1
|
Dimitrakopoulou ME, Marinos G, Karvounis M, Stoitsis G, Manouselis N, Thanopoulos C, Elliott C. What Lies Behind Mycotoxin Presence in Animal Feed? A Case Study ☆. J Food Prot 2025; 88:100464. [PMID: 39921133 DOI: 10.1016/j.jfp.2025.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
This study investigates seasonal trends and correlations among different mycotoxins in animal feed, employing time series analysis and Seasonal-Trend Decomposition using LOESS (STL) to uncover patterns and relationships. Data collected from Food Fortress, covering 2014-2024, include feed for ruminants, pigs, and poultry. The analysis reveals that seasonality accounts for less than 15% of the variability in mycotoxin levels, suggesting a limited seasonal influence. High deoxynivalenol (DON) concentrations in ram feed were attributed to specific management practices, while persistent DON levels in pig and poultry feed highlight the need for enhanced interventions. A strong correlation between DON and zearalenone (ZEN) was identified in pig and poultry feed. Over the study period, aflatoxin levels exhibited a slight increase, potentially linked to evolving climatic conditions, whereas DON and ZEN levels showed a slight decline. Furthermore, an inverse correlation between aflatoxin and ochratoxin levels suggests competitive interactions among fungal species, such as Aspergillus and Penicillium. These findings provide valuable insights into the intricate interactions of seasonal factors, management practices, and fungal ecology shaping mycotoxin contamination in animal feed. The study emphasizes the need for advanced mitigation strategies, including predictive modeling and artificial intelligence, to monitor and manage mycotoxin risks effectively at the regional level, ensuring feed safety and quality in the face of evolving environmental and management challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chris Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, Belfast BT9 5DL Northern Ireland, UK; International Joint Research Centre on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Cova TF, Ferreira C, Nunes SCC, Pais AACC. Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6173-6188. [PMID: 40013497 DOI: 10.1021/acs.jafc.4c08527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compounds. This work addresses a fundamental question: Can we assess molecular similarity and predict the toxicity of mycotoxins in silico using a defined set of molecular descriptors? We propose a rapid nontarget screening approach for multiple classes of mycotoxins, integrating both unsupervised and supervised machine learning models, alongside molecular and physicochemical descriptors to enhance the understanding of structural similarity, activity, and toxicity. Clustering analyses identify natural clusters corresponding to the known mycotoxin families, indicating that mycotoxins belonging to the same cluster share similar molecular properties. However, topological descriptors play a significant role in distinguishing between acutely toxic and nonacutely toxic compounds. Random forest (RF) and neural networks (NN), combined with molecular descriptors, contribute to improved knowledge and predictive capability regarding mycotoxin toxicity profiles. RF allows the prediction of toxicity using data reflecting mainly structural features and performs well in the presence of descriptors reflecting biological activity. NN models prove to be more sensitive to biological activity descriptors than RF. The use of descriptors encompassing structural complexity and diversity, chirality and symmetry, connectivity, atomic charge, and polarizability, together with descriptors representing lipophilicity, absorption, and permeation of molecules, is crucial for predicting toxicity, facilitating broader toxicological evaluations.
Collapse
Affiliation(s)
- Tânia F Cova
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Ziemniczak HM, Conceição LMA, Godoy AC, Neu DH, Rodrigues AT, de Campos CM, Acunha RMG, Gandra JR, Saturnino KC, de Pádua Pereira U, Honorato CA. Probiotic-based adsorbent mitigates aflatoxin B1 toxicity in Piaractus mesopotamicus: assessing well-being via changes in tissue architecture and digestive enzyme activity. Vet Res Commun 2025; 49:94. [PMID: 39878892 DOI: 10.1007/s11259-025-10663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Aflatoxin is a mycotoxin produced by fungi of the genus Aspergillus that is present in various foods. Probiotics are well-established products in aquaculture, and due to their effective contribution to the intestine, they can be used as an aflatoxin adsorbent. This study evaluated the effects of aflatoxin B1 (AFB1) on enzymatic activity and intestinal function in Piaractus mesopotamicus (pacu) fingerlings fed diets containing a probiotic-based adsorbent (PBA). Seventy-two fish with an average weight of 12 ± 1.30 g were used in the study. The experiment was conducted over 15 days using a completely randomized design with six diet treatments (AFB1 per kg of formulated diet) and two replicates. These treatments were: control without AFB1; 25.0 µg of AFB1; 400.0 µg of AFB1; control diet without AFB1 + PBA; 25.0 µg of AFB1 + PBA; and 400.0 µg of AFB1 + PBA. After the experimental period, the digestive enzymes protease, amylase, and lipase from the stomach, pyloric caeca, and intestine were quantified. The height and width of the intestinal villi, pyloric caeca, and stomach wall were measured. Fish fed the 400.0 µg of AFB1 diet showed reduced feed consumption, even though they ingested higher amounts of AFB1 compared to those fed the other experimental diets. The best zootechnical performance parameters were observed in fish fed the control diet without AFB1 + PBA. Changes (p < 0.05) were observed in the amount of protease in the stomach, pyloric caeca, and intestine; in the amount of amylase in the intestine; and the amount of lipase in the pyloric caeca and intestine. Changes were observed (p < 0.05) in the length of the stomach wall and the anterior and posterior intestines. Changes in the width of the stomach and anterior intestine walls were observed as a result of diet. Our results suggest that the use of probiotics as an aflatoxin adsorbent in pacu diets is beneficial from a physiological perspective and may also enhance growth.
