1
|
Zhou S, Zhang M, Wang J, Chen X, Xu Z, Yan Y, Li Y. Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges. Int J Nanomedicine 2025; 20:4677-4703. [PMID: 40255668 PMCID: PMC12008729 DOI: 10.2147/ijn.s510363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Despite relentless effort to study glioma treatment, the prognosis for glioma patients remains poor. The main obstacles include the high rate of recurrence and the difficulty of passing the blood-brain barrier (BBB) for therapeutic drugs. Nanomaterials owing to their special physicochemical properties have been used in a wide range of fields thus far. The nanodrug delivery system (NDDS) with the ability of crossing the BBB, targeting glioma site, maintaining drug stability and controlling drug release, has significantly enhanced the anti-tumor therapeutic effect, improving the prognosis of glioma patients. Aligned nanofibers (NFs) are ideal materials to establish in vitro models of glioma microenvironment (GME), enabling the exploration of the mechanism of glioma cell migration and invasion to discover novel therapeutic targets. Moreover, NFs are now widely used in glioma applications such as radiotherapy, phototherapy, thermotherapy and immunotherapy. Despite the absolute dominance of NFs in anti-glioma applications, there are still some problems such as the further optimization of NDDS, and the impact of interactions between nanofibers and the protein corona (PC) on glioma therapy. This paper will shed light on the latest glioma applications of NFs in drug delivery systems and mimicking the tumor microenvironment (TME), and discuss how to further optimize the NDDS and eliminate or utilize the nanomedicine-PC interactions.
Collapse
Affiliation(s)
- Shangjun Zhou
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Mingcheng Zhang
- Center of Endoscopy, The Second Affiliated Hospital of Shandong First Medical University Tai’an, Shandong, People’s Republic of China
| | - Jiayu Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Kataki AD, Gupta PG, Cheema U, Nisbet A, Wang Y, Kocher HM, Pérez-Mancera PA, Velliou EG. Mapping Tumor-Stroma-ECM Interactions in Spatially Advanced 3D Models of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16708-16724. [PMID: 40052705 PMCID: PMC11931495 DOI: 10.1021/acsami.5c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/21/2025]
Abstract
Bioengineering-based in vitro tumor models are increasingly important as tools for studying disease progression and therapy response for many cancers, including the deadly pancreatic ductal adenocarcinoma (PDAC) that exhibits a tumor/tissue microenvironment of high cellular/biochemical complexity. Therefore, it is crucial for in vitro models to capture that complexity and to enable investigation of the interplay between cancer cells and factors such as extracellular matrix (ECM) proteins or stroma cells. Using polyurethane (PU) scaffolds, we performed a systematic study on how different ECM protein scaffold coatings impact the long-term cell evolution in scaffolds containing only cancer or only stroma cells (activated stellate and endothelial cells). To investigate potential further changes in those biomarkers due to cancer-stroma interactions, we mapped their expression in dual/zonal scaffolds consisting of a cancer core and a stroma periphery, spatially mimicking the fibrotic/desmoplastic reaction in PDAC. In our single scaffolds, we observed that the protein coating affected the cancer cell spatial aggregation, matrix deposition, and biomarker upregulation in a cell-line-dependent manner. In single stroma scaffolds, different levels of fibrosis/desmoplasia in terms of ECM composition/quantity were generated depending on the ECM coating. When studying the evolution of cancer and stroma cells in our dual/zonal model, biomarkers linked to cell aggressiveness/invasiveness were further upregulated by both cancer and stroma cells as compared to single scaffold models. Collectively, our study advances the understanding of how different ECM proteins impact the long-term cell evolution in PU scaffolds. Our findings show that within our bioengineered models, we can stimulate the cells of the PDAC microenvironment to develop different levels of aggressiveness/invasiveness, as well as different levels of fibrosis. Furthermore, we highlight the importance of considering spatial complexity to map cell invasion. Our work contributes to the design of in vitro models with variable, yet biomimetic, tissue-like properties for studying the tumor microenvironment's role in cancer progression.
Collapse
Affiliation(s)
- Anna-Dimitra Kataki
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Priyanka G. Gupta
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
- School
of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4JD, U.K.
| | - Umber Cheema
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Yaohe Wang
- Centre
for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Hemant M. Kocher
- Centre
for Tumour Biology and Experimental Cancer Medicine, Barts Cancer
Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Pedro A. Pérez-Mancera
- Department
of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Eirini G. Velliou
- Centre
for 3D models of Health and Disease, Division of Surgery and Interventional
Science, University College London, London W1W 7TY, U.K.
| |
Collapse
|
3
|
Martella D, Tusa I, Tubita A, Negri A, Turriani M, Rojas‐Rodríguez M, de Luna MS, Menconi A, Parmeggiani C, Rovida E. Liquid Crystalline Networks Hamper the Malignancy of Cancer Cells. Adv Healthc Mater 2025; 14:e2403607. [PMID: 39828609 PMCID: PMC11912096 DOI: 10.1002/adhm.202403607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Mimicking compositions and structures of extracellular matrix is widely studied to create in vitro tumor models, to deepen the understanding of the pathogenesis of the different types of cancer, and to identify new therapies. On the other hand, the use of synthetic materials to modulate cancer cell biology and, possibly, to reduce the malignancy of cancer cells through their exploitation is far less explored. Here, the study evaluates the effects of Liquid Crystalline Networks (LCNs) based scaffolds on the growth of A375 metastatic melanoma cells. Interestingly, cells grown on such materials show reduced cell proliferation and colony-forming capacity with respect to those cultivated on standard plates. These effects are associated with a higher percentage of senescent cells and a shift to a more epithelial phenotype, pointing to the occurrence of a mesenchymal to epithelial transition. All these biological outcomes are affected by the amount of crosslinker in the material and have been induced only thanks to the interactions with the polymeric substrate without the need of further chemical (e.g., specific growth factor) or physical (e.g., irradiation) stimuli, opening to the possible development of anti-cancer coatings.
Collapse
Affiliation(s)
- Daniele Martella
- Department of Chemistry “Ugo Schiff”University of Florencevia della Lastruccia 3–13Sesto Fiorentino50019Italy
- European Laboratory for Non Linear Spectroscopy (LENS)via N. Carrara 1Sesto Fiorentino50019Italy
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceViale G.B. Morgagni, 50Florence50134Italy
| | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceViale G.B. Morgagni, 50Florence50134Italy
| | - Alessia Negri
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceViale G.B. Morgagni, 50Florence50134Italy
| | - Marco Turriani
- European Laboratory for Non Linear Spectroscopy (LENS)via N. Carrara 1Sesto Fiorentino50019Italy
| | - Marta Rojas‐Rodríguez
- European Laboratory for Non Linear Spectroscopy (LENS)via N. Carrara 1Sesto Fiorentino50019Italy
| | - Martina Salzano de Luna
- Department of Chemical, Materials and Industrial Production EngineeringUniversity of Naples Federico IIPiazzale V. Tecchio, 80Napoli80125Italy
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceViale G.B. Morgagni, 50Florence50134Italy
| | - Camilla Parmeggiani
- Department of Chemistry “Ugo Schiff”University of Florencevia della Lastruccia 3–13Sesto Fiorentino50019Italy
- European Laboratory for Non Linear Spectroscopy (LENS)via N. Carrara 1Sesto Fiorentino50019Italy
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceViale G.B. Morgagni, 50Florence50134Italy
| |
Collapse
|
4
|
McDonough E, Barroso M, Ginty F, Corr DT. Modeling intratumor heterogeneity in breast cancer. Biofabrication 2024; 17:10.1088/1758-5090/ad9b50. [PMID: 39642392 PMCID: PMC11740194 DOI: 10.1088/1758-5090/ad9b50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Reduced therapy response in breast cancer has been correlated with heterogeneity in biomarker composition, expression level, and spatial distribution of cancer cells within a patient tumor. Thus, there is a need for models to replicate cell-cell, cell-stromal, and cell-microenvironment interactions during cancer progression. Traditional two-dimensional (2D) cell culture models are convenient but cannot adequately represent tumor microenvironment histological organization,in vivo3D spatial/cellular context, and physiological relevance. Recently, three-dimensional (3D)in vitrotumor models have been shown to provide an improved platform for incorporating compositional and spatial heterogeneity and to better mimic the biological characteristics of patient tumors to assess drug response. Advances in 3D bioprinting have allowed the creation of more complex models with improved physiologic representation while controlling for reproducibility and accuracy. This review aims to summarize the advantages and challenges of current 3Din vitromodels for evaluating therapy response in breast cancer, with a particular emphasis on 3D bioprinting, and addresses several key issues for future model development as well as their application to other cancers.
