1
|
Zhang Z, Wu Y, Xu J, Meng Z, Chen Q, Yin S. Quantitative Analysis of Hepatitis D Virus Using gRNA-Sensitive Semiconducting Polymer Dots. Anal Chem 2025; 97:1575-1583. [PMID: 39807540 DOI: 10.1021/acs.analchem.4c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hepatitis D virus (HDV) significantly influences the progression of liver diseases. Through clinical observations and database analyses, it has been established that patients coinfected with HDV and hepatitis B virus (HBV) experience accelerated progression toward cirrhosis, hepatocellular carcinoma (HCC), and liver failure compared to those infected solely with HBV. A higher viral load correlates with increased replicative activity, enhanced infectivity, and more severe disease manifestations. In this study, we use HDV gRNA-sensitive semiconducting polymer dots (Pdots) as the nanoprobes for the quantitative analysis of HDV copy number variations. The surface of the Pdots is engineered with a clamp design that includes a pair of reporter sequences, protection sequences, and capture sequences tailored to the conserved sequence length of the HDV genome. The capture sequence, comprising leading and trailing chains, specifically binds to the gRNA of the target virus. The protection sequence shields the Pdots from external interference, while the reporter sequence detects the presence of target gRNA through the degradation of fluorescent dye Cy5.5dt. We demonstrate the effectiveness of this assay in a stably transfected cell line derived from HepG2-HDV cells and its translational application in clinical samples from patients. Additionally, this nanobiosensor can accurately detect gRNA at femtomolar (fM) levels, a sensitivity unachievable by previously reported methods. This novel virus quantification system offers significant potential for clinical and virological applications, enhancing screening, early diagnosis, and personalized treatment strategies.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, P. R. China
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China
| | - Jinglun Xu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P. R. China
| | - Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P. R. China
| | - Qingmin Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, P. R. China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
2
|
DILEO E, OLIVERO A, RISSO A, TROSHINA G, CIANCIO A, CAVIGLIA GP. Prediction of long-term outcomes in patients with chronic hepatitis D infection by quantitative HBcrAg/anti-HBc IgG ratio. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 36. [DOI: 10.23736/s2724-542x.24.03177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
|
3
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
4
|
Soriano V, de Mendoza C, Treviño A, Ramos-Rincón JM, Moreno-Torres V, Corral O, Barreiro P. Treatment of hepatitis delta and HIV infection. Liver Int 2023; 43 Suppl 1:108-115. [PMID: 35748639 DOI: 10.1111/liv.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/20/2022] [Indexed: 01/18/2023]
Abstract
Hepatitis delta virus (HDV) is a defective agent that only infects individuals with hepatitis B virus (HBV). Around 5-10% of chronic hepatitis B patients worldwide are superinfected with HDV, which means 15-25 million people. Hepatitis delta is the most severe of all chronic viral hepatitis, leading to cirrhosis, liver cancer and/or transplantation in most patients. Despite it, many HDV patients remain undiagnosed. The only treatment available until recently was peginterferon alfa, with poor results and significant side effects. The recent approval of bulevirtide, a lipopeptide that blocks HBV/HDV entry, has revolutionized the field. Another drug, lonafarnib, already approved to treat progeria, is expected to be available soon as HDV therapy. Since there is no cell reservoir for the HDV RNA genome, hypothetically viral clearance could be achieved if complete blocking of viral replication occurs for a minimum time frame. This is what happens in hepatitis C using direct-acting antivirals, with the achievement of cure in nearly all treated patients. We envision the cure of hepatitis delta using combination antiviral therapy. Given that sexual and parenteral transmission routes are the most frequent for the acquisition of HBV and HDV, shared with HIV infection and HBV/HDV and HIV coinfection. The clinical outcome of hepatitis delta is worst in the HIV setting, with more frequent liver complications. Since most persons infected with HIV are on regular health care follow-up, we propose that HIV-HDV patients should be prioritized for moving forward new and potentially curative treatments for hepatitis delta.
