1
|
La Fauci V, Lo Giudice D, Squeri R, Genovese C. Insight into Prevention of Neisseria Gonorrhoeae: A Short Review. Vaccines (Basel) 2022; 10:1949. [PMID: 36423044 PMCID: PMC9692366 DOI: 10.3390/vaccines10111949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/08/2023] Open
Abstract
Neisseria gonorrhoeae (gonococcus) and Neisseria meningitidis (meningococcus) are important global pathogens which cause the sexually transmitted diseases gonorrhea and meningitis, respectively, as well as sepsis. We prepared a review according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA), with the aims of (a) evaluating the data on the MenB vaccination as protection against sexually transmitted infections by N. gonorrhoeae and (b) to briefly comment on the data of ongoing studies of new vaccines. We evaluated existing evidence on the effect of 4CMenB, a multi-component vaccine, on invasive diseases caused by different meningococcal serogroups and on gonorrhea. Non-B meningococcal serogroups showed that the 4CMenB vaccine could potentially offer some level of protection against non-B meningococcal serogroups and N. gonorrhoeae. The assessment of the potential protection conferred by 4CMenB is further challenged by the fact that further studies are still needed to fully understand natural immune responses against gonococcal infections. A further limitation could be the potential differences between the protection mechanisms against N. gonorrhoeae, which causes local infections, and the protection mechanisms against N. meningitidis, which causes systemic infections.
Collapse
Affiliation(s)
- Vincenza La Fauci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
| | | | | | | |
Collapse
|
2
|
Ständer S, R Grauslund L, Scarselli M, Norais N, Rand K. Epitope Mapping of Polyclonal Antibodies by Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Anal Chem 2021; 93:11669-11678. [PMID: 34308633 DOI: 10.1021/acs.analchem.1c00696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epitope mapping of antibodies (Abs) is crucial for understanding adaptive immunity, as well as studying the mode of action of therapeutic antibodies and vaccines. Especially insights into the binding of the entire polyclonal antibody population (pAb) raised upon vaccination would be of unique value to vaccine development. However, very few methods for epitope mapping can tolerate the complexity of a pAb sample. Here we show how hydrogen-deuterium exchange mass spectrometry (HDX-MS) can be used to map epitopes recognized by pAb samples. Our approach involves measuring the HDX of the antigen in absence or presence of varied amounts of pAbs, as well as dissociating additives. We apply the HDX-MS workflow to pAbs isolated from rabbit immunized with factor H-binding protein (fHbp), a Neisseria meningitidis vaccine antigen. We identify four immunogenic regions located on the N- and C-terminal region of fHbp and provide insights into the relative abundance and avidity of epitope binding Abs present in the sample. Overall, our results show that HDX-MS can provide a unique and relatively fast method for revealing the binding impact of the entire set of pAbs present in blood samples after vaccination. Such information provides a rare view into effective immunity and can guide the design of improved vaccines against viruses or bacteria.
Collapse
Affiliation(s)
- Susanne Ständer
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura R Grauslund
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | - Kasper Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Rivero-Calle I, Gómez-Rial J, Bont L, Gessner BD, Kohn M, Dagan R, Payne DC, Bruni L, Pollard AJ, García-Sastre A, Faustman DL, Osterhaus A, Butler R, Giménez Sánchez F, Álvarez F, Kaforou M, Bello X, Martinón-Torres F. TIPICO X: report of the 10th interactive infectious disease workshop on infectious diseases and vaccines. Hum Vaccin Immunother 2021; 17:759-772. [PMID: 32755474 PMCID: PMC7996078 DOI: 10.1080/21645515.2020.1788301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 11/03/2022] Open
Abstract
TIPICO is an expert meeting and workshop that aims to provide the most recent evidence in the field of infectious diseases and vaccination. The 10th Interactive Infectious Disease TIPICO workshop took place in Santiago de Compostela, Spain, on November 21-22, 2019. Cutting-edge advances in vaccination against respiratory syncytial virus, Streptococcus pneumoniae, rotavirus, human papillomavirus, Neisseria meningitidis, influenza virus, and Salmonella Typhi were discussed. Furthermore, heterologous vaccine effects were updated, including the use of Bacillus Calmette-Guérin (BCG) vaccine as potential treatment for type 1 diabetes. Finally, the workshop also included presentations and discussion on emergent virus and zoonoses, vaccine resilience, building and sustaining confidence in vaccination, approaches to vaccine decision-making, pros and cons of compulsory vaccination, the latest advances in decoding infectious diseases by RNA gene signatures, and the application of big data approaches.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Jose Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Louis Bont
- Wilhelmina’s Children’s Hospital University Medical Center Utrecht, The Netherlands
| | | | - Melvin Kohn
- Vaccines and Infectious Diseases Medical Affairs, Global Medical and Scientific Affairs, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel C. Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laia Bruni