Collapse
Affiliation(s)
- Henrique M Ziemniczak
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | - Leticia Maria Albuquerque Conceição
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | - Antonio Cesar Godoy
- Departamento de Pesquisa em Recursos Naturais, Instituto Federal de Educação, Ciência e Tecnologia do Paraná, Avenida Cívica, 475, Assis Chateaubriand, Paraná, 85935-000, Argentina.
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil.
| | - Dacley Hertes Neu
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | | | - Cristiane Meldau de Campos
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil
| | - Rubia Mara Gomes Acunha
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Klaus C Saturnino
- Universidade Federal de Jataí, BR 364, km 195, Setor Parque Industrial nº 3800, Jataí, GO, Brasil
| | - Ulisses de Pádua Pereira
- Universidade Federal de Jataí, BR 364, km 195, Setor Parque Industrial nº 3800, Jataí, GO, Brasil
| | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| |
Collapse
|
4
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
5
|
Pokoo-Aikins A, McDonough CM, Mitchell TR, Hawkins JA, Adams LF, Read QD, Li X, Shanmugasundaram R, Rodewald E, Acharya P, Glenn AE, Gold SE. Mycotoxin contamination and the nutritional content of corn targeted for animal feed. Poult Sci 2024; 103:104303. [PMID: 39299014 PMCID: PMC11426393 DOI: 10.1016/j.psj.2024.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Mycotoxin contaminated corn poses a risk to poultry production. Although mycotoxin regulatory guidelines are based on the hazards of individual mycotoxin contamination, feed and feed ingredients may be contaminated with multiple mycotoxins. The objective of this study was to assess mycotoxin co-contamination and its impact on the nutrient content of corn grain. Corn samples (n = 328) originating from various regions in the Southeastern U.S. were quantitatively analyzed for fumonisin (FUM), deoxynivalenol (DON), aflatoxin (AFB1) and zearalenone (ZEA) by HPLC-MS/MS. Nutritional content was analyzed by near-infrared spectroscopy, and color data were collected. All 328 samples were found to be contaminated with at least 1 mycotoxin: 100% contained FUM (19-24,680 µg/kg), 69.82% contained DON (0-9,640 µg/kg), 17.07% contained AFB1 (0-939 µg/kg), and 43.60% had detectable levels of ZEA (0-8,093.5 µg/kg). Most of the samples were contaminated with 2 or more mycotoxins, with only 18.29% of the samples containing a single mycotoxin. 38.41% of the samples had 2 mycotoxins present, 36.59 % had 3 mycotoxins, and 4.88% of the samples had all 4 tested mycotoxins present. Samples contaminated with AFB1 had significantly lower fat (P = 0.007) and lightness (P = 0.007); samples contaminated with DON had significantly higher starch (P < 0.001) and lower protein (P < 0.001). Samples contaminated with FUM had significantly higher protein (P = 0.008) and moisture (P = 0.019) and lower starch (P < 0.001). ZEA contaminated samples had significantly lower starch (P = 0.034). A correlation was observed between mycotoxin contamination and altered nutrient content in corn. This study provides further evidence that co-contamination of mycotoxins is the norm in corn, and that mycotoxin contamination correlates with impacts on the nutrient profile of feed corn.
Collapse
Affiliation(s)
- Anthony Pokoo-Aikins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - Callie M McDonough
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Trevor R Mitchell
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Jaci A Hawkins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Lincoln F Adams
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Quentin D Read
- Southeast Area, Agricultural Research Service, U.S. Department of Agriculture, Raleigh, NC, USA
| | - Xiang Li
- U.S. National Poultry Research Center, Egg and Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Revathi Shanmugasundaram
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - ElsiAnna Rodewald
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Pratima Acharya
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Anthony E Glenn
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Scott E Gold
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
6
|
Borowsky AM, Rosim RE, Tonin FG, de Oliveira CAF, Corassin CH. Co-Occurrence of Mycotoxins in the Diet and in the Milk of Dairy Cows from the Southeast Region of Brazil. Toxins (Basel) 2024; 16:492. [PMID: 39591247 PMCID: PMC11598312 DOI: 10.3390/toxins16110492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic fungi secondary metabolites that develop on feedstuffs and can be transferred into milk, thus representing a public health risk. The objective of this study was to assess the co-occurrence of mycotoxins in the diet and in the milk of dairy cows from the southeast region of Brazil. Samples of total mixed ration (TMR, n = 70) and milk (n = 70) were collected in dairy farms and subjected to multi-mycotoxin analysis using liquid chromatography coupled to tandem mass spectrometry. The aflatoxins (AFs), ochratoxin A (OTA), and T-2 and HT-2 toxins were not detected in TMR samples. In contrast, fumonisins (FBs), zearalenone (ZEN), and deoxynivalenol (DON) were detected in 100, 93, and 24% of TMR samples at mean levels of 336.7 ± 36.98, 80.32 ± 16.06 µg/kg and 292.1 ± 85.68 µg/kg, respectively. Ninety-two percent of TMR samples exhibited co-occurring mycotoxins. In milk, 54% of samples (n = 38) had detectable levels of mycotoxin, while 43% (n = 30) contained two or more types of mycotoxins. DON, FB, and ZEN metabolites (α-zearalenol and β-zearalenol) were the most frequent mycotoxins detected in the milk samples analyzed, at mean concentrations of 0.562 ± 0.112, 2.135 ± 0.296 µg/kg, 2.472 ± 0.436 µg/kg, and 0.343 ± 0.062 µg/kg, respectively. However, none of the analyzed milk samples had levels higher than the maximum permitted limit for AFM1 in Brazil (0.5 µg/L). The results of this trial highlight the concern about the co-occurrence of multiple mycotoxins in TMR and in milk, due to the possible additive or synergistic effects of these compounds. The presence of co-occurring mycotoxins in milk underscores the need for stringent preventive practices to avoid mycotoxin contamination in the diet of dairy cows in Brazil.