Collapse
Affiliation(s)
- Elizabeth McDonough
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany
Medical College, Albany, NY 12208, United States
| | - Fiona Ginty
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - David T. Corr
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
5
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
6
|
Ahmadian M, Hosseini S, Alipour A, Jahanfar M, Farrokhi N, Homaeigohar S, Shahsavarani H. In vitro modeling of hepatocellular carcinoma niche on decellularized tomato thorny leaves: a novel natural three-dimensional (3D) scaffold for liver cancer therapeutics. Front Bioeng Biotechnol 2023; 11:1189726. [PMID: 37251569 PMCID: PMC10212619 DOI: 10.3389/fbioe.2023.1189726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Liver cancer is now one of the main causes leading to death worldwide. To achieve reliable therapeutic effects, it is crucial to develop efficient approaches to test novel anticancer drugs. Considering the significant contribution of tumor microenvironment to cell's response to medications, in vitro 3D bioinspiration of cancer cell niches can be regarded as an advanced strategy to improve the accuracy and reliability of the drug-based treatment. In this regard, decellularized plant tissues can perform as suitable 3D scaffolds for mammalian cell culture to create a near-to-real condition to test drug efficacy. Here, we developed a novel 3D natural scaffold made from decellularized tomato hairy leaves (hereafter called as DTL) to mimic the microenvironment of human hepatocellular carcinoma (HCC) for pharmaceutical purposes. The surface hydrophilicity, mechanical properties, and topography measurement and molecular analyses revealed that the 3D DTL scaffold is an ideal candidate for liver cancer modeling. The cells exhibited a higher growth and proliferation rate within the DTL scaffold, as verified by quantifying the expression of related genes, DAPI staining, and SEM imaging of the cells. Moreover, prilocaine, an anticancer drug, showed a higher effectiveness against the cancer cells cultured on the 3D DTL scaffold, compared to a 2D platform. Taken together, this new cellulosic 3D scaffold can be confidently proposed for chemotherapeutic testing of drugs on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mariye Ahmadian
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, National Cell Bank, Tehran, Iran
| |
Collapse
|
7
|
Zhou C, Wu Y, Wang Z, Liu Y, Yu J, Wang W, Chen S, Wu W, Wang J, Qian G, He A. Standardization of organoid culture in cancer research. Cancer Med 2023. [PMID: 37081739 DOI: 10.1002/cam4.5943] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Establishing a valid in vitro model to represent tumor heterogeneity and biology is critical but challenging. Tumor organoids are self-assembled three-dimensional cell clusters which are of great significance for recapitulating the histopathological, genetic, and phenotypic characteristics of primary tissues. The organoid has emerged as an attractive in vitro platform for tumor biology research and high-throughput drug screening in cancer medicine. Organoids offer unique advantages over cell lines and patient-derived xenograft models, but there are no standardized methods to guide the culture of organoids, leading to confusion in organoid studies that may affect accurate judgments of tumor biology. This review summarizes the shortcomings of current organoid culture methods, presents the latest research findings on organoid standardization, and proposes an outlook for organoid modeling.
Collapse
Affiliation(s)
- Changchun Zhou
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanbo Wu
- Department of Ultrasound, Yangxin County People's Hospital, Huangshi, Hubei, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanli Liu
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiaqi Yu
- Biobank, Cancer Research Center, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Sunrui Chen
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Weihua Wu
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Jidong Wang
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Guowei Qian
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Aina He
- Department of Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
8
|
Goel R, Gulwani D, Upadhyay P, Sarangthem V, Singh TD. Unsung versatility of elastin-like polypeptide inspired spheroid fabrication: A review. Int J Biol Macromol 2023; 234:123664. [PMID: 36791934 DOI: 10.1016/j.ijbiomac.2023.123664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Lately, 3D cell culture technique has gained a lot of appreciation as a research model. Augmented with technological advancements, the area of 3D cell culture is growing rapidly with a diverse array of scaffolds being tested. This is especially the case for spheroid cultures. The culture of cells as spheroids provides opportunities for unanticipated vision into biological phenomena with its application to drug discovery, metabolic profiling, stem cell research as well as tumor, and disease biology. Spheroid fabrication techniques are broadly categorised into matrix-dependent and matrix-independent techniques. While there is a profusion of spheroid fabrication substrates with substantial biological relevance, an economical, modular, and bio-compatible substrate for high throughput production of spheroids is lacking. In this review, we posit the prospects of elastin-like polypeptides (ELPs) as a broad-spectrum spheroid fabrication platform. Elastin-like polypeptides are nature inspired, size-tunable genetically engineered polymers with wide applicability in various arena of biological considerations, has been employed for spheroid culture with profound utility. The technology offers a cheap, high-throughput, reproducible alternative for spheroid culture with exquisite adaptability. Here, we will brief the applicability of 3D cultures as compared to 2D cultures with spheroids being the focal point of the review. Common approaches to spheroid fabrication are discussed with existential limitations. Finally, the versatility of elastin-like polypeptide inspired substrates for spheroid culture has been discussed.
Collapse
Affiliation(s)
- Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepak Gulwani
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Priyanka Upadhyay
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
9
|
Heinrich MA, Uboldi I, Kuninty PR, Ankone MJ, van Baarlen J, Zhang YS, Jain K, Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact Mater 2023; 22:18-33. [PMID: 36203956 PMCID: PMC9516389 DOI: 10.1016/j.bioactmat.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 10/26/2022] Open
Abstract
Fibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds. Here, a multi-layered vascularized 3D PDAC model consisting of primary human pancreatic stellate cells (PSCs) embedded in collagen/fibrinogen (Col/Fib), mimicking tumor tissue within adjunct healthy tissue, is presented to study the fibrosis-induced compression of vasculature in PDAC. It is demonstrated how the mechanical and biological stimulation induce PSC activation, extracellular matrix production and eventually vessel compression. The clinical relevance is confirmed by correlating with patient transcriptomic data. Furthermore, the effects of gradual vessel compression on the fluid dynamics occurring within the channel is evaluated in silico. Finally, it is demonstrated how cancer-associated fibroblast (CAF)-modulatory therapeutics can inhibit the cell-mediated compression of blood vessels in PDAC in vitro, in silico and in vivo. It is envisioned that this 3D model is used to improve the understanding of mechanical characteristics in tumors and for evaluating novel anti-desmoplastic therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Irene Uboldi
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Praneeth Reddy Kuninty
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Marc J.K. Ankone
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Joop van Baarlen
- Laboratorium Pathologie Oost-Nederland (LabPON), 7550 AM, Hengelo, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, Biofluid Dynamics Section, University of Twente, 7500 AE Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
10
|
Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. IN VITRO MODELS 2023; 2:1-23. [PMID: 39872875 PMCID: PMC11756483 DOI: 10.1007/s44164-023-00043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2025]
Abstract
The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara R/A, Dhaka-1229 Dhaka, Bangladesh
| |
Collapse
|
11
|
Tumor Spheroids as Model to Design Acoustically Mediated Drug Therapies: A Review. Pharmaceutics 2023; 15:pharmaceutics15030806. [PMID: 36986667 PMCID: PMC10056013 DOI: 10.3390/pharmaceutics15030806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Tumor spheroids as well as multicellular tumor spheroids (MCTSs) are promising 3D in vitro tumor models for drug screening, drug design, drug targeting, drug toxicity, and validation of drug delivery methods. These models partly reflect the tridimensional architecture of tumors, their heterogeneity and their microenvironment, which can alter the intratumoral biodistribution, pharmacokinetics, and pharmacodynamics of drugs. The present review first focuses on current spheroid formation methods and then on in vitro investigations exploiting spheroids and MCTS for designing and validating acoustically mediated drug therapies. We discuss the limitations of the current studies and future perspectives. Various spheroid formation methods enable the easy and reproducible generation of spheroids and MCTSs. The development and assessment of acoustically mediated drug therapies have been mainly demonstrated in spheroids made up of tumor cells only. Despite the promising results obtained with these spheroids, the successful evaluation of these therapies will need to be addressed in more relevant 3D vascular MCTS models using MCTS-on-chip platforms. These MTCSs will be generated from patient-derived cancer cells and nontumor cells, such as fibroblasts, adipocytes, and immune cells.
