1
|
Keshari R, Dewani M, Kaur N, Patel GK, Singh SK, Chandra P, Prasad R, Srivastava R. Lipid Nanocarriers as Precision Delivery Systems for Brain Tumors. Bioconjug Chem 2025; 36:347-366. [PMID: 39937652 DOI: 10.1021/acs.bioconjchem.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Brain tumors, particularly glioblastomas, represent the most complicated cancers to treat and manage due to their highly invasive nature and the protective barriers of the brain, including the blood-brain barrier (BBB). The efficacy of currently available treatments, viz., radiotherapy, chemotherapy, and immunotherapy, are frequently limited by major side effects, drug resistance, and restricted drug penetration into the brain. Lipid nanoparticles (LNPs) have emerged as a promising and targeted delivery system for brain tumors. Lipid nanocarriers have gained tremendous attention for brain tumor therapeutics due to multiple drug encapsulation abilities, controlled release, better biocompatibility, and ability to cross the BBB. Herein, a detailed analysis of the design, mechanisms, and therapeutic benefits of LNPs in brain tumor treatment is discussed. Moreover, we also discuss the safety issues and clinical developments of LNPs and their current and future challenges. Further, we also focused on the clinical transformation of LNPs in brain tumor therapy by eliminating side effects and engineering the LNPs to overcome the related biological barriers, which provide personalized, affordable, and low-risk treatment options.
Collapse
Affiliation(s)
- Roshan Keshari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahima Dewani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Navneet Kaur
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Girijesh Kumar Patel
- Cancer and Stem Cell Laboratory, Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India-211004
| | - Sumit Kumar Singh
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Lacconi V, Massimiani M, Antonello G, Gasco P, Bernardini R, Ferrari C, Ippoliti L, La Sala G, Pietroiusti A, Fenoglio I, Riganti C, Campagnolo L. Assessing gut barrier integrity and reproductive performance following pre-mating oral administration of solid-lipid-nanoparticles designed for drug delivery. FRONTIERS IN TOXICOLOGY 2025; 6:1508598. [PMID: 39839550 PMCID: PMC11746049 DOI: 10.3389/ftox.2024.1508598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Solid lipid nanoparticles (SLNs) have gained interest as drug delivery carriers due to their efficient cellular internalization and increased therapeutic effect of the loaded drug, with minimal side effects. Although recently several studies have shown the possibility to administer SLNs during pregnancy to vehicle mRNA to the placenta, data about the effect of premating exposure to SLNs on pregnancy outcome are scant. Considering that assumption of drug-delivering nanocarriers in reproductive age may potentially affect women's reproductive health, the aim of the present study was to evaluate whether repeated oral administration of SLNs to female mice prior to mating would influence key pregnancy outcomes. For this purpose, SLNs melatonin loaded (SLN + mlt) or unloaded were orally administered to CD1 female mice at two different dosages-low (7.5 mg/kg) and high (750 mg/kg) -three times a week for 6 weeks. Females mice were mated and pregnancy was monitored from conception to delivery. All the assessed pregnancy parameters, including time to pregnancy, pregnancy duration, litter size, and the presence of any gross anomalies in the pups, and maternal key biochemical parameters were not significantly affected by SLN administration. Embryonic development was also evaluated and no effects on the number of implantation sites, fetus numbers, incidence of fetal resorptions, and measurements of crown-rump length, as well as fetal and placental weights, were observed in the treated mothers. The impact of SLNs on maternal intestinal barrier integrity and inflammation was assessed both in vivo in mice and in vitro using an intestinal epithelial barrier model by qRT-PCR. Results showed that unloaded SLNs, but not the SLN + mlt, affected intestinal barrier integrity. Although variation in the expression of inflammatory cytokines was recorded, this did not reflect in significant histological alterations and the integrity of the intestinal barrier was maintained. The in vitro model further confirmed the biocompatibility of SLNs, showing that both loaded and unloaded SLNs did not affect the integrity of the simulated intestinal epithelial barrier. In conclusion, these data suggest that administering SLNs, as a drug delivery vehicle, prior to conception does not affect either maternal health or fetal development, posing no risk to future pregnancy.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | | | | | - Roberta Bernardini
- Department of Translational Medicine and Centro Interdipartimentale di Medicina Comparata, Tecniche Alternative ed Acquacoltura (CIMETA), University of Rome “Tor Vergata”, Rome, Italy
| | - Cristiana Ferrari
- Department of Occupational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Ippoliti
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Italy
| | - Antonio Pietroiusti
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Khishvand MA, Yeganeh EM, Zarei M, Soleimani M, Mohammadi M, Mahjub R. Development, Statistical Optimization, and Characterization of Resveratrol-Containing Solid Lipid Nanoparticles (SLNs) and Determination of the Efficacy in Reducing Neurodegenerative Symptoms Related to Alzheimer's Disease: In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7877265. [PMID: 39376256 PMCID: PMC11458308 DOI: 10.1155/2024/7877265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024]
Abstract
Resveratrol (RSV), as a natural polyphenol exhibiting antioxidative properties, is studied in the treatment of neurodegenerative diseases. However, RSV has low oral bioavailability. In this study and in order to overcome the issue, RSV was encapsulated into the solid lipid nanoparticles (SLNs). In this study, RSV-loaded solid lipid nanoparticles (RSV-SLNs) were prepared by the solvent emulsification-evaporation technique, and their physicochemical properties were optimized using Box-Behnken response surface methodology. The morphology of the particles was evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The neuroprotective effects of the nanoparticles were investigated in animal models using the Morris water maze (MWM). Then after, the rats were sacrificed, their brains were collected, and the extent of lipid peroxidase (LPO) as well as the level of reduced glutathione (GSH) were determined in the hippocampus section samples. Finally, the collected brain tissues were histologically studied. The particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized nanoparticles were 104.5 ± 12.3 nm, 0.322 ± 0.11, -3.1 ± 0.15 mV, 72.9 ± 5.31% and 14.6 ± 0.53%, respectively. The microscopic images revealed spherically shaped and nonaggregated nanoparticles. The in vivo studies demonstrated higher efficiency of RSV-SLN in the reduction of escape latency time and improvement in the time spent in the target quadrant compared to free RSV. Moreover, it was demonstrated that RSV-SLN posed a higher potency in the reduction of LPO as well as elevation of the GSH levels in the brain samples. The histological studies revealed a decline in neural degeneration and an improvement in the CA1 pyramidal cell morphology. The obtained data revealed that RSV-SLNs caused more reduction in Alzheimer-related symptoms rather than free RSV.