- Cancer Epidemiology Research Program, Institut Català d’Oncologia (ICO) - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Andrew J. Pollard
- Oxford Vaccines Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise L. Faustman
- The Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Osterhaus
- Artemis One Health, Utrecht, The Netherlands
- Research Center Emerging Infections and Zoonoses, Hannover, Germany
| | - Robb Butler
- WHO Regional Office for Europe, Copenhagen, Denmark
| | | | | | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| | - Federico Martinón-Torres
- Translational Paediatrics and Infectious Diseases, Department of Paediatrics, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago, Universidad De Santiago De Compostela, Santiago De Compostela, Spain
| |
Collapse
|
4
|
Bennett DE, Meyler KL, Cafferkey MT, Cunney RJ. Antibiotic susceptibility and molecular analysis of invasive Neisseria meningitidis recovered in the Republic of Ireland, 1996 to 2016. Eur J Clin Microbiol Infect Dis 2021; 40:1127-1136. [PMID: 33403566 DOI: 10.1007/s10096-020-04114-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022]
Abstract
This study examined the antimicrobial susceptibility of invasive meningococcal disease (IMD)-associated Neisseria meningitidis recovered in the Republic of Ireland between 1996 and 2016. In total, 1359 isolates representing over one-third of all laboratory-confirmed cases of IMD diagnosed each epidemiological year (EY; July 1-June 30) were analysed. All isolates were susceptible to ciprofloxacin, rifampicin and cefotaxime and 74% and 87% were susceptible to sulphonamide and penicillin, respectively. The proportion of isolates exhibiting reduced susceptibility to penicillin increased significantly during the study with no evidence of major clonal expansion or horizontal spread of a specific penA allele. Greater diversity observed among recently recovered meningococci and specifically among isolates exhibiting reduced penicillin susceptibility contributed to the overall increase in penA allele diversity throughout. The emergence and dissemination of strains with phenotypic and genotypic reduced susceptibility to penicillin increase the need for continued surveillance of antimicrobial susceptibility of meningococci in the Republic of Ireland especially in view of the recommendation of penicillin G as empiric treatment of choice for pre-hospital management.
Collapse
Affiliation(s)
- Désirée E Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland.
| | - K L Meyler
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - M T Cafferkey
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - R J Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
- Department of Clinical Microbiology, Children's Health Ireland, Dublin, Ireland
| |
Collapse
|
5
|
Noteman TW, Ha TT, Tsarfati EM. Neisseria meningitidis serogroup C causing primary polyarthritis in an octogenarian. BMJ Case Rep 2020; 13:13/6/e233378. [PMID: 32532902 DOI: 10.1136/bcr-2019-233378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A man in his 80s presented to the hospital with a 36-hour history of fever, myalgia, bilateral shoulder and right knee pain. Joint fluid aspirates from his shoulders and right knee isolated Gram-negative diplococci. After failing to grow on standard and selective media, Neisseria meningitidis was identified by 16s PCR and subsequently typed as serogroup C. He had no clinical features of meningitis or meningococcaemia. Blood cultures were negative and an EDTA blood sample was negative for meningococcal ctrA gene. Urine PCR was negative for Neisseria gonorrhoeae He was treated successfully with two arthroscopic joint washouts of his right knee, aspirates of both shoulders, 40 days of intravenous ceftriaxone and intensive physiotherapy as both an inpatient and outpatient. In the literature, we have not found any previously documented cases of serogroup C meningococcus causing polyarticular primary septic arthritis in this age group or guidance on duration of antibiotic treatment. Literature on the impact of rehabilitation to baseline function was also found to be lacking. Although rare, primary meningococcal arthritis (PMA) should be considered as a differential diagnosis in cases of acute polyarticular septic arthritis. Polyarticular PMA in older adults may require prolonged rehabilitation before one might expect to return to premorbid function.
Collapse
|
6
|
Maturana Martínez D, Aguilera-Alonso D, García Mancebo J, Navarro ML, Hernández Sampelayo T, Rincón López EM, Santiago-García B, Saavedra-Lozano J, Santos M, Cercenado E. Enfermedad meningocócica invasiva en niños y adultos en un hospital terciario: epidemiología reciente y factores pronósticos. An Pediatr (Barc) 2019; 91:296-306. [DOI: 10.1016/j.anpedi.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/25/2018] [Accepted: 12/15/2018] [Indexed: 11/25/2022] Open
|
7
|
Maturana Martínez D, Aguilera-Alonso D, García Mancebo J, Navarro ML, Hernández Sampelayo T, Rincón López EM, Santiago-García B, Saavedra-Lozano J, Santos M, Cercenado E. Invasive meningococcal disease in children and adults in a tertiary level hospital. Recent epidemiology and prognostic factors. An Pediatr (Barc) 2019. [DOI: 10.1016/j.anpede.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Bianchi F, Veggi D, Santini L, Buricchi F, Bartolini E, Lo Surdo P, Martinelli M, Finco O, Masignani V, Bottomley MJ, Maione D, Cozzi R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6. FASEB J 2019; 33:12099-12111. [PMID: 31442074 PMCID: PMC6902690 DOI: 10.1096/fj.201900374r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.