Collapse
|
12
|
Sevinyan L, Gupta P, Velliou E, Madhuri TK. The Development of a Three-Dimensional Platform for Patient-Derived Ovarian Cancer Tissue Models: A Systematic Literature Review. Cancers (Basel) 2022; 14:5628. [PMID: 36428724 PMCID: PMC9688222 DOI: 10.3390/cancers14225628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
There is an unmet biomedical need for ex vivo tumour models that would predict drug responses and in turn help determine treatment regimens and potentially predict resistance before clinical studies. Research has shown that three dimensional models of ovarian cancer (OvCa) are more realistic than two dimensional in vitro systems as they are able to capture patient in vivo conditions in more accurate manner. The vast majority of studies aiming to recapitulate the ovarian tumour morphology, behaviors, and study chemotherapy responses have been using ovarian cancer cell lines. However, despite the advantages of utilising cancer cell lines to set up a platform, they are not as informative as systems applying patient derived cells, as cell lines are not able to recapitulate differences between each individual patient characteristics. In this review we discussed the most recent advances in the creation of 3D ovarian cancer models that have used patient derived material, the challenges to overcome and future applications.
Collapse
Affiliation(s)
- Lusine Sevinyan
- Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Cancer Research, School of Applied Sciences, University of Brighton, Brighton BN2 4HQ, UK
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Thumuluru Kavitha Madhuri
- Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK
- Cancer Research, School of Applied Sciences, University of Brighton, Brighton BN2 4HQ, UK
| |
Collapse
|
13
|
Erickson A, Chiarelli PA, Huang J, Levengood SL, Zhang M. Electrospun nanofibers for 3-D cancer models, diagnostics, and therapy. NANOSCALE HORIZONS 2022; 7:1279-1298. [PMID: 36106417 DOI: 10.1039/d2nh00328g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As one of the leading causes of global mortality, cancer has prompted extensive research and development to advance efficacious drug discovery, sustained drug delivery and improved sensitivity in diagnosis. Towards these applications, nanofibers synthesized by electrospinning have exhibited great clinical potential as a biomimetic tumor microenvironment model for drug screening, a controllable platform for localized, prolonged drug release for cancer therapy, and a highly sensitive cancer diagnostic tool for capture and isolation of circulating tumor cells in the bloodstream and for detection of cancer-associated biomarkers. This review provides an overview of applied nanofiber design with focus on versatile electrospinning fabrication techniques. The influence of topographical, physical, and biochemical properties on the function of nanofiber assemblies is discussed, as well as current and foreseeable barriers to the clinical translation of applied nanofibers in the field of oncology.
Collapse
Affiliation(s)
- Ariane Erickson
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Peter A Chiarelli
- The Saban Research Institute, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jianxi Huang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Sheeny Lan Levengood
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Azimian Zavareh V, Rafiee L, Sheikholeslam M, Shariati L, Vaseghi G, Savoji H, Haghjooy Javanmard S. Three-Dimensional in Vitro Models: A Promising Tool To Scale-Up Breast Cancer Research. ACS Biomater Sci Eng 2022; 8:4648-4672. [PMID: 36260561 DOI: 10.1021/acsbiomaterials.2c00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Common models used in breast cancer studies, including two-dimensional (2D) cultures and animal models, do not precisely model all aspects of breast tumors. These models do not well simulate the cell-cell and cell-stromal interactions required for normal tumor growth in the body and lake tumor like microenvironment. Three-dimensional (3D) cell culture models are novel approaches to studying breast cancer. They do not have the restrictions of these conventional models and are able to recapitulate the structural architecture, complexity, and specific function of breast tumors and provide similar in vivo responses to therapeutic regimens. These models can be a link between former traditional 2D culture and in vivo models and are necessary for further studies in cancer. This review attempts to summarize the most common 3D in vitro models used in breast cancer studies, including scaffold-free (spheroid and organoid), scaffold-based, and chip-based models, particularly focused on the basic and translational application of these 3D models in drug screening and the tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada.,Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
15
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
16
|
Allafchian A, Masmouei HR, Jalali SAH. Design and characterization of Persian gum/polyvinyl alcohol electrospun nanofibrous scaffolds for cell culture applications. Int J Biol Macromol 2022; 209:1402-1409. [PMID: 35461869 DOI: 10.1016/j.ijbiomac.2022.04.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Biocompatible electrospun nanofiber scaffolds were fabricated in this study using Persian gum (PG) and poly (vinyl alcohol) (PVA) to build an artificial extracellular matrix for cell growth. The preparation procedure involves mixing various ratios of PG/PVA to be electrospun and seeded with L929 fibroblasts. Upon addition of PG up to 60% to the solutions, a 30% decrease to around 240 μs·cm-1 is found in electrical conductivity which is in the range of semi-conductive polymers, whereas the surface tension is increased to around 3%. The fabricated scaffolds were characterized by morphological, chemical, thermal and structural analyses including SEM, FTIR spectroscopy, DSC, XRD, and tensile stress. The results showed that incorporation of 50% PG to the polymer solutions causes the formation of nanofibers with the least bead-shaped segments. All ratios of nanofibers containing PG showed significant biocompatibility with the cultured cells, which is presumably due to the radical scavenging feature of PG. The MTT and SEM analyses demonstrated that the scaffolds containing 50% PG possess the optimal cell compatibility, adhesion and proliferation properties. The fabricated PG/PVA cell culture scaffolds are potentially appropriate for wound dressing and cell culture applications in biomedicine.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Reza Masmouei
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
17
|
Investigating Cancerous Exosomes’ Effects on CD8+ T-Cell IL-2 Production in a 3D Unidirectional Flow Bioreactor Using 3D Printed, RGD-Functionalized PLLA Scaffolds. J Funct Biomater 2022; 13:jfb13010030. [PMID: 35323230 PMCID: PMC8950614 DOI: 10.3390/jfb13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production. The IL-2 production was investigated for a wide range of T-cell to exosome ratios. With the successful incorporation of the RGD binding motif onto the PLLA surface at controllable densities, CD8+ T-cells were successfully attached onto 2D disks and 3D printed porous PLLA scaffolds. T-cell attachment increased with increasing RGD surface density. The diameter of the attached T-cells was 7.2 ± 0.2 µm for RGD densities below 0.5 nmoles/mm2 but dropped to 5.1 ± 0.3 µm when the RGD density was 2 nmoles/mm2 due to overcrowding. The higher the number of cancer exosomes, the less the IL-2 production by the surface-attached T-cells. In 2D disks, the IL-2 production was silenced for T-cell to exosome ratios higher than 1:10 in static conditions. IL-2 production silencing in static 3D porous scaffolds required ratios higher than 1:20. The incorporation of flow resulted in moderate to significant T-cell detachment. The portions of T-cells retained on the 3D scaffolds after exposure for 4 h to 0.15 or 1.5 mL/min of perfusion flow were 89 ± 11% and 30 ± 8%, respectively. On 3D scaffolds and in the presence of flow at 0.15 ml/min, both H1299 and A549 cancerous exosomes significantly suppressed IL-2 production for T-cell to exosome ratios of 1:1000. The much higher level of exosomes needed to silence the IL-2 production from T-cells cultured under unidirectional flow, compared to static conditions, denotes the importance of the culturing conditions and the hydrodynamic environment, on the interactions between CD8+ T-cells and cancer exosomes.