Collapse
Affiliation(s)
- Mohammad Amin Khishvand
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsan Mehrabani Yeganeh
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of PhysiologySchool of MedicineHamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical BiotechnologySchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Santos JS, Galvão JG, Mendonça MRC, Costa AMB, Silva ARST, Oliveira DS, Santos ADJ, Lira AAM, Scher R, Sales Júnior PA, Pereira VRA, Formiga FR, Nunes RS. Encapsulation of Citrus sinensis essential oil and R-limonene in lipid nanocarriers: A potential strategy for the treatment of leishmaniasis. Int J Pharm 2024; 662:124464. [PMID: 39033939 DOI: 10.1016/j.ijpharm.2024.124464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Leishmaniases, a group of neglected tropical diseases caused by an intracellular parasite of the genus Leishmania, have significant impacts on global health. Current treatment options are limited due to drug resistance, toxicity, and high cost. This study aimed to develop nanostructured lipid carriers (NLCs) for delivering Citrus sinensis essential oil (CSEO) and its main constituent, R-limonene, against leishmaniasis. The influence of surface-modified NLCs using chitosan was also examined. The NLCs were prepared using a warm microemulsion method, and surface modification with chitosan was achieved through electrostatic interaction. These nanocarriers were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy, and dynamic light scattering (DLS). In vitro cytotoxicity was assessed in L929 and RAW 264.7 cells, and leishmanicidal activity was evaluated against promastigote and amastigote forms. The NLCs were spherical, with particle sizes ranging from 97.9 nm to 111.3 nm. Chitosan-coated NLCs had a positive surface charge, with zeta potential values ranging from 45.8 mV to 59.0 mV. Exposure of L929 cells to NLCs resulted in over 70 % cell viability. Conversely, surface modification significantly reduced the viability of promastigotes (93 %) compared to free compounds. Moreover, chitosan-coated NLCs presented a better IC50 against the amastigote forms than uncoated NLCs. Taken together, these findings demonstrate the feasibility of using NLCs to overcome the limitations of current leishmaniasis treatments, warranting further research.
Collapse
Affiliation(s)
- Jeferson S Santos
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil.
| | - Juliana G Galvão
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Marcos R C Mendonça
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Amanda M B Costa
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Audrey R S T Silva
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Daniela S Oliveira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Adriana de J Santos
- Process Engineering Program, University of Tiradentes (UNIT), Aracaju, SE 49032-490, Brazil
| | - Ana Amélia M Lira
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| | - Ricardo Scher
- Departament of Morphology, Federal University of Sergipe, São Cristóovão 49100-000, Sergipe, Brazil
| | | | | | - Fábio Rocha Formiga
- Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), 50670-420 Recife, PE, Brazil; Faculty of Medical Sciences (FCM), University of Pernambuco (UPE), 52171-011 Recife, PE, Brazil
| | - Rogéria S Nunes
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Sergipe, Brazil
| |
Collapse
|
6
|
Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172240. [PMID: 38582114 DOI: 10.1016/j.scitotenv.2024.172240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Lipid nanoparticles (LNPs) are promising materials and human-use approved excipients, with manifold applications in biomedicine. Researchers have tended to focus on improving the pharmacological efficiency and organ targeting of LNPs, while paid relatively less attention to the negative aspects created by their specific physicochemical properties. Here, we discuss the impacts of LNPs' physicochemical properties (size, surface hydrophobicity, surface charge, surface modification and lipid composition) on the adsorption-transportation-distribution-clearance processes and bio-nano interactions. In addition, since there is a lack of review emphasizing on toxicological profiles of LNPs, this review outlined immunogenicity, inflammation, hemolytic toxicity, cytotoxicity and genotoxicity induced by LNPs and the underlying mechanisms, with the aim to understand the properties that underlie the biological effects of these materials. This provides a basic strategy that increased efficacy of medical application with minimized side-effects can be achieved by modulating the physicochemical properties of LNPs. Therefore, addressing the effects of physicochemical properties on toxicity induced by LNPs is critical for understanding their environmental and health risks and will help clear the way for LNPs-based drugs to eventually fulfill their promise as a highly effective therapeutic agents for diverse diseases in clinic.
Collapse
Affiliation(s)
- Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zuyi Fu
- College of Rehabilitation, Captital Medical University, Beijing, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|
8
|
Cholakova D, Denkov N. Polymorphic phase transitions in triglycerides and their mixtures studied by SAXS/WAXS techniques: In bulk and in emulsions. Adv Colloid Interface Sci 2024; 323:103071. [PMID: 38157769 DOI: 10.1016/j.cis.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Triacylglycerols (TAGs) exhibit a monotropic polymorphism, forming three main polymorphic forms upon crystallization: α, β' and β. The distinct physicochemical properties of these polymorphs, such as melting temperature, subcell lattice structure, mass density, etc., significantly impact the appearance, texture, and long-term stability of a wide range products in the food and cosmetics industries. Additionally, TAGs are also of special interest in the field of controlled drug delivery and sustained release in pharmaceuticals, being a key material in the preparation of solid lipid nanoparticles. The present article outlines our current understanding of TAG phase behavior in both bulk and emulsified systems. While our primary focus are investigations involving monoacid TAGs and their mixtures, we also include illustrative examples with natural TAG oils, highlighting the knowledge transfer from simple to intricate systems. Special attention is given to recent discoveries via X-ray scattering techniques. The main factors influencing TAG polymorphism are discussed, revealing that a higher occurrence of structural defects in the TAG structure always accelerates the rate of the α → β polymorphic transformation. Diverse approaches can be employed based on the specific system: incorporating foreign molecules or solid particles into bulk TAGs, reducing drop size in dispersed systems, or using surfactants that remain fluid during TAG particle crystallization, ensuring the necessary molecular mobility for the polymorphic transformation. Furthermore, we showcase the role of TAG polymorphism on a recently discovered phenomenon: the creation of nanoparticles as small as 20 nm from initial coarse emulsions without any mechanical energy input. This analysis underscores how the broader understanding of the TAG polymorphism can be effectively applied to comprehend and control previously unexplored processes of notable practical importance.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria.