Collapse
Affiliation(s)
- Aline Moreira Borowsky
- Departament of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil;
| | - Roice Eliana Rosim
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.E.R.); (F.G.T.)
| | - Fernando Gustavo Tonin
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.E.R.); (F.G.T.)
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.E.R.); (F.G.T.)
| | - Carlos Humberto Corassin
- Departament of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil;
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (R.E.R.); (F.G.T.)
| |
Collapse
|
7
|
Fiorbelli E, Lapris M, Errico M, Della Badia A, Riahi I, Rocchetti G, Gallo A. Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method. Toxins (Basel) 2024; 16:490. [PMID: 39591245 PMCID: PMC11598721 DOI: 10.3390/toxins16110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
To protect ruminants from the harmful effects of mycotoxins, anti-mycotoxin agents can be added to the dietary ration, thus guaranteeing animal health and production. Therefore, the objective of this study was to evaluate the in vitro ruminal initial sequestration (weak binding) and subsequent desorption (strong binding) of an anti-mycotoxin agent based on a mixture of adsorbing material, turmeric and milk thistle extracts and yeast-based components to adsorb or bio-convert aflatoxins (AF), fumonisins B1 and B2 (FB), trichothecene deoxynivalenol (DON), T-2 and HT-2 toxins, and zearalenone (ZEN). Two doses were tested: Dose 1 simulated 30 mg/cow/d, while Dose 2 simulated 90 mg/cow/d of the anti-mycotoxin agent. Each treatment involved three analytical replicates at each of three incubation times (1, 4, and 24 h post-incubation), with two independent experimental runs providing experimental replicates. Analytical methods, including UHPLC-HRMS and multivariate analyses, were used to both quantify mycotoxin concentrations and reveal dose-dependent reductions, with statistical validations indicating significant changes in mycotoxin levels across both dose and time. The results indicated that the anti-mycotoxin agent was able to highly bind AFB1, T2, and HT-2 toxins since its concentration was always under the limit of detection (<1 ppb). Regarding ZEN (weak binding mean: 94.6%; strong binding mean: 62.4%) and FBs (weak binding mean: 58.7%; strong binding mean: 32.3%), orthogonal contrasts indicated that the anti-mycotoxin agent was able to effectively bind these toxins using Dose 1 (p < 0.05). This finding suggests that Dose 1 may be sufficient to achieve the targeted effect and that a further increase does not significantly improve the outcome. Regarding DON, a strong linear relationship was observed between dose and adsorption. However, the complex interactions between the mycotoxin, the ruminal environment, and the anti-mycotoxin agent made it difficult to establish a clear dose-effect relationship (p > 0.10). UHPLC-HRMS analysis identified over 1500 mass features in rumen samples, which were further analyzed to assess the effects of the anti-mycotoxin agent. Hierarchical clustering analysis (HCA) revealed significant changes in the untargeted metabolomic profiles of samples treated with mycotoxins compared to control samples, particularly after 24 h with the anti-mycotoxin treatments. Clear differences were noted between strong binding and weak binding samples. Further analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted distinct metabolomic profiles, with stronger predictive ability in the strong binding group (Q2 cumulative value of 0.57) compared to the weak binding group (0.30). The analysis identified 44 discriminant compounds in the strong binding model and 16 in the weak binding model. Seven compounds were common to both groups, while silibinin, known for its antioxidant and anti-inflammatory properties, was found among the unique compounds in the weak binding group. Overall, the findings suggest that both doses of the anti-mycotoxin agent significantly influenced the chemical profiles in the rumen, particularly enhancing the binding of mycotoxins, thereby supporting the role of phytogenic extracts in mitigating mycotoxin effects.
Collapse
Affiliation(s)
- Erica Fiorbelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Marco Lapris
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Michela Errico
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | | | - Insaf Riahi
- Technical Department, BIŌNTE Nutrition S.L., 43204 Reus, Spain; (A.D.B.); (I.R.)
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| | - Antonio Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (E.F.); (M.L.); (M.E.); (G.R.)