Collapse
|
18
|
Vitale C, Marzagalli M, Scaglione S, Dondero A, Bottino C, Castriconi R. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers (Basel) 2022; 14:1013. [PMID: 35205760 PMCID: PMC8870468 DOI: 10.3390/cancers14041013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has emerged as a promising novel therapeutic strategy for cancer treatment. In a relevant percentage of patients, however, clinical benefits are lower than expected, pushing researchers to deeply analyze the immune responses against tumors and find more reliable and efficient tools to predict the individual response to therapy. Novel tissue engineering strategies can be adopted to realize in vitro fully humanized matrix-based models, as a compromise between standard two-dimensional (2D) cell cultures and animal tests, which are costly and hardly usable in personalized medicine. In this review, we describe the main mechanisms allowing cancer cells to escape the immune surveillance, which may play a significant role in the failure of immunotherapies. In particular, we discuss the role of the tumor microenvironment (TME) in the establishment of a milieu that greatly favors cancer malignant progression and impact on the interactions with immune cells. Then, we present an overview of the recent in vitro engineered preclinical three-dimensional (3D) models that have been adopted to resemble the interplays between cancer and immune cells and for testing current therapies and immunotherapeutic approaches. Specifically, we focus on 3D hydrogel-based tools based on different types of polymers, discussing the suitability of each of them in reproducing the TME key features based on their intrinsic or tunable characteristics. Finally, we introduce the possibility to combine the 3D models with technological fluid dynamics platforms, reproducing the dynamic complex interactions between tumor cells and immune effectors migrated in situ via the systemic circulation, pointing out the challenges that still have to be overcome for setting more predictive preclinical assays.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | | | - Silvia Scaglione
- React4life SRL, 16121 Genova, Italy; (M.M.); (S.S.)
- National Research Council of Italy, Institute of Electronics, Information Engineering and Telecommunications (IEIIT), 16149 Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
- IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| |
Collapse
|
19
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Rodrigues J, Sarmento B, Pereira CL. Osteosarcoma tumor microenvironment: the key for the successful development of biologically relevant 3D in vitro models. IN VITRO MODELS 2022; 1:5-27. [PMID: 39872973 PMCID: PMC11756501 DOI: 10.1007/s44164-022-00008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 01/30/2025]
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and young adults. This type of cancer is characterized by a high mortality rate, especially for patients with resistant lung metastases. Given its low incidence, high genetic heterogeneity, the lack of effective targets, and poor availability of relevant in vitro and in vivo models to study the tumor progression and the metastatic cascade, the pathophysiology of OS is still poorly understood and the translation of novel drugs into the market has become stagnant. Due to the importance of the tumor microenvironment (TME) in the development of metastases and the growing interest in targeting TME-specific pathways for novel therapeutics in cancer, models that closely represent these interactions are crucial for a better understanding of cancer-related events. In OS research, most studies rely on oversimplified two-dimensional (2D) assays and complex animal models that do not faithfully recapitulate OS development and progression. In turn, three-dimensional (3D) models are able to mimic not only the physical 3D environment in which cancer cells grow but also involve interactions with the TME, including its extracellular matrix, and thus are promising tools for drug screening studies. In this review, the existing and innovative OS in vitro 3D models are highlighted, focusing on how the TME is crucial to develop effective platforms for OS tumor and metastasis modeling in a physiologically relevant context. Graphical abstract
Collapse
Affiliation(s)
- João Rodrigues
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
- Faculdade de Engenharia da Universidade Do Porto (FEUP), University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação E Formação Avançada Em Ciências E Tecnologias da Saúde, Rua Central da Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- Instituto de Investigação E Inovação Em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
21
|
LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. NATURE MATERIALS 2022; 21:143-159. [PMID: 34385685 DOI: 10.1038/s41563-021-01057-5] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/21/2021] [Indexed: 05/13/2023]
Abstract
Organotypic models of patient-specific tumours are revolutionizing our understanding of cancer heterogeneity and its implications for personalized medicine. These advancements are, in part, attributed to the ability of organoid models to stably preserve genetic, proteomic, morphological and pharmacotypic features of the parent tumour in vitro, while also offering unprecedented genomic and environmental manipulation. Despite recent innovations in organoid protocols, current techniques for cancer organoid culture are inherently uncontrolled and irreproducible, owing to several non-standardized facets including cancer tissue sources and subsequent processing, medium formulations, and animal-derived three-dimensional matrices. Given the potential for cancer organoids to accurately recapitulate the intra- and intertumoral biological heterogeneity associated with patient-specific cancers, eliminating the undesirable technical variability accompanying cancer organoid culture is necessary to establish reproducible platforms that accelerate translatable insights into patient care. Here we describe the current challenges and recent multidisciplinary advancements and opportunities for standardizing next-generation cancer organoid systems.
Collapse
Affiliation(s)
- Bauer L LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Liu X, Fu S, Jiao Y, Hu M, Li C, Wang F, Wang L. A loofah-inspired scaffold with enhanced mimicking mechanics and tumor cells distribution for in vitro tumor cell culture platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112672. [DOI: 10.1016/j.msec.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
23
|
Gündel B, Liu X, Löhr M, Heuchel R. Pancreatic Ductal Adenocarcinoma: Preclinical in vitro and ex vivo Models. Front Cell Dev Biol 2021; 9:741162. [PMID: 34746135 PMCID: PMC8569794 DOI: 10.3389/fcell.2021.741162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most overlooked cancers despite its dismal median survival time of 6 months. The biggest challenges in improving patient survival are late diagnosis due to lack of diagnostic markers, and limited treatment options due to almost complete therapy resistance. The past decades of research identified the dense stroma and the complex interplay/crosstalk between the cancer- and the different stromal cells as the main culprits for the slow progress in improving patient outcome. For better ex vivo simulation of this complex tumor microenvironment the models used in PDAC research likewise need to become more diverse. Depending on the focus of the investigation, several in vitro and in vivo models for PDAC have been established in the past years. Particularly, 3D cell culture such as spheroids and organoids have become more frequently used. This review aims to examine current PDAC in vitro models, their inherent limitations, and their successful implementations in research.
Collapse
Affiliation(s)
- Beate Gündel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Xinyuan Liu
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| | - Matthias Löhr
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
- Department of Upper GI, C1:77, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
24
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
25
|
Electrospun polyvinyl-alcohol/gum arabic nanofibers: Biomimetic platform for in vitro cell growth and cancer nanomedicine delivery. Int J Biol Macromol 2021; 188:764-773. [PMID: 34400233 DOI: 10.1016/j.ijbiomac.2021.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The design of powerful in vitro cell culture platforms to support precision medicine can contribute to predict therapeutic success of cancer patients. Electrospun nanofibers applied to cell culture can mimic extracellular matrix and improve in vitro cell behavior. Here, we describe biocompatible blended polyvinyl-alcohol (PVA)/gum arabic (GA) extracellular matrix (ECM)-like nanofibers for in vitro cell cultures capable of delivering nanocomposite for desired biomedical application. Therefore, PVA/GA ECM-like electrospun nanofibers were developed and characterized. Heat treatment was used to crosslink the nanofibers and biocompatibility was evaluated, which demonstrated the ability of developed platform to provide a cell culture-friendly environment. Previous work demonstrated that GA-gold nanoparticles (GA-AuNPs) in non-cytotoxic concentrations can reduce key metastatic cellular events such as invasion and colony formation of metastatic melanoma cells. Thus, crosslinked nanofibers were functionalized with GA-AuNPs and its cellular delivery was evaluated. GA-AuNPs were efficiently adsorbed onto the PVA/GA nanofibers surface and the system effectively delivered the nanocomposites to metastatic melanoma cells. In conclusion, the described biocompatible system could be prospected as a valuable in vitro tool for precision medicine.