Collapse
Affiliation(s)
- Federica Bianchi
- GlaxoSmithKline, Siena, Italy.,University of Florence, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Martinón-Torres F, Nolan T, Toneatto D, Banzhoff A. Persistence of the immune response after 4CMenB vaccination, and the response to an additional booster dose in infants, children, adolescents, and young adults. Hum Vaccin Immunother 2019; 15:2940-2951. [PMID: 31246520 PMCID: PMC6930112 DOI: 10.1080/21645515.2019.1627159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The multicomponent meningococcal serogroup B vaccine, 4CMenB, has demonstrated effectiveness in preventing invasive MenB disease in infants and in controlling MenB outbreaks. The need for/timing of additional booster doses is not yet established. We reviewed eight studies that evaluated antibody persistence and booster following primary 4CMenB vaccination of infants, children, adolescents, and young adults. Putative seroprotective hSBA titers for ≥1 vaccine antigen were maintained by 76-100% of children 24-36 months after priming during infancy and in 84-100% after priming in the second year of life. hSBA levels were higher in vaccinees at 4 and 7.5 years following priming during adolescence than in vaccine-naïve individuals of a similar age. Antibodies persisted at higher levels to NHBA and NadA than to PorA or fHbp. Booster vaccination induced robust anamnestic responses, demonstrating effective priming by 4CMenB across age-groups. These data can inform decision-making to optimize vaccination strategies.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Terry Nolan
- School of Population and Global Health, The University of Melbourne, and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
10
|
Watson PS, Novy P, Bekkat-Berkani R, Strubbe F, Banzhoff A. Optimizing the timing of 4CMenB vaccination in adolescents and young adults based on immune persistence and booster response data. Expert Rev Vaccines 2019; 18:343-352. [PMID: 30741040 DOI: 10.1080/14760584.2019.1580579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Meningococcal disease has an incidence peak spread over several years during adolescence and young adulthood in the United States. Meningococcal serogroup B (MenB) vaccines have been introduced relatively recently and may help protect individuals in these age groups. Currently there is insufficient long-term experience to determine the duration of disease protection after any MenB vaccine. Understanding antibody persistence after primary vaccination and responses to booster can help inform MenB vaccination strategies and optimize disease prevention. Areas covered: Four studies in adolescents/young adults vaccinated with meningococcal B vaccine 4CMenB were reviewed with the aim to compare findings across studies and draw key learnings. The studies varied by geographic location, population characteristics, and timing of antibody measurement relative to primary vaccination. Expert opinion: Antibody persistence data for 4CMenB are substantial, extending 7.5 years post-primary vaccination. Vaccination at age 16-18 years may help protect adolescents throughout their highest age-based risk period. Similar robust responses to a single booster dose were observed 4 and 7.5 years after primary vaccination. In outbreak settings it is beneficial to have received prior vaccination; residual circulating antibodies may provide protection, and a single dose induces booster responses within 7 days, which is quicker than administration of a 2-dose series to vaccine-naïve individuals.
Collapse
|
11
|
Tenenbaum T, Hellenbrand W, Schroten H. Impfstoffe gegen Meningokokken für das Kindesalter. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-018-0635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Findlow J, Nuttens C, Kriz P. Introduction of a second MenB vaccine into Europe – needs and opportunities for public health. Expert Rev Vaccines 2019; 18:225-239. [DOI: 10.1080/14760584.2019.1578217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jamie Findlow
- Medical & Scientific Affairs – International Developed Markets, Pfizer Limited, Tadworth, UK
| | - Charles Nuttens
- Medical & Scientific Affairs – International Developed Markets, Pfizer, Paris, France
| | - Paula Kriz
- Centre for Epidemiology and Microbiology – National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
13
|
Bozzola E, Guolo S, Bonci E, Rossetti C, Bozzola M, Raponi M, Villani A. Pediatric meningococcocal meningitis in the acute phase: how much does it cost? Ital J Pediatr 2019; 45:25. [PMID: 30760306 PMCID: PMC6373101 DOI: 10.1186/s13052-019-0616-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Meningococcal meningitis (MM) is known to be responsible of high cost for the Public Health Administration. Aim of the work is to calculate the costs for the hospitalization of pediatric patients affected by MM. METHODS We calculate the costs for the hospitalization of pediatric patients affected by MM in the acute phase (HAP) over a nine year period. We performed a MEDLINE search to verify the cost of MM HAP reported in other studies. RESULTS At Bambino Gesù Children Hospital, the median cost of HAP was of 12,604 euro (range from 9203 to 35,050 euro). Comparing our data with the previous studies, we find out similar results of approximately 16,750 euro (range 12,000-20,000 euro). DISCUSSION Despite the relative rarety of the disease, MM is associated to direct high cost of HAP. CONCLUSIONS Hospital costs are an important end-point in health economic evaluation of the disease and may be useful to policy makers and health economists to understand the potential benefit of improving meningococcal vaccination programmes.
