9A1 intervention rescued the tumor suppression and lipid reduction caused by C1QBP knockdown. RNA sequencing (RNA-seq) was performed to explore C1QBP regulatory pathways at the mRNA level, revealing that C1QBP also affects the MAPK and p53 pathways, as well as the expression of lipid metabolism-related molecules. In conclusion, these findings suggest that C1QBP influences PCa progression and lipid deposition by regulating ALDH9A1, while other potential mechanisms may also be involved, indicating that C1QBP is a promising target for PCa treatment.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Jiaxin Li
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Runxuan Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Qiufang Qiao
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shuang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Zhihao Bo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yihan Dong
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Xuesong Xiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuejing Pan
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Huamao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Rui Wang
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dan Yue
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Kim SH, White Z, Gainullina A, Kang S, Kim J, Dominguez JR, Choi Y, Cabrera I, Plaster M, Takahama M, Czepielewski RS, Yeom J, Gunzer M, Hay N, David O, Chevrier N, Sano T, Kim KW. IL-10 sensing by lung interstitial macrophages prevents bacterial dysbiosis-driven pulmonary inflammation and maintains immune homeostasis. Immunity 2025; 58:1306-1326.e7. [PMID: 40306274 DOI: 10.1016/j.immuni.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/02/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Abstract
Crosstalk between the immune system and the microbiome is critical for maintaining immune homeostasis. Here, we examined this communication and the impact of immune-suppressive IL-10 signaling on pulmonary homeostasis. We found that IL-10 sensing by interstitial macrophages (IMs) is required to prevent spontaneous lung inflammation. Loss of IL-10 signaling in IMs initiated an inflammatory cascade through the activation of classical monocytes and CD4+ T cell subsets, leading to chronic lung inflammation with age. Analyses of antibiotic-treated and germ-free mice established that lung inflammation in the animals lacking IL-10 signaling was triggered by commensal bacteria. 16S rRNA sequencing revealed Delftia acidovorans and Rhodococcus erythropolis as potential drivers of lung inflammation. Intranasal administration of these bacteria or transplantation of human fecal microbiota elicited lung inflammation in gnotobiotic Il10-deficient mice. These findings highlight that IL-10 sensing by IMs contributes to pulmonary homeostasis by preventing lung inflammation caused by commensal dysbiosis.
Collapse
Affiliation(s)
- Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Zachary White
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Soeun Kang
- Department of Biochemistry and Genetics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jiseon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Joseph R Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yeonwoo Choi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ivan Cabrera
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Madison Plaster
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Michihiro Takahama
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Rafael S Czepielewski
- Immunology Center of Georgia, Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Jinki Yeom
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Nissim Hay
- Department of Biochemistry and Genetics, University of Illinois College of Medicine, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Odile David
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Department of Pathology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Nicolas Chevrier
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Teruyuki Sano
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Bi Q, Zhao J, Nie J, Huang F. Metabolic pathway analysis of tumors using stable isotopes. Semin Cancer Biol 2025; 113:9-24. [PMID: 40348000 DOI: 10.1016/j.semcancer.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Metabolic reprogramming is pivotal in malignant transformation and cancer progression. Tumor metabolism is shaped by a complex interplay of both intrinsic and extrinsic factors that are not yet fully elucidated. It is of great value to unravel the complex metabolic activity of tumors in patients. Metabolic flux analysis (MFA) is a versatile technique for investigating tumor metabolism in vivo, it has increasingly been applied to the assessment of metabolic activity in cancer in the past decade. Stable-isotope tracing have shown that human tumors use diverse nutrients to fuel central metabolic pathways, such as the tricarboxylic acid cycle and macromolecule synthesis. Precisely how tumors use different fuels, and the contribution of alternative metabolic pathways in tumor progression, remain areas of intensive investigation. In this review, we systematically summarize the evidence from in vivo stable- isotope tracing in tumors and describe the catabolic and anabolic processes involved in altered tumor metabolism. We also discuss current challenges and future perspectives for MFA of human cancers, which may provide new approaches in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Qiufen Bi
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Junzhang Zhao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Jun Nie
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China.
| |
Collapse
|
6
|
Ping P, Ma Y, Xu X, Li J. Reprogramming of fatty acid metabolism in thyroid cancer: Potential targets and mechanisms. Chin J Cancer Res 2025; 37:227-249. [PMID: 40353071 PMCID: PMC12062987 DOI: 10.21147/j.issn.1000-9604.2025.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Thyroid cancer (TC) is one of the most common endocrine system tumors, and its incidence continues to increase worldwide. Although most TC patients have a good prognosis, especially with continuous advancements in surgery, radioactive iodine therapy, chemotherapy, endocrine therapy and targeted therapy, the effectiveness of disease treatment has significantly improved. However, there are still some cases with a higher risk of death and greater aggressiveness. In these more challenging advanced or highly aggressive cases, tyrosine kinase inhibitors appear to be an effective treatment option. Unfortunately, these drugs are less than ideal in terms of efficacy because of their toxicity and potential for intrinsic or acquired resistance. Therefore, exploring new strategies targeting the metabolic characteristics of TC cells and overcoming drug resistance barriers in existing treatments have become key topics in the current field of TC research. In recent years, lipid metabolic reprogramming has gained attention as an important aspect of cancer development. Lipid metabolic reprogramming not only participates in the formation of the cell membrane structure, but also plays an important role in signal transduction and promoting cell proliferation. In particular, fatty acid (FA) metabolic reprogramming has attracted widespread attention and plays an important role in multiple aspects such as tumor growth, metastasis, enhanced invasive ability, immune escape, and drug resistance. Although TC is considered a disease that is highly dependent on specific types of metabolic activities, a comprehensive understanding of the specific mechanism of action of FA metabolic reprogramming in this process is lacking. This article aims to review how FA metabolic reprogramming participates in the occurrence and development of TC, focusing on the impact of abnormal FA metabolic pathways and changes in the expression and regulation of related genes over the course of this disease. By examining the complex interactions between FA metabolic disorders and carcinogenic signaling pathways in depth, we aim to identify new therapeutic targets and develop more precise and effective treatments for TC.