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
9
|
Rodrigues da Silva GH, Paes Lemes JB, Geronimo G, de Carvalho FV, Mendonça TC, Malange KF, de Lima FF, Breitkreitz MC, Parada CA, Dalla Costa T, de Paula E. Improved Local Anesthesia at Inflamed Tissue Using the Association of Articaine and Copaiba Oil in Avocado Butter Nanostructured Lipid Carriers. Pharmaceuticals (Basel) 2023; 16:ph16040546. [PMID: 37111303 PMCID: PMC10143371 DOI: 10.3390/ph16040546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Unsuccessful anesthesia often occurs under an inflammatory tissue environment, making dentistry treatment extremely painful and challenging. Articaine (ATC) is a local anesthetic used at high (4%) concentrations. Since nanopharmaceutical formulations may improve the pharmacokinetics and pharmacodynamics of drugs, we encapsulated ATC in nanostructured lipid carriers (NLCs) aiming to increase the anesthetic effect on the inflamed tissue. Moreover, the lipid nanoparticles were prepared with natural lipids (copaiba (Copaifera langsdorffii) oil and avocado (Persia gratissima) butter) that added functional activity to the nanosystem. NLC-CO-A particles (~217 nm) showed an amorphous lipid core structure according to DSC and XDR. In an inflammatory pain model induced by λ-carrageenan in rats, NLC-CO-A improved (30%) the anesthetic efficacy and prolonged anesthesia (3 h) in relation to free ATC. In a PGE2-induced pain model, the natural lipid formulation significantly reduced (~20%) the mechanical pain when compared to synthetic lipid NLC. Opioid receptors were involved in the detected analgesia effect since their blockage resulted in pain restoration. The pharmacokinetic evaluation of the inflamed tissue showed that NLC-CO-A decreased tissue ATC elimination rate (ke) by half and doubled ATC’s half-life. These results present NLC-CO-A as an innovative system to break the impasse of anesthesia failure in inflamed tissue by preventing ATC accelerated systemic removal by the inflammatory process and improving anesthesia by its association with copaiba oil.
Collapse
Affiliation(s)
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Gabriela Geronimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Fabíola Vieira de Carvalho
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Talita Cesarim Mendonça
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Kauê Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Fernando Freitas de Lima
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Márcia Cristina Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas—UNICAMP, Campinas 13083-970, SP, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| | - Teresa Dalla Costa
- Department of Production and Control of Medicines, Faculty of Pharmacy, Federal University of Rio Grande do Sul—UFRGS, Porto Alegre 90610-000, RS, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas 13083-862, SP, Brazil
| |
Collapse
|
10
|
Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Controlling lipid crystallization across multiple length scales by directed shear flow. J Colloid Interface Sci 2023; 630:731-741. [DOI: 10.1016/j.jcis.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
|
12
|
Kazemi M, Shahidi F, Javad Varidi M, Roshanak S. Encapsulation of Lactobacillus acidophilus in solid lipid microparticles via cryomilling. Food Chem 2022; 395:133564. [PMID: 35763922 DOI: 10.1016/j.foodchem.2022.133564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
Abstract
We herein delved into the microencapsulation of Lactobacillus acidophilus (LA) into solid lipid microparticles (SLMs) via the cryomilling technique. For this aim, a frozen lipid mixture containing LA was pulverized at different times (7, 14, 21, 28, and 35 min) using a cryogenic mixer mill to produce probiotic-loaded SLMs. The impacts of different cryomilling durations on the SLMs properties (morphology, particle size, water activity, polymorphism, crystallinity, and thermal behavior) and the viability of LA were evaluated. Microencapsulation improved the viability of LA in simulated gastrointestinal fluids, heat stress, and different concentrations of salt and sucrose. SLMs also were suitable to be incorporated into foods. However, once the cryomilling time was prolonged, the viability of encapsulated LA declined, and particle size grew. The cryomilling technique showed great potential as an alternative approach for encapsulation due to the lack of solvent, short processing time, and simplicity.
Collapse
Affiliation(s)
- Mehran Kazemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Saboorian-Jooybari H, Chen Z. Characteristic curves and relationships for surface charging parameters of nonelectrolyte-immersed aqueous cavities. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Ganassin R, da Silva VCM, Araujo VHS, Tavares GR, da Silva PB, Cáceres-Vélez PR, Porcel JEM, Rodrigues MC, Andreozzi P, Fernandes RP, Fonseca-Santos B, Moya S, Azevedo RB, Chorilli M, Muehlmann LA. Solid lipid nanoparticles loaded with curcumin: development and in vitro toxicity against CT26 cells. Nanomedicine (Lond) 2022; 17:167-179. [PMID: 35048742 DOI: 10.2217/nnm-2021-0229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.