Collapse
Affiliation(s)
- Elena Bozzola
- Pediatric and Infectious Disease Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - Stefano Guolo
- Sanitary Direction, Bambino Gesù Children Hospital, Rome, Italy
| | - Enea Bonci
- Sperimental Medicine Department, La Sapienza University, Rome, Italy
| | - Chiara Rossetti
- Pediatric and Infectious Disease Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - Mauro Bozzola
- Internal Medicine and Therapeutics Department, Pediatrics and Adolescentology Unit, University of Pavia, Pavia, Italy
| | | | - Alberto Villani
- Pediatric and Infectious Disease Unit, Bambino Gesù Children Hospital, Rome, Italy
| |
Collapse
|
14
|
Concomitant administration of a fully liquid ready-to-use DTaP-IPV-HB-PRP-T hexavalent vaccine with a meningococcal ACWY conjugate vaccine in toddlers. Vaccine 2018; 36:8019-8027. [PMID: 30471953 DOI: 10.1016/j.vaccine.2018.10.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Invasive meningococcal disease caused by Neisseria meningitidis is a life-threatening disease. Several countries now include meningococcal serogroup C (MenC) conjugate and, more recently, a meningococcal serogroup ACWY conjugate (MenACWY) vaccination in their national immunization schedules. DTaP-IPV-HB-PRP-T is a hexavalent vaccine that provides protection against six diseases. The phase III, open-label, randomised, multicentre study enrolled healthy toddlers who received the DTaP-IPV-HB-PRP-T vaccine (at 2, 3 and 4 months) with or without a MenC vaccine (at 2 and 4 months) in the primary series study. At 12 months of age, 312 toddlers were randomised to receive DTaP-IPV-HB-PRP-T co-administered with MenACWY-TT vaccine (Group A; n = 104); DTaP-IPV-HB-PRP-T vaccine alone (Group B; n = 105); or MenACWY-TT vaccine alone (Group C; n = 103). At 12 months of age, there were no notable differences in terms of antibody persistence for any DTaP-IPV-HB-PRP-T vaccine antigen, whether MenC-TT conjugate vaccine was co-administered or not during the primary series. Following booster vaccination, immune responses to DTaP-IPV-HB-PRP-T and MenACWY-TT vaccines were not affected by co-administration. One month after vaccination, the immune responses elicited by both vaccines were high, whether administered concomitantly or separately. The administration of MenC vaccine during infancy did not preclude the use of a MenACWY-TT vaccine for booster vaccination. Even though the reactogenicity after co-administration was somewhat higher, the results of this study support the concomitant administration of the DTaP-IPV-HB-PRP-T vaccine with a MenACWY-TT conjugate vaccine when given from 12 months of age. The clinical trial registration numbers are: clinicaltrial.gov: NCT01839175; EudraCT: 2012-005547-24.
Collapse
|
15
|
Stein-Zamir C, Shoob H, Abramson N, Block C, Keller N, Jaffe J, Valinsky L. Invasive meningococcal disease epidemiology and characterization of Neisseria meningitidis serogroups, sequence types, and clones; implication for use of meningococcal vaccines. Hum Vaccin Immunother 2018; 15:242-248. [PMID: 30156954 DOI: 10.1080/21645515.2018.1507261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Neisseria meningitidis (N. meningitidis) is a Gram-negative bacterium that can cause life-threatening invasive infections referred to as invasive meningococcal disease (IMD). In the last decade the incidence of IMD in Israel is about 1/100,000 population annually. We aimed to describe the epidemiology of IMD in Israel combining epidemiological data and characterization of N. meningitidis isolates. METHODS Invasive infection caused by N. meningitidis is a notifiable disease in Israel. Data were collected by epidemiological investigations and control measures were employed. Laboratory work-up included serogrouping, N. meningitides molecular characterization and whole-genome sequencing. RESULTS During 1998-2017, 1349 cases of IMD were notified in Israel (mean annual incidence rate 0.94/100,000). The peak incidence rates were observed in infants under 1 year of age (10.9/100,000). Case fatality rate was 9.7%. The majority of the N. meningitidis isolates were of serogroup B (67.9%). During 2007-2017, three clonal complexes (CC) 32, 41/44 and 23 (hyper-invasive clonal complexes) were the leading CC (61%). CC32 was the leading CC causing meningococcemia and mortality. In 2017, 35 isolates were tested for 4CMenB antigens variants; of the serogroup B isolates tested 46.7% showed a match to one or more antigens (fHbp or PorA:VR1), most were ST32 (CC32). CONCLUSIONS Preliminary analysis based on limited number of samples suggests that the 4CMenB coverage would be about half the strains; further research is necessary. Integration of clinical, epidemiological and laboratory data is essential to support decision-making on the introduction of the novel MENB vaccines in Israel.