Collapse
|
26
|
Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021; 174:265-293. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics - a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting hetero- and orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process.
Collapse
Affiliation(s)
- Marcel A Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Ahmed M R H Mostafa
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands
| | - Jennifer P Morton
- Cancer Research UK, Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow G61 1QH, UK
| | - Lukas J A C Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, PO-box 9600, 2300 RC Leiden, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| |
Collapse
|
27
|
Qu F, Zhao S, Cheng G, Rahman H, Xiao Q, Chan RWY, Ho YP. Double emulsion-pretreated microwell culture for the in vitro production of multicellular spheroids and their in situ analysis. MICROSYSTEMS & NANOENGINEERING 2021; 7:38. [PMID: 34567752 PMCID: PMC8433470 DOI: 10.1038/s41378-021-00267-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
Multicellular spheroids have served as a promising preclinical model for drug efficacy testing and disease modeling. Many microfluidic technologies, including those based on water-oil-water double emulsions, have been introduced for the production of spheroids. However, sustained culture and the in situ characterization of the generated spheroids are currently unavailable for the double emulsion-based spheroid model. This study presents a streamlined workflow, termed the double emulsion-pretreated microwell culture (DEPMiC), incorporating the features of (1) effective initiation of uniform-sized multicellular spheroids by the pretreatment of double emulsions produced by microfluidics without the requirement of biomaterial scaffolds; (2) sustained maintenance and culture of the produced spheroids with facile removal of the oil confinement; and (3) in situ characterization of individual spheroids localized in microwells by a built-in analytical station. Characterized by microscopic observations and Raman spectroscopy, the DEPMiC cultivated spheroids accumulated elevated lipid ordering on the apical membrane, similar to that observed in their Matrigel counterparts. Made possible by the proposed technological advancement, this study subsequently examined the drug responses of these in vitro-generated multicellular spheroids. The developed DEPMiC platform is expected to generate health benefits in personalized cancer treatment by offering a pre-animal tool to dissect heterogeneity from individual tumor spheroids.
Collapse
Affiliation(s)
- Fuyang Qu
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Shirui Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guangyao Cheng
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Habibur Rahman
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Renee Wan Yi Chan
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus and Immunobiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Laboratory for Paediatric Respiratory Research, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
28
|
Uzer-Yilmaz B. In vitro contact guidance of glioblastoma cells on metallic biomaterials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:35. [PMID: 33779848 PMCID: PMC8007516 DOI: 10.1007/s10856-021-06503-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Cancer cells' ability to sense their microenvironment and interpret these signals for the regulation of directional adhesion plays crucial role in cancer invasion. Furthermore, given the established influence of mechanical properties of the substrate on cell behavior, the present study aims to elucidate the relationship between the contact guidance of glioblastoma cell (GBM) and evolution of microstructural and mechanical properties of the implants. SEM analyses of the specimens subjected to 5 and 25% of plastic strains revealed directional groove-like structures in micro and submicro-sizes, respectively. Microscale cytoplasmic protrusions of GBMs showed elongation favored along the grooves created via deformation markings on 5% deformed sample. Whereas filopodia, submicro-sized protrusions facilitating cancer invasion, elongated in the direction perpendicular to the deformation markings on the 25% deformed sample, which might lead to easy and rapid retraction. Furthermore, number of cell attachment was 1.7-fold greater on 25% deformed sample, where these cells showed the greatest cellular aspect ratio. The directional attachment and contact guidance of GBMs was reported for the first time on metallic implants and these findings propose the idea that GBM response could be regulated by controlling the spacing of the deformation markings, namely the degree of plastic deformation. These findings can be applied in the design of cell-instructive implants for therapeutic purposes to suppress cancer dissemination.
Collapse
Affiliation(s)
- B Uzer-Yilmaz
- Department of Mechanical Engineering, Abdullah Gül University, 38080, Kayseri, Turkey.
| |
Collapse
|
29
|
Flores-Torres S, Peza-Chavez O, Kuasne H, Munguia-Lopez JG, Kort-Mascort J, Ferri L, Jiang T, Rajadurai CV, Park M, Sangwan V, Kinsella JM. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication 2021; 13. [PMID: 33440351 DOI: 10.1088/1758-5090/abdb87] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Hydrogels consisting of controlled fractions of alginate, gelatin, and Matrigel enable the development of patient-derived bioprinted tissue models that support cancer spheroid growth and expansion. These engineered models can be dissociated to be then reintroduced to new hydrogel solutions and subsequently reprinted to generate multigenerational models. The process of harvesting cells from 3D bioprinted models is possible by chelating the ions that crosslink alginate, causing the gel to weaken. Inclusion of the gelatin and Matrigel fractions to the hydrogel increases the bioactivity by providing cell-matrix binding sites and promoting cross-talk between cancer cells and their microenvironment. Here we show that immortalized triple-negative breast cancer cells (MDA-MB-231) and patient-derived gastric adenocarcinoma cells can be reprinted for at least three 21 d culture cycles following bioprinting in the alginate/gelatin/Matrigel hydrogels. Our drug testing results suggest that our 3D bioprinted model can also be used to recapitulatein vivopatient drug response. Furthermore, our results show that iterative bioprinting techniques coupled with alginate biomaterials can be used to maintain and expand patient-derived cancer spheroid cultures for extended periods without compromising cell viability, altering division rates, or disrupting cancer spheroid formation.
Collapse
Affiliation(s)
| | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Jose G Munguia-Lopez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | | | - Lorenzo Ferri
- Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, People's Republic of China
| | - Charles V Rajadurai
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Veena Sangwan
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
31
|
Jorgensen MD, Chmielewski J. Reversible crosslinked assembly of a trimeric coiled-coil peptide into a three-dimensional matrix for cell encapsulation and release. J Pept Sci 2021; 28:e3302. [PMID: 33506586 DOI: 10.1002/psc.3302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Mimicking the extracellular matrix (ECM) continues to be a goal in the field of regenerative medicine. Herein, we report a modified trimeric GCN4 coiled-coil sequence containing three ligands for metal ions specifically positioned for crosslinked assembly (TriCross). In the presence of metal ions, TriCross assembles into a three-dimensional (3D) matrix with significant cavities to accommodate cells. The matrix was found to be stable in media with serum, and mild removal of the metal leads to disassembly. By assembling TriCross with a suspension of cells in media, the matrix encapsulates cells during the assembly process leading to high cell viability. Further disassembly under mild conditions allows for the release of cells from the scaffold. As such, this peptide-based material displays many of the characteristics necessary for successful 3D cell culture.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
32
|
Shen H, Cai S, Wu C, Yang W, Yu H, Liu L. Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. MICROMACHINES 2021; 12:96. [PMID: 33477508 PMCID: PMC7831097 DOI: 10.3390/mi12010096] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) have received extensive attention in the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo more accurately than traditional in vitro two-dimensional models and to simulate cell-cell and cell extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model for tumor research, high-throughput drug screening, tissue engineering, and basic biology research. In the review, we first summarize methods for MCSs generation and their respective advantages and disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we discuss the development direction and prospects of MCSs.