Collapse
Affiliation(s)
- Rayane Ganassin
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Victor Carlos Mello da Silva
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Victor Hugo Sousa Araujo
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Giulia Rosa Tavares
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Paolin Rocio Cáceres-Vélez
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil.,Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain.,School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joaquin E Martínez Porcel
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Patrizia Andreozzi
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain
| | - Richard Perosa Fernandes
- Laboratory of Thermal Analysis Ivo Giolitto, Chemical Institute, São Paulo State University São Paulo, Araraquara -SP, Brazil
| | | | - Sergio Moya
- Soft Matter Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), San Sebastian, Spain
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, Brazil
| | - Luis Alexandre Muehlmann
- Laboratory of Nanoscience & Immunology, Faculty of Ceilandia, University of Brasilia, Brasilia/DF, 72220-900, Brazil.,Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900, Brazil
| |
Collapse
|
15
|
Self-Gelling Solid Lipid Nanoparticle Hydrogel Containing Simvastatin as Suitable Wound Dressing: An Investigative Study. Gels 2022; 8:gels8010058. [PMID: 35049593 PMCID: PMC8774715 DOI: 10.3390/gels8010058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels, an advanced interactive system, is finding use as wound dressings, however, they exhibit restricted mechanical properties, macroscopic nature, and may not manage high exudate wounds or incorporate lipophilic actives. In this study, we developed a self-gelling solid lipid nanoparticle (SLNs) dressing to incorporate simvastatin (SIM), a lipophilic, potential wound-healing agent, clinically limited due to poor solubility (0.03 mg/mL) and absorption. The study explores unconventional and novel application of SIM. The idea was to incorporate a significant amount of SIM in a soluble form and release it slowly over a prolonged time. Further, a suitable polymeric surfactant was selected that assigned a self-gelling property to SLNs (SLN-hydrogel) so as to be used as a novel wound dressing. SLNs assign porosity, elasticity, and occlusivity to the dressing to keep the wound area moist. It will also provide better tolerance and sensory properties to the hydrogel. SIM loaded SLN-hydrogel was prepared employing an industry amenable high-pressure homogenization technique. The unique hydrogel dressing was characterized for particle size, zeta potential, Fourier transform infra-red spectroscopy, powder X-ray diffraction, differential scanning calorimetry, rheology, and texture. Significant loading of SIM (10% w/w) was achieved in spherical nanoparticule hydrogel (0.3 nm (nanoparticles) to 2 µm (gelled-matrix)) that exhibited good spreadability and mechanical properties and slow release up to 72 h. SLN-hydrogel was safe as per the organization for economic co-operation and development (OECD-404) guidelines, with no signs of irritation. Complete healing of excision wound observed in rats within 11 days was 10 times better than marketed povidone-iodine product. The presented work is novel both in terms of classifying a per se SLN-hydrogel and employing SIM. Further, it was established to be a safe, effective, and industry amenable invention.
Collapse
|
16
|
Biocompatibility and Antimicrobial Activity of Nanostructured Lipid Carriers for Topical Applications Are Affected by Type of Oils Used in Their Composition. Pharmaceutics 2021; 13:pharmaceutics13111950. [PMID: 34834365 PMCID: PMC8618763 DOI: 10.3390/pharmaceutics13111950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Nanostructured lipid carriers (NLCs) have gained significant attention as tools for the dermal delivery of therapeutics due to their stability, biocompatibility, and ability to improve drug bioavailability. The use of natural plant oils (NPO) in NLC formulations has numerous benefits for the skin due to their therapeutic potential. This work shows the effect of NLC composition on bioavailability in epidermal cells and antimicrobial activity against Staphylococcus aureus. Sixteen systems containing fixed (sunflower, olive, corn, peanut, coconut, castor, and sweet almond) and essential (eucalyptus) oils, with different solid lipid (SL): liquid lipid (LL) ratios, were engineered. The structural properties, bioavailability, and antimicrobial action of the particles was studied. The choice of NPO influenced the physicochemical stability by changing the diameter of NLC formulations (between 160 nm and 185 nm) and Z-potential (between −46 mV and −61 mV). All of the systems were characterized by concentration-dependent cytocompatibility with human epidermal keratinocytes (HaCaT) and human dermal fibroblasts (HDFn). The SL:LL ratio in some NLC systems impacted cell cytotoxicity differently. Antimicrobial properties were observed in all 16 systems; however, the type of oil and SL:LL ratio affected the activity of the formulations. Two NLC-NPO systems were found to be non-cytotoxic to human cells lines at concentrations that completely inhibited bacterial growth. These results present a strong argument that the use of natural oils in NLC formulations presents a promising tool for the treatment of skin infections.
Collapse
|
17
|
Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv Transl Res 2021; 12:1118-1135. [PMID: 33895936 DOI: 10.1007/s13346-021-00986-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
The present study is concerned with the QbD-based design and development of luliconazole-loaded nanostructured lipid carriers (NLCs) hydrogel for enhanced skin retention and permeation. The NLCs formulation was optimized employing a 3-factor, 3-level Box-Behnken design. The effect of formulation variable lipid content, surfactant concentration, and sonication time was studied on particle size and % EE. The optimized formulation exhibited particle size of 86.480 ± 0.799 nm; 0.213 ± 0.004 PDI, ≥ - 10 mV zeta potential and 85.770 ± 0.503% EE. The in vitro release studies revealed sustained release of NLCs up to 42 h. The designed formulation showed desirable occlusivity, spreadability (0.748 ± 0.160), extrudability (3.130 ± 1.570), and the assay was found to be 99.520 ± 0.890%. The dermatokinetics assessment revealed the Cmax Skin to be ~ 2-fold higher and AUC0-24 to be ~ 3-fold higher in the epidermis and dermis of NLCs loaded gel in contrast with the marketed cream. The Tmax of both the formulations was found to be 6 h in the epidermis and dermis. The obtained results suggested that luliconazole NLCs can serve as a promising formulation to enhance luliconazole's antifungal activity and also in increasing patient compliance by reducing the frequency of application.
