1
|
Boix-Montesinos P, Medel M, Malfanti A, Đorđević S, Masiá E, Charbonnier D, Carrascosa-Marco P, Armiñán A, Vicent MJ. Rational design of a poly-L-glutamic acid-based combination conjugate for hormone-responsive breast cancer treatment. J Control Release 2024; 375:193-208. [PMID: 39242032 DOI: 10.1016/j.jconrel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer represents the most prevalent tumor type worldwide, with hormone-responsive breast cancer the most common subtype. Despite the effectiveness of endocrine therapy, advanced disease forms represent an unmet clinical need. While drug combination therapies remain promising, differences in pharmacokinetic profiles result in suboptimal ratios of free drugs reaching tumors. We identified a synergistic combination of bisdemethoxycurcumin and exemestane through drug screening and rationally designed star-shaped poly-L-glutamic acid-based combination conjugates carrying these drugs conjugated through pH-responsive linkers for hormone-responsive breast cancer treatment. We synthesized/characterized single and combination conjugates with synergistic drug ratios/loadings. Physicochemical characterization/drug release kinetics studies suggested that lower drug loading prompted a less compact conjugate conformation that supported optimal release. Screening in monolayer and spheroid breast cancer cell cultures revealed that combination conjugates possessed enhanced cytotoxicity/synergism compared to physical mixtures of single-drug conjugates/free drugs; moreover, a combination conjugate with the lowest drug loading outperformed remaining conjugates. This candidate inhibited proliferation-associated signaling, reduced inflammatory chemokine/exosome levels, and promoted autophagy in spheroids; furthermore, it outperformed a physical mixture of single-drug conjugates/free drugs regarding cytotoxicity in patient-derived breast cancer organoids. Our findings highlight the importance of rational design and advanced in vitro models for the selection of polypeptide-based combination conjugates.
Collapse
Affiliation(s)
- Paz Boix-Montesinos
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Medel
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Alessio Malfanti
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Snežana Đorđević
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain
| | - Esther Masiá
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - David Charbonnier
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), IISCIII and CIEMAT, Madrid, Spain
| | - Paula Carrascosa-Marco
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain.
| | - María J Vicent
- Polymer Therapeutics Lab., Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Centro de Investigación Biomédica en Red en Cancer, (CIBERONC), Instituto de Salud Carlos III, Spain; Screening Platform, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
2
|
Satange R, Chang CC, Li L, Lin SH, Neidle S, Hou MH. Synergistic binding of actinomycin D and echinomycin to DNA mismatch sites and their combined anti-tumour effects. Nucleic Acids Res 2023; 51:3540-3555. [PMID: 36919604 PMCID: PMC10164580 DOI: 10.1093/nar/gkad156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung402, Taiwan
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung402, Taiwan
| | - Chih-Chun Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung402, Taiwan
| | - Long‐Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung402, Taiwan
| | - Sheng-Hao Lin
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung402, Taiwan
- Division of Chest Medicine, Changhua Christian Hospital, Changhua City, Taiwan
- Departement of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung402, Taiwan
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung402, Taiwan
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung402, Taiwan
| |
Collapse
|
3
|
Ashrafichoobdar E, Perez T, Ayalew L, Gorbanwand V, Monroy J, Slowinska K. Hybrid peptides as platform for synchronized combination therapy. Colloids Surf B Biointerfaces 2023; 226:113326. [PMID: 37116378 DOI: 10.1016/j.colsurfb.2023.113326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Combination therapy, where two or more therapeutic agents are combined to target different cellular pathways, is an effective tool in cancer treatment but often difficult to execute. Here we present the collagen peptide-based platform that allows for synchronous and colocalized cellular delivery of three different agents. The peptide is a hybrid between collagen and cell penetrating peptide (CPP) that assembles into a heterotrimer helix and forms fully organic, high aspect ratio nanoparticles. The validity of the approach was tested with three chemically different agents (Paclitaxel, Doxorubicin, and 5-Fluorouracil; a combination used in clinical treatment of (ER)-positive and (PR)-positive breast cancer) conjugated to N-terminus of the peptide. The design of this peptide-based drug delivery system provides several advantages: it avoids drug loading problems; removes the need for orthogonal synthesis; and allows for colocalized delivery of up to three drugs (which leads to the same biodistribution for each drug). In addition, hybrid collagen/CPP peptides are known to enhance cellular uptake and improve solubility of drugs. The synergistic effect, in terms of enhanced efficacy, of the Paclitaxel-Doxorubicin-5-Fluorouracil combination was also calculated. We envision self-assembling peptides as a platform for drug codelivery that can be expanded into a library of personalized combinations that may also include other functionalities like targeting or imaging.
Collapse
Affiliation(s)
- Elahe Ashrafichoobdar
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States
| | - Tanner Perez
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States
| | - Luladey Ayalew
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States
| | - Venus Gorbanwand
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States
| | - Joel Monroy
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States
| | - Katarzyna Slowinska
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, United States.
| |
Collapse
|
4
|
Abbasi YF, Bera H, Cun D, Yang M. Recent advances in pH/enzyme-responsive polysaccharide-small-molecule drug conjugates as nanotherapeutics. Carbohydr Polym 2023; 312:120797. [PMID: 37059536 DOI: 10.1016/j.carbpol.2023.120797] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Now-a-days, the polysaccharides are extensively employed for the delivery of small-molecule drugs ascribed to their excellent biocompatibility, biodegradability and modifiability. An array of drug molecules is often chemically conjugated with different polysaccharides to augment their bio-performances. As compared to their therapeutic precursors, these conjugates could typically demonstrate an improved intrinsic solubility, stability, bioavailability and pharmacokinetic profiles of the drugs. In current years, various stimuli-responsive particularly pH and enzyme-sensitive linkers or pendants are also exploited to integrate the drug molecules into the polysaccharide backbone. The resulting conjugates could experience a rapid molecular conformational change upon exposure to the microenvironmental pH and enzyme changes of the diseased states, triggering the release of the bioactive cargos at the targeted sites and eventually minimize the systemic side effects. Herein, the recent advances in pH and enzyme -responsive polysaccharide-drug conjugates and their therapeutic benefits are systematically reviewed, following a brief description on the conjugation chemistry of the polysaccharides and drug molecules. The challenges and future perspectives of these conjugates are also precisely discussed.