Collapse
Affiliation(s)
- Pengbin Ping
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
- Department of Radiation Therapy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Yuhong Ma
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaoying Xu
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Juan Li
- Department of Radiotherapy Oncology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| |
Collapse
|
7
|
Tzeng SF, Yu YR, Park J, Von Renesse J, Hsiao HW, Hsu CH, Garnica J, Chen J, Chiu LT, Santol J, Chen TY, Chung PH, Kandalaft LE, Starlinger P, Hsieh RCE, Yu MC, Hsiao PW, Carmona SJ, Chen HK, Meng Z, Lin YH, Zhou J, Tsai CH, Ho PC. PLT012, a Humanized CD36-Blocking Antibody, Is Effective for Unleashing Antitumor Immunity Against Liver Cancer and Liver Metastasis. Cancer Discov 2025:OF1-OF21. [PMID: 40294022 PMCID: PMC7617665 DOI: 10.1158/2159-8290.cd-24-1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/07/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
SIGNIFICANCE Despite the success of cancer immunotherapies, like immune checkpoint inhibitors, many patients still fail to demonstrate significant responses because of metabolic constraints in tumors. PLT012 rejuvenates antitumor immunity by targeting metabolic pathways to reprogram the immune landscape of liver cancer and liver metastasis, with potential to influence future HCC immunotherapy.
Collapse
Affiliation(s)
- Sheue-Fen Tzeng
- Tumor Immune Analysis Core, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ru Yu
- Pilatus Biosciences SA, Epalinges, Switzerland
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
| | - Jaeoh Park
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
| | - Janusz Von Renesse
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
| | | | - Chen-Hsuan Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Josep Garnica
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jintian Chen
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Tse-Yu Chen
- Departments of Medical Imaging and Radiological Sciences, Radiation Oncology, and Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | | | - Lana E. Kandalaft
- Department of Oncology, University of Lausanne, CHUV, Lausanne, Switzerland
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rodney Cheng-En Hsieh
- Departments of Medical Imaging and Radiological Sciences, Radiation Oncology, and Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of surgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan
| | - Santiago J. Carmona
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Zhen Meng
- Society of Toxicology, Virginia, USA
| | - Yun-Han Lin
- Pilatus Biosciences SA, Epalinges, Switzerland
| | - Jingying Zhou
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- International Ph.D./Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Ludwig Institute of Cancer Research Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
8
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
9
|
Yu H, Guo J, Li B, Ma J, Abebe BK, Mei C, Raza SHA, Cheng G, Zan L. Erucic acid promotes intramuscular fat deposition through the PPARγ-FABP4/CD36 pathway. Int J Biol Macromol 2025; 298:140121. [PMID: 39837435 DOI: 10.1016/j.ijbiomac.2025.140121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The regulation of intramuscular fat (IMF) accumulation plays a crucial role in determining meat quality in the beef industry. In humans, fat deposition in skeletal muscle is closely associated with insulin resistance and obesity. However, its underlying mechanisms are not fully elucidated. We previously identified erucic acid (EA) as a key metabolite that may affect IMF deposition of beef using omics strategies. By utilizing bovine intramuscular preadipocytes in vitro, the study demonstrates a dose-dependent increase in lipid storage induced by EA, along with mRNA expression levels of transporters FABP4 and CD36. At a mechanistic level, EA triggers ERK1/2 phosphorylation and enhances the expression of PPARγ, FABP4, and CD36, thereby facilitating the formation of lipid droplets within preadipocytes. In vivo experiments conducted in mice support these findings, indicating that EA stimulates fat accumulation in skeletal muscles and enhances the levels of FABP4 and CD36 proteins. These outcomes not only enhance our comprehension of the molecular mechanisms governing IMF deposition but also provide insights into potential strategies for enhancing meat quality and addressing metabolic disorders linked to fat accumulation in skeletal muscles. The findings of the study contribute to existing scholarly knowledge and lay the groundwork for future research endeavors aimed at improving meat quality and metabolic well-being.
Collapse
Affiliation(s)
- Hengwei Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Bingzhi Li
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Provinc, Yangling vocational & technical college, Yangling 712100, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; National Beef Cattle Improvement Center, Yangling 712100, China.
| |
Collapse
|
10
|
Gonzalez-Nieves S, Wei X, Guignard S, Nguyen T, McQuillan J, Zhang Q, Zhang J, McGuffee RM, Ford DA, Semenkovich CF, Cifarelli V. Insulin regulates lymphatic endothelial integrity via palmitoylation. J Lipid Res 2025; 66:100775. [PMID: 40081576 PMCID: PMC12002826 DOI: 10.1016/j.jlr.2025.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025] Open
Abstract
Lipid metabolism plays a critical role in lymphatic endothelial cell (LEC) development and vessel maintenance. Altered lipid metabolism is associated with loss of lymphatic vessel integrity, which compromises organ function, protective immunity, and metabolic health. Thus, understanding how lipid metabolism affects LECs is critical for uncovering the mechanisms underlying lymphatic dysfunction. Protein palmitoylation, a lipid-based post-translational modification, has emerged as a critical regulator of protein function, stability, and interaction networks. Insulin, a master regulator of systemic lipid metabolism, also regulates protein palmitoylation. However, the role of insulin-driven palmitoylation in LEC biology remains unexplored. To examine the role of palmitoylation in LEC function, we generated the first palmitoylation proteomics profile in human LECs, validated insulin-regulated targets, and determined the role of palmitoylation in LEC barrier function. In unstimulated conditions, palmitoylation occurred primarily on proteins involved in vesicular and membrane trafficking, and in translation initiation. Insulin treatment, instead, enriched palmitoylation of proteins involved in LEC integrity, namely junctional proteins such as claudin 5, along with small GTPases and ubiquitination enzymes. We also investigated the role of the long-chain fatty acid transporter CD36, a major mediator of palmitate uptake into cells, in regulating optimal lymphatic protein palmitoylation. CD36 silencing in LECs increased by 2-fold palmitoylation of proteins involved in inflammation and immune cell activation. Overall, our findings provide novel insights into the intricate relationship between lipid modification and LEC function, suggesting that insulin and palmitoylation play a critical role in lymphatic endothelial function.