Collapse
|
18
|
Hallan SS, Sguizzato M, Esposito E, Cortesi R. Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13040549. [PMID: 33919859 PMCID: PMC8070758 DOI: 10.3390/pharmaceutics13040549] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nano-sized drug transporters have become an efficient approach with considerable commercial values. Nanomedicine is not only limited to drug delivery by means of different administration routes, such as intravenous, oral, transdermal, nasal, pulmonary, and more, but also has applications in a multitude of areas, such as a vaccine, antibacterial, diagnostics and imaging, and gene delivery. This review will focus on lipid nanosystems with a wide range of applications, taking into consideration their composition, properties, and physical parameters. However, designing suitable protocol for the physical evaluation of nanoparticles is still conflicting. The main obstacle is concerning the sensitivity, reproducibility, and reliability of the adopted methodology. Some important techniques are compared and discussed in this report. Particularly, a comparison between different techniques involved in (a) the morphologic characterization, such as Cryo-TEM, SEM, and X-ray; (b) the size measurement, such as dynamic light scattering, sedimentation field flow fractionation, and optical microscopy; and (c) surface properties, namely zeta potential measurement, is described. In addition, an amperometric tool in order to investigate antioxidant activity and the response of nanomaterials towards the skin membrane has been presented.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (S.S.H.); (M.S.); (E.E.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
19
|
Lipid nanoparticles with improved biopharmaceutical attributes for tuberculosis treatment. Int J Pharm 2021; 596:120321. [PMID: 33539994 DOI: 10.1016/j.ijpharm.2021.120321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023]
Abstract
Tuberculosis is a topic of relevance worldwide because of the social and biological factors that triggered the disease and the economic burden on the health-care systems that imply its therapeutic treatment. Challenges to handle these issues include, among others, research on technological breakthroughs modifying the drug regimens to facilitate therapy adherence, avoid mycobacterium drug resistance, and minimize toxic side-effects. Lipid nanoparticles arise as a promising strategy in this respect as deduced from the reported scientific data. They are prepared from biodegradable and biocompatible starting materials and compared to the use of the free drugs, the entrapment of active molecules into the carriers might lead to both dose reduction and controlled delivery. Moreover, the target to the lung, the organ mainly affected by the disease, could be possible if the particle surface is modified. Although conclusive statements cannot be made considering the limited number of available research works, looking into what has been achieved up to now definitively encourages to continue investigations in this regard.
Collapse
|
20
|
Zhou Y, Han Y, Li G, Xiong F, Chu F. Lignin-based fluorescence hollow nanoparticles: Their preparation, characterization, and encapsulation properties for doxorubicin. Int J Biol Macromol 2020; 165:2136-2142. [PMID: 33091475 DOI: 10.1016/j.ijbiomac.2020.10.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022]
Abstract
Lignin shows strong adsorption, biodegradability and non-toxicity, and has opened a research hotspot in the design and manufacture of controllable nanomaterials for drug delivery. However, lignin-based materials, with both diagnostic and therapeutic functions, have yet to be developed. In this work, enzymatically hydrolysable lignin (EHL) was used to prepare blue fluorescent lignin copolymer by grafting 1-Pyrenebutyric acid onto lignin via amidation reaction and then formed self-assembled nanoparticles. The results show that such lignin-based hollow nanoparticles exhibit characteristics of fluorescent functions, size controlled and stable structure within 15 days. For anticancer drug Doxorubicin, the encapsulation efficiency and drug loading reached, respectively, 50% and 10%. This encapsulation had no cytotoxicity, and sustained-release effect on the drug. The aim of this study was to develop the multifunctional bio-nanomaterials for medical applications, through simple, environmentally friendly, low-cost methods.
Collapse
Affiliation(s)
- Yu Zhou
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jianjun East Road, Yancheng 224051, China; Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, Longpan Road, Nanjing 210042, China
| | - Yanming Han
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| | - Gaiyun Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China
| | - Fuquan Xiong
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Shaoshan South Road, Changsha 410004, China
| | - Fuxiang Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| |
Collapse
|
21
|
Araujo VHS, Delello Di Filippo L, Duarte JL, Spósito L, Camargo BAFD, da Silva PB, Chorilli M. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Crit Rev Microbiol 2020; 47:79-90. [PMID: 33156736 DOI: 10.1080/1040841x.2020.1843399] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several types of cutaneous fungal infections can affect the population worldwide, such as dermatophytosis, cutaneous candidiasis, onychomycosis, and sporotrichosis. However, oral treatments have pronounced adverse effects, making the topical route an alternative to avoid this disadvantage. On the other hand, currently available pharmaceutical forms designed for topical application, such as gels and creams, do not demonstrate effective retention of biomolecules in the upper layers of the skin. An interesting approach to optimise biomolecules' activity in the skin is the use of nanosystems for drug delivery, especially solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which in the past decade has shown advantages like increased adhesiveness, great occlusive properties and higher biomolecule deposition in stratum corneum when designed for topical application. Considering the demand for more effective therapeutic alternatives and the promising characteristics of SLN and NLC for topical application, the present study sought to gather studies that investigated the potential of using SLN and NLC for the treatment of cutaneous fungal infections. Studies demonstrated that these nanosystems showed optimisation, mostly, of the effectiveness of biomolecules besides other biopharmaceutical properties, in addition to offering potential occlusion and hydration of the applied region.
Collapse
Affiliation(s)
| | | | | | - Larissa Spósito
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
22
|
Araujo VHS, da Silva PB, Szlachetka IO, da Silva SW, Fonseca-Santos B, Chorilli M, Ganassin R, de Oliveira GRT, da Rocha MCO, Fernandes RP, de Carvalho Vieira Queiroz M, Azevedo RB, Muehlmann LA. The influence of NLC composition on curcumin loading under a physicochemical perspective and in vitro evaluation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Corzo C, Meindl C, Lochmann D, Reyer S, Salar-Behzadi S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Eur J Pharm Biopharm 2020; 152:44-55. [DOI: 10.1016/j.ejpb.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
|
24
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
25
|
Zhong Q, Zhang L. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv Colloid Interface Sci 2019; 273:102033. [PMID: 31614266 DOI: 10.1016/j.cis.2019.102033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
Abstract
Unlike conventional emulsions, solid lipids are used to prepare solid lipid nanoparticles (SLNs) with crystalline structures and nanostructured lipid carriers (NLCs) with imperfect crystals or amorphous structures to encapsulate various bioactive compounds significant to food applications. The solid lipid matrix can stabilize particle structures and control release properties of the encapsulated compounds that may not be possible for emulsions with liquid droplets. In this review, common approaches of preparing SLNs and NLCs are first presented, followed by parameters used to study lipid particles, including dimensional, morphological, charge, thermal, and crystalline properties. The structures of SLNs and NLCs with respect to the release mechanisms of encapsulated compounds are discussed in the context of lipid and emulsifier chemistry and preparation conditions. Lastly, possible applications of SLNs and NLCs in food systems are discussed.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA.