Collapse
Affiliation(s)
| | - Carmen de Mendoza
- Department of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Madrid, Spain
| | - Ana Treviño
- UNIR Health Sciences School & Medical Center, Madrid, Spain
| | - José Manuel Ramos-Rincón
- Medicine Department, Alicante University Hospital & Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Víctor Moreno-Torres
- Department of Internal Medicine, Puerta de Hierro Research Institute & University Hospital, Madrid, Spain
| | - Octavio Corral
- UNIR Health Sciences School & Medical Center, Madrid, Spain
| | - Pablo Barreiro
- Public Health Regional Laboratory, Hospital Isabel Zendal, Madrid, Spain
| |
Collapse
|
5
|
Strain-specific responsiveness of hepatitis D virus to interferon-alpha treatment. JHEP Rep 2023; 5:100673. [PMID: 36908749 PMCID: PMC9996322 DOI: 10.1016/j.jhepr.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Background & Aims Pegylated interferon alpha (pegIFNα) is commonly used for the treatment of people infected with HDV. However, its mode of action in HDV-infected cells remains elusive and only a minority of people respond to pegIFNα therapy. Herein, we aimed to assess the responsiveness of three different cloned HDV strains to pegIFNα. We used a previously cloned HDV genotype 1 strain (dubbed HDV-1a) that appeared insensitive to interferon-α in vitro, a new HDV strain (HDV-1p) we isolated from an individual achieving later sustained response to IFNα therapy, and one phylogenetically distant genotype 3 strain (HDV-3). Methods PegIFNα was administered to human liver chimeric mice infected with HBV and the different HDV strains or to HBV/HDV infected human hepatocytes isolated from chimeric mice. Virological parameters and host responses were analysed by qPCR, sequencing, immunoblotting, RNA in situ hybridisation and immunofluorescence staining. Results PegIFNα treatment efficiently reduced HDV RNA viraemia (∼2-log) and intrahepatic HDV markers both in mice infected with HBV/HDV-1p and HBV/HDV-3. In contrast, HDV parameters remained unaffected by pegIFNα treatment both in mice (up to 9 weeks) and in isolated cells infected with HBV/HDV-1a. Notably, HBV viraemia was efficiently lowered (∼2-log) and human interferon-stimulated genes similarly induced in all three HBV/HDV-infected mouse groups receiving pegIFNα. Genome sequencing revealed highly conserved ribozyme and L-hepatitis D antigen post-translational modification sites among all three isolates. Conclusions Our comparative study indicates the ability of pegIFNα to lower HDV loads in stably infected human hepatocytes in vivo and the existence of complex virus-specific determinants of IFNα responsiveness. Impact and implications Understanding factors counteracting HDV infections is paramount to develop curative therapies. We compared the responsiveness of three different cloned HDV strains to pegylated interferon alpha in chronically infected mice. The different responsiveness of these HDV isolates to treatment highlights a previously underestimated heterogeneity among HDV strains.