Collapse
Affiliation(s)
- Silvia Gonzalez-Nieves
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Xiaochao Wei
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Simon Guignard
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Thi Nguyen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jay McQuillan
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Qiang Zhang
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Reagan M McGuffee
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology Metabolism and Lipid Research, Department of Medicine, Washington University, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Vincenza Cifarelli
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Drapela S, Garcia BM, Gomes AP, Correia AL. Metabolic landscape of disseminated cancer dormancy. Trends Cancer 2025; 11:321-333. [PMID: 39510896 PMCID: PMC11981868 DOI: 10.1016/j.trecan.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Cancer dormancy is a phenomenon defined by the entry of cancer cells into a reversible quiescent, nonproliferative state, and represents an essential part of the metastatic cascade responsible for cancer recurrence and mortality. Emerging evidence suggests that metabolic reprogramming plays a pivotal role in enabling entry, maintenance, and exit from dormancy in the face of the different environments of the metastatic cascade. Here, we review the current literature to understand the dynamics of metabolism during dormancy, highlighting its fine-tuning by the host micro- and macroenvironment, and put forward the importance of identifying metabolic vulnerabilities of the dormant state as therapeutic targets to eradicate recurrent disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bruna M Garcia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
12
|
Song S, Zhao W, Lin Q, Pei J, Jin H. Peptides from Harpadon nehereus Bone Ameliorate Sodium Palmitate-Induced HepG2 Lipotoxicity by Regulating Oxidative Stress and Lipid Metabolism. Mar Drugs 2025; 23:118. [PMID: 40137304 PMCID: PMC11943913 DOI: 10.3390/md23030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Antioxidant peptides are a well-known functional food exhibiting multiple biological activities in health and disease. This study investigated the effects of three peptides, LR-7 (LALFVPR), KA-8 (KLHDEEVA), and PG-7 (PSRILYG), from Harpadon nehereus bone on sodium palmitate (PANa)-induced HepG2. The findings indicated that all three peptides significantly reduced the oxidative damage and fat accumulation in the HepG2 cells while also normalizing the abnormal blood lipid levels caused by PANa. Furthermore, treatment with LR-7 resulted in a more than 100% increase in catalase (CAT), glutathione peroxidase (GSH-Px), and nuclear factor erythroid 2-related factor 2 (Nrf2) levels within the HepG2 cells (p < 0.001). Western blot analysis showed that LR-7 treatment significantly lowered the expression of fatty acid synthase (FASN) by 59.6% (p < 0.001) while enhancing carnitine palmitoyl transferase 1 (CPT1) by 134.7% (p < 0.001) and adipose triglyceride lipase (ATGL) by 148.1% (p < 0.001). Additionally, these peptides effectively inhibited the pancreatic lipase activity. Notably, LR-7 demonstrated superior effectiveness across all of the evaluated parameters, likely due to its greater hydrophobicity. In summary, LR-7, KA-8, and PG-7 are effective at mitigating oxidative stress as well as regulating lipid metabolism, thus protecting HepG2 cells from PANa-induced injury and lipid buildup. This research indicates that these collagen-derived peptides, especially LR-7, show promise as natural agents for managing hyperlipidemia.
Collapse
Affiliation(s)
| | | | | | - Jinfeng Pei
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.S.); (W.Z.); (Q.L.)
| | - Huoxi Jin
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.S.); (W.Z.); (Q.L.)
| |
Collapse
|
13
|
Luo Q, Li F, Liu X, Yan T, Yang L, Zhu W, Zheng H, Li Y, Tu J, Zhu X. Puerarin mitigates cognitive decline and white matter injury via CD36-Mediated microglial phagocytosis in chronic cerebral hypoperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156396. [PMID: 39827816 DOI: 10.1016/j.phymed.2025.156396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) contributes significantly to white matter injury (WMI) and cognitive impairment, often leading to vascular dementia (VaD). Inefficient clearance of myelin debris by microglia impedes white matter repair, making microglia-mediated myelin clearance a promising therapeutic strategy for WMI. Puerarin (Pu), an isoflavonoid monomer from Pueraria lobata, is known for its neuroprotective, anti-inflammatory, and immunoregulatory properties. However, its effects and underlying mechanisms in counteracting CCH-induced damage remain unclear. In this study, we aimed to investigate the therapeutic effects and underlying mechanisms of puerarin in a CCH mouse model. METHODS Right unilateral common carotid artery occlusion (rUCCAO) was used to model CCH in C57BL/6J mice. Puerarin (400 mg/kg/day) was administered intraperitoneally for 10 consecutive days starting immediately post-surgery. Cognitive function was assessed by the Morris Water Maze (MWM) test. WMI, remyelination, neuroinflammation, and microglial phagocytosis were evaluated by western blotting, immunofluorescence staining, RT-PCR, or flow cytometry both in vivo and in vitro. RESULTS Puerarin treatment significantly improved cognitive performance and mitigated WMI in rUCCAO mice. These effects were associated with enhanced microglial phagocytosis and remyelination, reduced neuroinflammation, and increased CD36 expression. Additionally, puerarin also increased the levels of IL-10 and phosphorylated STAT3 (p-STAT3) in brain tissues. Notably, IL-10 neutralization reversed these benefits effects by reducing microglial myelin debris uptake, downregulating STAT3 phosphorylation and CD36 expression. CONCLUSIONS Our findings demonstrate that puerarin has significant therapeutic potential in treating CCH-related cognitive impairments and WMI by modulating CD36-mediated microglial myelin clearance through the IL-10/STAT3 pathway. However, our study was reliant on preclinical animal models, further studies are needed to explore applicability in human subjects.
Collapse
Affiliation(s)
- Qinghua Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Fang Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China
| | - Tengfeng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Li Yang
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Wenping Zhu
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, China
| | - Yan Li
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China.
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China; Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China; JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial Key Laboratory of Neurological Diseases, Nanchang University, Nanchang, Jiangxi, China; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330000, China.
| |
Collapse
|
14
|
Pranzini E, Ippolito L, Pardella E, Giannoni E, Chiarugi P. Adapt and shape: metabolic features within the metastatic niche. Trends Endocrinol Metab 2025; 36:205-218. [PMID: 39122599 DOI: 10.1016/j.tem.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
The success of disseminating cancer cells (DTCs) at specific metastatic sites is influenced by several metabolic factors. Even before DTCs arrival, metabolic conditioning from the primary tumor participates in creating a favorable premetastatic niche at distant organs. In addition, DTCs adjust their metabolism to better survive along the metastatic journey and successfully colonize their ultimate destination. However, the idea that the environment of the target organs may metabolically impact the metastatic fate is often underestimated. Here, we review the coexistence of two distinct strategies by which cancer cells shape and/or adapt to the metabolic profile of colonized tissues, ultimately creating a proper soil for their seeding and proliferation.