| |
Collapse
|
8
|
Dadmehr M, Shalileh F, Hosseini M. Enhancing mycotoxins detection through quantum dots-based optical biosensors. NANOTECHNOLOGY 2024; 36:042004. [PMID: 39508269 DOI: 10.1088/1361-6528/ad8c4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Quantum dot-based optical biosensors represent a significant advancement for detection of mycotoxins that are toxic secondary metabolites produced by fungi and pose serious health risk effects. This review highlights the importance of detection of filamentous fungi such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria in mycotoxin production, leading to contamination of agricultural products and subsequent health issues. Conventional detection methods such as thin-layer chromatography, high-performance liquid chromatography, gas chromatography, and enzyme-linked immunosorbent assay are discussed with their respective advantages and limitations. Then the innovative use of quantum dots (QDs) in fabrication of biosensors is discussed in the present review, emphasizing their unique optical properties, such as size-tunable fluorescence and high photostability. These properties enable the development of highly sensitive and specific biosensors for mycotoxin detection. The application of QD-based biosensors, based on their applied bioreceptors including antibodies, molecularly imprinted polymers and aptamer, is explored through various detection strategies and recent advancements. The review concludes by underscoring the potential of QD-based biosensors in providing portable, cost-effective, and efficient solutions for real-time monitoring of mycotoxin for enhancing food safety and protecting public health.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Mafe AN, Büsselberg D. Mycotoxins in Food: Cancer Risks and Strategies for Control. Foods 2024; 13:3502. [PMID: 39517285 PMCID: PMC11545588 DOI: 10.3390/foods13213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Mycotoxins are toxic compounds produced by fungi such as Aspergillus, Penicillium, and Fusarium, contaminating various food crops and posing severe risks to food safety and human health. This review discusses mycotoxins' origins, significance, and impact, particularly in relation to cancer risk. Major mycotoxins like aflatoxins, ochratoxins, fumonisins, zearalenone, and patulin are examined, along with their sources and affected foods. The carcinogenic mechanisms of these toxins, including their biochemical and molecular interactions, are explored, as well as epidemiological evidence linking mycotoxin exposure to cancer in high-risk populations. The review also highlights critical methodologies for mycotoxin detection, including HPLC, GC-MS, MS, and ELISA, and the sample preparation techniques critical for accurate analysis. Strategies for controlling mycotoxin contamination, both pre- and post-harvest, are discussed, along with regulations from organizations like the FAO and WHO. Current challenges in detection sensitivity, cost, and control effectiveness are noted. Future research is needed to develop innovative analytical techniques, improve control strategies, and address the influence of climate change on mycotoxin production. Finally, global collaboration and emerging technologies are essential for advancing mycotoxin control and enhancing food safety.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, P.O. Box 22104, Qatar
| |
Collapse
|
10
|
Li SL, Yan ZY, Qian HL, Xu ST, Yan XP. Aptamer-Conjugated Covalent-Organic Framework Nanochannels for Selective and Sensitive Detection of Aflatoxin B1. Anal Chem 2024; 96:17370-17376. [PMID: 39420777 DOI: 10.1021/acs.analchem.4c04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Sensitive and selective detection of trace aflatoxin B1 (AFB1) in foods is of great importance to guarantee food safety and quality but still challenging because of its trace amount and the interference from the complex food matrix. Here, we report the integration of aptamer (Apt) and an ordered 2D covalent organic framework (COF) to solid-state anodic aluminum oxide (AAO) nanochannels (Apt/COF/AAO) for selective and sensitive detection of trace AFB1. The high specificity of Apt for AFB1 led to a selective change in the surface charge of Apt/COF/AAO and in turn the current change of the nanochannel, permitting the selective and sensitive determination of trace AFB1 in complex food samples. The developed nanofluidic sensor gave a wide linear range (1-500 pg mL-1), low detection limit (0.11 pg mL-1), and good precision (relative standard deviation of 1.5% for 11 replicate determinations of 100 pg mL-1). In addition, the developed sensor was successfully used for the detection of AFB1 in food samples with the recovery of 86.9%-102.5%. The coupling of Apt-conjugated 2D COF with an AAO nanochannel provides a promising way for sensitive and selective determination of food contaminants in complex samples.
Collapse
Affiliation(s)
- Shi-Lun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Lach M, Kotarska K. Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules 2024; 29:4563. [PMID: 39407492 PMCID: PMC11477962 DOI: 10.3390/molecules29194563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Secondary metabolic products of molds, called mycotoxins, negatively affect animal health and production. They constitute a significant problem in veterinary and medical sciences, and their presence has been confirmed in feed all over the world. Applying appropriate agricultural practices and ensuring proper storage conditions significantly reduces the contamination of agricultural products with mycotoxins. However, this does not guarantee that raw materials are completely free from contamination. Many detoxification methods are currently used, but their insufficient effectiveness and negative impact on the quality of the raw material subjected to them significantly limits their usefulness. The positive results of eliminating mycotoxins from many products have been proven by the specific properties of microorganisms (bacteria, yeast, and fungi) and the enzymes they produce. Biological detoxification methods seem to offer the most promising opportunities to solve the problem of the presence of mycotoxins in animal food. This work, based on literature data, presents the health risks to farm animals consuming mycotoxins with feed and discusses the biological methods of their purification.
