1
|
Cadar E, Popescu A, Dragan AML, Pesterau AM, Pascale C, Anuta V, Prasacu I, Velescu BS, Tomescu CL, Bogdan-Andreescu CF, Sirbu R, Ionescu AM. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar Drugs 2025; 23:152. [PMID: 40278274 PMCID: PMC12029074 DOI: 10.3390/md23040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Currently, marine algae are still an under-exploited natural bioresource of bioactive compounds. Seaweeds represent a sustainable source for obtaining bioactive compounds that can be useful for the fabrication of new active products with biomedical benefits and applications as biomedicinals and nutraceuticals. The objective of this review is to highlight scientific papers that identify biocompounds from marine macroalgae and emphasize their benefits. The method used was data analysis to systematize information to identify biocompounds and their various benefits in pharmaceuticals, cosmetics, and nutraceuticals. The research results demonstrate the multiple uses of seaweeds. As pharmaceuticals, seaweeds are rich sources of bioactive compounds like polysaccharides, protein compounds, pigments, and polyphenols, which have demonstrated various pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, antiviral, anticoagulant, and potentially anticarcinogenic effects. Seaweed has gained recognition as a functional food and offers a unique set of compounds that promote body health, including vitamins, minerals, and antioxidants. In conclusion, the importance of this review is to expand the possibilities for utilizing natural resources by broadening the areas of research for human health and marine nutraceuticals.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Antoanela Popescu
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Ana-Maria-Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Valentina Anuta
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | | | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
2
|
Mandal AK, Parida S, Behera AK, Adhikary SP, Lukatkin AA, Lukatkin AS, Jena M. Seaweed in the Diet as a Source of Bioactive Metabolites and a Potential Natural Immunity Booster: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:367. [PMID: 40143143 PMCID: PMC11945151 DOI: 10.3390/ph18030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Seaweed plays an essential role in the survival of marine life, provides habitats and helps in nutrient recycling. It is rich in valuable nutritious compounds such as pigments, proteins, polysaccharides, minerals, vitamins, omega-rich oils, secondary metabolites, fibers and sterols. Pigments like fucoxanthin and astaxanthin and polysaccharides like laminarin, fucoidan, galactan and ulvan possess immune-modulatory and immune-enhancing properties. Moreover, they show antioxidative, antidiabetic, anticancer, anti-inflammatory, antiproliferative, anti-obesity, antimicrobial, anticoagulation and anti-aging properties and can prevent diseases such as Alzheimer's and Parkinson's and cardiovascular diseases. Though seaweed is frequently consumed by Eastern Asian countries like China, Japan, and Korea and has gained the attention of Western countries in recent years due to its nutritional properties, its consumption on a global scale is very limited because of a lack of awareness. Thus, to incorporate seaweed into the global diet and to make it familiar as a functional food, issues such as large-scale cultivation, processing, consumer acceptance and the development of seaweed-based food products need to be addressed. This review is intended to give a brief overview of the present status of seaweed, its nutritional value and its bioactive metabolites as functional foods for human health and diseases owing to its immunity-boosting potential. Further, seaweed as a source of sustainable food and its prospects along with its issues are discussed in this review.
Collapse
Affiliation(s)
- Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Sudhamayee Parida
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Siba Prasad Adhikary
- Department of Biotechnology, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India;
| | - Andrey A. Lukatkin
- Department of Cytology, Histology and Embryology with Courses in Medical Biology and Molecular Cell Biology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68, Saransk 430005, Russia;
| | | | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| |
Collapse
|
3
|
Darko CNS, Ampiaw FA, Agyei-Tuffour B, Goosen NJ, Tuvikene R. Seaweeds and derived bioactive compounds as food alternatives: Current status and future perspective in Africa. Food Chem 2025; 464:141720. [PMID: 39486288 DOI: 10.1016/j.foodchem.2024.141720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The urgency for food security and diversification has necessitated extensive exploration of all potential food options. Seaweeds, now considered potential functional foods are widely consumed across Asia and parts of Europe. In Africa, reports on consumption trends and food-related applications are scarce. About only 1% of the annually harvested ∼120,000 (fresh weight) tonnes of commercially useful eucheumatoids are utilized locally in the continent's top-producing country, Tanzania. Ultimately, the intensification of current efforts shall promote up-scaling of the seaweed industry. In this review, we have discussed the nutritional profile and nutraceutical potential of commercially viable species, paying attention to consumer safety measures. Also, prospective food-related application of seaweeds based on current international and local African consumption trends is reviewed. The review further addresses factors that hinder consumer acceptance in Africa and the up-scaling of the seaweed industry at large. This review aims to provide some theoretical reference for future developments and application of seaweed as food in Africa.
Collapse
Affiliation(s)
| | - Freda Akua Ampiaw
- Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, Anne-Jiagge Road, Legon-Accra, Ghana
| | - Benjamin Agyei-Tuffour
- Department of Materials Science and Engineering, School of Engineering Sciences, University of Ghana, Anne-Jiagge Road, Legon-Accra, Ghana
| | - Neill Jurgens Goosen
- Department of Chemical Engineering, Stellenbosch University, Private Bag XI, Matieland, Stellenbosch 7602, South Africa
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| |
Collapse
|
4
|
Di Sario L, Boeri P, Matus JT, Pizzio GA. Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops. Int J Mol Sci 2025; 26:1129. [PMID: 39940896 PMCID: PMC11817731 DOI: 10.3390/ijms26031129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The escalating impact of abiotic stress on crop productivity requires innovative strategies to ensure sustainable agriculture. This review examines the promising role of biostimulants in mitigating the adverse effects of abiotic stress on crops. Biostimulants, ranging from simple organic compounds to complex living microorganisms, have demonstrated significant potential in enhancing plant resilience, stress tolerance, and overall performance. The mechanisms underlying biostimulant action-such as enhancing antioxidant defenses, regulating hormonal pathways, and inducing metabolic adjustments-are reviewed. Furthermore, we incorporate the latest research findings, methodologies, and advancements in biostimulant applications for addressing abiotic stressors, including drought, salinity, high temperatures, and nutrient deficiencies. This review also highlights current challenges and future opportunities for optimizing biostimulant use in sustainable crop production. This revision aims to guide researchers and agronomists in applying biostimulants to improve crop resilience in the context of climate change.
Collapse
Affiliation(s)
- Luciana Di Sario
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - Patricia Boeri
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| | - Gastón A. Pizzio
- CIT Río Negro, Universidad Nacional de Río Negro, Viedma CP8500, Río Negro, Argentina; (L.D.S.); (P.B.)
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46908 Paterna, Valencia, Spain;
| |
Collapse
|
5
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
6
|
Behera M, Singh L, Pradhan B, Behera KC. Seaweed-Derived Bioactive Compounds: Potent Modulators in Breast Cancer Therapy. Chem Biodivers 2024:e202401613. [PMID: 39652742 DOI: 10.1002/cbdv.202401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Cancer remains a major global health concern, with breast cancer being particularly challenging. To address this, new therapeutic strategies are being explored, including natural alternatives. Seaweeds, rich in bioactive compounds, have gained attention for their therapeutic potential. Traditionally valued for their nutritional content, seaweed-derived compounds such as polysaccharides, polyphenols, sterols, vitamins, minerals, and carotenoids have shown anticancer properties. These compounds can modulate key cellular processes like apoptosis, angiogenesis, and inflammation-crucial in cancer progression. Their antioxidant, anti-inflammatory, and immunomodulatory effects make them promising candidates for complementary cancer therapies. Key bioactive components like fucoidans, laminarins, phlorotannins, and carotenoids exhibit antiproliferative, proapoptotic, antiangiogenic, and antimetastatic properties. Recent studies focus on the ability of these compounds to induce apoptosis in cancer cells. This review highlights the chemical constituents of various seaweed species with antitumor activity, their mechanisms of action, and the potential for integration into cancer treatments. It also addresses challenges in clinical applications and outlines future research directions for leveraging these marine resources in breast cancer therapy.