| | - Linhan Zhang
- Department of Food Science, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
26
|
Pink DL, Loruthai O, Ziolek RM, Wasutrasawat P, Terry AE, Lawrence MJ, Lorenz CD. On the Structure of Solid Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903156. [PMID: 31532892 DOI: 10.1002/smll.201903156] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Solid lipid nanoparticles (SLNs) have a crystalline lipid core which is stabilized by interfacial surfactants. SLNs are considered favorable candidates for drug delivery vehicles since their ability to store and release organic molecules can be tailored through the identity of the lipids and surfactants used. When stored, polymorphic transitions in the core of drug-loaded SLNs lead to the premature release of drug molecules. Significant experimental studies have been conducted with the aim of investigating the physicochemical properties of SLNs, however, no molecular scale investigations have been reported on the behaviors that drive SLN formation and their polymorphic transitions. A combination of small angle neutron scattering and all-atom molecular dynamics simulations is therefore used to yield a detailed atomistic description of the internal structure of an SLN comprising triglyceride, tripalmitin, and the nonionic surfactant, Brij O10 (C18:1 E10 ). The molecular scale mechanisms by which the surfactants stabilize the crystalline structure of the SLN lipid core are uncovered. By comparing these results to simulated liquid and solid aggregates of tripalmitin lipids, how the morphology of the lipids vary between these systems is demonstrated providing further insight into the mechanisms that control drug encapsulation and release from SLNs.
Collapse
Affiliation(s)
- Demi L Pink
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Orathai Loruthai
- Pharmaceutical Biophysics Group, Institute of Pharmaceutical Science, King's College London, London, SW1 9NH, UK
| | - Robert M Ziolek
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Prawarisa Wasutrasawat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ann E Terry
- CoSAXS Beamline, MAX IV Laboratory, Lund University, SE-221 00, Lund, Sweden
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
27
|
Sun R, Xia Q. Nanostructured lipid carriers incorporated in alginate hydrogel: Enhanced stability and modified behavior in gastrointestinal tract. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Release mechanism of lipid nanoparticles immobilized within alginate beads influenced by nanoparticle size and alginate concentration. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04538-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Polonini HC, Ferreira AO, Brandão MAF, Raposo NRB. Topical monomethylsilanetriol can deliver silicon to the viable skin. Int J Cosmet Sci 2019; 41:405-409. [PMID: 31230363 DOI: 10.1111/ics.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Organic silicon has been linked to positive effects on the skin rejuvenation, mainly by the oral route. Thus, the main objective of the present study was to assess whether monomethylsilanetriol (MMST, a source of organic silicon) can deliver silicon to the epidermis and dermis, when applied topically in a cream. Once the hypothesis was confirmed, the present study also evaluated whether the product was toxic to keratinocytes; additionally, its possible antioxidant activity was assessed. METHODS The ex vivo skin permeation profile was determined using human skin in Franz-cells equipment; cytotoxicity was assessed using HaCaT keratinocytes. Antioxidant capacity was determined as scavenging activity, measured according to the 1,1-diphenyl-2-picrylhydrazil free radical method. RESULTS The permeation percentage was almost 60% of the applied MMST, with a large quantity of drug found in the viable epidermis and dermis. The cell viability assay showed no significant difference in the percentage of viable keratinocytes among the treated groups at the doses used. In terms of antioxidant activity, the IC50 value obtained was 2400 μg mL-1 . Low antioxidant activity, negligible toxicity for keratinocytes and a significant percentage of permeation were observed. CONCLUSION We provide evidence that MMST applied topically can deliver silicon to the skin in biorelevant levels for cosmetic purposes.
Collapse
Affiliation(s)
- H C Polonini
- BF-Fox Technologies, 36120-000, Matias Barbosa, Minas Gerais, Brazil.,Ortofarma Laboratory, 36120-000, Matias Barbosa, Minas Gerais, Brazil.,Faculdade de Ciências Médicas e da Saúde de Juiz de Fora (Suprema), 36033-003, Juiz de Fora, Minas Gerais, Brazil
| | - A O Ferreira
- BF-Fox Technologies, 36120-000, Matias Barbosa, Minas Gerais, Brazil.,Ortofarma Laboratory, 36120-000, Matias Barbosa, Minas Gerais, Brazil.,Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS), Universidade Federal de Juiz de Fora (UFJF), 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - M A F Brandão
- BF-Fox Technologies, 36120-000, Matias Barbosa, Minas Gerais, Brazil.,Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS), Universidade Federal de Juiz de Fora (UFJF), 36036-900, Juiz de Fora, Minas Gerais, Brazil
| | - N R B Raposo
- BF-Fox Technologies, 36120-000, Matias Barbosa, Minas Gerais, Brazil.,Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS), Universidade Federal de Juiz de Fora (UFJF), 36036-900, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
30
|
Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. Eur J Pharm Biopharm 2019; 139:153-160. [DOI: 10.1016/j.ejpb.2019.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
|
31
|
Dumont C, Bourgeois S, Fessi H, Dugas PY, Jannin V. In-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int J Pharm 2019; 565:409-418. [PMID: 31100381 DOI: 10.1016/j.ijpharm.2019.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022]
Abstract
Peptides are rarely orally administrated due to rapid degradation in the gastrointestinal tract and low absorption at the epithelial border. The objective of this study was to encapsulate a model water-soluble peptide in biodegradable and biocompatible solid lipid-based nanoparticles, i.e. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in order to protect it from metabolic degradation. Leuprolide (LEU) and a LEU-docusate Hydrophobic Ion Pair (HIP) were encapsulated in SLN and NLC by High Pressure Homogenization. The particles were characterized regarding their Encapsulation Efficiency (EE), size, morphology, peptide release in FaSSIF-V2, and protective effect towards proteases. Nanoparticles of 120 nm with platelet structures were obtained. Formation of HIP led to a significant increase in LEU EE. Particle size was moderately affected by the presence of simulated fluids. Nonetheless, an important burst release was observed upon dispersion in FaSSIF-V2. NLC were able to improve LEU-HIP resistance to enzymatic degradation induced by trypsin but presented no advantages in presence of α-chymotrypsin. SLN provided no protection regarding both proteases. Despite an increased amount of encapsulated peptide in solid lipid-based nanoparticles following HIP formation, the important specific surface area linked to their platelet structures resulted in an important peptide release upon dispersion in FaSSIF-V2 and limited protection towards enzymatic degradation.