Collapse
Affiliation(s)
- Michał Lach
- Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland;
| | | |
Collapse
|
12
|
Laouni C, Lara FJ, Messai A, Redouane-Salah S, Hernández-Mesa M, Gámiz-Gracia L, García-Campaña AM. Emerging mycotoxin occurrence in chicken feed and eggs from Algeria. Mycotoxin Res 2024; 40:447-456. [PMID: 38753281 PMCID: PMC11258080 DOI: 10.1007/s12550-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 07/19/2024]
Abstract
Poultry farming has developed into one of Algeria's most productive industrial farming because of the growing demand for sources of protein among Algerian society. Laying hen feed consists mainly of cereals, which can be contaminated with molds and subsequently with their secondary metabolites known as mycotoxins. These later can pose a serious danger to the production and quality of eggs in the commercial layer industry. This work focuses on the detection of emerging mycotoxins, mainly enniatins (ENNs) and beauvericin (BEA), in poultry feed and eggs from different locations in Algeria. Two different QuEChERS-based extractions were established to extract ENNs and BEA from chicken feed and eggs. The determination of mycotoxin occurrence was achieved by a UHPLC-MS/MS method using 0.1% (v/v) formic acid in water and MeOH as mobile phase, an ESI interface operating in positive mode, and a triple quadrupole mass spectrometer operating in MRM for the detection. Matrix-matched calibration curves were carried out for both matrices, obtaining good linearity (R2 > 0.99). The method performance was assessed in terms of extraction recovery (from 87 to 107%), matrix effect (from - 47 to - 86%), precision (RSD < 15%), and limits of quantitation (≤ 1.1 µg/kg for feed and ≤ 0.8 µg/kg for eggs). The analysis of 10 chicken feed samples and 35 egg samples composed of a 10-egg pool each showed that ENN B1 was the most common mycotoxin (i.e., found in 9 feed samples) with contamination levels ranging from 3.6 to 41.5 µg/kg, while BEA was detected only in one feed sample (12 µg/kg). However, eggs were not found to be contaminated with any mycotoxin at the detection limit levels. Our findings indicate that the searched mycotoxins are present in traces in feed and absent in eggs. This can be explained by the application of a mycotoxin binder. However, this does not put a stop on the conduction of additional research and ultimately setting regulations to prevent the occurrence of emerging mycotoxins.
Collapse
Affiliation(s)
- Chahinez Laouni
- DEDSPAZA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ahmed Messai
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Sara Redouane-Salah
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Gómez-Osorio LM, Vasiljevic M, Raj J, Chaparro-Gutierréz JJ, López-Osorio S. Mycotoxins and coccidiosis in poultry - co-occurrence, interaction, and effects. Front Vet Sci 2024; 11:1387856. [PMID: 39149147 PMCID: PMC11326241 DOI: 10.3389/fvets.2024.1387856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Avian coccidiosis, a common disease caused by Eimeria species, results in significant losses in global poultry production. Mycotoxins are low-molecular-weight natural products (i.e., small molecules) produced as secondary metabolites by filamentous fungi and they have the potential to economically and significantly affect global poultry production. Little is known about the relationship between mycotoxins and avian coccidiosis, although they often co-occur in the field. This comprehensive review examines the intricate relationship between mycotoxins and avian coccidiosis, in particular how mycotoxins, including aflatoxins, ochratoxins, trichothecenes as well as Fusarium mycotoxins, compromise the health of the poultry flock and open the door to Eimeria parasites in the gut. In addition, this review sheds light on the immunosuppressive effects of mycotoxins, their disruption of cellular signaling pathways, and the consequent exacerbation of coccidiosis infections. The mechanisms of mycotoxin toxicity are also reviewed, emphasizing direct damage to intestinal epithelial cells, impaired nutrient absorption, inflammation, oxidative stress, and changes in the gut microbiota. Finally, the consequences for the prevention and treatment of coccidiosis when mycotoxins are present in the feed are discussed. This review emphasizes the need for effective management strategies to mitigate the combined risks of mycotoxins and coccidiosis and highlights the complexity of diagnosing and controlling these interrelated problems in poultry. The review advocates a holistic approach that includes strict feed management, disease prevention measures and regular monitoring to maintain the health and productivity of poultry against these significant challenges.
Collapse
Affiliation(s)
- Luis-Miguel Gómez-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, UdeA, Medellín, Colombia
- Patent Co., DOO., Mišićevo, Serbia
| | | | - Jog Raj
- Patent Co., DOO., Mišićevo, Serbia
| | | | - Sara López-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, UdeA, Medellín, Colombia
| |
Collapse
|
14
|
Papatsiros VG, Papakonstantinou GI, Voulgarakis N, Eliopoulos C, Marouda C, Meletis E, Valasi I, Kostoulas P, Arapoglou D, Riahi I, Christodoulopoulos G, Psalla D. Effects of a Curcumin/Silymarin/Yeast-Based Mycotoxin Detoxifier on Redox Status and Growth Performance of Weaned Piglets under Field Conditions. Toxins (Basel) 2024; 16:168. [PMID: 38668593 PMCID: PMC11054618 DOI: 10.3390/toxins16040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
The aim of this in vivo study was to investigate the effects of a novel mycotoxin detoxifier whose formulation includes clay (bentonite and sepiolite), phytogenic feed additives (curcumin and silymarin) and postbiotics (yeast products) on the health, performance and redox status of weaned piglets under the dietary challenge of fumonisins (FUMs). The study was conducted in duplicate in the course of two independent trials on two different farms. One hundred and fifty (150) weaned piglets per trial farm were allocated into two separate groups: (a) T1 (control group): 75 weaned piglets received FUM-contaminated feed and (b) T2 (experimental group): 75 weaned piglets received FUM-contaminated feed with the mycotoxin-detoxifying agent from the day of weaning (28 days) until 70 days of age. Thiobarbituric acid reactive substances (TBARSs), protein carbonyls (CARBs) and the overall antioxidant capacity (TAC) were assessed in plasma as indicators of redox status at 45 and 70 days of age. Furthermore, mortality and performance parameters were recorded at 28, 45 and 70 days of age, while histopathological examination was performed at the end of the trial period (day 70). The results of the present study reveal the beneficial effects of supplementing a novel mycotoxin detoxifier in the diets of weaners, including improved redox status, potential hepatoprotective properties and enhanced growth performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Georgios I. Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.G.P.); (N.V.)