Collapse
Affiliation(s)
- Maheswari Behera
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
7
|
Ebrahimi P, Hoxha L, Mihaylova D, Nicoletto M, Lante A. UV-A treatment of phenolic extracts impacts colour, bioactive compounds and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9559-9568. [PMID: 39072782 DOI: 10.1002/jsfa.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The unintended co-extraction of chlorophylls during the recovery of polyphenols from plant sources yields green-coloured phenolic extracts with limited use in colour-sensitive foods. This study aimed at decolourizing the ethanolic extracts of sugar beet leaves using a UV-A treatment (390 nm). RESULTS Exposure of the phenolic extracts to 30 UV-A LEDs at 8.64 J m-2 radiation dose decreased the total chlorophyll content by 69.23% and reduced the greenness parameter (-a*) significantly (P < 0.05) from 27.33 ± 0.32 to 8.64 ± 0.16. Additionally, UV-A treatment increased the content of most individual phenolic compounds (e.g. gallic acid, ferulic acid, etc.) significantly, resulting in an increase in the overall phenolic content in the extracts from 900.56 ± 14.11 μg g-1 fresh weight (FW) to a maximum of 975.09 ± 9.62 μg g-1 FW at 0.67 J m-2. However, rutin content had a significant decrease at the highest radiation dose (8.64 J m-2). The soluble sugar content (i.e. glucose and fructose) increased simultaneously with phenolic compounds after the UV-A treatment. Although the UV treatment reduced the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, it had no significant effect on the ferrous chelating activity and the extract's ability to delay lipid oxidation in corn oil. The antioxidant activity index of the treated extract was comparable to that of butylated hydroxytoluene, a synthetic antioxidant. CONCLUSION Key findings of this study include successful decolourization of the extract, decomposition of bound polyphenols to their free form, and maintaining the antioxidant activity of the extract in the oil system after UV-A exposure. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peyman Ebrahimi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| | - Luziana Hoxha
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| | - Dasha Mihaylova
- Department of Biotechnology, University of Food Technologies, Plovdiv, Bulgaria
| | - Marino Nicoletto
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova - INFN, Padova, Italy
| | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| |
Collapse
|
8
|
Montone CM, Cavaliere C, Cerrato A, Laganà A, Piovesana S, Taglioni E, Capriotti AL. Detailed lipid investigation of edible seaweeds by photochemical derivatization and untargeted lipidomics. Anal Bioanal Chem 2024; 416:6269-6282. [PMID: 39392507 PMCID: PMC11541411 DOI: 10.1007/s00216-024-05573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Seaweeds are macrophytic algae that have been gaining interest as alternative healthy foods, renewable drug sources, and climate change mitigation agents. In terms of their nutritional value, seaweeds are renowned for their high content of biologically active polyunsaturated fatty acids. However, little is known about the regiochemistry-the geometry and position of carbon-carbon double bonds-of free and conjugated fatty acids in seaweeds. In the present work, a detailed characterization of the seaweed lipidome was achieved based on untargeted HRMS-based analysis and lipid derivatization with a photochemical aza-Paternò-Büchi reaction. A triple-data processing strategy was carried out to achieve high structural detail on the seaweed lipidome, i.e., (i) a first data processing workflow with all samples for aligning peak and statistical analysis that led to the definition of lipid sum compositions (e.g., phosphatidylglycerol (PG) 34:1), (ii) a second data processing workflow in which the samples of each seaweed were processed separately to annotate molecular lipids with known fatty acyl isomerism (e.g., PG 16:0_18:1), and (iii) the annotation of lipid regioisomers following MS/MS annotation of the lipid derivatives obtained following the aza-Paternò-Büchi reaction (e.g., PG 16:0_18:1 ω-9). Once the platform was set up, the lipid extracts from 8 seaweed species from different seaweed families were characterized, describing over 900 different lipid species, and information on the regiochemistry of carbon-carbon double bonds uncovered unknown peculiarities of seaweeds belonging to different families. The overall analytical approach helped to fill a gap in the knowledge of the nutritional composition of seaweeds.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Università Di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
9
|
Liu C, Gao J, Jiang H, Sun J, Gao X, Mao X. Value-added utilization technologies for seaweed processing waste in a circular economy: Developing a sustainable modern seaweed industry. Compr Rev Food Sci Food Saf 2024; 23:e70027. [PMID: 39379297 DOI: 10.1111/1541-4337.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
The global seaweed industry annually consumes approximately 600,000 tons of dried algal biomass to produce algal hydrocolloids, yet only 15-30% of this biomass is utilized, with the remaining 70-85% discarded or released as scum or wastewater during the hydrocolloid extraction process. This residual biomass is often treated as waste and not considered for further commercial use, which contradicts the principles of sustainable development. In reality, the residual algal biomass could be employed to extract additional biochemical components, such as pigments, proteins, and cellulose, and these ingredients have important application prospects in the food sector. According to the biorefinery concept, recycling various products alongside the principal product enhances overall biomass utilization. Transitioning from traditional single-product processes to multi-product biorefineries, however, raises operating costs, presenting a significant challenge. Alternatively, developing value-added utilization technologies that target seaweed waste without altering existing processes is gaining traction among industry practitioners. Current advancements include methods such as separation and extraction of residual biomass, anaerobic digestion, thermochemical conversion, enzymatic treatment, functionalized modification of algal scum, and efficient utilization through metabolic engineering. These technologies hold promise for converting seaweed waste into alternative proteins, dietary supplements, and bioplastics for food packaging. Combining multiple technologies may offer the most effective strategy for future seaweed waste treatment. Nonetheless, most research on value-added waste utilization remains at the laboratory scale, necessitating further investigation at pilot and commercial scales.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Jiale Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
10
|
Mutavski Z, Jerković I, Nikolić NĆ, Radman S, Flanjak I, Aladić K, Šubarić D, Vulić J, Jokić S. Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea. Int J Mol Sci 2024; 25:11711. [PMID: 39519263 PMCID: PMC11546173 DOI: 10.3390/ijms252111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The potential of the green macroalga Ulva lactuca is increasingly recognized, not only for its environmental benefits, but also for its applications in various industries, including food, pharmaceuticals, and cosmetics. Given this insight, a comprehensive analysis of the chemical profile of U. lactuca from the Adriatic Sea was carried out. The hydrodistillate, rich in (Z,Z,Z)-hexadeca-7,10,13-trienal and hexadecanoic acid, underlines its importance for health-related uses, particularly in lipid metabolism and cellular integrity. Fatty acid analysis showed a predominance of palmitic acid and a favorable n-6/n-3 polyunsaturated fatty acid ratio, suggesting that U. lactuca can make a valuable contribution to a balanced diet. In addition, essential amino acids, including leucine, valine, and isoleucine, support its use as a functional ingredient for muscle repair and metabolic health. The ethanol extract contained 56 compounds, including derivatives of fatty acids, phenolic acids, pigments, flavonoids, and steroids. Many of them, such as hexadecasphinganine, azelaic acid, 5-sulfosalicylic acid, and pheophytin a, have proven roles or potentials in promoting human health. These results confirm that U. lactuca is a rich source of bioactive compounds, emphasizing its potential in scientific research and its expanding industrial applications in health, nutrition, and cosmetics.
