1
|
Fauziah N, Jati KM, Rinawan FR, Nugraha NF, Alisjahbana B, Hutagalung J. Emerging malaria in Indonesia: An overview of Plasmodium knowlesi infections. Parasite Epidemiol Control 2025; 28:e00405. [PMID: 39959456 PMCID: PMC11830351 DOI: 10.1016/j.parepi.2024.e00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025] Open
Abstract
Background Plasmodium knowlesi, the fifth malaria-causing parasite species, is currently changing the landscape of the most dominant malaria-causing species in the Southeast Asia by becoming the emerging significant cause of malaria in the region, including in Indonesia. This study aimed to provide an overview of malaria caused by P. knowlesi in Indonesia. Methods This study utilized secondary data from the Indonesian National Referral Malaria Laboratory from 2011 to 2020 for the analysis. Results Analysis on 212 samples collected over ten years identified 66 (31.1 %) cases of P. knowlesi infection, with one (0.5 %) mixed infection of P. knowlesi and P. vivax. These cases were reported in seven provinces in Kalimantan and Sumatra islands. Males were 2.23 times more likely to be at risk for malaria compared to females, and this result was statistically significant (p-value = 0.037, 95 % CI: 0.84-5.91). There was no significant association between the risk of malaria and the age groups classified as non-productive and productive (p-value = 0.535, OR = 0.42, 95 % CI: 0.12-1.53). Individuals working outdoors were not significantly more protected compared to those working indoors (p-value of 0.116, OR = 0.15, 95 % CI: 0.02-1.49). The origin of the sample was found to be the most significant factor (p-value <0.001), with individuals from Kalimantan having the highest risk for malaria caused by P. knowlesi (OR = 3.97, 95 % CI: 2.10-7.49). Conclusions Two major Indonesian islands of Sumatra and Kalimantan, which reported malaria cases during the period studied, exhibit a potential risk for P. knowlesi infections that is influenced by factors beyond natural hosts and vectors, such as sex, age, and occupation. Routine PCR examinations for suspected P. knowlesi infections are crucial for developing effective strategies to identify and control this simian malaria parasite.
Collapse
Affiliation(s)
- Nisa Fauziah
- Division of Parasitology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, West Java, Indonesia
- Laboratory of Parasitology, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, West Java, Indonesia
- Postgraduate Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, West Java, Indonesia
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, West Java, Indonesia
| | - Karomahul Malaya Jati
- Graduate Medical Study Program, Faculty of Medicine, Universitas Padjadjaran, Jl. Ir. Soekarno KM. 21, Jatinangor, Sumedang 45363, West Java, Indonesia
| | - Fedri Ruluwedrata Rinawan
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Jl. Ir. Soekarno KM. 21, Jatinangor, Sumedang 45363, West Java, Indonesia
- Center for Health System Study and Health Workforce Education Innovation, Faculty of Medicine, Universitas Padjadjaran, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, Indonesia
- Indonesian Society for Remote Sensing Branch West Java, Gedung 2, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jl. Ir. Soekarno KM. 21, Jatinangor, Sumedang 45363, Indonesia
| | - Naufal Fakhri Nugraha
- Research Center for Care and Control of Infectious Disease, Universitas Padjadjaran, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, West Java, Indonesia
- Universitas Padjadjaran Hospital, Jl. Ir. Soekarno KM. 21, Jatinangor, Sumedang 45363, West Java, Indonesia
| | - Bachti Alisjahbana
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Jl. Prof. Eyckman No. 38, Sukajadi, Bandung 40161, West Java, Indonesia
| | - Jontari Hutagalung
- Laboratory of Parasitology, Center for Health Resilience System Policy and Health Resources, Health Policy and Development Agency, Jl. Percetakan Negara No. 29, Johar Baru, Central Jakarta 10560, DKI Jakarta, Indonesia
| |
Collapse
|
2
|
Ashton TD, Calic PPS, Dans MG, Kang Ooi Z, Zhou Q, Loi K, Jarman KE, Palandri J, Qiu D, Lehane AM, Maity B, De N, Famodimu MT, Delves MJ, Mao EY, Gancheva MR, Wilson DW, Chowdury M, de Koning‐Ward TF, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Lactam Truncation Yields a Dihydroquinazolinone Scaffold with Potent Antimalarial Activity that Targets PfATP4. ChemMedChem 2024; 19:e202400549. [PMID: 39210733 PMCID: PMC11648822 DOI: 10.1002/cmdc.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of resistance against current antimalarial treatments has necessitated the need for the development of novel antimalarial chemotypes. Toward this goal, we recently optimised the antimalarial activity of the dihydroquinazolinone scaffold and showed it targeted PfATP4. Here, we deconstruct the lactam moiety of the tricyclic dihydroquinazolinone scaffold and investigate the structure-activity relationship of the truncated scaffold. It was shown that SAR between scaffolds was largely transferrable and generated analogues with potent asexual stage activity. Evaluation of the truncated analogues against PfATP4 mutant drug-resistant parasite strains and in assays measuring PfATP4-associated ATPase activity demonstrated retention of PfATP4 as the molecular target. Analogues exhibited activity against both male and female gametes and multidrug resistant parasites. Limited efficacy of analogues in a P. berghei asexual stage mouse model was attributed to their moderate metabolic stability and low aqueous stability. Further development is required to address these attributes toward the potential use of the dihydroquinazolinone class in a curative and transmission blocking combination antimalarial therapy.
Collapse
Affiliation(s)
- Trent D. Ashton
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Petar P. S. Calic
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Madeline G. Dans
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Zi Kang Ooi
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
| | - Qingmiao Zhou
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
| | - Katie Loi
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Kate E. Jarman
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Josephine Palandri
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Deyun Qiu
- Research School of BiologyAustralian National UniversityCanberra2601Australia
| | - Adele M. Lehane
- Research School of BiologyAustralian National UniversityCanberra2601Australia
| | | | - Nirupam De
- TCG LifesciencesKolkataWest Bengal700091India
| | - Mufuliat T. Famodimu
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonWC1E 7HTUK
| | - Michael J. Delves
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonWC1E 7HTUK
| | - Emma Y. Mao
- Research Centre for Infectious DiseasesSchool of Biological SciencesUniversity of AdelaideAdelaide5005Australia
| | - Maria R. Gancheva
- Research Centre for Infectious DiseasesSchool of Biological SciencesUniversity of AdelaideAdelaide5005Australia
| | - Danny W. Wilson
- Research Centre for Infectious DiseasesSchool of Biological SciencesUniversity of AdelaideAdelaide5005Australia
| | - Mrittika Chowdury
- School of MedicineDeakin UniversityWaurn PondsVictoria3216Australia
- Institute for Mental and Physical Health and Clinical TranslationDeakin UniversityGeelongVictoria3216Australia
| | - Tania F. de Koning‐Ward
- School of MedicineDeakin UniversityWaurn PondsVictoria3216Australia
- Institute for Mental and Physical Health and Clinical TranslationDeakin UniversityGeelongVictoria3216Australia
| | - Delphine Baud
- MMV Medicines for Malaria Venture, ICCRoute de Pré-Bois 201215GenevaSwitzerland
| | - Stephen Brand
- MMV Medicines for Malaria Venture, ICCRoute de Pré-Bois 201215GenevaSwitzerland
| | - Paul F. Jackson
- Emerging Science & InnovationDiscovery Sciences, Janssen R&D LLCLa JollaCalifornia92121USA
| | - Alan F. Cowman
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute of Medical ResearchParkville3052VictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkville3010VictoriaAustralia
| |
Collapse
|
3
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Ashton T, Calic PPS, Dans MG, Ooi ZK, Zhou Q, Palandri J, Loi K, Jarman KE, Qiu D, Lehane AM, Maity BC, De N, Giannangelo C, MacRaild CA, Creek DJ, Mao EY, Gancheva MR, Wilson DW, Chowdury M, de Koning-Ward TF, Famodimu MT, Delves MJ, Pollard H, Sutherland CJ, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4. J Med Chem 2024; 67:14493-14523. [PMID: 39134060 PMCID: PMC11345840 DOI: 10.1021/acs.jmedchem.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
To contribute to the global effort to develop new antimalarial therapies, we previously disclosed initial findings on the optimization of the dihydroquinazolinone-3-carboxamide class that targets PfATP4. Here we report on refining the aqueous solubility and metabolic stability to improve the pharmacokinetic profile and consequently in vivo efficacy. We show that the incorporation of heterocycle systems in the 8-position of the scaffold was found to provide the greatest attainable balance between parasite activity, aqueous solubility, and metabolic stability. Optimized analogs, including the frontrunner compound S-WJM992, were shown to inhibit PfATP4-associated Na+-ATPase activity, gave rise to a metabolic signature consistent with PfATP4 inhibition, and displayed altered activities against parasites with mutations in PfATP4. Finally, S-WJM992 showed appreciable efficacy in a malaria mouse model and blocked gamete development preventing transmission to mosquitoes. Importantly, further optimization of the dihydroquinazolinone class is required to deliver a candidate with improved pharmacokinetic and risk of resistance profiles.