Collapse
Affiliation(s)
- Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni, 50, 50134 Firenze, (FI), Italy.
| |
Collapse
|
15
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
16
|
Newsom OJ, Sullivan LB. Defined media reveals the essential role of lipid scavenging to support cancer cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637975. [PMID: 40027810 PMCID: PMC11870423 DOI: 10.1101/2025.02.12.637975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Fetal bovine serum (FBS) is a nearly ubiquitous, yet undefined additive in mammalian cell culture media whose functional contributions to promoting cell proliferation remain poorly understood. Efforts to replace serum supplementation in culture media have been hindered by an incomplete understanding of the environmental requirements fulfilled by FBS in culture. Here, we use a combination of live-cell imaging and liquid chromatography-mass spectrometry to elucidate the role of serum in supporting proliferation. We show that serum provides consumed factors that enable proliferation and demonstrate that the serum metal and lipid components are crucial to sustaining proliferation in culture. Importantly, despite access to a wide range of lipid classes, albumin-bound lipids are the primary species consumed during cancer cell proliferation. Furthermore, we find that combinations of the additive ITS, containing necessary metals, and albumin-associated lipid classes are sufficient to replace FBS in culture media. We show that serum-free media enables sensitive quantification of lipid consumption dynamics during cell proliferation, which indicate that fatty acids (FA) are consumed through a mass-action mechanism, with minimal competition from other lipid classes. Finally, we find that pharmacologic disruption of FA activation and incorporation into the cellular lipidome reduces uptake from the environment and impairs cell proliferation. This work therefore identifies metabolic contributions of serum in cell culture settings and provides a framework for building cell culture systems that sustain cell proliferation without the variable and undefined contributions of FBS.
Collapse
Affiliation(s)
- Oliver J. Newsom
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
17
|
Liu YY, Huang WL, Wang ST, Hsu HP, Kao TC, Chung WP, Young KC. CD36 inhibition enhances the anti-proliferative effects of PI3K inhibitors in PTEN-loss anti-HER2 resistant breast cancer cells. Cancer Metab 2025; 13:6. [PMID: 39920872 PMCID: PMC11806886 DOI: 10.1186/s40170-025-00375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND HER2-positive patients comprise approximately 20% of breast cancer cases, with HER2-targeted therapy significantly improving progression-free and overall survival. However, subsequent reprogramed tumor progression due to PI3K signaling pathway activation by PIK3CA mutations and/or PTEN-loss cause anti-HER2 resistance. Previously, alpha isoform-specific PI3K inhibitors were shown to potentiate HER2-targeted therapy in breast cancer cells carrying PI3K pathway alterations with less potent effects on PTEN-loss than PIK3CA-mutant cells. Therefore, seeking for alternative combination therapy needs urgent attentions in PTEN-loss anti-HER2 resistant breast cancer. METHODS Since remodeling of fatty acid (FA) metabolism might contribute to HER-positive breast cancer and is triggered by the PI3K signal pathway, herein, we examined the effects of the inhibition of endogenous FA conversion, SCD-1 or exogenous FA transport, CD36, in combination with PI3K inhibitors (alpelisib and inavolisib) in anti-HER2 resistant PTEN-loss breast cancer cells. RESULTS The activated HER2/PI3K/AKT/mTOR signaling pathway positively correlated with SCD-1 and CD36 expression in PTEN-loss breast cancer cells. PI3K inhibition downregulated SCD-1, and accordingly, the addition of the SCD-1 inhibitor did not augment the antiproliferative effects of the PI3K inhibitors. CD36 was upregulated by blocking the PI3K signal pathway or limited serum supplementation, indicating that suppressing CD36 may decrease the excess transport of exogenous FA. The addition of the CD36 inhibitor synergistically enhanced the anti-proliferative effects of the PI3K inhibitors. CONCLUSION Simultaneously targeting the PI3K signaling pathway and exogenous FA uptake could potentially be advantageous for patients with PTEN-loss anti-HER2 resistant breast cancer.
Collapse
Affiliation(s)
- You-Yu Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Center of Applied Nanomedicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1 University Rd, Tainan, 70101, Taiwan
| | - Sin-Tian Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1 University Rd, Tainan, 70101, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tzu-Ching Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1 University Rd, Tainan, 70101, Taiwan
| | - Wei-Pang Chung
- Center of Applied Nanomedicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, No. 1 University Rd, Tainan, 70101, Taiwan.
| | - Kung-Chia Young
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1 University Rd, Tainan, 70101, Taiwan.
| |
Collapse
|
18
|
Zhou J, Wang W, Zhang Z, Zhu G, Qiao J, Guo S, Bai Y, Zhao C, Teng C, Qin P, Zhang L, Ren G. An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:701-720. [PMID: 38961686 DOI: 10.1002/jsfa.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Zhu
- Wuhan No. 23 Middle School in Hanyang District, Wuhan, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peiyou Qin
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Sheng L, Gao J, Wei Q, Gong Y, Xu ZX. The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila. Cell Rep 2025; 44:115099. [PMID: 39723892 DOI: 10.1016/j.celrep.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan. By integrating multiomics data, we demonstrated that glial Ugt35b plays key roles in regulating glycerolipid and glycerophospholipid metabolism in the brain. Notably, we found that Ugt35b and Lsd-2 are co-expressed in glia and confirmed their protein interaction in vivo. Knockdown of Ugt35b significantly reduced LD formation by downregulating Lsd-2 expression, while overexpression of Lsd-2 partially rescued the shortened lifespan in glial Ugt35b RNAi flies. Our findings reveal the crucial role of glial Ugt35b in regulating LD formation to maintain brain lipid homeostasis and support Drosophila lifespan.