Collapse
Key Words
- ADAR, adenosine deaminase
- ADF, adefovir
- AG, antigenomic
- Actb, actin beta
- Antiviral
- BSA, bovine serum albumin
- CHD, chronic hepatitis D
- CK18, cytokeratin 18
- CXCL10, C-X-C motif chemokine ligand 10
- Eef2, eukaryotic elongation factor
- FCS, foetal calf serum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Genotype
- HBsAg, hepatitis B virus surface antigen
- HDAg, hepatitis delta antigen (S, small, L, large)
- HDV
- HLA, human leucocyte antigen
- HSA, uman serum albumin
- Human liver chimeric mice
- IFNα, interferon α
- ISGs, interferon stimulated genes
- LAM, lamivudine
- LLoD, lower limit of detection
- MDA5, melanoma differentiation-associated protein 5
- MOI, multiplicity of infection
- Mavs, mitochondrial antiviral-signalling protein
- MoA, mode of action
- MxA, myxovirus resistance gene A
- NTCP, sodium (Na+) taurocholate co-transporting polypeptide
- NUCs, nucleos(t)ide analogues
- OAS1, 2′-5′-oligoadenylatsynthetase 1
- PEG, polyethylene glycol
- PHHs, primary human hepatocytes
- RNP, ribonucleoprotein
- Resistance
- Rig-I, retinoic acid-inducible gene I
- SCID, severe combined immunodeficiency
- STAT1, signal transducers and activators of transcription 1
- TGFβ, transforming growth factor-β
- USG, uPA/SCID/beige/IL2RG-/-
- casp, caspase
- hAAT, human alpha antitrypsin
- pegIFNα, pegylated interferon alpha
- pgRNA, pregenomic RNA
- qPCR, quantitative real time polymerase chain reaction
- uPA, urokinase plasminogen activator
Collapse
|
6
|
Burm R, Van Houtte F, Verhoye L, Mesalam AA, Ciesek S, Roingeard P, Wedemeyer H, Leroux-Roels G, Meuleman P. A human monoclonal antibody against HBsAg for the prevention and treatment of chronic HBV and HDV infection. JHEP Rep 2023; 5:100646. [PMID: 36748051 PMCID: PMC9898450 DOI: 10.1016/j.jhepr.2022.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Elimination of chronic HBV/HDV infection remains a major global health challenge. Targeting excessive hepatitis B surface antigen (HBsAg) release may provide an interesting window of opportunity to break immune tolerance and to achieve a functional cure using additional antivirals. Methods We evaluated a HBsAg-specific human monoclonal antibody, as part of either a prophylactic or therapeutic strategy, against HBV/HDV infection in cell culture models and in human-liver chimeric mice. To assess prophylactic efficacy, mice were passively immunized prior to infection with HBV or HBV/HDV (coinfection and superinfection setting). Therapeutic efficacy was assessed in HBV and HBV/HDV-coinfected mice receiving 4 weeks of treatment. Viral parameters (HBV DNA, HDV RNA and HBsAg) were assessed in mouse plasma. Results The antibody could effectively prevent HBV/HDV infection in a dose-dependent manner with IC50 values of ∼3.5 ng/ml. Passive immunization showed complete protection of mice from both HBV and HBV/HDV coinfection. Moreover, HDV superinfection was either completely prevented or at least attenuated in HBV-infected mice. Finally, antibody treatment in mice with established HBV/HDV infection resulted in a significant decline in viremia and a concomitant drop in on-treatment HBsAg, with a moderate viral rebound following treatment cessation. Conclusion We present data on a valuable antibody candidate that could complement other antivirals in strategies aimed at achieving functional cure of chronic HBV and HDV infection. Impact and implications Patients chronically infected with HBV may eventually develop liver cancer and are at great risk of being superinfected with HDV, which worsens and accelerates disease progression. Unfortunately, current treatments can rarely eliminate both viruses from chronically infected patients. In this study, we present data on a novel antibody that is able to prevent chronic HBV/HDV infection in a mouse model with a humanized liver. Moreover, antibody treatment of HBV/HDV-infected mice strongly diminishes viral loads during therapy. This antibody is a valuable candidate for further clinical development.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University, Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, External Partner Site, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor Stern Kai 7, Frankfurt am Main, Germany
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Geert Leroux-Roels
- Center for Vaccinology, Faculty of Medicine and Health Sciences, Ghent University and University Hospital, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Caviglia GP, Ribaldone DG. Special Issue "Advances in Gastrointestinal and Liver Disease: From Physiological Mechanisms to Clinical Practice". J Clin Med 2022; 11:2797. [PMID: 35628924 PMCID: PMC9147582 DOI: 10.3390/jcm11102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 01/25/2023] Open
Abstract
It is an exciting time for gastroenterology and hepatology [...].