Collapse
Affiliation(s)
- Trent
D. Ashton
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Petar P. S. Calic
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G. Dans
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Zi Kang Ooi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Qingmiao Zhou
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Josephine Palandri
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Katie Loi
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kate E. Jarman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Deyun Qiu
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Adele M. Lehane
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | | | - Nirupam De
- TCG
Lifesciences, Kolkata, West Bengal 700091, India
| | - Carlo Giannangelo
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Christopher A. MacRaild
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Emma Y. Mao
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Maria R. Gancheva
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Danny W. Wilson
- Research
Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Mrittika Chowdury
- School
of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3216, Australia
| | - Tania F. de Koning-Ward
- School
of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute
for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3216, Australia
| | - Mufuliat T. Famodimu
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Michael J. Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Harry Pollard
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Colin J. Sutherland
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, London WC1E 7HT, U.K.
| | - Delphine Baud
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, Geneva 1215, Switzerland
| | - Stephen Brand
- MMV Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, Geneva 1215, Switzerland
| | - Paul F. Jackson
- Emerging Science & Innovation, Discovery
Sciences, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F. Cowman
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E. Sleebs
- The
Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department
of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
5
|
Mategula D, Gichuki J, Chipeta MG, Chirombo J, Kalonde PK, Gumbo A, Kayange M, Samuel V, Kwizombe C, Hamuza G, Kalanga A, Kamowa D, Mitambo C, Kawonga J, Banda B, Kafulafula J, Banda A, Twabi H, Musa E, Masambuka M, Ntwere T, Ligomba C, Munthali L, Sakala M, Bangoura A, Kapito-Tembo A, Masingi-Mbeye N, Mathanga DP, Terlouw DJ. Two decades of malaria control in Malawi: Geostatistical Analysis of the changing malaria prevalence from 2000-2022. Wellcome Open Res 2024; 8:264. [PMID: 38756913 PMCID: PMC11097645 DOI: 10.12688/wellcomeopenres.19390.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Background Malaria remains a public health problem in Malawi and has a serious socio-economic impact on the population. In the past two decades, available malaria control measures have been substantially scaled up, such as insecticide-treated bed nets, artemisinin-based combination therapies, and, more recently, the introduction of the malaria vaccine, the RTS,S/AS01. In this paper, we describe the epidemiology of malaria for the last two decades to understand the past transmission and set the scene for the elimination agenda. Methods A collation of parasite prevalence surveys conducted between the years 2000 and 2022 was done. A spatio-temporal geostatistical model was fitted to predict the yearly malaria risk for children aged 2-10 years (PfPR 2-10) at 1×1 km spatial resolutions. Parameter estimation was done using the Monte Carlo maximum likelihood method. District-level prevalence estimates adjusted for population are calculated for the years 2000 to 2022. Results A total of 2,595 sampled unique locations from 2000 to 2022 were identified through the data collation exercise. This represents 70,565 individuals that were sampled in the period. In general, the PfPR2_10 declined over the 22 years. The mean modelled national PfPR2_10 in 2000 was 43.93 % (95% CI:17.9 to 73.8%) and declined to 19.2% (95%CI 7.49 to 37.0%) in 2022. The smoothened estimates of PfPR2_10 indicate that malaria prevalence is very heterogeneous with hotspot areas concentrated on the southern shores of Lake Malawi and the country's central region. Conclusions The last two decades are associated with a decline in malaria prevalence, highly likely associated with the scale-up of control interventions. The country should move towards targeted malaria control approaches informed by surveillance data.
Collapse
Affiliation(s)
- Donnie Mategula
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | - Judy Gichuki
- Strathmore University, Institute of Healthcare Management, Nairobi, Kenya
| | | | | | - Patrick Ken Kalonde
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Austin Gumbo
- National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | - Michael Kayange
- National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | - Vincent Samuel
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | - Colins Kwizombe
- U.S. President's Malaria Initiative, United States Agency for International Development (USAID), Lilongwe, Malawi
| | - Gracious Hamuza
- National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | | | - Dina Kamowa
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | | | - Jacob Kawonga
- Country Health Information Systems and Data Use (CHISU) Program, Lilongwe, Malawi
| | - Benard Banda
- Country Health Information Systems and Data Use (CHISU) Program, Lilongwe, Malawi
| | | | - Akuzike Banda
- National Malaria Control Programme, Ministry of Health, Lilongwe, Malawi
| | - Halima Twabi
- Department of Mathematical Sciences, School of Natural and Applied Sciences, University of Malawi, Zomba, Malawi
| | - Esloyn Musa
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | | | - Tapiwa Ntwere
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | | | - Lumbani Munthali
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | - Melody Sakala
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
| | | | - Atupele Kapito-Tembo
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | - Nyanyiwe Masingi-Mbeye
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | - Don P. Mathanga
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Southern, Malawi
| | - Dianne J Terlouw
- Malawi-Liverpool Wellcome Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
6
|
Siau A, Ang JW, Sheriff O, Hoo R, Loh HP, Tay D, Huang X, Yam XY, Lai SK, Meng W, Julca I, Kwan SS, Mutwil M, Preiser PR. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep 2023; 42:113419. [PMID: 37952150 DOI: 10.1016/j.celrep.2023.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Plasmodium parasites contribute to one of the highest global infectious disease burdens. To achieve this success, the parasite has evolved a range of specialized subcellular compartments to extensively remodel the host cell for its survival. The information to fully understand these compartments is likely hidden in the so far poorly characterized Plasmodium species spatial proteome. To address this question, we determined the steady-state subcellular location of more than 12,000 parasite proteins across five different species by extensive subcellular fractionation of erythrocytes infected by Plasmodium falciparum, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. This comparison of the pan-species spatial proteomes and their expression patterns indicates increasing species-specific proteins associated with the more external compartments, supporting host adaptations and post-transcriptional regulation. The spatial proteome offers comprehensive insight into the different human, simian, and rodent Plasmodium species, establishing a powerful resource for understanding species-specific host adaptation processes in the parasite.
Collapse
Affiliation(s)
- Anthony Siau
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Jing Wen Ang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Omar Sheriff
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Regina Hoo
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Han Ping Loh
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Donald Tay
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Ximei Huang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Xue Yan Yam
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Soak Kuan Lai
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Wei Meng
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Irene Julca
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Sze Siu Kwan
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Peter R Preiser
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
7
|
Meena P, Jha V. Environmental Change, Changing Biodiversity, and Infections-Lessons for Kidney Health Community. Kidney Int Rep 2023; 8:1714-1729. [PMID: 37705916 PMCID: PMC10496083 DOI: 10.1016/j.ekir.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
There is a direct and accelerating connection between ongoing environmental change, the unprecedented decline in biodiversity, and the increase in infectious disease epidemiology worldwide. Rising global temperatures are threatening the biodiversity that underpins the richness and diversity of flora and fauna species in our ecosystem. Anthropogenic activities such as burning fossil fuels, deforestation, rapid urbanization, and expanding population are the primary drivers of environmental change resulting in biodiversity collapse. Climate change is influencing the emergence, prevalence, and transmission of infectious diseases both directly and through its impact on biodiversity. The environment is gradually becoming more suitable for infectious diseases by affecting a variety of pathogens, hosts, and vectors and by favoring transmission rates in many parts of the world that were until recently free of these infections. The acute effects of these zoonotic, vector and waterborne diseases are well known; however, evidence is emerging about their role in the development of chronic kidney disease. The pathways linking environmental change and biodiversity loss to infections impacting kidney health are diverse and complex. Climate change and biodiversity loss disproportionately affect the vulnerable and limit their ability to access healthcare. The kidney health community needs to contribute to the issue of environmental change and biodiversity loss through multisectoral action alongside government, policymakers, advocates, businesses, and the general population. We describe various aspects of the environmental change effects on the transmission and emergence of infectious diseases particularly focusing on its potential impact on kidney health. We also discuss the adaptive and mitigation measures and the gaps in research and policy action.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- School of Public Health, Imperial College, London, UK
| |
Collapse
|
8
|
Kotepui M, Masangkay FR, Mahittikorn A, Kotepui KU. Effect of Malaria on Blood Levels of Vitamin E: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3472. [PMID: 37571409 PMCID: PMC10421180 DOI: 10.3390/nu15153472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Vitamin E has an antioxidant property and is associated with protection against malaria. The current study used systematic review and meta-analysis approaches examining the variance in blood levels of vitamin E in malaria patients as compared with uninfected individuals. The protocol for the systematic review was registered with PROSPERO (CRD4202341481). Searches for pertinent studies were carried out on Embase, MEDLINE, Ovid, PubMed, Scopus, ProQuest, and Google Scholar. The combined effect estimate (Cohen's d) of the difference in vitamin E levels in malaria patients as compared with uninfected individuals was estimated using the random effects model. The searches yielded 2009 records, and 23 studies were included in the systematic review. The majority of the studies (80%) found that vitamin E levels were significantly lower in malaria patients than those who were not infected. Overall, the results revealed a significant reduction in blood levels of vitamin E in malaria patients when compared with uninfected individuals (p < 0.01, Cohen's d: -2.74, 95% CI: -3.72-(-1.76), I2: 98.69%, 21 studies). There was a significant reduction in blood levels of vitamin E in patients suffering from severe malaria, in comparison with those experiencing less severe forms of the disease (p < 0.01, Cohen's d: -0.56, 95% CI: -0.85-(-0.26), I2: 0%, 2 studies), but no variation in blood levels of vitamin E among patients suffering from either P. falciparum or P. vivax malaria (p = 0.13, Cohen's d: -1.15, 95% CI: -2.62-0.33, I2: 93.22%, 3 studies). In summary, the present study strongly suggests that vitamin E levels are significantly reduced in malaria patients, with a more pronounced decrease observed in cases of severe malaria. However, the type of malaria parasite, specifically P. falciparum or P. vivax, did not appear to influence the levels of vitamin E. This study highlights the potential role of vitamin E in the pathogenesis of malaria and suggests that improved vitamin E status might be beneficial for improving disease outcomes.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 10400, Thailand;
| | | | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 10400, Thailand;
| |
Collapse
|
9
|
Basco LK. Cultivation of Asexual Intraerythrocytic Stages of Plasmodium falciparum. Pathogens 2023; 12:900. [PMID: 37513747 PMCID: PMC10384318 DOI: 10.3390/pathogens12070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successfully developed in 1976, the continuous in vitro culture of Plasmodium falciparum has many applications in the field of malaria research. It has become an important experimental model that directly uses a human pathogen responsible for a high prevalence of morbidity and mortality in many parts of the world and is a major source of biological material for immunological, biochemical, molecular, and pharmacological studies. Until present, the basic techniques described by Trager and Jensen and Haynes et al. remain unchanged in many malaria research laboratories. Nonetheless, different factors, including culture media, buffers, serum substitutes and supplements, sources of erythrocytes, and conditions of incubation (especially oxygen concentration), have been modified by different investigators to adapt the original technique in their laboratories or enhance the in vitro growth of the parasites. The possible effects and benefits of these modifications for the continuous cultivation of asexual intraerythrocytic stages of P. falciparum, as well as future challenges in developing a serum-free cultivation system and axenic cultures, are discussed.