Collapse
Affiliation(s)
- Lihong Sheng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jianpeng Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qingyuan Wei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Xiang Xu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Ramakrishnan G, Terry AR, Nogueira V, Magdy A, Hay N. Deletion of AMP-activated protein kinase impairs metastasis and is rescued by ROS scavenging or ectopic CD36 expression. Cell Rep 2025; 44:115183. [PMID: 39798092 PMCID: PMC12180712 DOI: 10.1016/j.celrep.2024.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/18/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
AMPK's role in tumor initiation and progression is controversial. Here, we provide genetic evidence that AMPK is required for metastasis in mouse models of breast cancer. In a mouse model of spontaneous breast cancer metastasis, the deletion of AMPK before and after tumor onset decreased breast cancer metastasis, and similar results were obtained after AMPK deletion in breast cancer cell lines. The deletion of AMPK induces reactive oxygen species (ROS) levels in vitro and lipid oxidation in vivo, which likely impede metastasis. Indeed, antioxidants restore the ability of AMPK-deficient tumors to metastasize. By inhibiting acetyl-coenzyme A (CoA) carboxylases 1 and 2, AMPK maintains NADPH levels by reducing NADPH consumption in fatty acid synthesis and increasing NADPH generation via fatty acid oxidation, thus increasing the dependency on auxotrophic fatty acids. Consistently, AMPK is required for the expression of the fatty acid transporter CD36 in tumors, and ectopic expression of CD36 in AMPK-deficient cells restored their ability to metastasize.
Collapse
Affiliation(s)
- Gopalakrishnan Ramakrishnan
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ahmed Magdy
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Zhang F, Fu Y, Zheng J, Lang L, Liang S, Wang J, Cai L, Zhang Y, Wang L, Zhu C, Wu R, Shu G, Jiang Q, Wang S. Conjugated Linoleic Acid (CLA) Mitigates High-Fat Diet (HFD)-Induced Mammary Gland Development Impairment of Pubertal Mice via Regulating CD36 Palmitoylation and Downstream JNK-ERK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1219-1230. [PMID: 39752534 DOI: 10.1021/acs.jafc.4c07453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Conjugated linoleic acid (CLA) is known for antiobesity. However, the role of CLA in regulating high-fat diet (HFD)-impaired pubertal mammary gland development remains undefined. Here, pubertal female mice and HC11 cells were treated with HFD or palmitic acid (PA), supplemented with or without CLA, respectively. We found that CLA prevented impaired mammary gland development in pubertal mice exposed to HFD. In vitro, c9, t11-CLA, but not t10, c12-CLA, promoted PA-suppressed HC11 proliferation, accompanied by hindered CD36 palmitoylation and localization on the plasma membrane. Moreover, c9, t11-CLA reduced the formation of the CD36/Fyn/Lyn complex and inhibited the JNK pathway while activated the ERK pathway in PA-treated HC11. In mechanism, the activation of the JNK pathway and the inhibition of ERK abolished the c9, t11-CLA-stimulated proliferation of PA-treated HC11. In vivo verification, CLA reduced the total and cell membrane CD36 palmitoylation, suppressed the formation of the CD36/FYN/LYN complex, and inhibited the JNK pathway but activated the ERK pathway in the mammary gland of HFD-fed mice. In conclusion, CLA mitigated HFD-impaired mammary gland development of pubertal mice and PA-suppressed HC11 proliferation via CD36 palmitoylation and the downstream JNK-ERK pathway. These data suggested the potential application of CLA in ameliorating obesity-impaired pubertal mammary gland development.
Collapse
Affiliation(s)
- Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yiming Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jisong Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Limin Lang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shuyi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Junfeng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lilin Cai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ruifan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Wens Foodstuff Group Co., Ltd., Yunfu 527400, P. R. China
| |
Collapse
|
22
|
Gu Q, Wang Y, Yi P, Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin Cancer Biol 2025; 108:48-70. [PMID: 39674303 DOI: 10.1016/j.semcancer.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Elevated lipid metabolism is one of hallmarks of malignant tumors. Lipids not only serve as essential structural components of biological membranes but also provide energy and substrates for the proliferation of cancer cells and tumor growth. Cancer cells meet their lipid needs by coordinating the processes of lipid absorption, synthesis, transport, storage, and catabolism. As research in this area continues to deepen, numerous new discoveries have emerged, making it crucial for scientists to stay informed about the developments of cancer lipid metabolism. In this review, we first discuss relevant concepts and theories or assumptions that help us understand the lipid metabolism and -based cancer therapies. We then systematically summarize the latest advancements in lipid metabolism including new mechanisms, novel targets, and up-to-date pre-clinical and clinical investigations of anti-cancer treatment with lipid metabolism targeted drugs. Finally, we emphasize emerging research directions and therapeutic strategies, and discuss future prospective and emerging challenges. This review aims to provide the latest insights and guidance for research in the field of cancer lipid metabolism.
Collapse
Affiliation(s)
- Qiuying Gu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Chunming Cheng
- Department of Oncology Science, OU Health Stephenson Cancer Center at University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
23
|
Leng Y, Zhang Y, Cheng Y, Ye S, Zheng Y, He M, Wu E, Kong L, Zhang H. LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36. Pharmacol Res 2025; 211:107567. [PMID: 39725340 DOI: 10.1016/j.phrs.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes. Lix1l deletion inhibits hepatic lipid accumulation, inflammation, and fibrosis as well as adipocyte differentiation by downregulating CD36, alleviating MASH and associated HCC progression in mice. Mechanistically, metabolic stress promotes PARP1-mediated poly-ADP-ribosylation of LIX1L to increase stability and RNA binding ability of LIX1L. Subsequently, LIX1L binds to AU-rich element in the 3'UTR and CDS of CD36 mRNA, thus mitigating CD36 mRNA decay. Furthermore, LIX1L deficiency-mediated downregulation of CD36 reprograms the tumor-prone liver microenvironment with increased cytotoxic T lymphocytes and reduced immunosuppressive cell proportions. These data indicate a systematic function of LIX1L in the pathogenesis of MASH and underscore targeting PARP1/LIX1L/CD36 axis as a feasible strategy for treatment of MASH and associated HCC.
Collapse
Affiliation(s)
- Yingrong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanqiu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengmeng He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Enyi Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Cai ZR, Wang W, Chen D, Chen HJ, Hu Y, Luo XJ, Wang YT, Pan YQ, Mo HY, Luo SY, Liao K, Zeng ZL, Li SS, Guan XY, Fan XJ, Piao HL, Xu RH, Ju HQ. Diagnosis and prognosis prediction of gastric cancer by high-performance serum lipidome fingerprints. EMBO Mol Med 2024; 16:3089-3112. [PMID: 39543322 PMCID: PMC11628598 DOI: 10.1038/s44321-024-00169-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Early detection is warranted to improve prognosis of gastric cancer (GC) but remains challenging. Liquid biopsy combined with machine learning will provide new insights into diagnostic strategies of GC. Lipid metabolism reprogramming plays a crucial role in the initiation and development of tumors. Here, we integrated the lipidomics data of three cohorts (n = 944) to develop the lipid metabolic landscape of GC. We further constructed the serum lipid metabolic signature (SLMS) by machine learning, which showed great performance in distinguishing GC patients from healthy donors. Notably, the SLMS also held high efficacy in the diagnosis of early-stage GC. Besides, by performing unsupervised consensus clustering analysis on the lipid metabolic matrix of patients with GC, we generated the gastric cancer prognostic subtypes (GCPSs) with significantly different overall survival. Furthermore, the lipid metabolic disturbance in GC tissues was demonstrated by multi-omics analysis, which showed partially consistent with that in GC serums. Collectively, this study revealed an innovative strategy of liquid biopsy for the diagnosis of GC on the basis of the serum lipid metabolic fingerprints.