Collapse
Affiliation(s)
| | - Davide Giuseppe Ribaldone
- Division of Gastroenterology, Department of Medical Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
8
|
Yardeni D, Heller T, Koh C. Chronic hepatitis D-What is changing? J Viral Hepat 2022; 29:240-251. [PMID: 35122369 DOI: 10.1111/jvh.13651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 01/04/2023]
Abstract
Hepatitis D virus (HDV) infection is a chronic viral disease of the liver that is still largely considered to be incurable due to lack of effective treatment options. Without treatment, the risk for the development of advanced liver disease, cirrhosis and hepatocellular carcinoma is significantly high. Currently, new therapeutic options are emerging out of ongoing phase 3 clinical trials, promising a new hope of cure for this devastating liver infection. Recently, bulevirtide, a first in its class HDV entry inhibitor, has received conditional authorization of use from the European Medicines Agency (EMA) and was also submitted for approval in the United States. Other novel therapeutic options in clincal trials include interferon lambda, the prenylation inhibitor lonafarnib and nucleic acidic polymers (NAPs). This review describes all recent advances and ongoing changes to the field of HDV therpaeutics.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Detection and Prevention of Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:21-52. [DOI: 10.1007/978-981-16-8969-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Weber L, Hagemann A, Kaltenhäuser J, Besser M, Rockenfeller P, Ehrhardt A, Stuermer E, Bachmann HS. Bacteria Are New Targets for Inhibitors of Human Farnesyltransferase. Front Microbiol 2021; 12:628283. [PMID: 34917041 PMCID: PMC8669142 DOI: 10.3389/fmicb.2021.628283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Farnesyltransferase inhibitors (FTIs) are focus for the treatment of several diseases, particularly in the field of cancer therapy. Their potential, however, goes even further, as a number of studies have evaluated FTIs for the treatment of infectious diseases such as malaria, African sleeping sickness, leishmaniosis, and hepatitis D virus infection. Little is known about protein prenylation mechanisms in human pathogens. However, disruption of IspA, a gene encoding the geranyltranstransferase of Staphylococcus aureus (S. aureus) leads to reprogramming of cellular behavior as well as impaired growth and decreased resistance to cell wall-targeting antibiotics. We used an agar well diffusion assay and a time kill assay and determined the minimum inhibitory concentrations of the FTIs lonafarnib and tipifarnib. Additionally, we conducted cell viability assays. We aimed to characterize the effect of these FTIs on S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis (S. epidermidis), Escherichia coli (E. coli), Enterococcus faecium (E. faecium), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), and Streptococcus pneumoniae (S. pneumoniae). Both the FTIs lonafarnib and tipifarnib were capable of inhibiting the growth of the Gram-positive bacteria S. aureus, MRSA, S. epidermidis, and S. pneumoniae, whereas no effect was observed on Gram-negative bacteria. The analysis of the impact of lonafarnib and tipifarnib on common human pathogens might lead to novel insights into their defense mechanisms and therefore provide new therapeutic targets for antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Lea Weber
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Anna Hagemann
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Jila Kaltenhäuser
- Department of Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Manuela Besser
- Department of Translational Wound Research, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Patrick Rockenfeller
- Centre for Biomedical Education and Research, Institute of Biochemistry and Molecular Medicine, Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Centre for Biomedical Education and Research, Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany
| | - Ewa Stuermer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hagen Sjard Bachmann
- Centre for Biomedical Education and Research, Institute of Pharmacology and Toxicology, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
11
|
Lok AS, Negro F, Asselah T, Farci P, Rizzetto M. Endpoints and New Options for Treatment of Chronic Hepatitis D. Hepatology 2021; 74:3479-3485. [PMID: 34331781 PMCID: PMC9293075 DOI: 10.1002/hep.32082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Anna S. Lok
- Division of Gastroenterology and HepatologyUniversity of MichiganAnn ArborMI
| | - Francesco Negro