Collapse
Affiliation(s)
- Leonardo K Basco
- Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Service de Santé des Armées (SSA), Unité Mixte de Recherche (UMR) Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), 13005 Marseille, France
- Institut Hospitalo-Universitaire-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
10
|
Oxendine Harp K, Bashi A, Botchway F, Addo-Gyan D, Tetteh-Tsifoanya M, Lamptey A, Djameh G, Iqbal SA, Lekpor C, Banerjee S, Wilson MD, Dei-Adomakoh Y, Adjei AA, Stiles JK, Driss A. Sickle Cell Hemoglobin Genotypes Affect Malaria Parasite Growth and Correlate with Exosomal miR-451a and let-7i-5p Levels. Int J Mol Sci 2023; 24:7546. [PMID: 37108709 PMCID: PMC10141851 DOI: 10.3390/ijms24087546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Malaria affects a significant portion of the global population, with 247 million cases in 2021, primarily in Africa. However, certain hemoglobinopathies, such as sickle cell trait (SCT), have been linked to lower mortality rates in malaria patients. Hemoglobin (Hb) mutations, including HbS and HbC, can cause sickle cell disease (SCD) when both alleles are inherited (HbSS and HbSC). In SCT, one allele is inherited and paired with a normal allele (HbAS, HbAC). The high prevalence of these alleles in Africa may be attributed to their protective effect against malaria. Biomarkers are crucial for SCD and malaria diagnosis and prognosis. Studies indicate that miRNAs, specifically miR-451a and let-7i-5p, are differentially expressed in HbSS and HbAS compared to controls. Our research examined the levels of exosomal miR-451a and let-7i-5p in red blood cells (RBCs) and infected red blood cells (iRBCs) from multiple sickle Hb genotypes and their impact on parasite growth. We assessed exosomal miR-451a and let-7i-5p levels in vitro in RBC and iRBC supernatants. Exosomal miRNAs exhibited distinct expression patterns in iRBCs from individuals with different sickle Hb genotypes. Additionally, we discovered a correlation between let-7i-5p levels and trophozoite count. Exosomal miR-451a and let-7i-5p could modulate SCD and malaria severity and serve as potential biomarkers for malaria vaccines and therapies.
Collapse
Affiliation(s)
- Keri Oxendine Harp
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (K.O.H.); (A.B.); (S.A.I.); (S.B.)
| | - Alaijah Bashi
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (K.O.H.); (A.B.); (S.A.I.); (S.B.)
| | - Felix Botchway
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra P.O. Box 4236, Ghana; (F.B.); (C.L.); (A.A.A.)
| | - Daniel Addo-Gyan
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG581, Ghana; (D.A.-G.); (M.T.-T.); (A.L.); (G.D.); (M.D.W.)
| | - Mark Tetteh-Tsifoanya
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG581, Ghana; (D.A.-G.); (M.T.-T.); (A.L.); (G.D.); (M.D.W.)
| | - Amanda Lamptey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG581, Ghana; (D.A.-G.); (M.T.-T.); (A.L.); (G.D.); (M.D.W.)
| | - Georgina Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG581, Ghana; (D.A.-G.); (M.T.-T.); (A.L.); (G.D.); (M.D.W.)
| | - Shareen A. Iqbal
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (K.O.H.); (A.B.); (S.A.I.); (S.B.)
| | - Cecilia Lekpor
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra P.O. Box 4236, Ghana; (F.B.); (C.L.); (A.A.A.)
| | - Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (K.O.H.); (A.B.); (S.A.I.); (S.B.)
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG581, Ghana; (D.A.-G.); (M.T.-T.); (A.L.); (G.D.); (M.D.W.)
| | - Yvonne Dei-Adomakoh
- Department of Haematology, Korle-Bu Teaching Hospital, Accra P.O. Box 77, Ghana;
| | - Andrew A. Adjei
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Accra P.O. Box 4236, Ghana; (F.B.); (C.L.); (A.A.A.)
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (K.O.H.); (A.B.); (S.A.I.); (S.B.)
| |
Collapse
|
11
|
Ashton TD, Dans MG, Favuzza P, Ngo A, Lehane AM, Zhang X, Qiu D, Chandra Maity B, De N, Schindler KA, Yeo T, Park H, Uhlemann AC, Churchyard A, Baum J, Fidock DA, Jarman KE, Lowes KN, Baud D, Brand S, Jackson PF, Cowman AF, Sleebs BE. Optimization of 2,3-Dihydroquinazolinone-3-carboxamides as Antimalarials Targeting PfATP4. J Med Chem 2023; 66:3540-3565. [PMID: 36812492 PMCID: PMC10009754 DOI: 10.1021/acs.jmedchem.2c02092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There is an urgent need to populate the antimalarial clinical portfolio with new candidates because of resistance against frontline antimalarials. To discover new antimalarial chemotypes, we performed a high-throughput screen of the Janssen Jumpstarter library against the Plasmodium falciparum asexual blood-stage parasite and identified the 2,3-dihydroquinazolinone-3-carboxamide scaffold. We defined the SAR and found that 8-substitution on the tricyclic ring system and 3-substitution of the exocyclic arene produced analogues with potent activity against asexual parasites equivalent to clinically used antimalarials. Resistance selection and profiling against drug-resistant parasite strains revealed that this antimalarial chemotype targets PfATP4. Dihydroquinazolinone analogues were shown to disrupt parasite Na+ homeostasis and affect parasite pH, exhibited a fast-to-moderate rate of asexual kill, and blocked gametogenesis, consistent with the phenotype of clinically used PfATP4 inhibitors. Finally, we observed that optimized frontrunner analogue WJM-921 demonstrates oral efficacy in a mouse model of malaria.
Collapse
Affiliation(s)
- Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Madeline G Dans
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Paola Favuzza
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - Xinxin Zhang
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | | | - Nirupam De
- TCG Lifesciences Pvt. Ltd., Saltlake Sec-V, Kolkata 700091, West Bengal, India
| | - Kyra A Schindler
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Heekuk Park
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Anne-Catrin Uhlemann
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington SW7 2AZ U.K.,School of Biomedical Sciences, University of New South Wales, Sydney 2031, Australia
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University, Irving Medical Center, New York, New York 10032, United States.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University, Irving Medical Center, New York, New York 10032, United States
| | - Kate E Jarman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Kym N Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Delphine Baud
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Stephen Brand
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Paul F Jackson
- Global Public Health, Janssen R&D LLC, La Jolla, California 92121, United States
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
12
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Malian children infected with Plasmodium ovale and Plasmodium falciparum display very similar gene expression profiles. PLoS Negl Trop Dis 2023; 17:e0010802. [PMID: 36696438 PMCID: PMC9901758 DOI: 10.1371/journal.pntd.0010802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P. ovale are endemic to Mali and cause clinical malaria, with P. falciparum infections typically being more severe. Here, we sequenced RNA from nine pediatric blood samples collected during infections with either P. falciparum or P. ovale, and characterized the host and parasite gene expression profiles. We found that human gene expression varies more between individuals than according to the parasite species causing the infection, while parasite gene expression profiles cluster by species. Additionally, we characterized DNA polymorphisms of the parasites directly from the RNA-seq reads and found comparable levels of genetic diversity in both species, despite dramatic differences in prevalence. Our results provide unique insights into host-pathogen interactions during malaria infections and their variations according to the infecting Plasmodium species, which will be critical to develop better elimination strategies against all human Plasmodium parasites.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| |
Collapse
|
13
|
Trends of Malaria Prevalence in Selected Districts of Kaffa Zone, Southwest Ethiopia. J Trop Med 2022; 2022:3556140. [PMID: 36274749 PMCID: PMC9586818 DOI: 10.1155/2022/3556140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Malaria remains one of the world's major public health issues, particularly in low- and middle-income countries. In Ethiopia, cases have declined over the last decade, and attempts to eradicate the illness are underway. The purpose of this study was to determine trends in malaria prevalence in selected areas of the Kaffa zone during the last five years (Decha and Gimbo districts). Methods All malaria cases registered from 2017 to 2021 were reviewed to assess the trends of malaria prevalence. A checklist was used to collect the secondary data from registers and entered it into an Excel spreadsheet, which was then exported to the Statistical Package for the Social Sciences (SPSS) version 25.0 for analysis. The malaria incidence rate was calculated with the total number of person-years as the denominator and the number of new cases as the numerator. Seasons, years, gender, age, and malaria parasite species were all used to show trends in malaria transmission in the areas. Tables and figures were used to present the data. Results Out of 20,045 individuals screened for malaria, 13.6% (2,732/20,045) of them were recorded to have Plasmodium species tested using microscopy and rapid diagnostic test (RDT). Plasmodium falciparum, Plasmodium vivax, and mixed infections (Plasmodium falciparum + Plasmodium vivax) accounted for 1200 (5.9%), 1114 (5.56%), and 418 (2.09%) of the confirmed malaria cases, respectively. Overall, malaria incidence decreased with an interannual variation, from 4.08 cases per 1000 person-years in 2017 to 3.62 cases per 1000 person-years in 2018, then increased to 4.94 cases per 1000 person-years in 2021. Conclusion The malaria trend over the last five years has revealed a nonconsistent pattern of cases in different years. The number of malaria cases has shown an increase over the period of 2017 to 2021. Interannual and intra-annual variations have been observed in the transmission of the disease.