Collapse
Affiliation(s)
- Chen Stein-Zamir
- a Ministry of Health , Jerusalem District Health Office , Jerusalem , Israel.,b The Hebrew University of Jerusalem, Faculty of Medicine , The Hebrew University and Hadassah Braun School of Public and Community Medicine , Jerusalem , Israel
| | - Hanna Shoob
- a Ministry of Health , Jerusalem District Health Office , Jerusalem , Israel
| | - Nitza Abramson
- a Ministry of Health , Jerusalem District Health Office , Jerusalem , Israel
| | - Colin Block
- c Department of Clinical Microbiology and Infectious Diseases , Hadassah-Hebrew University Medical Centre , Jerusalem , Israel
| | - Natan Keller
- d Ministry of Health , National Reference Center for Meningococci, Microbiology Laboratory, Sheba Medical Center , Ramat-Gan , Israel
| | - Joseph Jaffe
- e Ministry of Health , Government Central Laboratories , Jerusalem , Israel
| | - Lea Valinsky
- e Ministry of Health , Government Central Laboratories , Jerusalem , Israel
| |
Collapse
|
16
|
Villena R, Safadi MAP, Valenzuela MT, Torres JP, Finn A, O'Ryan M. Global epidemiology of serogroup B meningococcal disease and opportunities for prevention with novel recombinant protein vaccines. Hum Vaccin Immunother 2018; 14:1042-1057. [PMID: 29667483 DOI: 10.1080/21645515.2018.1458175] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Meningococcal disease (MD) is a major cause of meningitis and sepsis worldwide, with a high case fatality rate and frequent sequelae. Neisseria meningitidis serogroups A, B, C, W, X and Y are responsible for most of these life-threatening infections, and its unpredictable epidemiology can cause outbreaks in communities, with significant health, social and economic impact. Currently, serogroup B is the main cause of MD in Europe and North America and one of the most prevalent serogroups in Latin America. Mass vaccination strategies using polysaccharide vaccines have been deployed since the 1970s and the use of conjugate vaccines has controlled endemic and epidemic disease caused by serogroups A, C, W and Y and more recently serogroup B using geographically-specific outer membrane vesicle based vaccines. Two novel protein-based vaccines are a significant addition to our armamentarium against N. meningitidis as they provide broad coverage against highly diverse strains in serogroup B and other groups. Early safety, effectiveness and impact data of these vaccines are encouraging. These novel serogroup B vaccines should be actively considered for individuals at increased risk of disease and to control serogroup B outbreaks occurring in institutions or specific regions, as they are likely to save lives and prevent severe sequelae. Incorporation into national programs will require thorough country-specific analysis.
Collapse
Affiliation(s)
- Rodolfo Villena
- a Department of Pediatrics , Hospital de Niños Exequiel González Cortés, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Marco Aurelio P Safadi
- b Department of Pediatrics , Santa Casa de São Paulo School of Medical Sciences , São Paulo , Brazil
| | - María Teresa Valenzuela
- c Department of Epidemiology and Public Health , Universidad de Los Andes , Santiago , Chile
| | - Juan P Torres
- d Department of Pediatrics , Hospital Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Adam Finn
- e Bristol Children's Vaccine Centre, Schools of Cellular and Molecular Medicine and Population Health Sciences, University of Bristol , United Kingdom
| | - Miguel O'Ryan
- f Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,g Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
17
|
Abstract
Invasive meningococcal disease causes meningitis and septicemia worldwide with highest rates of disease occurring in children <2 years of age, and in particular young infants. Vaccination during pregnancy has been a successful strategy for prevention of other infections in young infants, most notably tetanus, pertussis and influenza. However, few studies of meningococcal vaccines in pregnancy have been undertaken, and none include the most commonly used current vaccines to prevent disease by capsular groups A, B, C, W and Y. The limited data suggest that the older polysaccharide vaccines are immunogenic, but the impact on prevention of infant disease has not been measured. Further studies of MenB protein vaccines and MenA protein-polysaccharide conjugate vaccines in particular are needed if vaccination in pregnancy is to be utilized as an approach to prevention of meningococcal disease in young infants.