Collapse
|
5
|
Picos-Corrales LA, Licea-Claverie A, Sarmiento-Sánchez JI, Ruelas-Leyva JP, Osuna-Martínez U, García-Carrasco M. Methods of nanoencapsulation of phytochemicals using organic platforms. PHYTOCHEMICAL NANODELIVERY SYSTEMS AS POTENTIAL BIOPHARMACEUTICALS 2023:123-184. [DOI: 10.1016/b978-0-323-90390-5.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
7
|
Ma Z, Ji T, Ji G, Niu Q, Han W. Facile construction of dual-drug loaded nanoparticles for improvement synergistic chemotherapy in prostate cancer. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhiqiang Ma
- Department of Urology, Shijiazhuang Third People's Hospital, Shijiazhuang, China
| | - Tuo Ji
- Department of Medicine, Sishui County Hospital of Traditional Chinese Medicine, Jining, China
| | - Guanghou Ji
- Department of Clinical Laboratory, Sishui People's Hospital, Jining, China
| | - Qingqing Niu
- Department of Clinical Laboratory, Sishui People's Hospital, Jining, China
| | - Weiwei Han
- Medical Laboratory, Qingdao Huangdao District Central Hospital, Qingdao, China
| |
Collapse
|
8
|
Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nanomedicines have the potential to provide advanced therapeutic strategies in combating tumors. Polymer-prodrug-based nanomedicines are particularly attractive in cancer therapies owing to the maximum drug loading, prolonged blood circulation, and reduced premature leakage and side effects in comparison with conventional nanomaterials. However, the difficulty in precisely tuning the composition and drug loading of polymer-drug conjugates leads to batch-to-batch variations of the prodrugs, thus significantly restricting their clinical translation. Polyprodrug nanomedicines inherit the numerous intrinsic advantages of polymer-drug conjugates and exhibit well-controlled composition and drug loading via direct polymerization of therapeutic monomers, representing a promising nanomedicine for clinical tumor therapies. In this review, recent advances in the development of polyprodrug nanomedicines are summarized for tumor elimination. Various types of polyprodrug nanomedicines and the corresponding properties are first summarized. The unique advantages of polyprodrug nanomedicines and their key roles in various tumor therapies are further highlighted. Finally, current challenges and the perspectives on future research of polyprodrug nanomedicines are discussed.
Collapse
Affiliation(s)
- Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Guocan Yu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
9
|
Aghajanzadeh M, Zamani M, Rajabi Kouchi F, Eixenberger J, Shirini D, Estrada D, Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14020322. [PMID: 35214054 PMCID: PMC8880656 DOI: 10.3390/pharmaceutics14020322] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Mozhgan Aghajanzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Mostafa Zamani
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Fereshteh Rajabi Kouchi
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
| | - Josh Eixenberger
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
- Correspondence: (J.E.); or (F.S.)
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
- Correspondence: (J.E.); or (F.S.)
| |
Collapse
|
10
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
11
|
Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021; 57:13662-13677. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule drugs, including most chemotherapies, are rapidly degraded and/or eliminated from the body, which is why high doses of these drugs are necessary, potentially producing toxic effects. Several types of nanoparticles loaded with anti-cancer drugs have been designed to overcome the disadvantages of conventional therapies. Modified nanoparticles can circulate for a long time, thus improving the solubility and biodistribution of drugs. Furthermore, they also allow the controlled release of the payload once its target tissue has been reached. These mechanisms can reduce the exposure of healthy tissues to chemotherapeutics, since the drugs are only released in the presence of specific tumour stimuli. Overall, these properties can improve the effectiveness of treatments while reducing undesirable side effects. In this article, we review the recent advances in stimuli-responsive albumin, gold and magnetic nanostructures for controlled anti-cancer drug delivery. These nanostructures were designed to release drugs in response to different internal and external stimuli of the cellular environment, including pH, redox, light and magnetic fields. We also describe various examples of applications of these nanomaterials. Overall, we shed light on the properties, potential clinical translation and limitations of stimuli-responsive nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ana Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ciro Rodriguez Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain. .,Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
12
|
Xu J, Ma M, Mukerabigwi JF, Luo S, Zhang Y, Cao Y, Ning L. The effect of spacers in dual drug-polymer conjugates toward combination therapeutic efficacy. Sci Rep 2021; 11:22116. [PMID: 34764340 PMCID: PMC8586145 DOI: 10.1038/s41598-021-01550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, a great effort has been made to perfect the therapeutic effect of solid tumor, from single-agent therapy to combined therapy and many other polymer-drug conjugations with dual or more anticancer agents due to their promising synergistic effect and higher drug level accumulation towards tumor tissues. Different polymer-drug spacers present diverse therapeutic efficacy, therefore, finding an appropriate spacer is desirable. In this study, dual drugs that are doxorubicin (DOX) and mitomycin C (MMC) were conjugated onto a polymer carrier (xyloglucan) via various peptide or amide bonds, and a series of polymers drug conjugates were synthesized with different spacers and their effect on tumor treatment efficacy was studied both in vitro and in vivo. The result shows that the synergistic effect is better when using different linker to conjugate different drugs rather than using the same spacer to conjugate different drugs on the carrier. Particularly, the finding of this works suggested that, using peptide bond for MMC and amide bond for DOX to conjugate dual drugs onto single XG carrier could improve therapeutic effect and synergy effect. Therefore, in polymer-pharmaceutical formulations, the use of different spacers to optimize the design of existing drugs to enhance therapeutic effects is a promising strategy.