Collapse
|
14
|
Narrative Review of the Control and Prevention of Knowlesi Malaria. Trop Med Infect Dis 2022; 7:tropicalmed7080178. [PMID: 36006270 PMCID: PMC9414718 DOI: 10.3390/tropicalmed7080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the reduction in the number of cases of human malaria throughout the world, the incidence rate of knowlesi malaria is continuing to rise, especially in Southeast Asia. The conventional strategies for the prevention and control of human malaria can provide some protection against knowlesi malaria. Despite the numerous studies on the risk factors and the innovative methods that may be used to prevent and control the vectors of Plasmodium knowlesi, the incidence rate remains high. An integrated approach that includes environmental intervention should be adopted in order to ensure the successful control of zoonotic malaria. A combination of personal-level protection, vector control and environmental control may mitigate the risk of Plasmodium knowlesi transmission from macaques to humans and, ultimately, reduce the incidence rate of knowlesi malaria.
Collapse
|
15
|
|
16
|
da Cruz DL, Paiva MHS, Guedes DRD, de Souza Gomes EC, Pires SG, Gomez LF, Ayres CFJ. First report of the L1014F kdr mutation in wild populations of Anopheles arabiensis in Cabo Verde, West Africa. Parasit Vectors 2021; 14:582. [PMID: 34802463 PMCID: PMC8607584 DOI: 10.1186/s13071-021-05088-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.
Collapse
Affiliation(s)
- Derciliano Lopes da Cruz
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil. .,Centro Academico do Agreste, Universidade Federal de Pernambuco, Rodovia BR-104, km 59-Nova Caruaru, Caruaru, PE, 55002-970, Brazil.
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Elainne Christine de Souza Gomes
- Departamento de Parasitologia, Instituto Aggeu Magalhaes/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | | | | | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundaçao Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| |
Collapse
|
17
|
Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity. Bioorg Chem 2021; 117:105359. [PMID: 34689083 DOI: 10.1016/j.bioorg.2021.105359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.
Collapse
|
18
|
Xie Y, Li X, Chai Y, Song H, Qi J, Gao GF. Structural basis of malarial parasite RIFIN-mediated immune escape against LAIR1. Cell Rep 2021; 36:109600. [PMID: 34433057 DOI: 10.1016/j.celrep.2021.109600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Malaria infection by Plasmodium falciparum continues to pose a global threat to the human population. P. falciparum expresses variable erythrocyte surface antigens such as RIFINs. Public antibodies with LAIR1 insertion have been identified from malarial patients against a subset of RIFINs. In this study, we solve a LAIR1-binding RIFIN structure: the complex structures of two RIFINs bound to mutated or wild-type LAIR1 in two distinct patterns. Notably, the two RIFINs engage similar binding sites on LAIR1 with different angles, and the RIFIN-binding sites overlap with the collagen-binding site. Surprisingly, RIFINs use completely different binding sites to bind to LAIR1 or LILRB1, indicating the kaleidoscopic change of RIFINs. We then verify that RIFIN could induce LAIR1-mediated cell signaling, and LAIR1-containing antibodies could block the pathway. The findings of this study provide structural insights into the mechanism of the immune escape of P. falciparum and the endless arms race between parasite and host.
Collapse
Affiliation(s)
- Yijia Xie
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianxun Qi
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George F Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Influenza Research and Early Warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Ooi CH, Phang WK, Kent Liew JW, Lau YL. Spatial and Temporal Patterns of Plasmodium knowlesi Malaria in Sarawak from 2008 to 2017. Am J Trop Med Hyg 2021; 104:1814-1819. [PMID: 33755585 PMCID: PMC8103491 DOI: 10.4269/ajtmh.20-1304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Zoonotic knowlesi malaria has replaced human malaria as the most prevalent malaria disease in Malaysia. The persistence of knowlesi malaria in high-risk transmission areas or hotspots can be discouraging to existing malaria elimination efforts. In this study, retrospective data of laboratory-confirmed knowlesi malaria cases were obtained from the Sarawak Health Department to investigate the spatiotemporal patterns and clustering of knowlesi malaria in the state of Sarawak from 2008 to 2017. Purely spatial, purely temporal, and spatiotemporal analyses were performed using SaTScan software to define clustering of knowlesi malaria incidence. Purely spatial and spatiotemporal analyses indicated most likely clusters of knowlesi malaria in the northern region of Sarawak, along the Sarawak-Kalimantan border, and the inner central region of Sarawak between 2008 and 2017. Temporal cluster was detected between September 2016 and December 2017. This study provides evidence of the existence of statistically significant Plasmodium knowlesi malaria clusters in Sarawak, Malaysia. The analysis approach applied in this study showed potential in establishing surveillance and risk management system for knowlesi malaria control as Malaysia approaches human malaria elimination.
Collapse
Affiliation(s)
- Choo Huck Ooi
- Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Kuching, Malaysia;,Address correspondence to Choo Huck Ooi, Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Diplomatik Rd., Off Bako Rd., Kuching 93050, Malaysia, E-mail: or Yee Ling Lau, Department of Parasitology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia, E-mail:
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Address correspondence to Choo Huck Ooi, Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Diplomatik Rd., Off Bako Rd., Kuching 93050, Malaysia, E-mail: or Yee Ling Lau, Department of Parasitology, Faculty of Medicine, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia, E-mail:
| |
Collapse
|
20
|
Thilakarathne SS, Rajakaruna RS, Fernando DD, Rajapakse RPVJ, Perera PK. Gastro-intestinal parasites in two subspecies of toque macaque (Macaca sinica) in Sri Lanka and their zoonotic potential. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 24:100558. [PMID: 34024374 DOI: 10.1016/j.vprsr.2021.100558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Gastro-intestinal (GI) parasites of primates have a greater potential of becoming zoonotic. This potential may vary in different primates based on multiple factors such as proximity to human settlements and the climate of their habitat. We examined the GI parasites in two subspecies of toque macaque: Macaca sinica sinica (confined to the dry zone) and Macaca sinica aurifrons (confined to the wet zone) of Sri Lanka. Fresh faecal samples were collected and analysed following a modified Sheather's sucrose floatation method. A total of 90.8% (89/98) macaques were infected with one or more parasite species. There was no difference in the overall prevalence of GI parasites between the two subspecies, M. s. aurifrons (95.9%) and M. s. sinica (85.7%; χ2;χ = 3.059, p = 0.080). Sixteen parasite species were recorded including, 15 species in the M. s. sinica and 12 species in the M. s. aurifrons. Among the helminths identified, Anatrichosoma sp., Ancylostoma spp., Capillaria spp., Oesophagostomum /Bunostomum spp. and Physaloptera spp. are known to be zoonotic while Ascaris spp., Enterobius sp., Strongyloides spp. and Trichuris spp. have both zoonotic and anthroponotic potential. Among the protozoans, Balantidium coli and Buxtonella sp. are known to be zoonotic, while Entamoeba spp. and Cryptosporidium spp. have both anthroponotic and zoonotic potential. This study provides the first record of Anatrichosoma sp. and Buxtonella sp. in Sri Lanka and the first record of Cryptosporidium spp. in M. s. aurifrons. The molecular data allowed further identification and differentiation of Entamoeba nuttalli and E. coli that are known to be zoonotic and anthroponotic, respectively. The two subspecies of macaques have close interactions with humans; hence, in-depth epidemiological studies are required to understand the potential public-health risks to humans and conservation implications for macaque populations.