Collapse
Affiliation(s)
- Zorana Mutavski
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (Z.M.); (N.Ć.N.)
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia; (Z.M.); (N.Ć.N.)
| | - Sanja Radman
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Ivana Flanjak
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| | - Krunoslav Aladić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| | - Jelena Vulić
- Faculty of Technology Novi Sad, University of Novi Sad, Boulevard cara Lazara 1, 11000 Novi Sad, Serbia;
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (I.F.); (K.A.); (D.Š.)
| |
Collapse
|
11
|
Park JS, Han JM, Park SW, Kim JW, Choi MS, Lee SM, Haq M, Zhang W, Chun BS. Subcritical Water Extraction of Undaria pinnatifida: Comparative Study of the Chemical Properties and Biological Activities across Different Parts. Mar Drugs 2024; 22:344. [PMID: 39195460 DOI: 10.3390/md22080344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The subcritical water extraction of Undaria pinnatifida (blade, sporophyll, and root) was evaluated to determine its chemical properties and biological activities. The extraction was conducted at 180 °C and 3 MPa. Root extracts exhibited the highest phenolic content (43.32 ± 0.19 mg phloroglucinol/g) and flavonoid content (31.54 ± 1.63 mg quercetin/g). Sporophyll extracts had the highest total sugar, reducing sugar, and protein content, with 97.35 ± 4.23 mg glucose/g, 56.44 ± 3.10 mg glucose/g, and 84.93 ± 2.82 mg bovine serum albumin (BSA)/g, respectively. The sporophyll contained the highest fucose (41.99%) and mannose (10.37%), whereas the blade had the highest galactose (48.57%) and glucose (17.27%) content. Sporophyll had the highest sulfate content (7.76%). Key compounds included sorbitol, glycerol, L-fucose, and palmitic acid. Root extracts contained the highest antioxidant activity, with IC50 values of 1.51 mg/mL (DPPH), 3.31 mg/mL (ABTS+), and 2.23 mg/mL (FRAP). The root extract exhibited significant α-glucosidase inhibitory activity with an IC50 of 5.07 mg/mL, indicating strong antidiabetic potential. The blade extract showed notable antihypertensive activity with an IC50 of 0.62 mg/mL. Hence, subcritical water extraction to obtain bioactive compounds from U. pinnatifida, supporting their use in functional foods, cosmetics, and pharmaceuticals is highlighted. This study uniquely demonstrates the variation in bioactive compound composition and bioactivities across different parts of U. pinnatifida, providing deeper insights. Significant correlations between chemical properties and biological activities emphasize the use of U. pinnatifida extracts for chronic conditions.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Min-Seo Choi
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Sang-Min Lee
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Monjurul Haq
- Institute of Food Science, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Guardado Yordi E, Pérez Martínez A, Radice M, Scalvenzi L, Abreu-Naranjo R, Uriarte E, Santana L, Matos MJ. Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Mar Drugs 2024; 22:327. [PMID: 39057436 PMCID: PMC11277739 DOI: 10.3390/md22070327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.
Collapse
Affiliation(s)
- Estela Guardado Yordi
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Amaury Pérez Martínez
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Matteo Radice
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Laura Scalvenzi
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Reinier Abreu-Naranjo
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.U.); (L.S.)
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.U.); (L.S.)
| | - Maria Joao Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.U.); (L.S.)
| |
Collapse
|
13
|
Baek UB, Kim HY. Physicochemical Properties of Restructured Black Goat Jerky with Various Types of Ultra-Ground Seaweed Powders. Food Sci Anim Resour 2024; 44:483-497. [PMID: 38764507 PMCID: PMC11097035 DOI: 10.5851/kosfa.2024.e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 05/21/2024] Open
Abstract
This study investigated the effects of ultra-ground seaweed powders (USP) on the physicochemical properties (proximate composition, mineral contents, pH, color, shear force, sensory evaluation, electronic nose, and electronic tongue) of restructured black goat jerky. Restructured black goat jerky was prepared using three different treatments, i.e., 3% (w/w) each of ultra-ground sea tangle (ST; Undaria pinnatifida), sea mustard (SM; Saccharina japonica), and sea string (SS; Gracilaria verrucosa) powders. Moisture and ash contents were significantly higher in the USP-treated group than in the control (p<0.05). Potassium, calcium, and zinc contents were significantly higher in the SM than in the other USP-treated groups (p<0.05). In contrast, pH values were significantly higher in the ST and SM than in the control and SS (p<0.05). CIE L*, CIE a*, CIE b*, and shear force were significantly lower in the USP-treated groups than in the control (p<0.05). Sensory evaluation revealed no significant difference in taste, texture, seaweed-like odor, and goaty flavor (p<0.05). Principal component analysis (PCA) and peak graph analysis of the electronic nose showed that the SS differed the most from the control compared with the other USP-treated groups, owing to the seaweed odor of ultra-ground SS powder. The PCA and ranking analysis of the electronic tongue showed that the umami taste of the SM was higher than that of the control and other USP-treated groups. Therefore, the potassium, calcium, zinc contents, and umami taste of reconstituted black goat jerky were significantly higher in the SM than in the control and other USP-treated groups.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute,
Kongju National University, Yesan 32439, Korea
| |
Collapse
|
14
|
Honey O, Nihad SAI, Rahman MA, Rahman MM, Islam M, Chowdhury MZR. Exploring the antioxidant and antimicrobial potential of three common seaweeds of Saint Martin's Island of Bangladesh. Heliyon 2024; 10:e26096. [PMID: 38404817 PMCID: PMC10884863 DOI: 10.1016/j.heliyon.2024.e26096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Antioxidants, which have long been deemed an indispensable guardian of human health, play a pivotal role in bolstering the body's defense against a plethora of diseases. Three well-recognized seaweeds in Bangladesh, including Caulerpa racemosa, Padina tetrastromatica, and Hypnea musciformis, were subjected to meticulous analysis to reveal their phytochemical composition, antioxidant activity, and antimicrobial efficacy using advanced spectroscopic and disc diffusion methods. Intriguingly, we observed that C. racemosa emerges as frontrunners, possessing a substantial arsenal of phenol (143.08 ± 18.51 mg gallic acid equivalent g─1) and flavonoid (63.79 ± 2.16 mg rutin equivalent g─1). More fundamentally, C. racemosa exhibits a notable enrichment in the content of tannin (73.58 mg RE g─1) and chlorophyll (13.50 mg g─1), as well as, antioxidant capacity (4457.67 μg g─1). P. tetrastromatica, on the other hand, displayed commendable effectiveness in scavenging the DPPH radical, with percentages ranging from 53.98 to 62.17%. In terms of hydroxyl radical (OH•) scavenging activity, C. racemosa exhibited the highest efficacy at 400 g mL─1. Fascinatingly, C. racemosa exhibited an impressive antioxidant potential, as evidenced by its exceptionally low IC50 value of 5.58 μg mL-1 for OH• scavenging, whereas P. tetrastromatica showed impressively low value of 0.96 μg mL-1 for DPPH scavenging. Although the three seaweeds demonstrated limited efficacy against a spectrum of five human pathogenic bacteria, their potential as abundant sources of antioxidants remains unscathed. Notably, heatmap and PCA analysis revealed that C. racemosa and P. tetrastromatica emerge as the leading contender for studied antioxidant compounds, demonstrating their proclivity for antioxidant extraction, a trait that could be exploited for large-scale production of these valuable compounds.