Collapse
Affiliation(s)
- Juan Xu
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China
| | - Mengdi Ma
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jean Felix Mukerabigwi
- Department of Chemistry, College of Science and Technology, University of Rwanda, P.O Box: 3900, Kigali, Rwanda
| | - Shiying Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yuannian Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| | - Lifeng Ning
- National Research Institute for Family Planning, Beijing, 100081, People's Republic of China.
| |
Collapse
|
13
|
Hang NTN, Si NT, Nguyen MT, Nhat PV. Adsorption/Desorption Behaviors and SERS Chemical Enhancement of 6-Mercaptopurine on a Nanostructured Gold Surface: The Au 20 Cluster Model. Molecules 2021; 26:5422. [PMID: 34500855 PMCID: PMC8434346 DOI: 10.3390/molecules26175422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/24/2023] Open
Abstract
Computational approaches are employed to elucidate the binding mechanism and the SERS phenomenon of 6-mercaptopurine (6MP) adsorbed on the tetrahedral Au20 cluster as a simple model for a nanostructured gold surface. Computations are carried out in both vacuum and aqueous environments using a continuum model. In the gaseous phase and neutral conditions, interaction of 6MP with the gold cluster is mostly dominated by a covalent Au-S bond and partially stabilized by the Au⋅⋅⋅H-N coupling. However, in acidic solution, the nonconventional Au⋅⋅⋅H-S hydrogen-bond becomes the most favorable binding mode. The 6MP affinity for gold clusters decreases in the order of vacuum > neutral solution > acidic medium. During the adsorption, the energy gap of Au20 substantially declines, leading to an increase in its electrical conductivity, which can be converted to an electrical noise. Moreover, such interaction is likely a reversible process and triggered by either the low pH in sick tissues or the presence of cysteine residues in protein matrices. While N-H bending and stretching vibrations play major roles in the SERS phenomenon of 6MP on gold surfaces in neutral solution, the strongest enhancement in acidic environment is mostly due to an Au⋅⋅⋅H-S coupling, rather than an aromatic ring-gold surface π overlap as previously proposed.
Collapse
Affiliation(s)
- Nguyen Thi Nhat Hang
- Faculty of Food Science and Technology, Thu Dau Mot University, Thu Dau Mot 590000, Vietnam
| | - Nguyen Thanh Si
- Department of Chemistry, Can Tho University, Can Tho 900000, Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City 700000, Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|
14
|
Nguyen A, Böttger R, Li SD. Recent trends in bioresponsive linker technologies of Prodrug-Based Self-Assembling nanomaterials. Biomaterials 2021; 275:120955. [PMID: 34130143 DOI: 10.1016/j.biomaterials.2021.120955] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Prodrugs are designed to improve pharmaceutical properties of potent compounds and represent a central approach in drug development. The success of the prodrug strategy relies on incorporation of a reversible linkage facilitating controlled release of the parent drug. While prodrug approaches enhance pharmacokinetic properties over their parent drug, they still face challenges in absorption, distribution, metabolism, elimination, and toxicity (ADMET). Conjugating a drug to a carrier molecule such as a polymer can create an amphiphile that self-assembles into nanoparticles. These nanoparticles display prolonged blood circulation and passive targeting ability. Furthermore, the drug release can be tailored using a variety of linkers between the parent drug and the carrier molecule. In this review, we introduce the concept of self-assembling prodrugs and summarize different approaches for controlling the drug release with a focus on the linker technology. We also summarize recent clinical trials, discuss the emerging challenges, and provide our perspective on the utility and future potential of this technology.
Collapse
Affiliation(s)
- Anne Nguyen
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
15
|
Sallam MA, Wyatt Shields Iv C, Prakash S, Kim J, Pan DC, Mitragotri S. A dual macrophage polarizer conjugate for synergistic melanoma therapy. J Control Release 2021; 335:333-344. [PMID: 34048840 DOI: 10.1016/j.jconrel.2021.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
Tumor associated macrophages (TAMs) play a paradoxical role in the fate of aggressive tumors like melanoma. Immune modulation of TAMs from the tumor-permissive M2 phenotype to antitumoral M1 phenotype is an emerging attractive approach in melanoma therapy. Resiquimod is a TLR7/8 agonist that shifts the polarization of macrophages towards M1 phenotype. Bexarotene (BEX) is a retinoid that induce the expression of phagocytic receptors in macrophages besides its ability to downregulate the M2 polarization. However, the clinical use of both agents is hindered by poor pharmacokinetic properties. Here, for the first time we repurposed BEX based on its immunomodulatory properties and combined it with RES by designing hyaluronic acid (HA) conjugates of both drugs that act synergistically as a dual macrophage polarizer to promote the M1 phenotype and suppress the M2 phenotype. This combination enhanced the macrophage secretion of proinflammatory cytokines (IL-6 and TNF-α), while suppressing the production of tumor promoting cytokine CCL22. It enhanced the macrophage phagocytic ability and showed superior inhibitory effects against B16F10 cells. In vivo studies on a mouse melanoma model confirmed the superiority of the dual conjugate compared to the single HA-drug conjugates in suppressing the tumor growth. Immunoprofiling of the excised tumors revealed a significant increase in the M1/M2 ratio of TAMs in mice treated with the dual conjugate. Our intravenously injectable HA conjugate of RES and BEX provides a promising immunotherapeutic combination strategy for resetting the M1/M2 ratio, supporting the tumoricidal activity of TAMs for effective melanoma treatment.