Collapse
Affiliation(s)
| | - Rupika S Rajakaruna
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Deepani D Fernando
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya, Sri Lanka; QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - R P V J Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Piyumali K Perera
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
21
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Abstract
Community-acquired acute kidney injury (CA-AKI) is the dominant form of AKI encountered in developing countries in Asia. Economic disparities, variations in access to health care services, geographic conditions, environmental risk factors, and sociocultural circumstances shape the causes and outcomes of CA-AKI. Infections, drugs, plant and chemical toxins, envenomations, and obstetric complications are common causes of CA-AKI. Previously healthy young individuals who often work outdoors in fields or farms are exposed to a wide variety of work-related or environmental risk factors for CA-AKI. Improving disease definitions, better data, and evolving host-pathogen interactions have changed disease descriptions and presentations over the past 20 years. Among infections, although the incidence of malaria has decreased, the number of cases with dengue and scrub typhus have increased sharply. The recognition of AKI in relation to Plasmodium knowlesi, Plasmodium vivax, scrub typhus, and leptospirosis in areas not traditionally considered at risk, association of infections with the future development of chronic kidney disease, and the role of complement dysregulation in infection-associated AKI are important new findings. Snake-bite-related toxic envenomation continues to be an important cause of AKI in some counties and is a neglected public health problem. On the other hand, significant decreases in the incidence of AKI related to acute diarrheal illness or obstetric causes are signs of hope. Coordinated efforts between administrative stakeholders, society, and health care delivery services at all levels have the potential to propel research and improve outcomes in CA-AKI.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- George Institute for Global Health, University of New South Wales, New Delhi, India; School of Public Health, Imperial College, London, UK; Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
23
|
Naik DG. Plasmodium knowlesi-mediated zoonotic malaria: A challenge for elimination. Trop Parasitol 2020; 10:3-6. [PMID: 32775284 PMCID: PMC7365496 DOI: 10.4103/tp.tp_17_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Malaria, a mosquito-transmitted parasitic disease, has been targeted for elimination in many parts of the world. For many years, Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale and Plasmodium malariae have been known to cause malaria in humans. Now, Plasmodium knowlesi is considered to be an important cause of malaria, especially in Southeast Asia. The emergence of P. knowlesi with zoonotic implication is a challenge in the elimination efforts of malaria in Southeast Asia. P. knowlesi is known to cause severe complicated malaria in humans. P. knowlesi parasite is transmitted between humans and wild macaque through mosquito vectors. It appears that the malaria disease severity and host immune evasion depend on antigenic variation exhibited at the surface of the infected erythrocyte. P. knowlesi is sensitive to antimalarial drug artemisinin. Identification of vector species, their biting behavior, timely correct diagnosis, and treatment are important steps in disease management and control. There is a need to identify and implement effective intervention measures to cut the chain of transmissions from animals to humans. The zoonotic malaria definitely poses a significant challenge in elimination and subsequent eradication of all types of malaria from this globe.
Collapse
Affiliation(s)
- Durgadas Govind Naik
- Department of Microbiology, International Medical School, Management and Science University, Selangor, Malaysia
| |
Collapse
|
24
|
Young KI, Medwid JT, Azar SR, Huff RM, Drumm H, Coffey LL, Pitts RJ, Buenemann M, Vasilakis N, Perera D, Hanley KA. Identification of Mosquito Bloodmeals Collected in Diverse Habitats in Malaysian Borneo Using COI Barcoding. Trop Med Infect Dis 2020; 5:tropicalmed5020051. [PMID: 32244739 PMCID: PMC7344668 DOI: 10.3390/tropicalmed5020051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Land cover and land use change (LCLUC) acts as a catalyst for spillover of arthropod-borne pathogens into novel hosts by shifting host and vector diversity, abundance, and distribution, ultimately reshaping host–vector interactions. Identification of bloodmeals from wild-caught mosquitoes provides insight into host utilization of particular species in particular land cover types, and hence their potential role in pathogen maintenance and spillover. Here, we collected 134 blood-engorged mosquitoes comprising 10 taxa across 9 land cover types in Sarawak, Malaysian Borneo, a region experiencing intense LCLUC and concomitant spillover of arthropod-borne pathogens. Host sources of blood were successfully identified for 116 (87%) mosquitoes using cytochrome oxidase subunit I (COI) barcoding. A diverse range of hosts were identified, including reptiles, amphibians, birds, and mammals. Sixteen engorged Aedes albopictus, a major vector of dengue virus, were collected from seven land cover types and found to feed exclusively on humans (73%) and boar (27%). Culex tritaeniohynchus (n = 2), Cx. gelidus (n = 3), and Cx. quiquefasciatus (n = 3), vectors of Japanese encephalitis virus, fed on humans and pigs in the rural built-up land cover, creating potential transmission networks between these species. Our data support the use of COI barcoding to characterize mosquito–host networks in a biodiversity hotspot.
Collapse
Affiliation(s)
- Katherine I. Young
- Department of Biology, New Mexico State University, Las Cruces NM 88003, USA; (J.T.M.); (K.A.H.)
- Correspondence:
| | - Joseph T. Medwid
- Department of Biology, New Mexico State University, Las Cruces NM 88003, USA; (J.T.M.); (K.A.H.)
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.R.A.); (N.V.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert M. Huff
- Department of Biology, Baylor University, Waco, TX 76706, USA; (R.M.H.); (R.J.P.)
| | - Hannah Drumm
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (H.D.); (L.L.C.)
| | - Lark L. Coffey
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (H.D.); (L.L.C.)
- Department of Pathology, Microbiology & Immunology, University of California Davis, Davis, CA 95616, USA
| | - R. Jason Pitts
- Department of Biology, Baylor University, Waco, TX 76706, USA; (R.M.H.); (R.J.P.)
| | - Michaela Buenemann
- Department of Geography, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.R.A.); (N.V.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David Perera
- Institute of Health and Communiti Medicine, Universiti of Malaysia Sarawak, Sarawak 94300, Malaysia;
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces NM 88003, USA; (J.T.M.); (K.A.H.)
| |
Collapse
|
25
|
Epelboin L, Rapp C, Faucher JF, Méchaï F, Bottieau E, Matheron S, Malvy D, Caumes E. Management and treatment of uncomplicated imported malaria in adults. Update of the French malaria clinical guidelines. Med Mal Infect 2019; 50:194-212. [PMID: 31493957 DOI: 10.1016/j.medmal.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/11/2019] [Indexed: 12/25/2022]
Affiliation(s)
- L Epelboin
- Unité des maladies infectieuses et tropicales, centre hospitalier Andrée Rosemon, avenue des Flamboyants, 97300 Cayenne, French Guiana.
| | - C Rapp
- Hôpital Américain de Paris, 63, boulevard Victor Hugo, 92200 Neuilly, France; Hôpital d'instruction des armées Bégin, 69, avenue de Paris, 94163 Saint-Mandé, France
| | - J F Faucher
- Service des maladies infectieuses et tropicales and UMR 1094, CHU Dupuytren 2, 87042 Limoges, France
| | - F Méchaï
- Service des maladies infectieuses et tropicales, hôpital Avicenne, 93000 Bobigny, France
| | - E Bottieau
- Institute of tropical medicine, Antwerp, Belgium
| | - S Matheron
- Service des maladies infectieuses et tropicales, CHU Bichat - Claude Bernard, 75018 Paris, France
| | - D Malvy
- Service des maladies infectieuses et tropicales, CHU Bordeaux, 33000 Bordeaux France
| | - E Caumes
- Hôpital Pitié-Salpêtrière, 43-87, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
26
|
Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit Vectors 2019; 12:364. [PMID: 31345256 PMCID: PMC6659233 DOI: 10.1186/s13071-019-3627-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types. RESULTS A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species. CONCLUSIONS The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.
Collapse
Affiliation(s)
- Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Benny O Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
27
|
Zaw MT, Lin Z. Human Plasmodium knowlesi infections in South-East Asian countries. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:679-684. [PMID: 31320238 DOI: 10.1016/j.jmii.2019.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/09/2019] [Accepted: 05/08/2019] [Indexed: 01/05/2023]
Abstract
Plasmodium knowlesi is now regarded as the fifth malaria parasite causing human malaria as it is widely distributed in South-East Asian countries especially east Malaysia where two Malaysian states namely Sabah and Sarawak are situated. In 2004, Polymerase Chain Reaction (PCR) was applied for diagnosing knowlesi malaria in the Kapit Division of Sarawak, Malaysia, so that human P. knowlesi infections could be detected correctly while blood film microscopy diagnosed incorrectly as Plasmodium malariae. This parasite is transmitted from simian hosts to humans via Anopheles vectors. Indonesia is the another country in South East Asia where knowlesi malaria is moderately prevalent. In the last decade, Sarawak and Sabah, the two states of east Malaysia became the target of P. knowlesi research due to prevalence of cases with occasional fatal infections. The host species of P. knowlesi are three macaque species namely Macaca fascicularis, Macaca nemestrina and Macaca leonina while the vector species are the Leucosphyrus Complex and the Dirus Complex of the Leucophyrus Group of Anopheles mosquitoes. Rapid diagnostic tests (RDT) are non-existent for knowlesi malaria although timely treatment is necessary for preventing complications, fatality and drug resistance. Development of RDT is essential in dealing with P. knowlesi infections in poor rural healthcare services. Genetic studies of the parasite on possibility of human-to-human transmission of P. knowlesi were recommended for further studies.
Collapse
Affiliation(s)
- Myo Thura Zaw
- Department of Pathobiological and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah.
| | - Zaw Lin
- Department of Pathobiological and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah
| |
Collapse
|
28
|
Ngernna S, Chim-Ong A, Roobsoong W, Sattabongkot J, Cui L, Nguitragool W. Efficient synchronization of Plasmodium knowlesi in vitro cultures using guanidine hydrochloride. Malar J 2019; 18:148. [PMID: 31023359 PMCID: PMC6482532 DOI: 10.1186/s12936-019-2783-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long-term in vitro culture of blood stage Plasmodium parasites invariably leads to asynchronous parasite development. The most often used technique to synchronize Plasmodium falciparum culture is sorbitol treatment, which differentially induces osmotic lysis of trophozoite- and schizont-infected red blood cells due to presence of the new permeation pathways in the membranes of these cells. However, sorbitol treatment does not work well when used to synchronize the culture-adapted Plasmodium knowlesi A1-H.1 line. METHODS A number of common solutes were tested in lieu of sorbitol for synchronization of P. knowlesi A1-H.1 ring stage. RESULTS Guanidine hydrochloride was found to selectively lyse trophozoite- and schizont-infected red blood cells, yielding highly synchronous and viable rings. CONCLUSIONS A method for synchronization of P. knowlesi in human red blood cells was developed. Requiring only common laboratory reagents, this method is simple and should be applicable to most laboratory settings.