Collapse
Affiliation(s)
- Omma Honey
- Institute of Marine Science and Fisheries, University of Chittagong, Bangladesh
| | | | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Bangladesh
| | - Md. Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mahibul Islam
- Department of Marine Sciences, University of Gothenburg, Sweden
| | | |
Collapse
|
15
|
Inam A, Oncu-Oner T, Deniz I. Algae in Biomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:147-163. [PMID: 38353867 DOI: 10.1007/5584_2024_795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Algae, which live in marine or freshwater, are photosynthetic organisms. They vary greatly in size, morphology, and degree of complexity of their body structures. Algae are generally divided into two main groups, microalgae, which are small in size, and macroalgae, which are larger in size. These aquatic organisms have rich and valuable compounds including sterols, polysaccharides, pigments, fatty acids, proteins, enzymes, minerals, and vitamins that could be used in different application fields due to their bioactive functions. In recent years, algae and their components have attracted interest in biomedicine and health applications as their bioactive components could show antioxidant, anticancer, anti-inflammatory, antiviral, antiangiogenic, antidiabetic, antiobesity, immunostimulatory, vaccine adjuvant, and hypolipidemic activities. In this chapter, these activities and bioactive components underlying these properties are reviewed.
Collapse
Affiliation(s)
- Aysegul Inam
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey
| | - Tulay Oncu-Oner
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey
| | - Irem Deniz
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey.
| |
Collapse
|
16
|
Cunningham EM, O'Kane AP, Ford L, Sheldrake GN, Cuthbert RN, Dick JTA, Maggs CA, Walsh PJ. Temporal patterns of fucoxanthin in four species of European marine brown macroalgae. Sci Rep 2023; 13:22241. [PMID: 38097682 PMCID: PMC10721839 DOI: 10.1038/s41598-023-47274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Brown seaweeds are a rich source of carotenoids, particularly fucoxanthin, which has a wide range of potential health applications. Fucoxanthin fluctuates within and among seaweeds over time, frustrating efforts to utilise this resource. Thus, we require comprehensive analyses of long- and short-term concentrations across species in field conditions. Here, we used High Performance Liquid Chromatography to compare fucoxanthin content in four brown macroalgae, Ascophyllum nodosum, Fucus serratus, Fucus vesiculosus and Saccharina latissima, monthly for 1 year. F. serratus and F. vesiculosus had significantly higher fucoxanthin content (mg/g), which was highest in Spring (0.39 ± 0.04) and Autumn (0.45 ± 0.04) [mean (± SE)]. Two species, A. nodosum and F. serratus, were collected monthly at the same location for a further two non-consecutive years. For both A. nodosum and F. serratus, a significant interaction effect of seasons and years was identified, highlighting that there is variation in fucoxanthin content among and within species over time. We also show that fucoxanthin content differs significantly among months even within seasons. Therefore, it is not sufficient to assess fucoxanthin in single months to represent seasonality. We discuss how weather, nutrients and reproduction may have driven the seasonal variation, and reveal patterns of fucoxanthin concentration that can provide information concerning its availability for many important medical functions.
Collapse
Affiliation(s)
- Eoghan M Cunningham
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Aaron P O'Kane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK
| | - Lauren Ford
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| | - Gary N Sheldrake
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK
| | - Ross N Cuthbert
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Jaimie T A Dick
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Christine A Maggs
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Pamela J Walsh
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK.
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK.
| |
Collapse
|
17
|
Chi Y, Jiang Y, Wang Z, Nie X, Luo S. Preparation, structures, and biological functions of rhamnan sulfate from green seaweed of the genus Monostroma: A review. Int J Biol Macromol 2023; 249:125964. [PMID: 37487994 DOI: 10.1016/j.ijbiomac.2023.125964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Rhamnan sulfate, a rhamnose-rich sulfated polysaccharide, is present in the cell walls of green seaweed belonging to the genus Monostroma. This macromolecule demonstrates promising therapeutic properties, including anti-coagulant, thrombolytic, anti-viral, anti-obesity, and anti-inflammatory activities, which hold potential applications in food and medical industries. However, rhamnan sulfate has not garnered as much attention from researchers as other seaweed polysaccharides, including alginate, carrageenan, and fucoidan. This review discusses the extraction and purification techniques of rhamnan sulfate, delves into its chemical structures and related elucidation approaches, and provides an overview of its biological functions. Future research should focus on the structure-activity relationship of rhamnan sulfate and the industrial preparation of rhamnan sulfate with a specific homogeneous structure to facilitate its practical applications.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yanhui Jiang
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
18
|
Bukhari NTM, Rawi NFM, Hassan NAA, Saharudin NI, Kassim MHM. Seaweed polysaccharide nanocomposite films: A review. Int J Biol Macromol 2023; 245:125486. [PMID: 37355060 DOI: 10.1016/j.ijbiomac.2023.125486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
A million tonnes of plastic produced each year are disposed of after single use. Biodegradable polymers have become a promising material as an alternative to petroleum-based polymers. Utilising biodegradable polymers will promote environmental sustainability which has emerged with potential features and performances for various applications in different sectors. Seaweed-derived polysaccharides-based composites have been the focus of numerous studies due to the composites' renewability and sustainability for industries (food packaging and medical fields like tissue engineering and drug delivery). Due to their biocompatibility, abundance, and gelling ability, seaweed derivatives such as alginate, carrageenan, and agar are commonly used for this purpose. Seaweed has distinct film-forming characteristics, but its mechanical and water vapour barrier qualities are weak. Thus, modifications are necessary to enhance the seaweed properties. This review article summarises and discusses the effect of incorporating seaweed films with different types of nanoparticles on their mechanical, thermal, and water barrier properties.
Collapse
Affiliation(s)
- Nur Thohiroh Md Bukhari
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nur Adilah Abu Hassan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Nur Izzaati Saharudin
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
19
|
Generalić Mekinić I, Šimat V, Rathod NB, Hamed I, Čagalj M. Algal Carotenoids: Chemistry, Sources, and Application. Foods 2023; 12:2768. [PMID: 37509860 PMCID: PMC10379930 DOI: 10.3390/foods12142768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, the isolation and identification of various biologically active secondary metabolites from algae have been of scientific interest, with particular attention paid to carotenoids, widely distributed in various photosynthetic organisms, including algal species. Carotenoids are among the most important natural pigments, with many health-promoting effects. Since the number of scientific studies on the presence and profile of carotenoids in algae has increased exponentially along with the interest in their potential commercial applications, this review aimed to provide an overview of the current knowledge (from 2015) on carotenoids detected in different algal species (12 microalgae, 21 green algae, 26 brown algae, and 43 red algae) to facilitate the comparison of the results of different studies. In addition to the presence, content, and identification of total and individual carotenoids in various algae, the method of their extraction and the main extraction parameters were also highlighted.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology & Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), District Raigad, Killa-Roha 402 116, Maharashtra State, India
| | - Imen Hamed
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| |
Collapse
|
20
|
Garcia-Perez P, Cassani L, Garcia-Oliveira P, Xiao J, Simal-Gandara J, Prieto MA, Lucini L. Algal nutraceuticals: A perspective on metabolic diversity, current food applications, and prospects in the field of metabolomics. Food Chem 2023; 409:135295. [PMID: 36603477 DOI: 10.1016/j.foodchem.2022.135295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The current consumers' demand for food naturalness is urging the search for new functional foods of natural origin with enhanced health-promoting properties. In this sense, algae constitute an underexplored biological source of nutraceuticals that can be used to fortify food products. Both marine macroalgae (or seaweeds) and microalgae exhibit a myriad of chemical constituents with associated features as a result of their primary and secondary metabolism. Thus, primary metabolites, especially polysaccharides and phycobiliproteins, present interesting properties to improve the rheological and nutritional properties of food matrices, whereas secondary metabolites, such as polyphenols and xanthophylls, may provide interesting bioactivities, including antioxidant or cytotoxic effects. Due to the interest in algae as a source of nutraceuticals by the food and related industries, novel strategies should be undertaken to add value to their derived functional components. As a result, metabolomics is considered a high throughput technology to get insight into the full metabolic profile of biological samples, and it opens a wide perspective in the study of algae metabolism, whose knowledge is still little explored. This review focuses on algae metabolism and its applications in the food industry, paying attention to the promising metabolomic approaches to be developed aiming at the functional characterization of these organisms.