Collapse
Affiliation(s)
- Marwa A Sallam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Industrial pharmacy, Faculty of pharmacy, Alexandria University, 21521, Egypt
| | - C Wyatt Shields Iv
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Supriya Prakash
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Daniel C Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
16
|
Si NT, Nhung NTA, Bui TQ, Nguyen MT, Nhat PV. Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Adv 2021; 11:16619-16632. [PMID: 35479146 PMCID: PMC9031969 DOI: 10.1039/d1ra02172a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pramipexole (PPX) is known in the treatment of Parkinson's disease and restless legs syndrome. We carried out a theoretical investigation on pramipexole-Au cluster interactions for the applications of drug delivery and detection. Three Au N clusters with sizes N = 6, 8 and 20 were used as reactant models to simulate the metallic nanostructured surfaces. Quantum chemical computations were performed in both gas phase and aqueous environments using density functional theory (DFT) with the PBE functional and the cc-pVDZ-PP/cc-pVTZ basis set. The PPX drug is mainly adsorbed on gold clusters via its nitrogen atom of the thiazole ring with binding energies of ca. -22 to -28 kcal mol-1 in vacuum and ca. -18 to -24 kcal mol-1 in aqueous solution. In addition to such Au-N covalent bonding, the metal-drug interactions are further stabilized by electrostatic effects, namely hydrogen-bond NH⋯Au contributions. Surface-enhanced Raman scattering (SERS) of PPX adsorbed on the Au surfaces and its desorption process were also examined. In comparison to Au8, both Au6 and Au20 clusters undergo a shorter recovery time and a larger change of energy gap, being possibly conducive to electrical conversion, thus signaling for detection of the drug. A chemical enhancement mechanism for SERS procedure was again established in view of the formation of nonconventional hydrogen interactions Au⋯H-N. The binding of PPX to a gold cluster is expected to be reversible and triggered by the presence of cysteine residues in protein matrices or lower-shifted alteration of environment pH. These findings would encourage either further theoretical probes to reach more accurate views on the efficiency of pramipexole-Au interactions, or experimental attempts to build appropriate gold nanostructures for practical trials, harnessing their potentiality for applications.
Collapse
Affiliation(s)
- Nguyen Thanh Si
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University Can Tho Vietnam
| |
Collapse
|
17
|
Wan Z, Zheng R, Moharil P, Liu Y, Chen J, Sun R, Song X, Ao Q. Polymeric Micelles in Cancer Immunotherapy. Molecules 2021; 26:1220. [PMID: 33668746 PMCID: PMC7956602 DOI: 10.3390/molecules26051220] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapies have generated some miracles in the clinic by orchestrating our immune system to combat cancer cells. However, the safety and efficacy concerns of the systemic delivery of these immunostimulatory agents has limited their application. Nanomedicine-based delivery strategies (e.g., liposomes, polymeric nanoparticles, silico, etc.) play an essential role in improving cancer immunotherapies, either by enhancing the anti-tumor immune response, or reducing their systemic adverse effects. The versatility of working with biocompatible polymers helps these polymeric nanoparticles stand out as a key carrier to improve bioavailability and achieve specific delivery at the site of action. This review provides a summary of the latest advancements in the use of polymeric micelles for cancer immunotherapy, including their application in delivering immunological checkpoint inhibitors, immunostimulatory molecules, engineered T cells, and cancer vaccines.
Collapse
Affiliation(s)
- Zhuoya Wan
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Ruohui Zheng
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pearl Moharil
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Yuzhe Liu
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47906, USA;
| | - Jing Chen
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Runzi Sun
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Xu Song
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| |
Collapse
|
18
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers via mild photothermal-cocktail chemotherapy. J Mater Chem B 2020; 7:5306-5319. [PMID: 31411235 DOI: 10.1039/c9tb01368g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combating multidrug resistance (MDR) of tumors is still challenging for clinical chemotherapy, cocktail chemotherapy (CCT), and currently widely-studied nanodrug-based treatments. Inspired by different MDR-overcoming and antitumor mechanisms of CCT and photothermal therapy (PT), a dual drug-paired polyprodrug nanoparticle (PDCN25-CDDP) was constructed to achieve the combination therapy PT-CCT for reversing MDR and combating multidrug resistant cancers. The PT-CCT treatment can greatly downregulate the P-gp expression level and achieve utmost MDR-reversal and antitumor efficacy by both a cocktail effect of CCT and a synergistic effect of CCT with PT; meanwhile, PT can inhibit the expression of heat shock protein 90 and enhance the thermosensitivity of cancer cells. Upon NIR irradiation, PDCN25-CDDPin vivo produced a selective tumor accumulation effect and relatively deep tumor penetration, as evidenced by fluorescent and photoacoustic imaging and CLSM. The mild PT-CCT treatment completely eradicated MCF-7/ADR and OVCAR-3/DDP tumors without skin damage or tumor recurrence for 30 days, exhibiting synergistic MDR-reversal and superior antitumor efficacy in vivo. Importantly, this work provides an innovative strategy for reversing MDR and combating DOX-resistant breast and CDDP-resistant ovarian cancers.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian Central Hospital, Southern Medical University, Shanghai 201499, P. R. China.
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
20
|
Schneible JD, Young AT, Daniele MA, Menegatti S. Chitosan Hydrogels for Synergistic Delivery of Chemotherapeutics to Triple Negative Breast Cancer Cells and Spheroids. Pharm Res 2020; 37:142. [PMID: 32661774 PMCID: PMC7983306 DOI: 10.1007/s11095-020-02864-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - M A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - S Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
- Biomanufacturing Training and Education Center, North Carolina State University, 850 Oval Dr, Raleigh, North Carolina, USA.
| |
Collapse
|
21
|
Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.