Collapse
Affiliation(s)
- Sutharinee Ngernna
- Department of Molecular Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Anongruk Chim-Ong
- Department of Molecular Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
29
|
Evaluation of 4-Amino 2-Anilinoquinazolines against Plasmodium and Other Apicomplexan Parasites In Vitro and in a P. falciparum Humanized NOD- scid IL2Rγ null Mouse Model of Malaria. Antimicrob Agents Chemother 2019; 63:AAC.01804-18. [PMID: 30559138 DOI: 10.1128/aac.01804-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.
Collapse
|
30
|
Beiter KJ, Wentlent ZJ, Hamouda AR, Thomas BN. Nonconventional opponents: a review of malaria and leishmaniasis among United States Armed Forces. PeerJ 2019; 7:e6313. [PMID: 30701136 PMCID: PMC6348955 DOI: 10.7717/peerj.6313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/19/2018] [Indexed: 01/10/2023] Open
Abstract
As the United States military engage with different countries and cultures throughout the world, personnel become exposed to new biospheres as well. There are many infectious pathogens that are not endemic to the US, but two of particular importance are Plasmodium and Leishmania, which respectively cause malaria and leishmaniasis. These parasites are both known to cause significant disease burden in their endemic locales, and thus pose a threat to military travelers. This review introduces readers to basic life cycle and disease mechanisms for each. Local and military epidemiology are described, as are the specific actions taken by the US military for prevention and treatment purposes. Complications of such measures with regard to human health are also discussed, including possible chemical toxicities. Additionally, poor recognition of these diseases upon an individual's return leading to complications and treatment delays in the United States are examined. Information about canine leishmaniasis, poorly studied relative to its human manifestation, but of importance due to the utilization of dogs in military endeavors is presented. Future implications for the American healthcare system regarding malaria and leishmaniasis are also presented.
Collapse
Affiliation(s)
- Kaylin J Beiter
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Zachariah J Wentlent
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Adrian R Hamouda
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, United States of America
| |
Collapse
|
31
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
32
|
Kassegne K, Abe EM, Cui YB, Chen SB, Xu B, Deng WP, Shen HM, Wang Y, Chen JH, Zhou XN. Contribution of Plasmodium immunomics: potential impact for serological testing and surveillance of malaria. Expert Rev Proteomics 2018; 16:117-129. [PMID: 30513025 DOI: 10.1080/14789450.2019.1554441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Plasmodium vivax (Pv) and P. knowlesi account together for a considerable share of the global burden of malaria, along with P. falciparum (Pf). However, inaccurate diagnosis and undetectable asymptomatic/submicroscopic malaria infections remain very challenging. Blood-stage antigens involved in either invasion of red blood cells or sequestration/cytoadherence of parasitized erythrocytes have been immunomics-characterized, and are vital for the detection of malaria incidence. Areas covered: We review the recent advances in Plasmodium immunomics to discuss serological markers with potential for specific and sensitive diagnosis of malaria. Insights on alternative use of immunomics to assess malaria prevalence are also highlighted. Finally, we provide practical applications of serological markers as diagnostics, with an emphasis on dot immunogold filtration assay which holds promise for malaria diagnosis and epidemiological surveys. Expert commentary: The approach largely contributes to Pf and Pv research in identifying promising non-orthologous antigens able to detect malaria incidence and to differentiate between past and recent infections. However, further studies to profiling naturally acquired immune responses are expected in order to help discover/validate serological markers of no cross-seroreactivity and guide control interventions. More so, the application of immunomics to knowlesi infections would help validate the recently identified antigens and contribute to the discovery of additional biomarkers of exposure, immunity, or both.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Eniola Michael Abe
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Yan-Bing Cui
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Shen-Bo Chen
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Bin Xu
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Wang-Ping Deng
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Hai-Mo Shen
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Yue Wang
- b Institute of Parasitic Diseases , Zhejiang Academy of Medical Sciences , Hangzhou , People's Republic of China
| | - Jun-Hu Chen
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Ranaweera D, Kanchana Rajapaksha RMJ, Silva P, Hettiarachchi R, Gunasekera WMKTDAW, Herath H, Fernando D. Severe Plasmodium vivax malaria, HIV, tuberculosis co-infection in a Sri Lankan traveller: case management and challenges during the prevention of malaria reintroduction phase. Malar J 2018; 17:429. [PMID: 30445967 PMCID: PMC6240325 DOI: 10.1186/s12936-018-2581-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/12/2018] [Indexed: 02/04/2023] Open
Abstract
Background The country received malaria-free certification from WHO in September 2016, becoming only the second country in the WHO South East Asia region to be declared malaria-free. Imported malaria cases continue to be reported, with 278 cases reported between 2013 and 2017. The diagnosis of a severe Plasmodium vivax patient co-infected with HIV and tuberculosis is discussed with an overview of the rapid response mounted by the Anti Malaria Campaign (AMC), Sri Lanka. Case presentation A Sri Lankan gem miner who returned from Madagascar on the 6th of April 2018 presented to a private hospital for a malaria diagnostic test on the 21st April, 2 days after the onset of fever. He came on his own for this test due to the awareness he had regarding the risk of imported malaria. As the patient was positive for P. vivax malaria, he was admitted to a government hospital for further management. The patient had features of severe malaria upon admission with a systolic BP < 80 mmHg and thrombocytopaenia (38,000 cells/mm3). Treatment with IV artesunate was initiated immediately and management was carried out rapidly and efficiently by the clinicians with guidance from the staff of the AMC headquarters, which resulted in a rapid recovery of the patient. IV artesunate was followed by a course of artemether plus lumefantrine and the blood smear was negative for malaria by the 2nd day. A 14-day course of primaquine was commenced after excluding a G6PD deficiency. Due to an accidental needle stick injury of a health care worker attending on the patient was tested for HIV and subsequently tuberculosis and was found to be positive for both infections. The patient was discharged on the 1st of May with instructions for follow up visits for malaria. Management of the HIV and tuberculosis infections was attended to by the clinicians and staff of the appropriate disease control programmes (i.e. the national STD/AIDS Control Programme in Sri Lanka and the National Programme for tuberculosis control and chest diseases). Conclusions It is important to consider comorbid conditions and immunosuppression when a patient with a benign form of malaria presents with severe manifestations. Measures should be strengthened to prevent importation of diseases, such as malaria and AIDS through migrant workers who return from high-risk countries.
Collapse
Affiliation(s)
- Dewanee Ranaweera
- Anti Malaria Campaign, 555/5 Public Health Building, Narehenpita, Sri Lanka
| | | | - Priyanganie Silva
- Anti Malaria Campaign, 555/5 Public Health Building, Narehenpita, Sri Lanka
| | | | | | - Hemantha Herath
- Anti Malaria Campaign, 555/5 Public Health Building, Narehenpita, Sri Lanka
| | - Deepika Fernando
- Department of Parasitology, Faculty of Medicine, Kynsey Road, Colombo 8, Sri Lanka.
| |
Collapse
|
34
|
Koh GJ, Ismail PK, Koh D. Occupationally Acquired Plasmodium knowlesi Malaria in Brunei Darussalam. Saf Health Work 2018; 10:122-124. [PMID: 30949391 PMCID: PMC6429035 DOI: 10.1016/j.shaw.2018.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Simian malaria is a zoonotic disease caused by Plasmodium knowlesi infection. The common natural reservoir of the parasite is the macaque monkey and the vector is the Anopheles mosquito. Human cases of P. knowlesi infection has been reported in all South East Asian countries in the last decade, and it is currently the most common type of malaria seen in Malaysia and Brunei. Between 2007–2017, 73 cases of P. knowlesi infection were notified and confirmed to the Ministry of Health in Brunei. Of these, 15 cases (21%) were documented as work-related, and 28 other cases (38%) were classified as probably related to work (due to incomplete history). The occupations of those with probable and confirmed work related infections were border patrol officers, Armed Forces and security personnel, Department of Forestry officers, boatmen and researchers. The remaining cases classified as most likely not related to work were possibly acquired via peri-domestic transmission. The risk of this zoonotic infection extends to tourists and overseas visitors who have to travel to the jungle in the course of their work. It can be minimised with the recommended use of prophylaxis for those going on duty into the jungles, application of mosquito/insect repellants, and use of repellant impregnated uniforms and bed nets in jungle camp sites.