Collapse
Affiliation(s)
- Bahaa Abu Raya
- a Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia , Vancouver , BC , Canada
| | - Manish Sadarangani
- a Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia , Vancouver , BC , Canada.,b Oxford Vaccine Group, Department of Paediatrics , University of Oxford, Children's Hospital , Oxford , UK
| |
Collapse
|
18
|
Nour M, Alaidarous A. Clinical usefulness and accuracy of polymerase chain reaction in the detection of bacterial meningitis agents in pediatric cerebrospinal fluid. Curr Res Transl Med 2018; 66:15-18. [PMID: 29456197 DOI: 10.1016/j.retram.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/11/2017] [Accepted: 01/05/2018] [Indexed: 11/25/2022]
Abstract
Bacterial meningitis poses enormous healthcare challenges due to a high mortality, morbidity and sequelae. Neisseria (N.) meningitidis, Haemophilus (H.) influenzae, Streptococcus (S.) pneumoniae and S. agalactiae remain among the most prevalent infectious agents that cause bacterial meningitis in children. The objective of this study was the simultaneous detection of these pathogens in suspected cerebrospinal fluid (CSF) by using multiplex polymerase chain reaction (mPCR) and compare PCR results with standard diagnostics currently used in clinical practice. CSF specimens were obtained from 515 children (<5 years) clinically suspected of having acute bacterial meningitis. Based on bacterial culture, four isolates of salmonella sp and one Citrobacter freundii isolate were identified. The remaining 510 CSF specimens, having negative culture, were subjected to mPCR. Twenty-three (4.51%) CSF samples yielded a PCR positive signal. The pathogens identified were: S. pneumoniae (n=13), H. influenzae (n=7) and N. meningitidis (n=3). S. agalactiae was not detected. Using sequential multiplex PCR, serogrouping of S. pneumoniae revealed 3 different serotypes: serotype 19A (n=6), 19F (n=4) and serotype 23F (n=3). Only the serotype A was identified for the 3N. meningitidis isolates. Despite vaccination, S. pneumoniae remains a leading cause of pediatric invasive disease. Detecting causative organism remains the most critical aspect for management of children with suspected meningitis. PCR method is more sensitive and rapid than culture for detecting the infectious agents. Institution of PCR diagnostics is recommended for early and appropriate therapy.
Collapse
Affiliation(s)
- M Nour
- Department of biology, faculty of science, Taif university, KSA, 21974 Taif-Al-Haweiah, Saudi Arabia; Department of biology, high institute of biotechnology, Monastir university, Tahar-Haddad Street, 5000 Monastir, Tunisia.
| | - A Alaidarous
- Department of biology, faculty of science, Taif university, KSA, 21974 Taif-Al-Haweiah, Saudi Arabia
| |
Collapse
|
19
|
López-Sagaseta J, Beernink PT, Bianchi F, Santini L, Frigimelica E, Lucas AH, Pizza M, Bottomley MJ. Crystal structure reveals vaccine elicited bactericidal human antibody targeting a conserved epitope on meningococcal fHbp. Nat Commun 2018; 9:528. [PMID: 29410413 PMCID: PMC5802752 DOI: 10.1038/s41467-018-02827-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Data obtained recently in the United Kingdom following a nationwide infant immunization program against serogroup B Neisseria meningitidis (MenB) reported >80% 4CMenB vaccine-mediated protection. Factor H-binding protein (fHbp) is a meningococcal virulence factor and a component of two new MenB vaccines. Here, we investigated the structural bases underlying the fHbp-dependent protective antibody response in humans, which might inform future antigen design efforts. We present the co-crystal structure of a human antibody Fab targeting fHbp. The vaccine-elicited Fab 1A12 is cross-reactive and targets an epitope highly conserved across the repertoire of three naturally occurring fHbp variants. The free Fab structure highlights conformational rearrangements occurring upon antigen binding. Importantly, 1A12 is bactericidal against MenB strains expressing fHbp from all three variants. Our results reveal important immunological features potentially contributing to the broad protection conferred by fHbp vaccination. Our studies fuel the rationale of presenting conserved protein epitopes when developing broadly protective vaccines. Factor H binding protein (fHbp) is a meningococcal virulence factor and a component of vaccines against serogroup B Neisseria meningitidis. Here, the authors characterize the vaccine-elicited human antibody Fab 1A12 and present both the free and the fHbp-bound Fab 1A12 crystal structures.
Collapse
Affiliation(s)
| | - Peter T Beernink
- Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | | - Laura Santini
- GSK Vaccines srl, Via Fiorentina 1, 53100, Siena, Italy
| | | | - Alexander H Lucas
- Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital, 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | | | |
Collapse
|
20
|
Abstract
Infection with the meningococcus is one of the main causes of meningitis and septicaemia worldwide. Humans are the only natural reservoir for the meningococcus which is found primarily as a commensal inhabitant in the nasopharynx in ~10% of adults, and may be found in over 25% of individuals during adolescence. Prompt recognition of meningococcal infection and early aggressive treatment are essential in order to reduce mortality, which occurs in up to 10% of those with invasive meningococcal disease (IMD). This figure may be significantly higher in those with inadequate or delayed treatment. Early administration of effective parenteral antimicrobial therapy and prompt recognition and appropriate management of the complications of IMD, including circulatory shock and raised intracranial pressure (ICP), are critical to help improve patient outcome. This review summarizes clinical features of IMD and current treatment recommendations. We will discuss the evidence for immunization and effects of vaccine strategies, particularly following implementation of effective vaccines against Group B meningococcus.