Collapse
Affiliation(s)
- Camille Dumont
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, C2P2 UMR5265, 43 Bd du 11 Nov. 1918, Villeurbanne, France
| | - Vincent Jannin
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France.
| |
Collapse
|
32
|
Salvia-Trujillo L, Verkempinck S, Rijal SK, Van Loey A, Grauwet T, Hendrickx M. Lipid nanoparticles with fats or oils containing β-carotene: Storage stability and in vitro digestibility kinetics. Food Chem 2019; 278:396-405. [DOI: 10.1016/j.foodchem.2018.11.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/28/2023]
|
33
|
Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm 2018; 133:285-308. [DOI: 10.1016/j.ejpb.2018.10.017] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
|
34
|
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15:771-785. [DOI: 10.1080/17425247.2018.1504018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
35
|
Osman N, Kaneko K, Carini V, Saleem I. Carriers for the targeted delivery of aerosolized macromolecules for pulmonary pathologies. Expert Opin Drug Deliv 2018; 15:821-834. [PMID: 30021074 PMCID: PMC6110405 DOI: 10.1080/17425247.2018.1502267] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Macromolecules with unique effects and potency are increasingly being considered for application in lung pathologies. Numerous delivery strategies for these macromolecules through the lung have been investigated to improve the targeting and overall efficacy. AREAS COVERED Targeting approaches from delivery devices, formulation strategies and specific targets are discussed. EXPERT OPINION Although macromolecules are a heterogeneous group of molecules, a number of strategies have been investigated at the macro, micro, and nanoscopic scale for the delivery of macromolecules to specific sites and cells of lung tissues. Targeted approaches are already in use at the macroscopic scale through inhalation devices and formulations, but targeting strategies at the micro and nanoscopic scale are still in the laboratory stage. The combination of controlling lung deposition and targeting after deposition, through a combination of targeting strategies could be the future direction for the treatment of lung pathologies through the pulmonary route.
Collapse
Affiliation(s)
- Nashwa Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Valeria Carini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
36
|
Rios AC, Vila MM, Lima R, Del Fiol FS, Tubino M, Teixeira JA, Balcão VM. Structural and functional stabilization of bacteriophage particles within the aqueous core of a W/O/W multiple emulsion: A potential biotherapeutic system for the inhalational treatment of bacterial pneumonia. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Soldati PP, Polonini HC, Paes CQ, Restrepob JA, Creczynksi-Pasa TB, Chaves MG, Brandão MA, Pittella F, Raposo NR. Controlled release of resveratrol from lipid nanoparticles improves antioxidant effect. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ifacol.2018.11.600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Investigation of the influence of mean droplet size and shear rate on crystallization behavior of hexadecane-in-water dispersions. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Optimised NLC: a nanotechnological approach to improve the anaesthetic effect of bupivacaine. Int J Pharm 2017; 529:253-263. [PMID: 28655546 DOI: 10.1016/j.ijpharm.2017.06.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/06/2017] [Accepted: 06/16/2017] [Indexed: 11/21/2022]
Abstract
The short time of action and systemic toxicity of local anaesthetics limit their clinical application. Bupivacaine is the most frequently used local anaesthetic in surgical procedures worldwide. The discovery that its S(-) enantiomeric form is less toxic than the R(+) form led to the introduction of products with enantiomeric excess (S75:R25 bupivacaine) in the market. Nevertheless, the time of action of bupivacaine is still short; to overcome that, bupivacaine S75:R25 (BVCS75) was encapsulated in nanostructured lipid carriers (NLC). In this work, we present the development of the formulation using chemometric tools of experimental design to study the formulation factors and Raman mapping associated with Classical Least Squares (CLS) to study the miscibility of the solid and the liquid lipids. The selected formulation of the nanostructured lipid carrier containing bupivacaine S75:R25 (NLCBVC) was observed to be stable for 12 months under room conditions regarding particle size, polydispersion, Zeta potential and encapsulation efficiency. The characterisation by DSC, XDR and TEM confirmed the encapsulation of BVCS75 in the lipid matrix, with no changes in the structure of the nanoparticles. The in vivo analgesic effect elicited by NLCBVC was twice that of free BVCS75. Besides improving the time of action, no statistical difference in the blockage of the sciatic nerve of rats was found between 0.125% NLCBVC and 0.5% free BVCS75. Therefore, the formulation allows a reduction in the required anaesthesia dose, decreasing the systemic toxicity of bupivacaine, and opening up new possibilities for different clinical applications.
Collapse
|
40
|
Oehlke K, Behsnilian D, Mayer-Miebach E, Weidler PG, Greiner R. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity. PLoS One 2017; 12:e0171662. [PMID: 28192494 PMCID: PMC5305235 DOI: 10.1371/journal.pone.0171662] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
Ferulic acid (FA) and tocopherol (Toc) loaded solid lipid nanoparticles (SLN) were prepared by a hot homogenisation method. The particle size distribution, zeta potential and melting behaviour of the SLN as well as the stability, encapsulation efficiency and radical scavenging activity of FA and Toc in the SLN were analysed. The different formulations containing up to 2.8 mg g−1 of FA or Toc were stable during at least 15 weeks of storage at room temperature. Despite partial degradation and / or release of FA and Toc during storage, significant radical scavenging activity was maintained. DSC measurements and radical scavenging tests after different time periods revealed that the re-structuring of the lipid matrix was connected to the enhanced antioxidant activity of Toc but did not affect the activity of FA.