Collapse
Affiliation(s)
- Gregory Jn Koh
- Faculty of Health and the Medical Sciences, The University of Adelaide, Australia
| | - Pg K Ismail
- Ministry of Health, Brunei Darussalam.,PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| | - David Koh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam.,SSH School of Public Health and YLL School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
35
|
Fong MY, Cheong FW, Lau YL. Erythrocyte-binding assays reveal higher binding of Plasmodium knowlesi Duffy binding protein to human Fy a+/b+ erythrocytes than to Fy a+/b- erythrocytes. Parasit Vectors 2018; 11:527. [PMID: 30257710 PMCID: PMC6158824 DOI: 10.1186/s13071-018-3118-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023] Open
Abstract
Background The merozoite of the zoonotic Plasmodium knowlesi invades human erythrocytes via the binding of its Duffy binding protein (PkDBPαII) to the Duffy antigen on the eythrocytes. The Duffy antigen has two immunologically distinct forms, Fya and Fyb. In this study, the erythrocyte-binding assay was used to quantitatively determine and compare the binding level of PkDBPαII to Fya+/b+ and Fya+/b- human erythrocytes. Results In the erythrocyte-binding assay, binding level was determined by scoring the number of rosettes that were formed by erythrocytes surrounding transfected mammalian COS-7 cells which expressed PkDBPαII. The assay result revealed a significant difference in the binding level. The number of rosettes scored for Fya+/b+ was 1.64-fold higher than that of Fya+/b- (155.50 ± 34.32 and 94.75 ± 23.16 rosettes, respectively; t(6) = -2.935, P = 0.026). Conclusions The erythrocyte-binding assay provided a simple approach to quantitatively determine the binding level of PkDBPαII to the erythrocyte Duffy antigen. Using this assay, PkDBPαII was found to display higher binding to Fya+/b+ erythrocytes than to Fya+/b- erythrocytes.
Collapse
Affiliation(s)
- Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Vernelen K, Barbé B, Gillet P, Van Esbroeck M, China B, Jacobs J. Photo-based External Quality Assessment of Malaria rapid diagnostic tests in a non-endemic setting. PLoS One 2018; 13:e0201622. [PMID: 30169508 PMCID: PMC6118386 DOI: 10.1371/journal.pone.0201622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/18/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction In non-endemic settings, expertise in malaria microscopy is limited and rapid diagnostic tests (RDTs) are an adjunct to malaria diagnosis. Aim We performed an External Quality Assessment (EQA) on reading and interpretation of malaria RDTs in a non-endemic setting. Methods Participants were medical laboratories in Belgium and the Grand Duchy of Luxembourg using malaria RDTs; they received (i) 10 high-resolution photographs presenting test line combinations of RDTs with interpretations listed in a multiple choice format and (ii) a questionnaire about their practices of malaria diagnosis. Results Among 135 subscribing laboratories, 134 (99.3%) used 139 RDT products (11 different products from 8 brands). After exclusion of the results of one laboratory, analysis was done for 133 laboratories using 137 RDT products. Scores of 10/10, 9/10 and 8/10 were achieved for 58.4%, 13.1% and 8.0% of 137 RDT products respectively. For three-band P. falciparum–pan-Plasmodium RDTs (113 (82.5%) products, 6 brands), most frequent errors were (1) disregarding faint test lines (18.6%), (2) reporting invalid instead of P. falciparum (16.8%) and (3) reporting “Plasmodium spp., no further differentiation possible” without mentioning the presence or absence of P. falciparum (11.5%). For four-band RDTs (21 (15.3%) products, 1 brand), errors were (4) disregarding faint P. vivax test lines (47.6%) and (5) reporting “Plasmodium spp., no further differentiation possible” without mentioning the presence of P. falciparum and P. vivax (28.6%). Instructions for use (IFU) of only 4 out of 10 RDT products mentioned to interpret faint-intensity test lines as positive (conducive to errors 1 and 4) and IFU of 2 products displayed incorrect information (conducive to errors 2 and 5). Outside of office hours, 36.1% of participants relied on RDTs as the initial diagnostic test; 13.9% did not perform microscopic confirmation. Conclusion Reading and interpretation of malaria RDTs was satisfactory, but errors were embedded in the instructions for use of the products. Relying on RDTs alone for malaria diagnosis (about one third of participants) is not a recommended practice.
Collapse
Affiliation(s)
- Kris Vernelen
- Quality of Medical Laboratories, Institute of Public Health, Sciensano, Brussels, Belgium
- * E-mail:
| | | | | | | | - Bernard China
- Quality of Medical Laboratories, Institute of Public Health, Sciensano, Brussels, Belgium
| | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
37
|
Frith KA, Fogel R, Goldring JPD, Krause RGE, Khati M, Hoppe H, Cromhout ME, Jiwaji M, Limson JL. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting. Malar J 2018; 17:191. [PMID: 29724225 PMCID: PMC5934816 DOI: 10.1186/s12936-018-2336-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Background Early detection is crucial for the effective treatment of malaria, particularly in those cases infected with Plasmodium falciparum. There is a need for diagnostic devices with the capacity to distinguish P. falciparum from other strains of malaria. Here, aptamers generated against targeted species-specific epitopes of P. falciparum lactate dehydrogenase (rPfLDH) are described. Results Two classes of aptamers bearing high binding affinity and specificity for recombinant P. falciparum lactate dehydrogenase (rPfLDH) and P. falciparum-specific lactate dehydrogenase epitopic oligopeptide (LDHp) were separately generated. Structurally-relevant moieties with particular consensus sequences (GGTAG and GGCG) were found in aptamers reported here and previously published, confirming their importance in recognition of the target, while novel moieties particular to this work (ATTAT and poly-A stretches) were identified. Aptamers with diagnostically-supportive functions were synthesized, prime examples of which are the aptamers designated as LDHp 1, LDHp 11 and rLDH 4 and rLDH 15 in work presented herein. Of the sampled aptamers raised against the recombinant protein, rLDH 4 showed the highest binding to the target rPfLDH in the ELONA assay, with both rLDH 4 and rLDH 15 indicating an ability to discriminate between rPfLDH and rPvLDH. LDHp 11 was generated against a peptide selected as a unique P. falciparum LDH peptide. The aptamer, LDHp 11, like antibodies against the same peptide, only detected rPfLDH and discriminated between rPfLDH and rPvLDH. This was supported by affinity binding experiments where only aptamers generated against a unique species-specific epitope showed an ability to preferentially bind to rPfLDH relative to rPvLDH rather than those generated against the whole recombinant protein. In addition, rLDH 4 and LDHp 11 demonstrated in situ binding to P. falciparum cells during confocal microscopy. Conclusions The utilization and application of LDHp 11, an aptamer generated against a unique species-specific epitope of P. falciparum LDH indicated the ability to discriminate between recombinant P. falciparum and Plasmodium vivax LDH. This aptamer holds promise as a biorecognition element in malaria diagnostic devices for the detection, and differentiation, of P. falciparum and P. vivax malaria infections. This study paves the way to explore aptamer generation against targeted species-specific epitopes of other Plasmodium species.
Collapse
Affiliation(s)
- Kelly-Anne Frith
- Biotechnology Innovation Centre, Rhodes University, P.O. Box 94, Grahamstown, 6140, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, P.O. Box 94, Grahamstown, 6140, Eastern Cape, South Africa
| | - J P Dean Goldring
- Department of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, KwaZulu-Natal, South Africa
| | - Robert G E Krause
- Department of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, KwaZulu-Natal, South Africa
| | - Makobetsa Khati
- Emerging Health Technologies Platform, Biosciences Division, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, Gauteng, South Africa
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, Eastern Cape, South Africa
| | - Mary E Cromhout
- Biotechnology Innovation Centre, Rhodes University, P.O. Box 94, Grahamstown, 6140, Eastern Cape, South Africa
| | - Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown, 6140, Eastern Cape, South Africa
| | - Janice L Limson
- Biotechnology Innovation Centre, Rhodes University, P.O. Box 94, Grahamstown, 6140, Eastern Cape, South Africa.
| |
Collapse
|
38
|
Abstract
Systemic inflammation mediated by Plasmodium parasites is central to malaria disease and its complications. Plasmodium parasites reside in erythrocytes and can theoretically reach all host tissues via the circulation. However, actual interactions between parasitized erythrocytes and host tissues, along with the consequent damage and pathological changes, are limited locally to specific tissue sites. Such tissue specificity of the parasite can alter the outcome of malaria disease, determining whether acute or chronic complications occur. Here, we give an overview of the recent progress that has been made in understanding tissue-specific immunopathology during Plasmodium infection. As knowledge on tissue-specific host-parasite interactions accumulates, better treatment modalities and targets may emerge for intervention in malaria disease.
Collapse
|
39
|
Hematologic Aspects of Parasitic Diseases. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
40
|
Lapp SA, Geraldo JA, Chien JT, Ay F, Pakala SB, Batugedara G, Humphrey J, DeBARRY JD, Le Roch KG, Galinski MR, Kissinger JC. PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family. Parasitology 2018; 145:71-84. [PMID: 28720171 PMCID: PMC5798397 DOI: 10.1017/s0031182017001329] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the 'MaHPIC Pk genome sequence', includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.
Collapse
Affiliation(s)
- S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta, GA,USA
| | - J A Geraldo
- Federal University of Minas Gerais,Belo Horizonte, MG,Brazil
| | - J-T Chien
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta, GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla, CA 92037,USA
| | - S B Pakala
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| | - G Batugedara
- Center for Disease and Vector Research,Institute for Integrative Genome Biology,Department of Cell Biology & Neuroscience,University of California Riverside,CA 92521,USA
| | - J Humphrey
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| | - J D DeBARRY
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| | - K G Le Roch
- Center for Disease and Vector Research,Institute for Integrative Genome Biology,Department of Cell Biology & Neuroscience,University of California Riverside,CA 92521,USA
| | - M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta, GA,USA
| | - J C Kissinger
- Institute of Bioinformatics, University of Georgia,Athens, GA 30602,USA
| |
Collapse
|
41
|
Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, Roper C, Drakeley CJ, Pain A, Sutherland CJ, Hibberd ML, Campino S, Clark TG. A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line. Int J Parasitol 2017; 48:191-196. [PMID: 29258833 DOI: 10.1016/j.ijpara.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/10/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Robert W Moon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Munira Grainger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Anthony A Holder
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Arnab Pain
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin L Hibberd
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Genomics Institute Singapore, Singapore
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
42
|
Miguel-Oteo M, Jiram AI, Ta-Tang TH, Lanza M, Hisam S, Rubio JM. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. ASIAN PAC J TROP MED 2017; 10:299-304. [DOI: 10.1016/j.apjtm.2017.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/12/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022] Open
|
43
|
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK.
| |
Collapse
|
44
|
Abstract
Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses.