Collapse
Affiliation(s)
- Ze-Rong Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Hao-Jie Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiao-Jing Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yi-Ting Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Yi-Qian Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hai-Yu Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shu-Yu Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shan-Shan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China
| | - Xin-Juan Fan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China.
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, P. R. China.
| |
Collapse
|
25
|
Dao W, Fan X, Liang J, Chen T, Chang Z, Zhang Y, Miao Y. Molecular and Functional Analysis of the Stearoyl-CoA Desaturase (SCD) Gene in Buffalo: Implications for Milk Fat Synthesis. Animals (Basel) 2024; 14:3191. [PMID: 39595243 PMCID: PMC11590957 DOI: 10.3390/ani14223191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The SCD is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids (MUFAs) in dairy cows; however, its role in the mammary gland of buffalo is not well understood. In this study, we isolated and characterized the complete coding sequence (CDS) of the buffalo SCD gene from mammary gland tissue and investigated its effects on milk fat synthesis using bioinformatics analyses, tissue differential expression detection, and cellular functional experiments. The cloned SCD gene has a CDS length of 1080 bp, encoding a protein of 359 amino acids. This protein is hydrophilic, lacks a signal peptide, and contains four transmembrane domains, including 10 conserved motifs and a Delta9-FADS domain, characteristic of the fatty acid desaturase family involved in unsaturated fatty acid biosynthesis within the endoplasmic reticulum. Molecular characterization revealed that the physicochemical properties, conserved domains, structures, and functions of buffalo SCD are highly similar to those in other Bovidae species. Among the tissues analyzed, SCD expression was highest in the mammary gland during lactation and in the cerebellum during dry-off period. Notably, SCD expression in the mammary gland was significantly higher during lactation compared to the dry-off period. Subcellular localization experiments confirmed that SCD functions in the endoplasmic reticulum of buffalo mammary epithelial cells (BuMECs). Functional overexpression and interference experiments in BuMECs demonstrated that SCD promotes milk fat synthesis by affecting the expression of lipid synthesis-related genes such as ACACA, FASN, and DGAT1, as well as milk fat regulatory genes like SREBFs and PPARG, thereby influencing intracellular triglyceride (TAG) content. Additionally, 18 single-nucleotide polymorphisms (SNPs) were identified in the buffalo SCD gene, with a specific SNP at c.-605, showing potential as molecular markers for improving milk production traits. These findings highlight that the SCD gene is a key gene in buffalo milk fat synthesis, involved in the de novo synthesis of milk fatty acids.
Collapse
Affiliation(s)
- Wenbin Dao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.D.); (X.F.); (Z.C.)
- Institute of Animal Genetics and Breeding, Yunnan Agricultural University, Kunming 650201, China;
| | - Xinyang Fan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.D.); (X.F.); (Z.C.)
- Institute of Animal Genetics and Breeding, Yunnan Agricultural University, Kunming 650201, China;
| | - Jianping Liang
- Science and Technology Innovation Center of Dehong Prefecture, Mangshi 678400, China;
| | - Tao Chen
- Mangshi Animal Husbandry Station, Mangshi 678400, China;
| | - Zaoshang Chang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.D.); (X.F.); (Z.C.)
- Institute of Animal Genetics and Breeding, Yunnan Agricultural University, Kunming 650201, China;
| | - Yongyun Zhang
- Institute of Animal Genetics and Breeding, Yunnan Agricultural University, Kunming 650201, China;
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yongwang Miao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.D.); (X.F.); (Z.C.)
- Institute of Animal Genetics and Breeding, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
26
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
27
|
Ackermann T, Shokry E, Deshmukh R, Anand J, Galbraith LCA, Mitchell L, Rodriguez-Blanco G, Villar VH, Sterken BA, Nixon C, Zanivan S, Blyth K, Sumpton D, Tardito S. Breast cancer secretes anti-ferroptotic MUFAs and depends on selenoprotein synthesis for metastasis. EMBO Mol Med 2024; 16:2749-2774. [PMID: 39433871 PMCID: PMC11555046 DOI: 10.1038/s44321-024-00142-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
The limited availability of therapeutic options for patients with triple-negative breast cancer (TNBC) contributes to the high rate of metastatic recurrence and poor prognosis. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation and counteracted by the antioxidant activity of the selenoprotein GPX4. Here, we show that TNBC cells secrete an anti-ferroptotic factor in the extracellular environment when cultured at high cell densities but are primed to ferroptosis when forming colonies at low density. We found that secretion of the anti-ferroptotic factors, identified as monounsaturated fatty acid (MUFA) containing lipids, and the vulnerability to ferroptosis of single cells depends on the low expression of stearyl-CoA desaturase (SCD) that is proportional to cell density. Finally, we show that the inhibition of Sec-tRNAsec biosynthesis, an essential step for selenoprotein production, causes ferroptosis and impairs the lung seeding of circulating TNBC cells that are no longer protected by the MUFA-rich environment of the primary tumour.
Collapse
Affiliation(s)
- Tobias Ackermann
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G611QH, UK
| | - Engy Shokry
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ruhi Deshmukh
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jayanthi Anand
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Laura C A Galbraith
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | | | - Victor H Villar
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Medicine, University of St Andrews, St. Andrews, KY16 9TF, UK
| | - Britt Amber Sterken
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G611QH, UK
| | - Karen Blyth
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G611QH, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Saverio Tardito
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, G611QH, UK.
- Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, 1090, Austria.
| |
Collapse
|
28
|
Tang S, Wang H, Zhang H, Zhang M, Xu J, Yang C, Chen X, Guo X. Simultaneous Determination of the Position and Cis- Trans Configuration of Lipid C═C Bonds via Asymmetric Derivatization and Ion Mobility-Mass Spectrometry. J Am Chem Soc 2024; 146:29503-29512. [PMID: 39412160 DOI: 10.1021/jacs.4c08980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The position and cis-trans configuration of C═C bonds in unsaturated lipids significantly affect their biological activities. Simultaneous identification of the position and cis-trans configuration of C═C bonds in unsaturated lipids is important; nonetheless, it still remains a challenging task. Herein, a stereoselective asymmetric reaction was used to recognize cis-trans isomers of the C═C bonds, and the derivatized precursor ions and product ions were subjected to tandem ion mobility-mass spectrometry (IM-MS) analysis. The theoretical calculation revealed that the formation of intramolecular hydrogen bonds after the cyclization reaction amplified the structural difference between diastereomers and increased the separation efficiency in IM. Consequently, a simple, sensitive, and highly selective platform for simultaneous determination of the position and cis-trans configuration of various C═C bonds in unsaturated lipids was established. It was then successfully applied to pinpoint the cis-trans geometry conversion of the located C═C bonds in lipids of the bacterial membrane under environmental stress and track the heterogeneous distribution of unsaturated lipids in rats after spinal cord injury. The present study also offers new insights into the application of IM-MS technology in resolving molecular structures and demonstrates the potential as a platform for a broad range of applications.
Collapse
Affiliation(s)
- Shuai Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huihui Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mingyu Zhang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Chun Yang
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, China
| |
Collapse
|
29
|
Igal RA. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024; 225:156-167. [PMID: 38823621 DOI: 10.1016/j.biochi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Growth and proliferation of normal and cancerous cells necessitate a finely-tuned regulation of lipid metabolic pathways to ensure the timely supply of structural, energetic, and signaling lipid molecules. The synthesis and remodeling of lipids containing fatty acids with an appropriate carbon length and insaturation level are required for supporting each phase of the mechanisms of cell replication and survival. Mammalian Stearoyl-CoA desaturases (SCD), particularly SCD1, play a crucial role in modulating the fatty acid composition of cellular lipids, converting saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) in the endoplasmic reticulum (ER). Extensive research has elucidated in great detail the participation of SCD1 in the molecular mechanisms that govern cell replication in normal and cancer cells. More recently, investigations have shed new light on the functional and regulatory role of the Δ9-desaturase in the processes of cell stress and cell death. This review will examine the latest findings on the involvement of SCD1 in the molecular pathways of cell survival, particularly on the mechanisms of ER stress and autophagy, as well in apoptotic and non-apoptotic cell death.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA.
| |
Collapse
|
30
|
Tang Y, Chu C, Bu S, Sun Q, Liu A, Xie J, Qiao S, Huang L, Wang H. Integrated multi-omics profiling landscape of organising pneumonia. Clin Transl Med 2024; 14:e1782. [PMID: 39083563 PMCID: PMC11290555 DOI: 10.1002/ctm2.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Organising pneumonia (OP) is one of the most common and lethal diseases in the category of interstitial pneumonia, along with lung cancer. Reprogramming of lipid metabolism is a newly recognized hallmark of many diseases including cancer, cardiovascular disorders, as well as liver fibrosis and sclerosis. Increased levels of ceramides composed of sphingosine and fatty acid, are implicated in the development of both acute and chronic lung diseases. However, their pathophysiological significance in OP is unclear. The aim of this study was to investigate the role of lipid metabolism reprogramming in OP, focusing on inflammation and fibrosis. METHODS Comprehensive multi-omics profiling approaches, including single-cell RNA sequencing, Visium CytAssist spatial transcriptomics, proteomics, metabolomics and mass spectrometry, were employed to analyze the tissues. OP mice model was utilized and molecular mechanisms were investigated in macrophages. RESULTS The results revealed a significant association between OP and lipid metabolism reprogramming, characterized by an abnormal expression of several genes related to lipid metabolism, including CD36, SCD1, and CES1 mainly in macrophages. CD36 deficiency in alveolar macrophages, led to an increased expression of C16/24 ceramides that accumulated in mitochondria, resulting in mitophagy or mitochondrial dysfunction. The number of alveolar macrophages in OP was significantly reduced, which was probably due to the ferroptosis signaling pathway involving GSH/SLC3A2/GPX4 through CD36 downregulation in OP. Furthermore, macrophage secretion of DPP7 and FABP4 influenced epithelial cell fibrosis. CONCLUSIONS CD36 inhibited the ferroptosis pathway involving SLC3A2/GPX4 in alveolar macrophages of OP tissue by regulating lipid metabolism, thus representing a new anti-ferroptosis and anti-fibrosis effect of CD36 mediated, at least in part, by ceramides. HIGHLIGHTS Our findings reveal a significant association between organising pneumonia and lipid metabolism reprogramming and will make a substantial contribution to the understanding of the mechanism of organising pneumonia in patients.
Collapse
Affiliation(s)
- Ying Tang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Siyuan Bu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Sen Qiao
- Assisted Reproduction CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Lingyan Huang
- Department of PathologicalGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Hongmei Wang
- Jiangsu Provincial Key Laboratory of Critical Care MedicineDepartment of Critical Care MedicineZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
- Shaanxi University of Chinese MedicineXianyangChina
| |
Collapse
|
31
|
Krieg S, Fernandes SI, Kolliopoulos C, Liu M, Fendt SM. Metabolic Signaling in Cancer Metastasis. Cancer Discov 2024; 14:934-952. [PMID: 38592405 PMCID: PMC7616057 DOI: 10.1158/2159-8290.cd-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.
Collapse
Affiliation(s)
- Sarah Krieg
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sara Isabel Fernandes
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Constantinos Kolliopoulos
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Ming Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Ewald CY, Pulous FE, Lok SWY, Pun FW, Aliper A, Ren F, Zhavoronkov A. TNIK's emerging role in cancer, metabolism, and age-related diseases. Trends Pharmacol Sci 2024; 45:478-489. [PMID: 38777670 DOI: 10.1016/j.tips.2024.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Traf2- and Nck-interacting kinase (TNIK) has emerged as a key regulator of pathological metabolic signaling in several diseases and is a promising drug target. Originally studied for its role in cell migration and proliferation, TNIK possesses several newly identified functions that drive the pathogenesis of multiple diseases. Specifically, we evaluate TNIK's newfound roles in cancer, metabolic disorders, and neuronal function. We emphasize the implications of TNIK signaling in metabolic signaling and evaluate the translational potential of these discoveries. We also highlight how TNIK's role in many biological processes converges upon several hallmarks of aging. We conclude by discussing the therapeutic landscape of TNIK-targeting drugs and the recent success of clinical trials targeting TNIK.