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Christina Marouda
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios Meletis
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Terma Mavromichali St., 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Irene Valasi
- Laboratory of Physiology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Polychronis Kostoulas
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Terma Mavromichali St., 43100 Karditsa, Greece; (E.M.); (P.K.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | | | - Georgios Christodoulopoulos
- Department of Animal Science, Agricultural University of Athens, 75 Iera Odos Street, Votanikos, 11855 Athens, Greece;
| | - Dimitra Psalla
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Martins D, Lemos A, Silva J, Rodrigues M, Simões J. Mycotoxins evaluation of total mixed ration (TMR) in bovine dairy farms: An update. Heliyon 2024; 10:e25693. [PMID: 38370215 PMCID: PMC10867658 DOI: 10.1016/j.heliyon.2024.e25693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The total mixed ration (TMR) is currently a widespread method to feed dairy cows. It is a mixture of raw fodder and concentrate feed that can be contaminated by several mycotoxins. The main aim of this paper was to provide a critical review on TMR mycotoxin occurrence and its usefulness to monitor and control them on-farm. Aflatoxins, zearalenone, deoxynivalenol, T-2 toxin and fumonisins (regulated mycotoxins) are the most prevalent mycotoxins evaluated in TMR. Nonetheless, several emerging mycotoxins represent a health risk at the animal level regarding their prevalence and level in TMR. Even when measured at low levels, the co-occurrence of mycotoxins is frequent and synergistic effects on animal health are still underevaluated. Similar to the animal feed industry, on-farm plans monitoring mycotoxin feed contamination can be developed as a herd health management program. The estimated daily intake of mycotoxins should be implemented, but thresholds for each mycotoxin are not currently defined in dairy farms.
Collapse
Affiliation(s)
- Daniela Martins
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Ana Lemos
- Animal Nutrition, DSM-Firmenich, the Netherlands
| | - João Silva
- CapêloVet, Lda, 4755-252, Barcelos, Portugal
| | | | - João Simões
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
16
|
Hong C, Huang Y, Cao S, Wang L, Yang X, Hu S, Gao K, Jiang Z, Xiao H. Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production? J Anim Sci Biotechnol 2024; 15:11. [PMID: 38273345 PMCID: PMC10811888 DOI: 10.1186/s40104-023-00964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress has been associated with a number of physiological problems in swine, including reduced production efficiency. Recently, although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production, it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors. Here, we discuss the dose and dose intensity of the causes of oxidative stress involving physiological, environmental and dietary factors, recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
Collapse
Affiliation(s)
- Changming Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yujian Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hao Xiao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Ansari MA, Al Abbasi FA, Hosawi S, Baig MR, Alhayyani S, Kumar V, Asar TO, Anwar F. Mass Spectrometry-based Detection of Mycotoxins in Imported Meat and their Perspective Role on Myocardial Apoptosis. Curr Med Chem 2024; 31:3834-3843. [PMID: 37303172 DOI: 10.2174/0929867330666230609100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fungal mycotoxins are the secondary metabolities and are harmful to plants, animals, and humans. Common aflatoxins are present and isolated from feeds and food comprises aflatoxins B1, B2, G1, and G2. Public health threats or risk of foodborne disease posed by mycotoxins, especially the export or import of such meat products are of primary concern. This study aims to determine the concentration of the level of aflatoxins B1, B2, G1, G2 M1, and M2 respectively in imported burger meat. METHODS The present work is designed to select and collect the various samples of meat products from different sources and subjected to mycotoxin analysis by LCMS/MS. Random selection was made on sites of burger meat was found to be on sale. RESULTS Simultaneous presence of several mycotoxins in the same sample of imported meat under the set conditions of LCMS/MS detected 26% (18 samples) was positive for various mycotoxins. The most frequent mycotoxins proportion in the analyzed samples was aflatoxin B1 (50%) followed by aflatoxin G1 (44%), aflatoxin G2 (38.8%), aflatoxin B2 (33%) respectively which were least among all with 16.66 and 11.11%. DISCUSSION A positive correlation is deduced between CVD and mycotoxin present in burger meat. Isolated mycotoxins initiate death receptor-mediated apoptosis, death receptor-mediated necrosis, mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, and immunogenic cell deaths through various pathways that can damage the cardiac tissues. CONCLUSION The presence of these toxins in such samples is just the tip of the iceberg. Further investigation is necessary for complete clarifications of toxins on human health especially on CVD and other related metabolic complications.
Collapse
Affiliation(s)
- Maged Al Ansari
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Fahad A Al Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh, King Abdulaziz University, Kingdom of Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Weaver AC, Weaver DM, Adams N, Yiannikouris A. Use of Yeast Cell Wall Extract for Growing Pigs Consuming Feed Contaminated with Mycotoxins below or above Regulatory Guidelines: A Meta-Analysis with Meta-Regression. Toxins (Basel) 2023; 15:596. [PMID: 37888627 PMCID: PMC10611179 DOI: 10.3390/toxins15100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Using a random-effects meta-analysis, the performance of growing pigs under a mycotoxin challenge (MT) with or without supplementation of yeast cell wall extract (YCWE, Mycosorb®, Alltech Inc.) was evaluated. Both MT and YCWE were also compared to animal controls not receiving mycotoxins (CTRL). Meta-regression was used to further explore the impacts of MT at/below (category 1) or above (category 2) global regulatory guidelines. Following the screening, 23 suitable references (30 mycotoxin treatments) were used. Overall, MT lowered average daily gain (ADG, p < 0.001) and average daily feed intake (ADFI, p < 0.0001) from CTRL by -84 and -165 g, respectively. Inclusion of YCWE during mycotoxin challenges (YCWE+MT, average 2.1 kg/ton) tended to result in greater ADG (+17 g, p = 0.068) compared to MT treatments. The gain-to-feed ratio (G:F) was not impacted by MT or YCWE+MT. Further investigation by meta-regression revealed that pigs fed MT in category 1 had lower ADG (-78.5 g, p < 0.001) versus CTRL, while YCWE+MT had higher ADG (+48 g, p < 0.001) over MT and was similar to CTRL. The ADFI was not impacted, although YCWE+MT had ADFI values similar to the CTRL. In category 2, ADG and ADFI of pigs fed MT were lower than CTRL (-85.1 and -166 g, respectively, p < 0.0001), with a tendency for YCWE+MT to result in higher ADFI (+25.3 g, p = 0.062). In summary, the inclusion of YCWE provided benefits to performance during common mycotoxin challenge levels (at or below regulatory guidelines).