Collapse
|
22
|
Zhou K, Zhu Y, Chen X, Li L, Xu W. Redox- and MMP-2-sensitive drug delivery nanoparticles based on gelatin and albumin for tumor targeted delivery of paclitaxel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111006. [PMID: 32993973 DOI: 10.1016/j.msec.2020.111006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
Tumor-responsive nanocarriers are highly valuable and demanded for smart anticancer drug delivery, where a quick release of chemotherapeutic drugs in tumors is preferred. Herein, a redox and MMP-2 sensitive nanoparticle has been designed for targeted delivery of PTX. Bovine serum albumin as a targeting ligand and gelatin as a hydrophilic carrier and MMP-2 sensitive reagent were used to construct the nanoparticles. Disulfide containing prodrug (PTX-SS-COOH) was grafted to the sulfhydryl modified gelatin to form the redox sensitive amphiphilic polymer. The nanoparticles were formed by self-assembly of amphiphilic polymer and BSA covering. Furthermore the modified sulfhydryl group on the gelatin can form a disulfide bond by self-crosslinking in the air, which endows the nanoparticle with a stable structure. The nanoparticle was sensitive to changes in MMP-2 concentration and redox potential, resulting in multiple responsive drug delivery to the tumor microenvironment. We further verified the anticancer effect of the nanoparticles both in vitro and in vivo, the nanoparticle (BSA/Gel-SS-PTX/PTX-SS-COOH NPs) demonstrated an excellent anticancer efficiency.
Collapse
Affiliation(s)
- Ke Zhou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Yixin Zhu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Xuling Chen
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Lingbing Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Wei Xu
- Shandong Qianfoshan Hospital, the first Hospital Affiliated with Shandong First Medical University, China; Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, China.
| |
Collapse
|
23
|
Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy. Eur J Med Chem 2020; 199:112367. [PMID: 32474350 DOI: 10.1016/j.ejmech.2020.112367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 11/23/2022]
Abstract
Polymer-drug conjugates synthesized by binding therapeutic agents to functional polymers have long been a mainstay of prodrugs, while the slow drug release, insufficient efficacy of a single drug, and low selectivity hamper the clinical translation. By rational prodrug design, a targeted dual-acidity-labile polysaccharide-di-drugs conjugate was synthesized by one-pot simultaneous Schiff base and boronic esterification reactions between oxidized dextran (Dex-CHO) and cyclo-(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)), doxorubicin (DOX), and bortezomib (BTZ). The polysaccharide-di-drugs conjugate (Dex-g-(DOX+BTZ)/cRGD) self-assembled into micelle with a diameter at around 80 nm and released the drugs simultaneously triggered by the acidic conditions. Dex-g-(DOX+BTZ)/cRGD specifically recognized and entered the cancer cells through the RGD-αvβ3 integrin interplay, selectively released DOX and BTZ in the acidic intracellular microenvironment, and efficiently inhibited the cell proliferation in vitro. More importantly, Dex-DOX/BTZ/cRGD showed higher intratumoral accumulation and better antitumor efficacy in vivo compared with free drugs and non-targeted control prodrug Dex-g-(DOX+BTZ). The findings indicated that this study provided a facile strategy to develop smart polymer-multi-drugs conjugates for targeted cancer chemotherapy.
Collapse
|
24
|
Pourjavadi A, Asgari S, Hosseini SH. Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Piorecka K, Smith D, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanoconjugates of anthracyclines. Bioorg Chem 2020; 96:103617. [PMID: 32014639 DOI: 10.1016/j.bioorg.2020.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Anthracyclines (Anth) are widely used in the treatment of various types of cancer. Unfortunately, they exhibit serious adverse effects, such as hematopoietic depression and cardiotoxicity, leading to heart failure. In this review, we focus on recently developed conjugates of anthracyclines with a range of nanocarriers, such as polymers, peptides, DNA or inorganic systems. Manipulation of the composition, size and shape of chemical entities at the nanometer scale makes possible the design and development of a range of prodrugs. In this review we concentrate on synthetic chemistry in the long process leading to the introduction of novel therapeutic products.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - David Smith
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
26
|
Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019; 11:polym11122085. [PMID: 31847103 PMCID: PMC6960886 DOI: 10.3390/polym11122085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
Despite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release. Our work aims to summarize the present state-of-the art of molecularly imprinted polymer-based drug delivery systems developed for anticancer therapy, with emphasis on the particularities of the chemotherapeutics’ release and with a critical assessment of the current challenges and future perspectives of these unique drug carriers.