Collapse
Affiliation(s)
- Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Fadi E Pulous
- Insilico Medicine US Inc., 345 Park Avenue South, 2nd Floor Suite 006, New York, NY 10010, USA
| | - Sarah Wing Yan Lok
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine US Inc., 345 Park Avenue South, 2nd Floor Suite 006, New York, NY 10010, USA; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong, SAR, China; Insilico Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
33
|
Yang B, Dai M. High-dimensional deconstruction of ovarian cancer at single-cell precision reveals HEBP2 that reshape the TIME and drive carboplatin resistance. Transl Oncol 2024; 44:101917. [PMID: 38554571 PMCID: PMC10998197 DOI: 10.1016/j.tranon.2024.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Single-cell sequencing was employed to analyze the tumor immune microenvironment in ovarian cancer (OC) patients, exploring the evolutionary roles of various macrophage subgroups in OC progression and their correlation with fatty acid metabolism-related genes in contributing to drug resistance. METHODS This study aimed to decipher the mechanisms underlying OC chemoresistance (OC-CR) and carboplatin resistance by integrating and analyzing multiple single-cell RNA sequencing datasets from OC patients. The tumor immune microenvironment in OC-CR patients exhibited notable alterations in cellular interactions and the proportions of different immune cell populations, in contrast to the cohort sensitive to OC chemotherapy. RESULTS The study demonstrates that the fatty acid-associated gene HEBP2 not only accelerates OC progression but also modifies the immune landscape of OC, driving the polarization from M0_TAM to M2_TAM. This shift results in a diminished efficacy of chemotherapy in OC. Furthermore, both in vitro and in vivo experiments underscored HEBP2's role in boosting the proliferation of OC-resistant cell lines and suppressing apoptosis, thereby facilitating carboplatin resistance. CONCLUSION In conclusion, the immune microenvironments of OC-CR significantly differ from those sensitive to chemotherapy, underscoring HEBP2's role in fostering OC resistance. This establishes HEBP2 as a promising prognostic marker and a novel target for therapeutic strategies against OC resistance.
Collapse
Affiliation(s)
- BiKang Yang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
34
|
Terry AR, Hay N. Emerging targets in lipid metabolism for cancer therapy. Trends Pharmacol Sci 2024; 45:537-551. [PMID: 38762377 PMCID: PMC11162322 DOI: 10.1016/j.tips.2024.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/20/2024]
Abstract
Cancer cells perturb lipid metabolic pathways for a variety of pro-tumorigenic functions, and deregulated cellular metabolism is a hallmark of cancer cells. Although alterations in lipid metabolism in cancer cells have been appreciated for over 20 years, there are no FDA-approved cancer treatments that target lipid-related pathways. Recent advances pertaining to cancer cell fatty acid synthesis (FAS), desaturation, and uptake, microenvironmental and dietary lipids, and lipid metabolism of tumor-infiltrating immune cells have illuminated promising clinical applications for targeting lipid metabolism. This review highlights emerging pathways and targets for tumor lipid metabolism that may soon impact clinical treatment.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
35
|
Li C, Weng J, Yang L, Gong H, Liu Z. Development of an anoikis-related gene signature and prognostic model for predicting the tumor microenvironment and response to immunotherapy in colorectal cancer. Front Immunol 2024; 15:1378305. [PMID: 38779664 PMCID: PMC11109372 DOI: 10.3389/fimmu.2024.1378305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
The effect of anoikis-related genes (ARGs) on clinicopathological characteristics and tumor microenvironment remains unclear. We comprehensively analyzed anoikis-associated gene signatures of 1057 colorectal cancer (CRC) samples based on 18 ARGs. Anoikis-related molecular subtypes and gene features were identified through consensus clustering analysis. The biological functions and immune cell infiltration were assessed using the GSVA and ssGSEA algorithms. Prognostic risk score was constructed using multivariate Cox regression analysis. The immunological features of high-risk and low-risk groups were compared. Finally, DAPK2-overexpressing plasmid was transfected to measure its effect on tumor proliferation and metastasis in vitro and in vivo. We identified 18 prognostic ARGs. Three different subtypes of anoikis were identified and demonstrated to be linked to distinct biological processes and prognosis. Then, a risk score model was constructed and identified as an independent prognostic factor. Compared to the high-risk group, patients in the low-risk group exhibited longer survival, higher enrichment of checkpoint function, increased expression of CTLA4 and PD-L1, higher IPS scores, and a higher proportion of MSI-H. The results of RT-PCR indicated that the expression of DAPK2 mRNA was significantly downregulated in CRC tissues compared to normal tissues. Increased DAPK2 expression significantly suppressed cell proliferation, promoted apoptosis, and inhibited migration and invasion. The nude mice xenograft tumor model confirmed that high expression of DAPK2 inhibited tumor growth. Collectively, we discovered an innovative anoikis-related gene signature associated with prognosis and TME. Besides, our study indicated that DAPK2 can serve as a promising therapeutic target for inhibiting the growth and metastasis of CRC.
Collapse
Affiliation(s)
- Chuanchang Li
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Yang
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hangjun Gong
- Department of Gastrointestinal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaolong Liu
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Liu J, Kang R, Tang D. Adverse effects of ferroptotic therapy: mechanisms and management. Trends Cancer 2024; 10:417-429. [PMID: 38246792 DOI: 10.1016/j.trecan.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Ferroptosis, a nonapoptotic form of cell death characterized by iron accumulation and uncontrolled lipid peroxidation, holds promise as a therapeutic approach in cancer treatment, alongside established modalities, such as chemotherapy, immunotherapy, and radiotherapy. However, recent research has raised concerns about its side effects, including damage to immune cells, hematopoietic stem cells, liver, and kidneys, the development of cachexia, and the risk of secondary tumor formation. In this review, we provide an overview of these emerging findings, with a specific emphasis on elucidating the underlying mechanisms, and underscore the critical significance of effectively managing side effects associated with targeted ferroptosis-based therapy.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
38
|
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|