Collapse
Affiliation(s)
- Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
45
|
Burns DS, Clay KA, Bailey MS. Leptospirosis in a British soldier after travel to Borneo. J ROY ARMY MED CORPS 2016; 162:473-475. [PMID: 27680577 DOI: 10.1136/jramc-2015-000533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/05/2015] [Indexed: 11/04/2022]
Abstract
Undifferentiated febrile illness in a returning soldier is a common problem encountered by serving medical officers. A 32-year-old soldier presented to Birmingham Heartlands Hospital with fever and acute kidney injury after return from Borneo. Leptospirosis was suspected and empirical antibiotics were started before subsequent confirmation by serology and PCR. Leptospirosis is common in South-East Asia, and troops exercising in jungle areas, and in the UK, are at risk. Advice, including inpatient management when appropriate, is available from the UK Role 4 Military Infectious Diseases and Tropical Medicine Service.
Collapse
Affiliation(s)
- Daniel S Burns
- Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Birmingham, UK.,Army Medical Directorate, Camberley, UK
| | - K A Clay
- Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Birmingham, UK.,Army Medical Directorate, Camberley, UK
| | - M S Bailey
- Department of Infection and Tropical Medicine, Birmingham Heartlands Hospital, Birmingham, UK.,Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, UK
| |
Collapse
|
46
|
Extensive Shared Chemosensitivity between Malaria and Babesiosis Blood-Stage Parasites. Antimicrob Agents Chemother 2016; 60:5059-63. [PMID: 27246780 DOI: 10.1128/aac.00928-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan parasites that cause malaria and babesiosis invade and proliferate within erythrocytes. To assess the potential for common antiparasitic treatments, we measured the sensitivities of multiple species of Plasmodium and Babesia parasites to the chemically diverse collection of antimalarial compounds in the Malaria Box library. We observed that these parasites share sensitivities to a large fraction of the same inhibitors and we identified compounds with strong babesiacidal activity.
Collapse
|
47
|
Brant HL, Ewers RM, Vythilingam I, Drakeley C, Benedick S, Mumford JD. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar J 2016; 15:370. [PMID: 27430261 PMCID: PMC4950076 DOI: 10.1186/s12936-016-1416-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Background Malaria cases caused by Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques, are increasing rapidly in Sabah, Malaysia. One hypothesis is that this increase is associated with changes in land use. A study was carried out to identify the anopheline vectors present in different forest types and to observe the human landing behaviour of mosquitoes. Methods Mosquito collections were carried out using human landing catches at ground and canopy levels in the Tawau Division of Sabah. Collections were conducted along an anthropogenic disturbance gradient (primary forest, lightly logged virgin jungle reserve and salvage logged forest) between 18:00 and 22:00 h. Results Anopheles balabacensis, a vector of P. knowlesi, was the predominant species in all collection areas, accounting for 70 % of the total catch, with a peak landing time of 18:30–20:00 h. Anopheles balabacensis had a preference for landing on humans at ground level compared to the canopy (p < 0.0001). A greater abundance of mosquitoes were landing in the logged forest compared to the primary forest (p < 0.0001). There was no difference between mosquito abundance in the logged forest and lightly logged forest (p = 0.554). A higher evening temperature (p < 0.0001) and rainfall (p < 0.0001) significantly decreased mosquito abundance during collection nights. Conclusions This study demonstrates the potential ability of An. balabacensis to transmit P. knowlesi between canopy-dwelling simian hosts and ground-dwelling humans, and that forest disturbance increases the abundance of this disease vector. These results, in combination with regional patterns of land use change, may partly explain the rapid rise in P. knowlesi cases in Sabah. This study provides essential data on anthropophily for the principal vector of P. knowlesi which is important for the planning of vector control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1416-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hayley L Brant
- Faculty of Natural Sciences, Centre for Environmental Policy, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK.
| | - Robert M Ewers
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Suzan Benedick
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, 90509, Sandakan, Sabah, Malaysia
| | - John D Mumford
- Faculty of Natural Sciences, Centre for Environmental Policy, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| |
Collapse
|
48
|
Moyes CL, Shearer FM, Huang Z, Wiebe A, Gibson HS, Nijman V, Mohd-Azlan J, Brodie JF, Malaivijitnond S, Linkie M, Samejima H, O'Brien TG, Trainor CR, Hamada Y, Giordano AJ, Kinnaird MF, Elyazar IRF, Sinka ME, Vythilingam I, Bangs MJ, Pigott DM, Weiss DJ, Golding N, Hay SI. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasit Vectors 2016; 9:242. [PMID: 27125995 PMCID: PMC4850754 DOI: 10.1186/s13071-016-1527-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species. METHODS We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class. RESULTS Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas. CONCLUSIONS The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.
Collapse
Affiliation(s)
- Catherine L Moyes
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK.
| | - Freya M Shearer
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Zhi Huang
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Antoinette Wiebe
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Harry S Gibson
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Vincent Nijman
- Department of Social Sciences, Oxford Brookes University, Oxford, OX1 0BP, UK
| | - Jayasilan Mohd-Azlan
- Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Jedediah F Brodie
- Departments of Zoology and Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Suchinda Malaivijitnond
- Primate Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Matthew Linkie
- Fauna & Flora International, Singapore, 247672, Singapore
| | - Hiromitsu Samejima
- Institute for Global Environmental Strategies, Kamiyamaguchi 2108-11, Hayama-cho, 240-0115, Kanagawa, Japan
| | - Timothy G O'Brien
- Wildlife Conservation Society, Mpala Research Center, Nanyuki, 10400, Kenya
| | - Colin R Trainor
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Northern Territory, 0909, Australia
- Faculty of Science and Technology, Federation University Australia, Mt Helen, Victoria, 3350, Australia
| | - Yuzuru Hamada
- Evolutionary Morphology Section, Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Anthony J Giordano
- Field Conservation Program, S.P.E.C.I.E.S., Ventura, CA, USA
- Conservation Science Program, Tiger Creek Wildlife Refuge, Tyler, TX, USA
| | | | | | - Marianne E Sinka
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Public Health and Malaria Control Department, International SOS, Jalan Kertajasa, Kuala Kencana, Papua, 99920, Indonesia
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
| | - Daniel J Weiss
- Spatial Ecology & Epidemiology Group, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Nick Golding
- Spatial Ecology & Epidemiology Group, The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, 98121, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
49
|
Ahmed MA, Fong MY, Lau YL, Yusof R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar J 2016; 15:241. [PMID: 27118390 PMCID: PMC4845393 DOI: 10.1186/s12936-016-1294-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/14/2016] [Indexed: 01/24/2023] Open
Abstract
Background The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene. Method Blood samples were collected from 47 clinical samples from Peninsular Malaysia (n = 35) and Sabah (Malaysian Borneo, n = 12) were used in the study. The Pknbpxa gene was successfully amplified and directly sequenced from 38 of the samples (n = 31, Peninsular Malaysia and n = 7, Sabah, Malaysian Borneo). The Pknbpxa sequences of P. knowlesi isolates from Sarawak (Malaysian Borneo) were retrieved from GenBank and included in the analysis. Polymorphism, genetic diversity and natural selection of Pknbpxa sequences were analysed using DNAsp v 5.10, MEGA5. Phylogentics of Pknbpxa sequences was analysed using MrBayes v3.2 and Splits Tree v4.13.1. The pairwise FST indices were used to determine the genetic differentiation between the Pknbpxa types and was calculated using Arlequin 3.5.1.3. Results Analyses of the sequences revealed Pknbpxa dimorphism throughout Malaysia indicating co-existence of the two types (Type-1 and Type-2) of Pknbpxa. More importantly, a third type (Type 3) closely related to Type 2 Pknbpxa was also detected. This third type was found only in the isolates originating from Peninsular Malaysia. Negative natural selection was observed, suggesting functional constrains within the Pknbpxa types. Conclusions This study revealed the existence of three Pknbpxa types in Malaysia. Types 1 and 2 were found not only in Malaysian Borneo (Sarawak and Sabah) but also in Peninsular Malaysia. A third type which was specific only to samples originating from Peninsular Malaysia was discovered. Further genetic studies with a larger sample size will be necessary to determine whether natural selection is driving this genetic differentiation and geographical separation.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ruhani Yusof
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
BROCK PM, FORNACE KM, PARMITER M, COX J, DRAKELEY CJ, FERGUSON HM, KAO RR. Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 2016; 143:389-400. [PMID: 26817785 PMCID: PMC4800714 DOI: 10.1017/s0031182015001821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions.
Collapse
Affiliation(s)
- P. M. BROCK
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - K. M. FORNACE
- London School of Hygiene and Tropical Medicine, London, UK
| | - M. PARMITER
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J. COX
- London School of Hygiene and Tropical Medicine, London, UK
| | - C. J. DRAKELEY
- London School of Hygiene and Tropical Medicine, London, UK
| | - H. M. FERGUSON
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R. R. KAO
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|