Collapse
|
19
|
Papatsiros VG, Eliopoulos C, Voulgarakis N, Arapoglou D, Riahi I, Sadurní M, Papakonstantinou GI. Effects of a Multi-Component Mycotoxin-Detoxifying Agent on Oxidative Stress, Health and Performance of Sows. Toxins (Basel) 2023; 15:580. [PMID: 37756006 PMCID: PMC10537862 DOI: 10.3390/toxins15090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
This in vivo study aimed to investigate the effects of a multi-component mycotoxin-detoxifying agent, containing clays (bentonite, sepiolite), phytogenic feed additives (curcumin, silymarin) and postbiotics (yeast cell wall, hydrolyzed yeast) on the antioxidant capacity, health and reproductive performance of pregnant and lactating sows challenged by mycotoxins. Eighty (80) primiparous sows (mean age 366 ± 3 days) per each of the two trial farms were divided into two groups in each farm: a) T1 (control group): 40 sows received the contaminated feed and b) T2 group (experimental group): 40 sows received the contaminated feed plus the mycotoxin-detoxifying agent, one month before farrowing until the end of the lactation period. Thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARBS) and total antioxidant capacity (TAC) were evaluated as biomarkers of oxidative stress. Clinical and reproductive parameters were recorded. Our results indicate that the administration of a multi-component mycotoxin-detoxifying agent's administration in sow feed has beneficial effects on oxidative stress biomarkers and can improve sows' health and performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Insaf Riahi
- BIŌNTE Animal Nutrition, 43204 Reus, Spain; (I.R.); (M.S.)
| | | | | |
Collapse
|
20
|
Li X, Gou F, Xiao K, Zhu J, Lin Q, Yu M, Hong Q, Hu C. Effects of DON on Mitochondrial Function, Endoplasmic Reticulum Stress, and Endoplasmic Reticulum Mitochondria Contact Sites in the Jejunum of Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13234-13243. [PMID: 37643317 DOI: 10.1021/acs.jafc.3c03380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recent research has emphasized the significance of investigating the interplay between organelles, with endoplasmic reticulum mitochondria contact sites (ERMCSs) being recognized as critical signaling hubs between organelles. The objective of the current study was to assess the impact of deoxynivalenol (DON) on jejunal mitochondria, ER, and ERMCSs. Twelve piglets (35 d, 10.22 ± 0.35 kg) were randomized into two groups: control group, basal diet; the DON group, basal diet + 1.5 mg/kg DON. The findings revealed that DON decreased growth performance, induced jejunal oxidative stress, and impaired jejunal barrier function. DON was also found to induce mitochondrial dysfunction, trigger endoplasmic reticulum stress (ERS) in the piglets' jejunum, and activate mitochondrial and ER apoptosis pathways by upregulating apoptosis-related proteins (Caspase-8, Caspase-12, Bax, and CHOP). To investigate the involvement of ERMCSs in DON-induced intestinal injury, we measured the protein levels of ERMCS proteins, such as mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and glucose-regulated protein 75 (GRP75) and Pearson's correlation coefficient of ERMCS proteins and ERMCS ultrastructure. Our finding showed that DON upregulated the protein level of Mfn2 and GRP75 and increased the percentage of mitochondria with ERMCSs/total mitochondria, the length of ERMCSs compared to the perimeter of mitochondria, and the Pearson's correlation coefficient of voltage-dependent anion-selective channel protein 1 (VDAC1) and inositol 1,4,5-triphosphate receptors (IP3Rs) in piglets' jejunum. Furthermore, DON shortened the distance between mitochondria and ER at ERMCSs. These findings suggested that DON impaired mitochondrial function, triggered ERS, and increased ERMCSs, indicating that the increased ERMCSs could be related to mitochondrial dysfunction and ERS involved in the intestinal injury of piglets induced by DON.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feiyang Gou
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kan Xiao
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiang Zhu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Lin
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Yu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qihua Hong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, China; Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, China; Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, People's Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Popescu RG, Marinescu GC, Rădulescu AL, Marin DE, Țăranu I, Dinischiotu A. Natural Antioxidant By-Product Mixture Counteracts the Effects of Aflatoxin B1 and Ochratoxin A Exposure of Piglets after Weaning: A Proteomic Survey on Liver Microsomal Fraction. Toxins (Basel) 2023; 15:toxins15040299. [PMID: 37104237 PMCID: PMC10143337 DOI: 10.3390/toxins15040299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
| | - George Cătălin Marinescu
- Independent Research Association, Timisului No. 58, 012416 Bucharest, Romania
- Blue Screen SRL, Timisului No. 58, 012416 Bucharest, Romania
| | - Andreea Luminița Rădulescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, 077015 Balotesti, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91-95, 050095 Bucharest, Romania
| |
Collapse
|
22
|