Collapse
Affiliation(s)
- Simon Nadel
- Paediatric Intensive Care Unit, St. Mary's Hospital and Imperial College London, London, United Kingdom
| | - Nelly Ninis
- Paediatrics, St Mary's Hospital, London, United Kingdom
| |
Collapse
|
21
|
Polkowska A, Toropainen M, Ollgren J, Lyytikäinen O, Nuorti JP. Bacterial meningitis in Finland, 1995-2014: a population-based observational study. BMJ Open 2017; 7:e015080. [PMID: 28592578 PMCID: PMC5734207 DOI: 10.1136/bmjopen-2016-015080] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Bacterial meningitis remains an important cause of morbidity and mortality worldwide. Its epidemiological characteristics, however, are changing due to new vaccines and secular trends. Conjugate vaccines against Haemophilus influenzae type b and Streptococcus pneumoniae (10-valent) were introduced in 1986 and 2010 in Finland. We assessed the disease burden and long-term trends of five common causes of bacterial meningitis in a population-based observational study. METHODS A case was defined as isolation of S. pneumoniae, Neisseria meningitidis, Streptococcus agalactiae, Listeria monocytogenes or H. influenzae from cerebrospinal fluid and reported to national, population-based laboratory surveillance system during 1995-2014. We evaluated changes in incidence rates (Poisson or negative binomial regression), case fatality proportions (χ2) and age distribution of cases (Wilcoxon rank-sum). RESULTS During 1995-2014, S. pneumoniae and N. meningitidis accounted for 78% of the total 1361 reported bacterial meningitis cases. H. influenzae accounted for 4% of cases (92% of isolates were non-type b). During the study period, the overall rate of bacterial meningitis per 1 00 000 person-years decreased from 1.88 cases in 1995 to 0.70 cases in 2014 (4% annual decline (95% CI 3% to 5%). This was primarily due to a 9% annual reduction in rates of N. meningitidis (95% CI 7% to 10%) and 2% decrease in S. pneumoniae (95% CI 1% to 4%). The median age of cases increased from 31 years in 1995-2004 to 43 years in 2005-2014 (p=0.0004). Overall case fatality proportion (10%) did not change from 2004 to 2009 to 2010-2014. CONCLUSIONS Substantial decreases in bacterial meningitis were associated with infant conjugate vaccination against pneumococcal meningitis and secular trend in meningococcal meningitis in the absence of vaccination programme. Ongoing epidemiological surveillance is needed to identify trends, evaluate serotype distribution, assess vaccine impact and develop future vaccination strategies.
Collapse
Affiliation(s)
- Aleksandra Polkowska
- School of Health Sciences, University of Tampere, Lääkärinkatu, Tampere, Finland
| | - Maija Toropainen
- Department of Infectious Diseases, National Institute for Health and Welfare (THL), Mannerheimintie, Helsinki, Finland
| | - Jukka Ollgren
- Department of Infectious Diseases, National Institute for Health and Welfare (THL), Mannerheimintie, Helsinki, Finland
| | - Outi Lyytikäinen
- Department of Infectious Diseases, National Institute for Health and Welfare (THL), Mannerheimintie, Helsinki, Finland
| | - J. Pekka Nuorti
- School of Health Sciences, University of Tampere, Lääkärinkatu, Tampere, Finland
- Department of Infectious Diseases, National Institute for Health and Welfare (THL), Mannerheimintie, Helsinki, Finland
| |
Collapse
|
22
|
Gianchecchi E, Piccini G, Torelli A, Rappuoli R, Montomoli E. An unwanted guest:Neisseria meningitidis– carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Rev Anti Infect Ther 2017; 15:689-701. [DOI: 10.1080/14787210.2017.1333422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Giulia Piccini
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandro Torelli
- VisMederi Srl, Siena, Italy
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi Srl, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Recent Progress in the Prevention of Serogroup B Meningococcal Disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00566-16. [PMID: 28356256 PMCID: PMC5424234 DOI: 10.1128/cvi.00566-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The widespread use of meningococcal polysaccharide conjugate vaccines has highlighted the challenge of providing protection against serogroup B disease. Over a period of 4 decades, vaccine development has focused on subcapsular protein antigens, first with outer membrane vesicle (OMV) vaccines against epidemic outbreaks, and more recently on new multicomponent vaccines designed to offer better cross-protection against the antigenically diverse strains responsible for endemic disease. Because of the low incidence of meningococcal disease, the protective efficacy of these vaccines has not been determined in clinical studies, and their licensure has been based on serological data; however, the serological assays used to predict protective coverage have limitations. As a result, evidence of the effectiveness of these vaccines against different strains and the contribution of specific antigens to protection can only be provided by epidemiological analyses following their implementation in sufficiently large populations. The recent inclusion of the four-component meningococcal serogroup B (4CMenB) vaccine, Bexsero, in the infant immunization program in the UK has provided preliminary evidence that the vaccine is effective. Ongoing surveillance will provide valuable data on its longer-term impact and antigenic coverage. Further development of protein-based vaccines against meningococcal disease is anticipated to improve antigenic coverage and adjust to changes in circulating strains. At the same time, alternative immunization strategies may be explored to improve overall vaccine effectiveness by, for example, protecting the youngest infants or providing herd protection.