- Division of Gastroenterology and HepatologyGeneva University HospitalsGenevaSwitzerland,Division of Clinical PathologyGeneva University HospitalsGenevaSwitzerland
| | - Tarik Asselah
- Department of HepatologyINSERM U1149Université de ParisCRIHôpital BeaujonAP‐HPClichyFrance
| | - Patrizia Farci
- Hepatic Pathogenesis SectionLaboratory of Infectious DiseasesNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMD
| | - Mario Rizzetto
- Department of Medical SciencesUniversity of TorinoTorinoItaly
| |
Collapse
|
12
|
Chen LY, Pang XY, Goyal H, Yang RX, Xu HG. Hepatitis D: challenges in the estimation of true prevalence and laboratory diagnosis. Gut Pathog 2021; 13:66. [PMID: 34717740 PMCID: PMC8557527 DOI: 10.1186/s13099-021-00462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis delta virus (HDV) is a defective single negative chain RNA virus, as its envelope protein synthesis is dependent on hepatitis B virus (HBV). Studies have consistently shown that coinfection of HBV and HDV is the most serious form of viral hepatitis, with accelerated progression to liver cirrhosis and hepatocellular carcinoma. About 74 million of HBV surface antigen (HBsAg) positive patients worldwide are also co-infected with HDV. Besides, patients with intravenous drug use and high-risk sexual behavior are at higher risk of HDV infection. Therapeutic schedules for HDV are limited, and relapse of HDV has been observed after treatment with pegylated interferon alpha. To reduce the transmission of HDV, all people infected with HBV should be screened for HDV. At present, several serological and molecular detection methods are widely used in the diagnosis of HDV. However, due to the lack of international standards diagnostic results from different laboratories are often not comparable. Therefore, the true prevalence of HDV is still unclear. In this manuscript, we have analyzed various factors influencing the estimation of HDV prevalence. We have also discussed about the advantages and disadvantages of currently available HDV laboratory diagnostic methods, in order to provide some ideas for improving the detection of HDV.
Collapse
Affiliation(s)
- Lin-Yuan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Yu Pang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemant Goyal
- Department of Internal Medicine Macon, Mercer University School of Medicine, Georgia, USA
| | - Rui-Xia Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hua-Guo Xu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Bulevirtide in chronic hepatitis D: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2021. [DOI: 10.1007/s40267-021-00843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Niro GA, Ferro A, Cicerchia F, Brascugli I, Durazzo M. Hepatitis delta virus: From infection to new therapeutic strategies. World J Gastroenterol 2021; 27:3530-3542. [PMID: 34239267 PMCID: PMC8240063 DOI: 10.3748/wjg.v27.i24.3530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis delta virus (HDV) is a small RNA virus that encodes a single protein and which requires the hepatitis B virus (HBV)-encoded hepatitis B surface antigen (HBsAg) for its assembly and transmission. HBV/HDV co-infections exist worldwide and show a higher prevalence among selected groups of HBV-infected populations, specifically intravenous drug users, practitioners of high-risk sexual behaviours, and patients with cirrhosis and hepatocellular carcinoma. The chronic form of HDV-related hepatitis is usually severe and rapidly progressive. Patterns of the viral infection itself, including the status of co-infection or super-infection, virus genotypes (both for HBV and HDV), and persistence of the virus’ replication, influence the outcome of the accompanying and manifested liver disease. Unfortunately, disease severity is burdened by the lack of an effective cure for either virus type. For decades, the main treatment option has been interferon, administered as mono-therapy or in combination with nucleos(t)ide analogues. While its efficacy has been reported for different doses, durations and courses, only a minority of patients achieve a sustained response, which is the foundation of eventual improvement in related liver fibrosis. The need for an efficient therapeutic alternative remains. Research efforts towards this end have led to new treatment options that target specific steps in the HDV life cycle; the most promising among these are myrcludex B, which inhibits virus entry into hepatocytes, lonafarnib, which inhibits farnesylation of the viral-encoded L-HDAg large hepatitis D antigen, and REP-2139, which interferes with HBsAg release and assembly.