Collapse
Affiliation(s)
- Kathleen Oehlke
- Institute for Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
- * E-mail:
| | - Diana Behsnilian
- Institute for Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Esther Mayer-Miebach
- Institute for Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| | - Peter G. Weidler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Division of oxidic and organic interfaces Hermann-von-Helmoltz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Greiner
- Institute for Food Technology and Bioprocess Engineering, Max Rubner-Institut, Karlsruhe, Germany
| |
Collapse
|
41
|
Ribeiro LNM, Franz-Montan M, Breitkreitz MC, Alcântara ACS, Castro SR, Guilherme VA, Barbosa RM, de Paula E. Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur J Pharm Sci 2016; 93:192-202. [PMID: 27543066 DOI: 10.1016/j.ejps.2016.08.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 02/03/2023]
Abstract
In dental practice, local anesthesia causes pain, fear, and stress, and is frequently the reason that patients abandon treatment. Topical anesthetics are applied in order to minimize the discomfort caused by needle insertion and injection, and to reduce the symptoms of superficial trauma at the oral mucosa, but there are still no efficient commercially available formulations. Factorial design is a multivariate data analysis procedure that can be used to optimize the manufacturing processes of lipid nanocarriers, providing valuable information and minimizing development time. This work describes the use of factorial design to optimize a process for the preparation of nanostructured lipid carriers (NLC) based on cetyl palmitate and capric/caprylic triglycerides as structural lipids and Pluronic 68 as the colloidal stabilizer, for delivery of the local anesthetics lidocaine and prilocaine (both at 2.5%). The factors selected were the excipient concentrations, and three different responses were followed: particle size, polydispersity index and zeta potential. The encapsulation efficiency of the most effective formulations (NLC 2, 4, and 6) was evaluated by the ultrafiltration/centrifugation method. The formulations that showed the highest levels of encapsulation were tested using in vitro release kinetics experiments with Franz diffusion cells. The NLC6 formulation exhibited the best sustained release profile, with 59% LDC and 66% PLC released after 20h. This formulation was then characterized using different techniques (IR-ATR, DSC, DRX, TEM, and NTA) to obtain information about its molecular organization and its physicochemical stability, followed during 14months of storage at 25°C. This thorough pre-formulation study represents an important advance towards the development of an efficient pre-anesthetic for use in dentistry.
Collapse
Affiliation(s)
- Lígia N M Ribeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Michelle Franz-Montan
- Department of Physiological Sciences, Dental School, UNICAMP, Piracicaba, São Paulo, Brazil
| | - Márcia C Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, UNICAMP, Campinas, São Paulo, Brazil
| | - Ana C S Alcântara
- Department of Chemistry, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Simone R Castro
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Viviane A Guilherme
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Raquel M Barbosa
- School of Biomedical Sciences at Guy's and St Thomas' Hospitals, Institute of Pharmaceutical Science, King's College London, United Kingdom
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Crystallization in Emulsions: A Thermo-Optical Method to Determine Single Crystallization Events in Droplet Clusters. Processes (Basel) 2016. [DOI: 10.3390/pr4030025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Schmiele M, Busch S, Morhenn H, Schindler T, Schmutzler T, Schweins R, Lindner P, Boesecke P, Westermann M, Steiniger F, Funari SS, Unruh T. Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part I: Emulsions. J Phys Chem B 2016; 120:5505-12. [DOI: 10.1021/acs.jpcb.6b02519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Schmiele
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - S. Busch
- German
Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz
Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr.
1, 85747 Garching, Germany
| | - H. Morhenn
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85747 Garching, Germany
| | - T. Schindler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - T. Schmutzler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - R. Schweins
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Lindner
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Boesecke
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38042 Grenoble CEDEX 9, France
| | - M. Westermann
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - F. Steiniger
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | | | - T. Unruh
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
44
|
Schmiele M, Busch S, Morhenn H, Schindler T, Schmutzler T, Schweins R, Lindner P, Boesecke P, Westermann M, Steiniger F, Funari SS, Unruh T. Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part II: Suspensions. J Phys Chem B 2016; 120:5513-26. [DOI: 10.1021/acs.jpcb.6b02520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Schmiele
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - S. Busch
- German
Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz
Zentrum (MLZ), Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstr.
1, 85747 Garching, Germany
| | - H. Morhenn
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85747 Garching, Germany
| | - T. Schindler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - T. Schmutzler
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| | - R. Schweins
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Lindner
- DS/LSS, Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS20156, 38042 Grenoble CEDEX 9, France
| | - P. Boesecke
- European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38042 Grenoble CEDEX 9, France
| | - M. Westermann
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - F. Steiniger
- Center for Electron Microscopy of the Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | | | - T. Unruh
- Professur
für Nanomaterialcharakterisierung (Streumethoden), Friedrich−Alexander−Universität Erlangen−Nürnberg, Staudtstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
45
|
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:143-61. [DOI: 10.1016/j.nano.2015.09.004] [Citation(s) in RCA: 388] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/25/2022]
|
46
|
Rassu G, Cossu M, Langasco R, Carta A, Cavalli R, Giunchedi P, Gavini E. Propolis as lipid bioactive nano-carrier for topical nasal drug delivery. Colloids Surf B Biointerfaces 2015; 136:908-17. [DOI: 10.1016/j.colsurfb.2015.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 01/17/2023]
|
47
|
Lauterbach A, Müller-Goymann CC. Design of lipid microparticle dispersions based on the physicochemical properties of the lipid and aqueous phase. Int J Pharm 2015; 494:445-52. [DOI: 10.1016/j.ijpharm.2015.08.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022]
|
48
|
|
49
|
McClements J, McClements DJ. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles. Crit Rev Food Sci Nutr 2015; 56:1334-62. [DOI: 10.1080/10408398.2014.970267] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
de Oliveira JL, Campos EVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF. Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:422-32. [PMID: 25537071 DOI: 10.1021/jf5059045] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Solid lipid nanoparticles (SLN) containing the herbicides atrazine and simazine were prepared and characterized, and in vitro evaluation was made of the release kinetics, herbicidal activity, and cytotoxicity. The stability of the nanoparticles was investigated over a period of 120 days, via analyses of particle size, ζ potential, polydispersion, pH, and encapsulation efficiency. SLN showed good physicochemical stability and high encapsulation efficiencies. Release kinetics tests showed that use of SLN modified the release profiles of the herbicides in water. Herbicidal activity assays performed with pre- and postemergence treatment of the target species Raphanus raphanistrum showed the effectiveness of the formulations of nanoparticles containing herbicides. Assays with nontarget organisms (Zea mays) showed that the formulations did not affect plant growth. The results of cytotoxicity assays indicated that the presence of SLN acted to reduce the toxicity of the herbicides. The new nanoparticle formulations enable the use of smaller quantities of herbicide and therefore offer a more environmentally friendly method of controlling weeds in agriculture.
Collapse
|