Collapse
Affiliation(s)
- Honglin Shen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Chuanxiang Wu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
33
|
Gebeyehu A, Surapaneni SK, Huang J, Mondal A, Wang VZ, Haruna NF, Bagde A, Arthur P, Kutlehria S, Patel N, Rishi AK, Singh M. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Sci Rep 2021; 11:372. [PMID: 33431915 PMCID: PMC7801509 DOI: 10.1038/s41598-020-79325-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
A series of stable and ready-to-use bioinks have been developed based on the xeno-free and tunable hydrogel (VitroGel) system. Cell laden scaffold fabrication with optimized polysaccharide-based inks demonstrated that Ink H4 and RGD modified Ink H4-RGD had excellent rheological properties. Both bioinks were printable with 25-40 kPa extrusion pressure, showed 90% cell viability, shear-thinning and rapid shear recovery properties making them feasible for extrusion bioprinting without UV curing or temperature adjustment. Ink H4-RGD showed printability between 20 and 37 °C and the scaffolds remained stable for 15 days at temperature of 37 °C. 3D printed non-small-cell lung cancer (NSCLC) patient derived xenograft cells (PDCs) showed rapid spheroid growth of size around 500 µm in diameter and tumor microenvironment formation within 7 days. IC50 values demonstrated higher resistance of 3D spheroids to docetaxel (DTX), doxorubicin (DOX) and erlotinib compared to 2D monolayers of NSCLC-PDX, wild type triple negative breast cancer (MDA-MB-231 WT) and lung adenocarcinoma (HCC-827) cells. Results of flow property, shape fidelity, scaffold stability and biocompatibility of H4-RGD suggest that this hydrogel could be considered for 3D cell bioprinting and also for in-vitro tumor microenvironment development for high throughput screening of various anti-cancer drugs.
Collapse
Affiliation(s)
- Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - John Huang
- TheWell Bioscience, North Brunswick, New Jersey, 08902, USA
| | - Arindam Mondal
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | | | | | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Nil Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
34
|
Molla MS, Katti DR, Katti KS. Mechanobiological evaluation of prostate cancer metastasis to bone using an in vitro prostate cancer testbed. J Biomech 2021; 114:110142. [PMID: 33290947 PMCID: PMC8281967 DOI: 10.1016/j.jbiomech.2020.110142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022]
Abstract
Prostate cancer exhibits a propensity to metastasize to the bone, which often leads to fatality. Bone metastasis is characterized by complex biochemical, morphological, pathophysiological, and genetic changes to cancer cells as they colonize at bone sites. In this study, we report the evaluation of MDA PCa2b prostate cancer cells' nanomechanical properties during the mesenchymal-to-epithelial transition (MET) and during disease progression at the metastatic site. Bone-mimetic tissue-engineered 3D nanoclay scaffolds have been used to create in vitro metastatic site for prostate cancer. A significant softening of the prostate cancer cells during MET and further softening as disease progression occurs at metastasis is also reported. The significant reduction in elastic modulus of prostate cancer cells during MET was attributed to actin reorganization and depolymerization. This study provides input towards direct nanomechanical measurements to evaluate the time evolution of cells' mechanical behavior in tumors at bone metastasis site.
Collapse
Affiliation(s)
- Md Shahjahan Molla
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| | - Dinesh R Katti
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| | - Kalpana S Katti
- Center for Engineered Cancer Testbeds, Department of Civil and Environmental Engineering, NDSU, Fargo, ND 58104, United States; Biomedical Engineering, NDSU, Fargo, ND 58104, United States; Materials and Nanotechnology, NDSU, Fargo, ND 58104, United States.
| |
Collapse
|
35
|
Goonoo N, Boodhun A, Ziman M, Gray E, Bhaw-Luximon A. Repurposing nano-enabled polymeric scaffolds for tumor-wound management and 3D tumor engineering. Regen Med 2020; 15:2229-2247. [PMID: 33284640 DOI: 10.2217/rme-2020-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The main challenges of cancer drugs are toxicity, effect on wound healing/patient outcome and in vivo instability. Polymeric scaffolds have been used separately for tissue regeneration in wound healing and as anticancer drug releasing devices. Bringing these two together in bifunctional scaffolds can provide a tool for postoperative local tumor management by promoting healthy tissue regrowth and to deliver anticancer drugs. Another addition to the versatility of polymeric scaffold is its recently discovered ability to act as 3D cell culture models for in vitro isolation and amplification of cancer cells for personalized drug screening and to recapitulate the tumor microenvironment. This review focuses on the repurposing of 3D polymeric scaffolds for local tumor-wound management and development of in vitro cell culture models.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Ajmal Boodhun
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Melanie Ziman
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Elin Gray
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Archana Bhaw-Luximon
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| |
Collapse
|
36
|
Zarrilli G, Businello G, Dieci MV, Paccagnella S, Carraro V, Cappellesso R, Miglietta F, Griguolo G, Guarneri V, Lo Mele M, Fassan M. The Tumor Microenvironment of Primitive and Metastatic Breast Cancer: Implications for Novel Therapeutic Strategies. Int J Mol Sci 2020; 21:8102. [PMID: 33143050 PMCID: PMC7662409 DOI: 10.3390/ijms21218102] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer evolves thanks to a dense and close interaction with the surrounding tumor microenvironment (TME). Fibroblasts, leukocytes, blood and lymphatic endothelial cells and extracellular matrix are the constituents of this entity, and they synergistically play a pivotal role in all of the stages of breast cancer development, from its onset to its metastatic spread. Moreover, it has been widely demonstrated that variations to the TME can correspond to prognosis variations. Breast cancer not only modulates the transformation of the environment within the mammary gland, but the same process is observed in metastases as well. In this minireview, we describe the features of TME within the primitive breast cancer, throughout its evolution and spread into the main metastatic sites.
Collapse
Affiliation(s)
- Giovanni Zarrilli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (G.B.); (S.P.); (V.C.); (R.C.)
| | - Gianluca Businello
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (G.B.); (S.P.); (V.C.); (R.C.)
| | - Maria Vittoria Dieci
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy; (M.V.D.); (G.G.); (V.G.)
- Department of Surgery, Oncology and Gastroenterology (DISCoG), University of Padua, 35121 Padua, Italy;
| | - Silvia Paccagnella
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (G.B.); (S.P.); (V.C.); (R.C.)
| | - Valentina Carraro
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (G.B.); (S.P.); (V.C.); (R.C.)
| | - Rocco Cappellesso
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (G.B.); (S.P.); (V.C.); (R.C.)
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology (DISCoG), University of Padua, 35121 Padua, Italy;
| | - Gaia Griguolo
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy; (M.V.D.); (G.G.); (V.G.)
- Department of Surgery, Oncology and Gastroenterology (DISCoG), University of Padua, 35121 Padua, Italy;
| | - Valentina Guarneri
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, 35128 Padua, Italy; (M.V.D.); (G.G.); (V.G.)
- Department of Surgery, Oncology and Gastroenterology (DISCoG), University of Padua, 35121 Padua, Italy;
| | - Marcello Lo Mele
- Surgical Pathology Unit, University Hospital of Padua, 35121 Padua, Italy;
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, 35121 Padua, Italy; (G.Z.); (G.B.); (S.P.); (V.C.); (R.C.)
| |
Collapse
|
37
|
Allen R, Ivtchenko E, Thuamsang B, Sangsuwan R, Lewis JS. Polymer-loaded hydrogels serve as depots for lactate and mimic "cold" tumor microenvironments. Biomater Sci 2020; 8:6056-6068. [PMID: 33000781 DOI: 10.1039/d0bm01196g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The burgeoning field of biomaterials for immunotherapy has aided in the understanding of foundational mechanisms of cancer immunology. In particular, implantable biomaterials can be engineered to investigate specific aspects of the tumor microenvironment either singularly or in combination. Of note, the metabolite - lactate, a byproduct of anaerobic glycolysis, is known to reprogram immune cells, resulting in increased tumor survival. An adequate model that can recapitulate intratumoral lactate concentrations does not exist. In this study, we demonstrate that a simple biomaterial platform could be developed as an instructive tool to decipher the effects of lactate in vivo. Briefly, we demonstrate that a peptide hydrogel loaded with granulocyte-macrophage colony stimulating factor and poly-(lactic-co-glycolic acid)/(lactic acid) microparticles can generate the localized lactate concentrations (∼2-22 mM) and cellular makeup of the tumor microenvironment, following subcutaneous implantation in mice. Furthermore, infiltrating immune cells adopt phenotypes similar to those seen in other in vitro and in vivo cancer models, including immunosupressive dendritic cells. This hydrogel system is a framework to interrogate immune cell modulation in cancer-like environments using safe and degradable biomaterials. Moreover, this system can be multifaceted, as incorporation of other cancer tumor environmental factors or chemotherapeutic drugs is facile and could be insightful in developing or improving immunotherapies.