Collapse
Affiliation(s)
- Grazia A Niro
- Department of Gastroenterology, IRCCS Casa Sollievo della Sofferenza Hospital Foundation, San Giovanni Rotondo 71013, Italy
| | - Arianna Ferro
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | | | | | - Marilena Durazzo
- Department of Medical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
15
|
Abstract
HDV is a small, defective RNA virus that requires the HBsAg of HBV for its assembly, release, and transmission. Chronic HBV/HDV infection often has a severe clinical outcome and is difficult to treat. The important role of a robust virus-specific T cell response for natural viral control has been established for many other chronic viral infections, but the exact role of the T cell response in the control and progression of chronic HDV infection is far less clear. Several recent studies have characterised HDV-specific CD4+ and CD8+ T cell responses on a peptide level. This review comprehensively summarises all HDV-specific T cell epitopes described to date and describes our current knowledge of the role of T cells in HDV infection. While we now have better tools to study the adaptive anti-HDV-specific T cell response, further efforts are needed to define the HLA restriction of additional HDV-specific T cell epitopes, establish additional HDV-specific MHC tetramers, understand the degree of cross HDV genotype reactivity of individual epitopes and understand the correlation of the HBV- and HDV-specific T cell response, as well as the breadth and specificity of the intrahepatic HDV-specific T cell response.
Collapse
Key Words
- ADAR1, adenosine deaminases acting on RNA
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CD4+
- CD8+
- ELISpot, enzyme-linked immune spot assay
- HBV
- HDAg, hepatitis delta antigen
- HDV
- Hepatitis Delta
- ICS, intracellular cytokine staining
- IFN-, interferon-
- L-HDAg, large hepatitis delta antigen
- MAIT, mucosa-associated invariant T cells
- NK cells, natural killer cells
- NTCP, sodium taurocholate co-transporting polypeptide
- PBMCs, peripheral blood mononuclear cells
- PD-1, programmed cell death protein 1
- PTM, post-translational modification
- Peg-IFN-α, pegylated interferon alpha
- S-HDAg, small hepatitis delta antigen
- T cell
- TCF, T cell-specific transcription factor
- TNFα, tumour necrosis factor-α
- Th1, T helper 1
- aa, amino acid(s)
- cccDNA, covalently closed circular DNA
- epitope
- viral escape
Collapse
|
16
|
In Vivo Models of HDV Infection: Is Humanizing NTCP Enough? Viruses 2021; 13:v13040588. [PMID: 33807170 PMCID: PMC8065588 DOI: 10.3390/v13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
The discovery of sodium taurocholate co-transporting polypeptide (NTCP) as a hepatitis B (HBV) and delta virus (HDV) entry receptor has encouraged the development of new animal models of infection. This review provides an overview of the different in vivo models that are currently available to study HDV either in the absence or presence of HBV. By presenting new advances and remaining drawbacks, we will discuss human host factors which, in addition to NTCP, need to be investigated or identified to enable a persistent HDV infection in murine hepatocytes. Detailed knowledge on species-specific factors involved in HDV persistence also shall contribute to the development of therapeutic strategies.
Collapse
|
17
|
Lowjaga KAAT, Kirstgen M, Müller SF, Goldmann N, Lehmann F, Glebe D, Geyer J. Long-term trans-inhibition of the hepatitis B and D virus receptor NTCP by taurolithocholic acid. Am J Physiol Gastrointest Liver Physiol 2021; 320:G66-G80. [PMID: 33174454 DOI: 10.1152/ajpgi.00263.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Kira A A T Lowjaga
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Michael Kirstgen
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| |
Collapse
|