Collapse
Affiliation(s)
- Andreea Elena Bodoki
- Inorganic Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 8 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Dept., Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-264-597-256 (int. 2838)
| |
Collapse
|
27
|
Liu Y, Khan AR, Du X, Zhai Y, Tan H, Zhai G. Progress in the polymer-paclitaxel conjugate. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Abbasian M, Hasanzadeh P, Mahmoodzadeh F, Salehi R. Novel cationic cellulose-based nanocomposites for targeted delivery of methotrexate to breast cancer cells. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1673174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | | | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
29
|
Petrus R, Sobota P. Magnesium and zinc alkoxides and aryloxides supported by commercially available ligands as promoters of chemical transformations of lactic acid derivatives to industrially important fine chemicals. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Affiliation(s)
- Monika Lotansing Girase
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Priyanka Ganeshrao Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
31
|
Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305:130-154. [DOI: 10.1016/j.jconrel.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
32
|
Rashdan HRM, Farag MM, El-Gendey MS, Mounier MM. Toward Rational Design of Novel Anti-Cancer Drugs Based on Targeting, Solubility, and Bioavailability Exemplified by 1,3,4-Thiadiazole Derivatives Synthesized Under Solvent-Free Conditions. Molecules 2019; 24:molecules24132371. [PMID: 31252614 PMCID: PMC6651776 DOI: 10.3390/molecules24132371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/23/2023] Open
Abstract
The 1,3,4-thiadiazole derivatives (9a–i) were synthesized under solvent free conditions and their chemical composition was confirmed using different spectral tools (IR, Mass, and NMR spectrometry). All the synthesized compounds were screened for their anti-cancer potentiality over human breast carcinoma (MCF-7) and human lung carcinoma (A-549). Most of the tested compounds showed remarkable anti-breast cancer activity. However, compound 4 showed the most anti-lung cancer activity. Then, compounds with cytotoxic activity ≥ 80% over breast and lung cells were subjected to investigate their specificity on human normal skin cell line (BJ-1). Compounds 9b and 9g were chosen owing to their high breast anti-cancer efficacy and their safety, in order to study the possible anti-cancer mode of action. Otherwise, drug delivery provides a means to overcome the low solubility, un-targeted release, and limited bioavailability of the prepared 1,3,4-thiadiazole drug-like substances. Compounds 9b and 9g were chosen to be encapsulated in Na-alginate microspheres. The release profile and mechanism of both compounds were investigated, and the results revealed that the release profiles of both microspheres showed a sustained release, and the release mechanism was controlled by Fickian diffusion. Accordingly, these compounds are promising for their use in chemotherapy for cancer treatment, and their hydrophilicity was improved by polymer encapsulation to become more effective in their pharmaceutical application.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Mohammad M Farag
- Glass Research Department, National Research Centre, 33 El-Behooth Str., Dokki, Cairo 12622, Egypt
| | - Marwa S El-Gendey
- Chemistry Department, Faculty of Science "Girls", Al-Azhar University, Cairo 11754, Egypt
- Chemistry Department, Faculty of College, Turabah, Taif University, Taif 21974, Saudi Arabia
| | - Marwa M Mounier
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
33
|
Sun H, Yan L, Chang MYZ, Carter KA, Zhang R, Slyker L, Lovell JF, Wu Y, Cheng C. A multifunctional biodegradable brush polymer-drug conjugate for paclitaxel/gemcitabine co-delivery and tumor imaging. NANOSCALE ADVANCES 2019; 1:2761-2771. [PMID: 32864564 PMCID: PMC7451085 DOI: 10.1039/c9na00282k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/22/2019] [Indexed: 05/07/2023]
Abstract
A multifunctional biodegradable brush polymer-drug conjugate (BPDC) is developed for the co-delivery of hydrophobic paclitaxel (PTX) and hydrophilic gemcitabine (GEM) chemotherapeutics, as well as a tumor imaging agent. A novel ternary copolymer of conventional, acetylenyl-functionalized and allyl-functionalized lactides is prepared to serve as the backbone precursor of BPDC. Acetylenyl groups of the copolymer are then reacted with poly(ethylene glycol) (PEG) side chains and cyanine5.5, a fluorescent probe, via azide-alkyne click reactions. Subsequently, the allyl groups of the yielded PEG-grafted brush polymer are used to covalently link PTX and GEM onto the backbone via thiol-ene click reactions. The resulting BPDC exhibits an average hydrodynamic diameter of 111 nm. Sustained and simultaneous release of PTX and GEM from the BPDC is observed in phosphate buffered saline, with the release of PTX showing sensitivity in mild acidic conditions. In vitro studies using MIA PaCa-2 human pancreatic cancer cells illustrate the cellular uptake and cytotoxicity of the BPDC. In vivo, the BPDC possesses long blood circulation, tumor accumulation, and enables optical tumor imaging. Further development and testing is warranted for multifunctional conjugated brush polymer systems that integrate combination chemotherapies and imaging.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Michael Yu Zarng Chang
- Department of Biomedical Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Runsheng Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Leigh Slyker
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New YorkBuffaloNew York 14260USA
| |
Collapse
|
34
|
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. DrugR+: A comprehensive relational database for drug repurposing, combination therapy, and replacement therapy. Comput Biol Med 2019; 109:254-262. [PMID: 31096089 DOI: 10.1016/j.compbiomed.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Drug repurposing or repositioning, which introduces new applications of the existing drugs, is an emerging field in drug discovery scope. To enhance the success rate of the research and development (R&D) process in a cost- and time-effective manner, a number of pharmaceutical companies worldwide have made tremendous investments. Besides, many researchers have proposed various methods and databases for the repurposing of various drugs. However, there is not a proper and well-organized database available. To this end, for the first time, we developed a new database based on DrugBank and KEGG data, which is named "DrugR+". Our developed database provides some advantages relative to the DrugBank, and its interface supplies new capabilities for both single and synthetic repositioning of drugs. Moreover, it includes four new datasets which can be used for predicting drug-target interactions using supervised machine learning methods. As a case study, we introduced novel applications of some drugs and discussed the obtained results. A comparison of several machine learning methods on the generated datasets has also been reported in the Supplementary File. Having included several normalized tables, DrugR + has been organized to provide key information on data structures for the repurposing and combining applications of drugs. It provides the SQL query capability for professional users and an appropriate method with different options for unprofessional users. Additionally, DrugR + consists of repurposing service that accepts a drug and proposes a list of potential drugs for some usages. Taken all, DrugR+ is a free web-based database and accessible using (http://www.drugr.ir), which can be updated through a map-reduce parallel processing method to provide the most relevant information.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Massoud Amanlou
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 14176-53955, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. http://LBB.ut.ac.ir
| |
Collapse
|
35
|
Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019; 40:e1800917. [PMID: 30835923 DOI: 10.1002/marc.201800917] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Indexed: 01/06/2025]
Abstract
Stimuli-responsive nanoparticles have the potential to improve the delivery of therapeutics to a specific cell or region within the body. There are many stimuli that have shown potential for specific release of cargo, including variation of pH, redox potential, or the presence of enzymes. pH variation has generated significant interest for the synthesis of stimuli-responsive nanoparticles because nanoparticles are internalized into cells via vesicles that are acidified. Additionally, the tumor microenvironment is known to have a lower pH than the surrounding tissue. In this review, different strategies to design pH-responsive nanoparticles are discussed, focusing on the use of charge-shifting polymers, acid labile linkages, and crosslinking.