Collapse
Affiliation(s)
- Pascual Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO-IPB), Campus de Santa Apolónia, Bragança, Portugal
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
21
|
Park JS, Han JM, Shin YN, Park YS, Shin YR, Park SW, Roy VC, Lee HJ, Kumagai Y, Kishimura H, Chun BS. Exploring Bioactive Compounds in Brown Seaweeds Using Subcritical Water: A Comprehensive Analysis. Mar Drugs 2023; 21:328. [PMID: 37367653 DOI: 10.3390/md21060328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we characterized the bioactive properties of three important brown seaweed species, Sargassum thunbergii, Undaria pinnatifida, and Saccharina japonica, by subcritical water extraction (SWE), as these species are well known for their beneficial health effects. Their physiochemical properties, including potential antioxidant, antihypertensive, and α-glucosidase inhibitory activity, and the antibacterial activity of the hydroysates were also analyzed. The highest total phlorotannin, total sugar content, and reducing sugar content in the S. thunbergii hydrolysates were 38.82 ± 0.17 mg PGE/g, 116.66 ± 0.19 mg glucose/g dry sample, and 53.27 ± 1.57 mg glucose/g dry sample, respectively. The highest ABTS+ and DPPH antioxidant activities were obtained in the S. japonica hydrolysates (124.77 ± 2.47 and 46.35 ± 0.01 mg Trolox equivalent/g, respectively) and the highest FRAP activity was obtained in the S. thunbergii hydrolysates (34.47 ± 0.49 mg Trolox equivalent/g seaweed). In addition, the seaweed extracts showed antihypertensive (≤59.77 ± 0.14%) and α-glucosidase inhibitory activity (≤68.05 ± 1.15%), as well as activity against foodborne pathogens. The present findings provide evidence of the biological activity of brown seaweed extracts for potential application in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Yu-Na Shin
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Ye-Seul Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Ye-Ryeon Shin
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Sin-Won Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| | - Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Busan 48434, Republic of Korea
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Namgu, Busan 48513, Republic of Korea
| |
Collapse
|
22
|
Fatima I, Munir M, Qureshi R, Hanif U, Gulzar N, Sheikh AA. Advanced methods of algal pigments extraction: A review. Crit Rev Food Sci Nutr 2023; 64:9771-9788. [PMID: 37233148 DOI: 10.1080/10408398.2023.2216782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Algae are exclusively aquatic photosynthetic organisms that are microscopic or macroscopic, unicellular or multicellular and distributed across the globe. They are a potential source of food, feed, medicine and natural pigments. A variety of natural pigments are available from algae including chlorophyll a, b, c d, phycobiliproteins, carotenes and xanthophylls. The xanthophylls include acyloxyfucoxanthin, alloxanthin, astaxanthin, crocoxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, loroxanthin, monadoxanthin, neoxanthin, nostoxanthin, perdinin, Prasinoxanthin, siphonaxanthin, vaucheriaxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, while carotenes include echinenone, α-carotene, β-carotene, γ-carotene, lycopene, phytoene, phytofluene. These pigments have applications as pharmaceuticals and nutraceuticals and in the food industry for beverages and animal feed production. The conventional methods for the extraction of pigments are solid-liquid extraction, liquid-liquid extraction and soxhlet extraction. All these methods are less efficient, time-consuming and have higher solvent consumption. For a standardized extraction of natural pigments from algal biomass advanced procedures are in practice which includes Supercritical fluid extraction, Pressurized liquid extraction, Microwave-assisted extraction, Pulsed electric field, Moderate electric field, Ultrahigh pressure extraction, Ultrasound-assisted extraction, Subcritical dimethyl ether extraction, Enzyme assisted extraction and Natural deep eutectic solvents. In the present review, these methods for pigment extraction from algae are discussed in detail.
Collapse
Affiliation(s)
- Ishrat Fatima
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Nabila Gulzar
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
23
|
Tagliapietra BL, Clerici MTPS. Brown algae and their multiple applications as functional ingredient in food production. Food Res Int 2023; 167:112655. [PMID: 37087243 DOI: 10.1016/j.foodres.2023.112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/09/2023]
Abstract
Brown algae are considered one of the resources that can contribute to transforming our global food system by promoting healthier diets and reducing environmental impact. In this sense, this review article aims to provide up-to-date information on the nutritional and functional improvement of brown algae when they are applied to different food matrices. Brown algae present sulfated polysaccharides (alginates, fucoidans, and laminarins), proteins, minerals, vitamins, dietary fibers, fatty acids, pigments, and bioactive compounds that can positively contribute to the development of highly nutritious food products, as well as used reformulate products already existing, to remove, reduce, increase, add and/or replace different components and obtain products that confer health-promoting properties. This review demonstrates that there is a tendency to use seaweed for the production of functional foods and that the number of commercially produced products from seaweed is increasing, that is, seaweed is a sector whose global market is expanding.
Collapse
Affiliation(s)
- Bruna Lago Tagliapietra
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Cidade Universitária Zeferino Vaz, 80th Monteiro Lobato Street, CEP 13.083-870 Campinas, São Paulo, Brazil.
| |
Collapse
|
24
|
Woo S, Moon JH, Sung J, Baek D, Shon YJ, Jung GY. Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Enhancing Bioproducts in Seaweeds via Sustainable Aquaculture: Antioxidant and Sun-Protection Compounds. Mar Drugs 2022; 20:md20120767. [PMID: 36547914 PMCID: PMC9787370 DOI: 10.3390/md20120767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Marine macroalgae are considered an untapped source of healthy natural metabolites and their market demand is rapidly increasing. Intertidal macroalgae present chemical defense mechanisms that enable them to thrive under changing environmental conditions. These intracellular chemicals include compounds that can be used for human benefit. The aim of this study was to test cultivation protocols that direct seaweed metabolic responses to enhance the production of target antioxidant and photoprotective biomaterials. We present an original integrated multi-trophic aquaculture (IMTA) design, based on a two-phase cultivation plan, in which three seaweed species were initially fed by fish effluents, and subsequently exposed to various abiotic stresses, namely, high irradiance, nutrient starvation, and high salinity. The combined effect of the IMTA's high nutrient concentrations and/or followed by the abiotic stressors enhanced the seaweeds' content of mycosporine-like amino acids (MAAs) by 2.3-fold, phenolic compounds by 1.4-fold, and their antioxidant capacity by 1.8-fold. The Sun Protection Factor (SPF) rose by 2.7-fold, and the chlorophyll and phycobiliprotein synthesis was stimulated dramatically by an order of magnitude. Our integrated cultivation system design offers a sustainable approach, with the potential to be adopted by emerging industries for food and health applications.