Collapse
Affiliation(s)
- Riley Allen
- Department of Biomedical Engineering, University of California (Davis), Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
38
|
Huayamares SG, Song JY, Huang A, Crowl SR, Groer CE, Forrest ML, Berkland CJ. Constructing a Biomaterial to Simulate Extracellular Drug Transport in Solid Tumors. Macromol Biosci 2020; 20:e2000251. [PMID: 32924274 DOI: 10.1002/mabi.202000251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Indexed: 12/25/2022]
Abstract
Designing an in vitro model of the tumor extracellular microenvironment to screen intratumoral drugs is an active challenge. As recent clinical successes of human intratumoral therapies stimulate research on intratumoral delivery, a need for a 3D tumor model to screen intratumoral therapies arises. When injecting the drug formulation directly into the tumor, the biophysics affecting intratumoral retention must be considered; especially for biologic therapies, which may be dominated by extracellular transport mechanisms. Fibrotic regions in solid tumors are typically rich in collagen I fibers. Using shear rheology, head and neck tumors with higher collagen density show a higher stiffness. Similarly, the stiffness of the hyaluronic acid (HA) hydrogel models is increased by adding collagen fibers to model the bulk biomechanical properties of solid tumors. HA hydrogels are then used as intratumoral injection site simulators to model in vitro the retention of glatiramer acetate (GA) and polyethylene glycol (PEG) administered intratumorally. Both compounds are also injected in murine tumors and retention is studied ex vivo for comparison. Retention of GA in the hydrogels is significantly longer than PEG, analogous to the solid tumors, suggesting the utility of HA hydrogels with collagen I fibers for screening extracellular drug transport after intratumoral administration.
Collapse
Affiliation(s)
| | - Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Samuel R Crowl
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | | | - M Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66045, USA.,HylaPharm, LLC, Lawrence, KS, 66045, USA
| | - Cory J Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, 66045, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66045, USA.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
39
|
R A V, Kumari S, Poddar P, Dhara D, Maiti S. Poly(N-isopropylacrylamide)-Based Polymers as Additive for Rapid Generation of Spheroid via Hanging Drop Method. Macromol Biosci 2020; 20:e2000180. [PMID: 32794360 DOI: 10.1002/mabi.202000180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 11/09/2022]
Abstract
Multicellular tumor spheroid (MCTS) mimics microenvironment for tumor formation and provides predictive insight for in vivo tests. The hanging drop (HD) method of spheroid generation is cost effective, but it is limited by a long time duration for spheroid development and a low rate of formation of larger spheroids. Toward addressing those limitations, thermoresponsive copolymers with poly(N-isopropylacrylamide) (p(NIPA)) backbone are developed, to be used as additives in the MCTS formation via HD method. Upon investigation it is found that in the presence of the polymer, robust and compact spheroids are formed in a short duration of 48 h. Larger spheroids (350-600 µm) can be formed by increasing the number of cells. Spheroids are characterized for their 3D shape and different cellular layers, and drug uptake study is done to prove the efficacy of the spheroids generated in drug screening.
Collapse
Affiliation(s)
- Vignesh R A
- Chemical and Systems Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India
| | - Shalini Kumari
- Chemical and Systems Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India
| | - Puja Poddar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Souvik Maiti
- Chemical and Systems Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
40
|
Cui X, Li J, Hartanto Y, Durham M, Tang J, Zhang H, Hooper G, Lim K, Woodfield T. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Adv Healthc Mater 2020; 9:e1901648. [PMID: 32352649 DOI: 10.1002/adhm.201901648] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
3D bioprinting involves the combination of 3D printing technologies with cells, growth factors and biomaterials, and has been considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). However, despite multiple breakthroughs, it is evident that numerous challenges need to be overcome before 3D bioprinting will eventually become a clinical solution for a variety of TERM applications. To produce a 3D structure that is biologically functional, cell-laden bioinks must be optimized to meet certain key characteristics including rheological properties, physico-mechanical properties, and biofunctionality; a difficult task for a single component bioink especially for extrusion based bioprinting. As such, more recent research has been centred on multicomponent bioinks consisting of a combination of two or more biomaterials to improve printability, shape fidelity and biofunctionality. In this article, multicomponent hydrogel-based bioink systems are systemically reviewed based on the inherent nature of the bioink (natural or synthetic hydrogels), including the most current examples demonstrating properties and advances in application of multicomponent bioinks, specifically for extrusion based 3D bioprinting. This review article will assist researchers in the field in identifying the most suitable bioink based on their requirements, as well as pinpointing current unmet challenges in the field.
Collapse
Affiliation(s)
- Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Jun Li
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Yusak Hartanto
- Department of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Junnan Tang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Hu Zhang
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
41
|
The Role of Pre-Clinical 3-Dimensional Models of Osteosarcoma. Int J Mol Sci 2020; 21:ijms21155499. [PMID: 32752092 PMCID: PMC7432883 DOI: 10.3390/ijms21155499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.
Collapse
|
42
|
Monteiro CF, Santos SC, Custódio CA, Mano JF. Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902398. [PMID: 32274296 PMCID: PMC7141025 DOI: 10.1002/advs.201902398] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/19/2019] [Indexed: 05/04/2023]
Abstract
Fundamental physiologic and pathologic phenomena such as wound healing and cancer metastasis are typically associated with the migration of cells through adjacent extracellular matrix. In recent years, advances in biomimetic materials have supported the progress in 3D cell culture and provided biomedical tools for the development of models to study spheroid invasiveness. Despite this, the exceptional biochemical and biomechanical properties of human-derived materials are poorly explored. Human methacryloyl platelet lysates (PLMA)-based hydrogels are herein proposed as reliable 3D platforms to sustain in vivo-like cell invasion mechanisms. A systematic analysis of spheroid viability, size, and invasiveness is performed in three biomimetic materials: PLMA hydrogels at three different concentrations, poly(ethylene glycol) diacrylate, and Matrigel. Results demonstrate that PLMA hydrogels perfectly support the recapitulation of the tumor invasion behavior of cancer cell lines (MG-63, SaOS-2, and A549) and human bone-marrow mesenchymal stem cell spheroids. The distinct invasiveness ability of each cell type is reflected in the PLMA hydrogels and, furthermore, different mechanical properties produce an altered invasive behavior. The herein presented human PLMA-based hydrogels could represent an opportunity to develop accurate cell invasiveness models and open up new possibilities for humanized and personalized high-throughput screening and validation of anticancer drugs.