Collapse
Affiliation(s)
- Nayeleh Deirram
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Changhe Zhang
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sarah S Kermaniyan
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Georgina K Such
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
36
|
Abstract
The systemic delivery of drugs to the body via circulation after oral administration is a preferred method of drug administration during cancer treatment given its ease of implementation. However, the physicochemical properties of many current anticancer drugs limit their effectiveness when delivered by systemic routes. The use of nanoparticles (NPs) has emerged as an effective means of overcoming the inherent limitations of systemic drug delivery. We provide herein an overview of various NP formulations that facilitate improvements in the efficacy of various anticancer drugs compared with the free drug. This review will be useful to the reader who is interested in the role NP technology is playing in shaping the future of chemotherapeutic drug delivery and disease treatment.
Collapse
|
37
|
Guo Y, Zhang J, Ding F, Pan G, Li J, Feng J, Zhu X, Zhang C. Stressing the Role of DNA as a Drug Carrier: Synthesis of DNA-Drug Conjugates through Grafting Chemotherapeutics onto Phosphorothioate Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807533. [PMID: 30847970 DOI: 10.1002/adma.201807533] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Indexed: 05/24/2023]
Abstract
To stress the role of deoxyribonucleic acid (DNA) as a drug carrier, an efficient conjugation strategy in which chemotherapeutics can be grafted onto a phosphorothiolated DNA backbone through the reaction between the phosphorothioate group (PS) and a benzyl bromide group is proposed. As a proof of concept, benzyl-bromide-modified paclitaxel (PTX) is employed to graft onto the DNA backbone at the PS modification sites. Due to the easy preparation of phosphorothiolated DNA at any desired position during its solid-phase synthesis, diblock DNA strands containing both normal phosphodiester segment (PO DNA) and phosphorothiolate segment (PS DNA) are directly grafted with a multitude of PTXs without using complicated and exogenous linkers. Then, the resulting amphiphilic PO DNA-blocked-(PS DNA-grafted PTX) conjugates (PO DNA-b-(PS DNA-g-PTX)) assemble into PTX-loaded spherical nucleic acid (SNA)-like micellar nanoparticles (PTX-SNAs) with a high drug loading ratio up to ≈53%. Importantly, the PO DNA segment maintains its molecular recognition property and biological functions, which allows the as-prepared PTX-SNAs to be further functionalized with tumor-targeting aptamers, fluorescent probe strands, or antisense sequences. These multifunctional PTX-SNAs demonstrate active tumor-targeting delivery, efficient inhibition of tumor growth, and the reversal of drug resistance both in vitro and in vivo for comprehensive antitumor therapy.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiao Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Gaifang Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Li
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201400, China
| | - Jing Feng
- Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201400, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
38
|
Yu C, Liu C, Wang S, Li Z, Hu H, Wan Y, Yang X. Hydroxyethyl Starch-Based Nanoparticles Featured with Redox-Sensitivity and Chemo-Photothermal Therapy for Synergized Tumor Eradication. Cancers (Basel) 2019; 11:E207. [PMID: 30754679 PMCID: PMC6406889 DOI: 10.3390/cancers11020207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 12/11/2022] Open
Abstract
Chemo-photothermal combination therapy could achieve synergistically enhanced efficiency against tumors. Nanocarriers with good safety and high efficiency for chemo- photothermal therapy are pressingly needed. A new type of hydroxyethyl starch (HES) based on nanoparticles (NPs) loaded with doxorubicin (DOX) and indocyanine green (ICG) was, thus, developed in this study. DOX-loaded HES conjugates with redox-sensitivity (HES-SS-DOX) were first synthesized and they were then combined with ICG to self-assemble into HES-SS-DOX@ICG NPs with controlled compositions and sizes via collaborative interactions. The optimal HES-SS-DOX@ICG NPs had good physical and photothermal stability in aqueous media and showed high photothermal efficiency in vivo. They were able to fast release the loaded DOX in response to the redox stimulus and the applied laser irradiation. Based on the H22-tumor-bearing mouse model, these NPs were found to tendentiously accumulate inside tumors in comparison to other major organs. The HES-SS-DOX@ICG NPs together with dose-designated laser irradiation were able to fully eradicate tumors with only one injection and one single subsequent laser irradiation on the tumor site during a 14-day treatment period. In addition, they showed almost no impairment to the body. The presently developed HES-SS-DOX@ICG NPs have good in vivo safety and highly efficient anti-tumor capability. These NPs in conjugation with laser irradiation have promising potential for chemo-photothermal cancer therapy in the clinic.
Collapse
Affiliation(s)
- Chan Yu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chuqi Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shaocong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ying Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
39
|
Yin W, Ke W, Chen W, Xi L, Zhou Q, Mukerabigwi JF, Ge Z. Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. Biomaterials 2018; 195:63-74. [PMID: 30612064 DOI: 10.1016/j.biomaterials.2018.12.032] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022]
Abstract
In tumor tissues, reactive oxygen species (ROS) level is significantly higher than that in normal tissues, which has been frequently explored as the specific stimulus to trigger drug release. However, the low intrinsic ROS concentration and heterogeneous distribution in tumor tissues hinder the applications as the stimulus for drug delivery. Herein, we developed integrated nanoparticles to remold tumor microenvironment via specific amplification of the tumor oxidative stress and simultaneously realize ROS-responsive drug release. The amphiphilic block copolymer prodrugs composed of poly(ethylene glycol) and polymerized methacrylate monomer containing thioketal-linked camptothecin (CPT) were synthesized and self-assembled to form core-shell micelles for encapsulation of β-lapachone (Lapa@NPs). After tumor accumulation and internalization into tumor cells post systemic administration of Lapa@NPs, Lapa can selectively induce remarkable ROS level increase via the catalysis of NAD(P)H: quinone oxidoreductase-1 (NQO1) enzyme overexpressed in cancer cells. Subsequently, enhanced ROS concentration would trigger the cleavage of thioketal linkers to release drug. The released CPT together with high ROS level achieved a synergistic therapy to suppress tumor growth. Moreover, Lapa@NPs exhibited superior biosafety due to the tumor-specific activation of the cascade reaction. Accordingly, Lapa@NPs represent a novel polymer prodrug design and drug release strategy via tumor-specific oxidative stress amplification and subsequent ROS-responsive drug release.