Collapse
|
26
|
Dewi EN, Purnamayati L, Jaswir I. Effects of thermal treatments on the characterisation of microencapsulated chlorophyll extract of Caulerpa racemosa. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caulerpa racemosa is a macroalga that has a green pigment, that is, chlorophyll. Chlorophyll is highly sensitive to damage during heat processing. In the present work, C. racemosa chlorophyll extract was microencapsulated with fish gelatine and Arabic gum coatings, using a freeze-drying technique, to protect against heat damage. The microcapsules were subjected to high temperatures (120, 140, and 160°C) for 5 h. The protective effect of microcapsules on chlorophyll stability was assessed by measuring chlorophylls a and b degradation, total phenolic content, antioxidant activity, functional group analysis, colour, particle size, and morphology via scanning electron microscopy. Chlorophyll b significantly decreased by 87.78% in comparison with chlorophyll a (61.49%) during heating; the characteristic green colour of chlorophyll changed to brownish-green following heat exposure. However, chlorophyll was still present in the microcapsules as detected by the presence of the functional group C=O bond at 1600 nm wavelength. The heat treatment did not affect microcapsule particle size and morphology. Particle size distribution ranged from 91.58 to 112.51 µm, and the microcapsule was flake-shaped. The activation energy of chlorophyll a was 19336.96 kJ/mol·K; this was higher than that of chlorophyll b, which was 1780.53 kJ/mol·K. Based on the results, microcapsules produced using fish gelatine and Arabic gum as coating materials were able to protect chlorophyll in C. racemosa extract from heat damage.
Collapse
|
27
|
de Aguiar ALL, Araújo MLH, Benevides NMB, Mattos ALA, da Silva Araújo IM, da Silva EMC. Sequential extraction process and physicochemical characterization of R-phycoerythrin and agar from red macroalgae Gracilaria birdiae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Deolu-Ajayi AO, van der Meer IM, van der Werf A, Karlova R. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. PLANT, CELL & ENVIRONMENT 2022; 45:2537-2553. [PMID: 35815342 DOI: 10.1111/pce.14391] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses like drought and salinity are major factors resulting in crop yield losses and soil degradation worldwide. To meet increasing food demands, we must improve crop productivity, especially under increasing abiotic stresses due to climate change. Recent studies suggest that seaweed-based biostimulants could be a solution to this problem. Here, we summarize the current findings of using these biostimulants and highlight current knowledge gaps. Seaweed extracts were shown to enhance nutrient uptake and improve growth performance in crops under stressed and normal conditions. Seaweed extracts contain several active compounds, for example, polysaccharides, polyphenols and phytohormones. Although some of these compounds have growth-promoting properties on plants, the molecular mechanisms that underly seaweed extract action remain understudied. In this paper, we review the role of these extracts and their bioactive compounds as plant biostimulants. The targeted application of seaweed extract to improve crop performance and protein accumulation is also discussed.
Collapse
Affiliation(s)
- Ayodeji O Deolu-Ajayi
- Agrosystems Research, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ingrid M van der Meer
- Bioscience, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Adrie van der Werf
- Agrosystems Research, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Rumyana Karlova
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
30
|
Rubiño S, Peteiro C, Aymerich T, Hortós M. Major lipophilic pigments in Atlantic seaweeds as valuable food ingredients: Analysis and assessment of quantification methods. Food Res Int 2022; 159:111609. [PMID: 35940804 DOI: 10.1016/j.foodres.2022.111609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Current trends towards the use of ingredients from natural origin in food, cosmetic and pharmaceutical industry, place macroalgae as a good reservoir of novel compounds. Among them, lipophilic major pigments such as chlorophylls and fucoxanthin, are of great interest because of their multiple applications as bioactive compounds and dyes. In this work, a mid-polarity medium was used to extract pigments from twenty-four species from North coast of Spain, including brown (Phaeophyceae) and red macroalgae (Rhodophyta). The fucoxanthin and chlorophyll a content was assessed by means of two different methods, spectrophotometric and high-performance liquid chromatography coupled to diode array detection (HPLC-DAD). The effect of dried processing on the pigment content of selected species was also evaluated. A linear relationship between the extractability of fucoxanthin and chlorophyll a was observed, being the highest content recorded among members belonging to the order Fucales and Undaria pinnatifida. This work provides good insights about the content on pigments in Spanish North Atlantic macroalgae with future commercial value in different industrial fields, as well as a critical overview of the suitability of the quantification methods and challenges related to their effect in results evaluation.
Collapse
Affiliation(s)
- S Rubiño
- IRTA-Food Safety and Functionality Programme. Finca Camps i Armet s/n, 17121 Monells, Girona, Spain
| | - C Peteiro
- Spanish Institute of Oceanography of the Spanish National Research Council (IEO, CSIC), Oceanographic Centre of Santander, Marine Culture Units "El Bocal", Seaweeds Centre. Barrio Corbanera s/n., 39012 Monte, Santander, Spain
| | - T Aymerich
- IRTA-Food Safety and Functionality Programme. Finca Camps i Armet s/n, 17121 Monells, Girona, Spain
| | - M Hortós
- IRTA-Food Safety and Functionality Programme. Finca Camps i Armet s/n, 17121 Monells, Girona, Spain.
| |
Collapse
|
31
|
Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem 2022; 403:134367. [DOI: 10.1016/j.foodchem.2022.134367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
32
|
Sridhar A, Vaishampayan V, Senthil Kumar P, Ponnuchamy M, Kapoor A. Extraction techniques in food industry: Insights into process parameters and their optimization. Food Chem Toxicol 2022; 166:113207. [PMID: 35688271 DOI: 10.1016/j.fct.2022.113207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
This review presents critical evaluation of the key parameters that affect the extraction of targeted components, giving due consideration to safety and environmental aspects. The crucial aspects of the extraction technologies along with protocols and process parameters for designing unit operations have been emphasized. The parameters like solvent usage, substrate type, concentration, particle size, temperature, quality and storage of extract as well as stability of extraction have been elaborately discussed. The process optimization using mathematical and computational modeling highlighting information and communication technologies have been given importance aiming for a green and sustainable industry level scaleup. The findings indicate that the extraction processes vary significantly depending on the category of food and its structure. There is no single extraction method or universal set of process conditions identified for extracting all value-added products from respective sources. A comprehensive understanding of process parameters and their optimization as well as synergistic combination of multiple extraction processes can aid in enhancement of the overall extraction efficiency. Future efforts must be directed toward the design of integrated unit operations that cause minimal harm to the environment along with investigations on economic feasibility to ensure sustainable extraction systems.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Vijay Vaishampayan
- Department of Chemical Engineering, Indian Institute of Technology, Ropar, Rupnagar, Punjab, 140001, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
33
|
Cikoš AM, Šubarić D, Roje M, Babić J, Jerković I, Jokić S. Recent advances on macroalgal pigments and their biological activities (2016–2021). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
34
|
El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review. Mar Drugs 2022; 20:md20060342. [PMID: 35736145 PMCID: PMC9227187 DOI: 10.3390/md20060342] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Amal A. Mohamed
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
- Plant Biochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Heba I. Mohamed
- Biological and Geological Science Department, Faculty of Education, Ain Shams University, Cairo 11757, Egypt
- Correspondence: (H.S.E.-B.); (A.A.M.); (H.I.M.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Aminah A. Barqawi
- Chemistry Department, Al-Leith University College, Umm Al-Qura University, Makkah 24831, Saudi Arabia;
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
35
|
Pérez-Alva A, MacIntosh A, Baigts-Allende D, García-Torres R, Ramírez-Rodrigues M. Fermentation of algae to enhance their bioactive activity: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Pardilhó S, Cotas J, Pereira L, Oliveira MB, Dias JM. Marine macroalgae in a circular economy context: A comprehensive analysis focused on residual biomass. Biotechnol Adv 2022; 60:107987. [DOI: 10.1016/j.biotechadv.2022.107987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
|
37
|
Wang M, Zhou J, Tavares J, Pinto CA, Saraiva JA, Prieto MA, Cao H, Xiao J, Simal-Gandara J, Barba FJ. Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr 2022; 63:8357-8374. [PMID: 35357258 DOI: 10.1080/10408398.2022.2054939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Meat constitutes one the main protein sources worldwide. However, ethical and health concerns have limited its consumption over the last years. To overcome this negative impact, new ingredients from natural sources are being applied to meat products to obtain healthier proteinaceous meat products. Algae is a good source of unsaturated fatty acids, proteins, essential amino acids, and vitamins, which can nutritionally enrich several foods. On this basis, algae have been applied to meat products as a functional ingredient to obtain healthier meat-based products. This paper mainly reviews the bioactive compounds in algae and their application in meat products. The bioactive ingredients present in algae can give meat products functional properties such as antioxidant, neuroprotective, antigenotoxic, resulting in healthier foods. At the same time, algae addition to foods can also contribute to delay microbial spoilage extending shelf-life. Additionally, other algae-based applications such as for packaging materials for meat products are being explored. However, consumers' acceptance for new products (particularly in Western countries), namely those containing algae, not only depends on their knowledge, but also on their eating habits. Therefore, it is necessary to further explore the nutritional properties of algae-containing meat products to overcome the gap between new meat products and traditional products, so that healthier algae-containing meat can occupy a significant place in the market.