Collapse
Affiliation(s)
- Cátia F. Monteiro
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - Sara C. Santos
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - Catarina A. Custódio
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| | - João F. Mano
- Department of ChemistryCICECOUniversity of AveiroCampus Universitário de Santiago3810‐193AveiroPortugal
| |
Collapse
|
43
|
Fathi Maroufi N, Hasegawa K, Vahedian V, Nazari Soltan Ahmad S, Zarebkohan A, Miresmaeili Mazrakhondi SA, Hosseini V, Rahbarghazi R. A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. J Cell Physiol 2020; 235:6377-6392. [DOI: 10.1002/jcp.29616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Student Research CommitteeTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell‐Material Sciences, Institute for Advanced StudyKyoto University Kyoto Japan
| | - Vahid Vahedian
- Department of Medical Laboratory Sciences, Faculty of MedicineIslamic Azad University Sari Iran
- Clinical Laboratory Medicine DepartmentRofeydeh Hospital University of Social Welfare and Rehabilitation Science Tehran Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
44
|
Wang Y, Luan Z, Zhao C, Bai C, Yang K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci 2019; 142:105136. [PMID: 31704343 DOI: 10.1016/j.ejps.2019.105136] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) is a promising therapeutic target for cancer immunotherapy, while TAMs targeting therapy using nano-sized drug delivery system (NDDS) is a great challenge. To overcome these drawbacks, a novel erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle (dextran-grafted-poly (histidine) copolymer) was prepared to target deliver a selective CSF-1R inhibitor: BLZ-945 (shorten as DH@ECm) to TAMs for TAMs depletion. The prepared DH@ECm possessed favorable particle size (~190 nm) preferable immune camouflage and tumor homologies targeting characteristic when it was intravenously administrated into blood system. In tumor acidic microenvironment, DH@ECm possessed pH-responsive characteristic and unique "membrane escape effect" to facilitate recognition and internalization by TAMs via dextran-CD206 receptor specific interaction (about 3.9 fold than free drug), followed by TAMs depletion in vitro. For in vivo studies, DH@ECm could reverse tumor immune-microenvironment with the elevation of CD8+ T cells and possess sufficient tumor immunotherapy (inhibition rate: 64.5%). All the in vitro and in vivo studies demonstrated the therapeutical potential of DH@ECm for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuchi Wang
- Department of Cell Biology and Medical Genetics, School of Medicine, Yanbian University 977 Gongyuan Road, Yanji, Jilin 133002, China; Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China
| | - Zhiyong Luan
- Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China
| | - Chaoyue Zhao
- Changchun Children's Hospital. 1321 Beian Road, Changchun, Jilin 130051, China; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chunhua Bai
- Oncology, Changchun Central Hospital, 1810 Renmin Street, Changchun, Jilin 130121, China
| | - Kangjuan Yang
- Department of Cell Biology and Medical Genetics, School of Medicine, Yanbian University 977 Gongyuan Road, Yanji, Jilin 133002, China.
| |
Collapse
|
45
|
|
46
|
Antunes J, Gaspar VM, Ferreira L, Monteiro M, Henrique R, Jerónimo C, Mano JF. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater 2019; 94:392-409. [PMID: 31200118 DOI: 10.1016/j.actbio.2019.06.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) in vitro tumor spheroids are becoming popular as pre-clinical platforms for testing the performance of existing drugs or for discovery of innovative anti-cancer therapeutics. This focus is correlated with in vitro 3D tumor models ability to mimic the multicellular compact structure and spatial architecture of human solid tumors. However, these microphysiological systems generally lack the pre-existence of tumor-ECM, a critical aspect that can affect the overall therapeutic performance and the decision of advancing candidate drugs to later stages of the pipeline. Aiming to face this drawback and mimic tumors-ECM, herein we rapidly fabricated in-air hyaluronan-methacrylate (HA-MA) and gelatin-methacrylate (GelMA) photocrosslinkable 3D spheroid microgels by using superhydrophobic surfaces. These platforms were used for establishing heterotypic 3D co-culture models of prostate cancer cells (PC-3) and human osteoblasts (hOB) to mimic prostate cancer-to-bone metastasis cellular heterogeneity and the tumor-ECM microenvironment. 3D microgel microtumors morphology, size and cell number were easily controlled via digital droplet generation on polystyrene superhydrophobic surfaces and under solvent-free conditions when compared to microfluidics or electrospray. Co-culture 3D microgels formed by 2.5%HA-MA-5%GelMA and 5%HA-MA-5%GelMA ratios showed the highest calcium deposition after 14 days of culture, evidencing osteoblasts viability and the establishment of functional mineralization in the 3D hydrogel matrix. Cisplatin cytotoxicity evaluation showed that 3D microgels are more resistant to platin chemotherapeutics than single or co-culture 3D multicellular spheroid counterparts. Overall, our findings indicate that solvent-free, in-air produced 3D microgel microenvironments are cost-effective and robust tumor mimicking platforms for in vitro high-throughput screening of therapeutics targeted to prostate-to-bone metastasis microenvironments. STATEMENT OF SIGNIFICANCE: The generation of robust microphysiological systems that recapitulate the complexity of the metastatic prostate-to-bone tumor microenvironment is crucial for pre-clinical evaluation of new therapeutics that can eradicate these secondary tumors. In this study, we employed superhydrophobic (SH) surfaces to rapidly fabricate photocrosslinkable hyaluronan-methacrylate/gelatin-methacrylate 3D spheroid microgels for prostate cancer cells and human osteoblasts co-culture models that simultaneously mimic the cellular and ECM tumor components. The use of SH platforms overcomes the issues of standard in-liquid microgel production technologies by providing a robust control over 3D microgels size/morphology and cell-cell co-encapsulation numbers, while avoiding the use of oil-based microgel droplets generation. Overall, SH surfaces allowed a solvent-free, cost-effective, reproducible and adaptable fabrication of heterotypic 3D spherical microgels for high throughput drug screening.
Collapse
Affiliation(s)
- Jéssica Antunes
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luís Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) & Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
47
|
Millet M, Ben Messaoud R, Luthold C, Bordeleau F. Coupling Microfluidic Platforms, Microfabrication, and Tissue Engineered Scaffolds to Investigate Tumor Cells Mechanobiology. MICROMACHINES 2019; 10:E418. [PMID: 31234497 PMCID: PMC6630383 DOI: 10.3390/mi10060418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment (TME) is composed of dynamic and complex networks composed of matrix substrates, extracellular matrix (ECM), non-malignant cells, and tumor cells. The TME is in constant evolution during the disease progression, most notably through gradual stiffening of the stroma. Within the tumor, increased ECM stiffness drives tumor growth and metastatic events. However, classic in vitro strategies to study the TME in cancer lack the complexity to fully replicate the TME. The quest to understand how the mechanical, geometrical, and biochemical environment of cells impacts their behavior and fate has been a major force driving the recent development of new technologies in cell biology research. Despite rapid advances in this field, many challenges remain in order to bridge the gap between the classical culture dish and the biological reality of actual tissue. Microfabrication coupled with microfluidic approaches aim to engineer the actual complexity of the TME. Moreover, TME bioengineering allows artificial modulations with single or multiple cues to study different phenomena occurring in vivo. Some innovative cutting-edge tools and new microfluidic approaches could have an important impact on the fields of biology and medicine by bringing deeper understanding of the TME, cell behavior, and drug effects.
Collapse
Affiliation(s)
- Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| | - Raoua Ben Messaoud
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| | - Carole Luthold
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), Université Laval Cancer Research Center and Faculty of Medicine, Université Laval, Québec, QC G1R 3S3, Canada.
| |
Collapse
|
48
|
Polyaspartamide based hydrogel with cell recruitment properties for the local administration of hydrophobic anticancer drugs. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Dynamic in vitro models for tumor tissue engineering. Cancer Lett 2019; 449:178-185. [PMID: 30763717 DOI: 10.1016/j.canlet.2019.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
Abstract
Cancer research uses in vitro studies for controllable analysis of tumor behavior and preclinical testing of therapeutics. Shortcomings of basic cell culture systems in recreating in vivo interactions have driven the development of more efficient and biomimetic in vitro environments for cancer research. Assimilation of certain developments in tissue engineering will accelerate and improve the design of these environments. With the continual improvement of the tumor engineering field, the next step is towards macroscopic systems such as scaffold-supported, flow-perfused macroscale tumor bioreactors. Surface modifications of synthetic scaffolds allow for targeted cell adhesion and improved ECM development. Flow perfusion has emerged as means to expose cancerous tissues to critical biomechanical forces for tumor progression while simultaneously improving nutrient and waste transport. Macroscale perfusable systems allow for non-destructive real-time monitoring using biosensors capable of improving understanding of in vitro tumor development at reduced cost and waste. The combination of macroscale perfusable systems, surface-modified synthetic scaffolds, and non-destructive real-time monitoring will provide advanced platforms for in vitro modeling of tumor development, with broad applications in basic tumor research and preclinical drug development.
Collapse
|
50
|
Monteiro CF, Custódio CA, Mano JF. Three-Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cátia F. Monteiro
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - Catarina A. Custódio
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - João F. Mano
- Department of Chemistry, CICECO; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| |
Collapse
|