Collapse
|
24
|
Abstract
BACKGROUND Bacterial meningitis is a significant burden of disease and mortality in all age groups worldwide despite the development of effective conjugated vaccines. The pathogenesis of bacterial meningitis is based on complex and incompletely understood host-pathogen interactions. Some of these are pathogen-specific, while some are shared between different bacteria. METHODS We searched the database PubMed to identify host risk factors for bacterial meningitis caused by the pathogens Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae type b, because they are three most common causative bacteria beyond the neonatal period. RESULTS We describe a number of risk factors; including socioeconomic factors, age, genetic variation of the host and underlying medical conditions associated with increased susceptibility to invasive bacterial infections in both children and adults. CONCLUSIONS As conjugated vaccines are available for these infections, it is of utmost importance to identify high risk patients to be able to prevent invasive disease.
Collapse
Affiliation(s)
- Lene Fogt Lundbo
- a Department of Infectious Diseases , Copenhagen University Hospital , Hvidovre , Denmark.,b Clinical Research Centre , Copenhagen University Hospital , Hvidovre , Denmark.,c Faculty of Health and Medical Sciences , University of Copenhagen , København , Denmark
| | - Thomas Benfield
- a Department of Infectious Diseases , Copenhagen University Hospital , Hvidovre , Denmark.,b Clinical Research Centre , Copenhagen University Hospital , Hvidovre , Denmark.,c Faculty of Health and Medical Sciences , University of Copenhagen , København , Denmark
| |
Collapse
|
25
|
Sadeq H, Husain EH, Alkoot A, Atyani S, Al-Fraij A, Al-Daithan A, AlSaleem T, Taher A, Alenezi M. Childhood meningitis in Kuwait in the era of post pneumococcal conjugate vaccination: A multicenter study. J Infect Public Health 2017; 10:766-769. [PMID: 28196635 DOI: 10.1016/j.jiph.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/05/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022] Open
Abstract
This is a retrospective study to evaluate epidemiology and etiologies of childhood meningitis in Kuwait after the routine introduction of the pneumococcal conjugate vaccine. The data was collected from 196 patients in the period of 2010-2014. Aseptic meningitis accounted for 51% of the cases, bacterial meningitis accounted for 29% cases and partially treated meningitis were 20%. Organisms causing bacterial meningitis were: Streptococcus pneumoniae 40.4%, Neisseria meningitidis 17.6%, Haemophilus spp. 12.2%, other gram positive or negative 19.3%, and Group B Streptococcus 8.8%. The hospitalization was complicated by admission to the ICU in 16.3% patients. Sequelae on discharge were seen in 4%, and 2.5% died of complications of meningitis. In children with pneumococcal meningitis, 48% were admitted to the ICU, 35% were discharged with sequelae and 13% died. In the era of post pneumococcal conjugate vaccination, S. pneumoniae remains the leading cause of bacterial meningitis with the greatest morbidity and mortality.
Collapse
Affiliation(s)
| | | | - Amna Alkoot
- Department of Pediatrics, Jahra Hospital, Kuwait
| | - Suha Atyani
- Department of Pediatrics, Sabah Hospital, Kuwait
| | | | | | - Talal AlSaleem
- Department of Pediatrics, Mubarak Al-Kabeer Hospital, Kuwait
| | - Anfal Taher
- Department of Pediatrics, Amiri Hospital, Kuwait
| | - May Alenezi
- Department of Pediatrics, Sabah Hospital, Kuwait
| |
Collapse
|
26
|
Abad R, Vázquez JA. Early evidence of expanding W ST-11 CC meningococcal incidence in Spain. J Infect 2016; 73:296-7. [PMID: 27387450 DOI: 10.1016/j.jinf.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Raquel Abad
- National Reference Laboratory for Meningococci, National Centre of Microbiology, Institute of Health Carlos III, Spain.
| | - Julio A Vázquez
- National Reference Laboratory for Meningococci, National Centre of Microbiology, Institute of Health Carlos III, Spain
| |
Collapse
|