Collapse
Affiliation(s)
- Min Wang
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jianjun Zhou
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Jéssica Tavares
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
38
|
An Overview of the Alternative Use of Seaweeds to Produce Safe and Sustainable Bio-Packaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In modern times, seaweeds have become widely involved in several biotechnological applications due to the variety of their constituent bioactive compounds. The consumption of seaweeds dates to ancient times; however, only from the last few decades of research can we explain the mechanisms of action and the potential of seaweed-derived bioactive compounds, which has led to their involvement in food, cosmetic, pharmaceutical, and nutraceutical industries. Macroalgae-derived bioactive compounds are of great importance as their properties enable them to be ideal candidates for the production of sustainable “green” packaging. Diverse studies demonstrate that seaweed polysaccharides (e.g., alginates and carrageenans) not only provide health benefits, but also contribute to the production of biopolymeric film and biodegradable packaging. The dispersion of plastics and microplastics in the oceans provoke serious environmental issues that influence ecosystems and aquatic organisms. Thus, the sustainable use of seaweed-derived biopolymers is now crucial to replace plasticizers with biodegradable materials, and thus preserve the environment. The present review aims to provide an overview on the potential of seaweeds in the production of bioplastics which might be involved in food or pharmaceutical packaging.
Collapse
|
39
|
Gomes L, Monteiro P, Cotas J, Gonçalves AMM, Fernandes C, Gonçalves T, Pereira L. Seaweeds' pigments and phenolic compounds with antimicrobial potential. Biomol Concepts 2022; 13:89-102. [PMID: 35247041 DOI: 10.1515/bmc-2022-0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, there has been increased interest in the development of novel antimicrobial compounds for utilization in a variety of sectors, including pharmaceutical, biomedical, textile, and food. The use, overuse, and misuse of synthetic compounds or derivatives have led to an increase of pathogenic microorganisms gaining resistance to the traditional antimicrobial therapies, which has led to an increased need for alternative therapeutic strategies. Seaweed are marine organisms that can be cultivated sustainably, and they are a source of polar molecules, such as pigments and phenolic compounds, which demonstrated antimicrobial potential. This review focuses on current knowledge about pigments and phenolic compounds isolated from seaweeds, their chemical characteristics, antimicrobial bioactivity, and corresponding mechanism of action.
Collapse
Affiliation(s)
- Louisa Gomes
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Pedro Monteiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Cotas
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.,Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chantal Fernandes
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Teresa Gonçalves
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Leonel Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
40
|
Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar Drugs 2022; 20:141. [PMID: 35200670 PMCID: PMC8875101 DOI: 10.3390/md20020141] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
41
|
Garcia-Perez P, Lourenço-Lopes C, Silva A, Pereira AG, Fraga-Corral M, Zhao C, Xiao J, Simal-Gandara J, Prieto MA. Pigment Composition of Nine Brown Algae from the Iberian Northwestern Coastline: Influence of the Extraction Solvent. Mar Drugs 2022; 20:113. [PMID: 35200642 PMCID: PMC8879247 DOI: 10.3390/md20020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Brown algae are ubiquitously distributed in the NW coastline of the Iberian Peninsula, where they stand as an underexploited resource. In this study, five solvents were applied to the extraction of pigments from nine brown algae, followed by their determination and quantification by HPLC-DAD. A total of 13 compounds were detected: Six were identified as chlorophylls, six were classified as xanthophylls, and one compound was reported as a carotene. Fucoxanthin was reported in all extracts, which is the most prominent pigment of these algae. Among them, L. saccharina and U. pinnatifida present the highest concentration of fucoxanthin (4.5-4.7 mg∙g-1 dry weight). Ethanol and acetone were revealed as the most efficient solvents for the extraction of pigments, showing a maximal value of 11.9 mg of total pigments per gram of dry alga obtained from the ethanolic extracts of H. elongata, followed by the acetonic extracts of L. ochroleuca. Indeed, ethanol was also revealed as the most efficient solvent according to its high extraction yield along all species evaluated. Our results supply insights into the pigment composition of brown algae, opening new perspectives on their commercial exploitation by food, pharmaceutical, and cosmeceutical industries.
Collapse
Affiliation(s)
- Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
- Department for Sustainable Food Process, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
| | - Aurora Silva
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Antia G. Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Chao Zhao
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China;
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, Ourense Campus, E-32004 Ourense, Spain; (P.G.-P.); (C.L.-L.); (A.S.); (A.G.P.); (M.F.-C.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
42
|
Samarathunga J, Wijesekara I, Jayasinghe M. Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jayani Samarathunga
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madhura Jayasinghe
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
43
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Potential use of bacterial pigments as anticancer drugs and female reproductive toxicity: a review. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Natural bioactive compounds obtained from microorganisms, have awakened particular interest in the industry nowadays. This attention comes when natural resources depletion is pronounced, and the acquisition of both new plant origin resources and bioactive products, represents a challenge for the next generations. In this sense, prospecting for large-scale production and use of bacterial pigments is a necessary strategy for the development of novel products. A wide variety of properties have been attributed to these substances and, among them, their therapeutic potential against important diseases, such as cancer. There is consensus that available chemotherapy protocols are known to detrimentally affect cancer patients fertility. Hence, considerable part of the deleterious effects of chemotherapy is related to the drugs cytotoxicity, which, in addition to cancer cells, also affect normal cells. Therefore, the intrinsic properties of bacterial pigments associated with low cytotoxicity and relevant cell selectivity, certified them as potential anticancer drugs. However, little information is available about reproductive toxicity of these new and promising compounds. Thus, the present review aims to address the main bacterial pigments, their potential uses as anticancer drugs and their possible toxic effects, especially on the female gonad.