Collapse
Affiliation(s)
- Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China; Department of Pharmacology, Xin Hua University of Anhui, Hefei, 230088, Anhui, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weijian Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
40
|
Najafi M, Morsali A, Bozorgmehr MR. DFT study of SiO2 nanoparticles as a drug delivery system: structural and mechanistic aspects. Struct Chem 2018. [DOI: 10.1007/s11224-018-1227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
42
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|
43
|
Zhang Y, Zhang J, Xu W, Xiao G, Ding J, Chen X. Tumor microenvironment-labile polymer-doxorubicin conjugate thermogel combined with docetaxel for in situ synergistic chemotherapy of hepatoma. Acta Biomater 2018; 77:63-73. [PMID: 30006312 DOI: 10.1016/j.actbio.2018.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/23/2022]
Abstract
UNLABELLED Topical chemotherapy with complementary drugs is one of the most promising strategies to achieve an effective antitumor activity. Herein, a synergistic strategy for hepatoma therapy by the combination of tumor microenvironment-sensitive polymer-doxorubicin (DOX) conjugate thermogel, containing a DNA intercalator DOX, and docetaxel (DTX), a microtubule-interfering agent, was proposed. First, cis-aconitic anhydride-functionalized DOX (CAD) and succinic anhydride-modified DOX (SAD) were conjugated onto the terminal hydroxyl groups of poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA), yielding the acid-sensitive CAD-PLGA-PEG-PLGA-CAD and the insensitive SAD-PLGA-PEG-PLGA-SAD conjugates, respectively. The prodrug aqueous solution exhibited a thermoreversible sol-gel transition between room and physiological temperature. Meantime, appropriate mechanical property, biodegradability, as well as a sustained release profile were revealed in such prodrug thermogels. More importantly, the addition of DTX to the DOX-conjugated thermogels (i.e., Gel-CAD and Gel-SAD) was verified with enhanced curative effect against tumor, where the antitumor efficacy of Gel-CAD+DTX was obviously higher than the other groups. A reliable security in vivo was also showed in the Gel-CAD+DTX group. Taken together, such combination of tumor microenvironment-labile prodrug thermogel and a complementary drug exhibited fascinating prospect for local synergistic antineoplastic therapy. STATEMENT OF SIGNIFICANCE Multidrug chemotherapy with synergistic effect has been proposed recently for hepatoma treatment in the clinic. However, the quick release, fast elimination, and unselectivity of multidrugs in vivo always limit their further application. To solve this problem, a synergistic combination of tumor microenvironment-sensitive polymeric doxorubicin (DOX) prodrug thermogel for DNA intercalation and a microtubule-interfering agent docetaxel (DTX) is developed in the present study for the local chemotherapy of hepatoma. Interestingly, a pH-triggered sustained release behavior, an enhanced antitumor efficacy, and a favorable security in vivo are observed in the combined dual-drug delivery platform. Therefore, effectively combining tumor microenvironment-labile polymeric prodrug thermogel with a complementary drug provides an advanced system and a promising prospect for local synergistic hepatoma chemotherapy.
Collapse
Affiliation(s)
- Yanbo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Gao Xiao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, PR China; John A. Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
44
|
Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018; 287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The development of polymeric materials as drug delivery systems has advanced from systems that rely on classical passive targeting to carriers that can sustain the precisely controlled release of payloads upon physicochemical triggers in desired microenvironment. Molecularly imprinted polymers (MIP), materials designed to capture specific molecules based on their molecular shape and charge distribution, are attractive candidates for fulfilling these purposes. In particular, drug-imprinted polymers coupled with active targeting mechanisms have been explored as potential drug delivery systems. In this review, we have curated important recent efforts in the development of drug-imprinted polymers in a variety of clinical applications, especially oncology and ophthalmology. MIP possesses properties that may complement the traditional delivery systems of these two disciplines, such as passive enhanced permeability and retention effect (EPR) in cancer tumors, and passive drug diffusion in delivering ophthalmic therapeutics. Furthermore, the prospects of MIP integration with the emerging gene therapies will be discussed.
Collapse
Affiliation(s)
- Christian Antonio Tuwahatu
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chi Chung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy Arul Lenus Roy
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
45
|
Qiu G, Zhao L, Liu X, Zhao Q, Liu F, Liu Y, Liu Y, Gu H. ROMP synthesis of benzaldehyde-containing amphiphilic block polynorbornenes used to conjugate drugs for pH-responsive release. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Gao D, Lo PC. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J Control Release 2018; 282:46-61. [DOI: 10.1016/j.jconrel.2018.04.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
|
47
|
Pourjavadi A, Amin SS, Hosseini SH. Delivery of Hydrophobic Anticancer Drugs by Hydrophobically Modified Alginate Based Magnetic Nanocarrier. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ali Pourjavadi
- Polymer
Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, 11365-9516, Iran
| | - Shiva Sadat Amin
- Polymer
Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, 11365-9516, Iran
| | - Seyed Hassan Hosseini
- Department
of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, 01134, Iran
| |
Collapse
|