Collapse
|
44
|
Park JS, Han JM, Surendhiran D, Chun BS. Physicochemical and biofunctional properties of Sargassum thunbergii extracts obtained from subcritical water extraction and conventional solvent extraction. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Uso potencial de pigmentos bacterianos como drogas anticâncer e toxicidade reprodutiva feminina: uma revisão. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumo Os compostos bioativos naturais obtidos de microrganismos têm despertado especial interesse da indústria nos últimos anos. Esta atenção ocorre em um momento em que o esgotamento de recursos naturais é pronunciado, e a aquisição de novos insumos e produtos bioativos de origem vegetal representa um desafio para as próximas gerações. Neste sentido, a prospecção para a produção e uso em larga escala dos pigmentos bacterianos tem representado uma importante estratégia para o desenvolvimento de novos produtos. Uma grande variedade de propriedades foi atribuída a estas substâncias, entre elas, o potencial terapêutico contra doenças importantes, como o câncer. Existe um consenso de que os protocolos quimioterápicos disponíveis são conhecidos por afetarem negativamente a fertilidade de pacientes com câncer. Grande parte dos efeitos deletérios da quimioterapia está relacionado à citotoxicidade das drogas usadas para este fim, que além das células cancerosas, afetam as células normais. Nesse sentido, as propriedades naturais atribuídas aos pigmentos bacterianos associadas à baixa citotoxicidade e relevante seletividade, os qualificaram como potenciais drogas anticâncer. No entanto, pouco se tem de informação a respeito da toxicidade reprodutiva destes novos e promissores compostos. Dessa forma, a presente revisão tem o objetivo de abordar os principais pigmentos bacterianos, suas utilizações potenciais como drogas anticâncer, bem como os seus possíveis efeitos tóxicos, sobretudo, sobre a gônada feminina.
Collapse
|
46
|
Cottas AG, Teixeira TA, Cunha WR, Ribeiro EJ, de Souza Ferreira J. Effect of glucose and sodium nitrate on the cultivation of Nostoc sp. PCC 7423 and production of phycobiliproteins. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Exploring the Potential of Icelandic Seaweeds Extracts Produced by Aqueous Pulsed Electric Fields-Assisted Extraction for Cosmetic Applications. Mar Drugs 2021; 19:md19120662. [PMID: 34940661 PMCID: PMC8704373 DOI: 10.3390/md19120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
A growing concern for overall health is driving a global market of natural ingredients not only in the food industry but also in the cosmetic field. In this study, a screening on potential cosmetic applications of aqueous extracts from three Icelandic seaweeds produced by pulsed electric fields (PEF) was performed. Produced extracts by PEF from Ulva lactuca, Alaria esculenta and Palmaria palmata were compared with the traditional hot water extraction in terms of polyphenol, flavonoid and carbohydrate content. Moreover, antioxidant properties and enzymatic inhibitory activities were evaluated by using in vitro assays. PEF exhibited similar results to the traditional method, showing several advantages such as its non-thermal nature and shorter extraction time. Amongst the three Icelandic species, Alaria esculenta showed the highest content of phenolic (mean value 8869.7 µg GAE/g dw) and flavonoid (mean value 12,098.7 µg QE/g dw) compounds, also exhibiting the highest antioxidant capacities. Moreover, Alaria esculenta extracts exhibited excellent anti-enzymatic activities (76.9, 72.8, 93.0 and 100% for collagenase, elastase, tyrosinase and hyaluronidase, respectively) for their use in skin whitening and anti-aging products. Thus, our preliminary study suggests that Icelandic Alaria esculenta-based extracts produced by PEF could be used as potential ingredients for natural cosmetic and cosmeceutical formulations.
Collapse
|
48
|
Srinivasan R, Kannappan A, Shi C, Lin X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar Drugs 2021; 19:md19100530. [PMID: 34677431 PMCID: PMC8539464 DOI: 10.3390/md19100530] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of antimicrobial resistance reduces the effectiveness of antimicrobial drugs in preventing and treating infectious diseases caused by pathogenic organisms, such as bacteria, fungi, and viruses. Because of the burgeoning growth of microbes with antimicrobial-resistant traits, there is a dire need to identify and develop novel and effective antimicrobial agents to treat infections from antimicrobial-resistant strains. The marine environment is rich in ecological biodiversity and can be regarded as an untapped resource for prospecting novel bioactive compounds. Therefore, exploring the marine environment for antimicrobial agents plays a significant role in drug development and biomedical research. Several earlier scientific investigations have proven that bacterial diversity in the marine environment represents an emerging source of structurally unique and novel antimicrobial agents. There are several reports on marine bacterial secondary metabolites, and many are pharmacologically significant and have enormous promise for developing effective antimicrobial drugs to combat microbial infections in drug-resistant pathogens. In this review, we attempt to summarize published articles from the last twenty-five years (1996–2020) on antimicrobial secondary metabolites from marine bacteria evolved in marine environments, such as marine sediment, water, fauna, and flora.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| | - Arunachalam Kannappan
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Chunlei Shi
- State Key Laboratory of Microbial Metabolism, MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (C.S.)
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (R.S.); (X.L.)
| |
Collapse
|
49
|
Evaluation of extraction methods and purification by aqueous two-phase systems of phycocyanin from Anabaena variabilis and Nostoc sp. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Kalasariya HS, Yadav VK, Yadav KK, Tirth V, Algahtani A, Islam S, Gupta N, Jeon BH. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021; 26:5313. [PMID: 34500745 PMCID: PMC8434260 DOI: 10.3390/molecules26175313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Amongst the countless marine organisms, seaweeds are considered as one of the richest sources of biologically active ingredients having powerful biological activities. Seaweeds or marine macroalgae are macroscopic multicellular eukaryotic photosynthetic organisms and have the potential to produce a large number of valuable compounds, such as proteins, carbohydrates, fatty acids, amino acids, phenolic compounds, pigments, etc. Since it is a prominent source of bioactive constituents, it finds diversified industrial applications viz food and dairy, pharmaceuticals, medicinal, cosmeceutical, nutraceutical, etc. Moreover, seaweed-based cosmetic products are risen up in their demands by the consumers, as they see them as a promising alternative to synthetic cosmetics. Normally it contains purified biologically active compounds or extracts with several compounds. Several seaweed ingredients that are useful in cosmeceuticals are known to be effective alternatives with significant benefits. Many seaweeds' species demonstrated skin beneficial activities, such as antioxidant, anti-melanogenesis, antiaging, photoprotection, anti-wrinkle, moisturizer, antioxidant, anti-inflammatory, anticancer and antioxidant properties, as well as certain antimicrobial activities, such as antibacterial, antifungal and antiviral activities. This review presents applications of bioactive molecules derived from marine algae as a potential substitute for its current applications in the cosmetic industry. The biological activities of carbohydrates, proteins, phenolic compounds and pigments are discussed as safe sources of ingredients for the consumer and cosmetic industry.
Collapse
Affiliation(s)
- Haresh S. Kalasariya
- Microbiology Department, Sankalchand Patel University, Visnagar 384315, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Engineering, River Engineering Pvt. Ltd., Ecotech Phase III, Greater Noida 110042, Uttar Pradesh, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, Madhya Pradesh, India;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Saudi Arabia; (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Asir, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Asir, Saudi Arabia;
| | - Neha Gupta
- Institute of Environment and Development Studies, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|