Kortei NK, Oman Ayiku P, Nsor-Atindana J, Owusu Ansah L, Wiafe-Kwagyan M, Kyei-Baffour V, Kottoh ID, Odamtten GT. Toxicogenic fungal profile, Ochratoxin A exposure and cancer risk characterization through maize (Zea mays) consumed by different age populations in the Volta region of Ghana. Toxicon 2023; 226:107085. [PMID: 36921906 DOI: 10.1016/j.toxicon.2023.107085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Maize (Zea mays) is an important staple food crop for the majority of Ghanaians. Maize is mostly contaminated by fungal species and particularly mycotoxins. This work aimed to identify and quantify the incidence of fungal infection and exposure to Ochratoxin A (OTA) as well as the health risk characterization in different age populations due to maize consumption in the Volta region. Maize samples were plated on Dichloran Rose Bengal Chloramphenicol (DRBC) agar, and Oxytetracycline Glucose Yeast Extract (OGYE) agar. All media were prepared in accordance with the manufacturers' instructions. The plates were incubated at 28 ± 2 °C for 5-7 days. High-Performance Liquid Chromatography connected to a fluorescence detector (HPLC-FLD) was used to analyze the ochratoxin A (OTA) levels in maize. Cancer risk assessments were also conducted using models prescribed by the Joint FAO/WHO Expert Committee on Additives (JECFA). The maize samples collected from the Volta region contained fungal population between the range of 3.08-4.58 log10 CFU/g. Eight (8) genera were recorded belonging to Aspergillus, Trichoderma, Penicillium, Fusarium, Saccharomyces, Mucor, Rhodotorula and Rhizopus. The species diversity includes A. flavus, A. niger, T. harzianum, P. verrucosum, F. oxysporum, Yeast, F. verticillioides, Rhodotorulla sp, A. fumigatus, R. stolonifer, M. racemosus species. Additionally, the ochratoxins level contained in the samples were very noteworthy and ranged from 1.22 to 28.17 μg/kg. Cancer risk assessments of OTA produced outcomes also ranged between 2.15 and 524.54 ng/kg bw/day, 0.03-8.31, 0.0323, and 0.07-16.94 for cases/100,000 person/yr for Estimated Daily Intake (EDI), Margin of Exposure (MOE), Average Potency, and Cancer Risks respectively for all age categories investigated. There was very high mycoflora load on the maize sampled from the Volta region, likewise the range of mycotoxins present in the maize grains, suggesting the potential to pose some adverse health effects with the populace of the Volta region.
Collapse
Affiliation(s)
- Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana.
| | - Peter Oman Ayiku
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - John Nsor-Atindana
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Leslie Owusu Ansah
- Department of Food Laboratory, Food and Drugs Authority, P.O. Box CT 2783, Cantonments, Accra, Ghana
| | - Michael Wiafe-Kwagyan
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| | - Vincent Kyei-Baffour
- Food Chemistry and Nutrition Research Division, Council for Scientific and Industrial Research- Food Research Institute, P. O. Box M20, Accra, Ghana
| | - Isaac Delali Kottoh
- Biotechnology and Nuclear Agriculture Research Institute (BNARI), Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Accra, Ghana
| | - George Tawia Odamtten
- Department of Plant and Environmental Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 55, Legon, Ghana
| |
Collapse
|
23
|
Prevalence and Concentration of Mycotoxins in Animal Feed in the Middle East and North Africa (MENA): A Systematic Review and Meta-Analysis. Toxins (Basel) 2023; 15:toxins15030214. [PMID: 36977105 PMCID: PMC10054064 DOI: 10.3390/toxins15030214] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
This study seeks a comprehensive meta-analysis of mycotoxin contaminants in animal feed consumed in the Middle East and North Africa (MENA) region. The obtained articles were reviewed, and 49 articles that investigated the contamination of mycotoxins including aflatoxins (AFs), deoxynivalenol (DON), zearalenone (ZEA), T-2 toxin, fumonisins (FUM), and ochratoxin A (OTA), in feed samples or components of animal feed in the MENA region were selected. The titles of the final articles included in the study were meta-analyzed. Necessary information was extracted and categorized from the articles, and a meta-analysis was performed using Stata software. The highest contamination was in dry bread (80%), and Algeria was the most contaminated country (87% of animal feed), with the most mycotoxins contaminating AFs (47%) and FUM (47%). The highest concentration of mycotoxins in animal feed is related to FUM (1240.01 μg/kg). Climate change, economic situation, agricultural and processing methods, the nature of the animal feed, and improper use of food waste in animal feed are among the most critical factors that are effective in the occurrence of mycotoxin contamination in animal feed in MENA. Control of influential factors in the occurrence of contaminations and rapid screening with accurate identification methods to prevent the occurrence and spread of mycotoxin contamination of animal feed seem important.
Collapse
|
24
|
Kilama J, Yakir Y, Shaani Y, Adin G, Kaadan S, Wagali P, Sabastian C, Ngomuo G, Mabjeesh SJ. Chemical composition, in vitro digestibility, and storability of selected agro-industrial by-products: Alternative ruminant feed ingredients in Israel. Heliyon 2023; 9:e14581. [PMID: 37009330 PMCID: PMC10060181 DOI: 10.1016/j.heliyon.2023.e14581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
The global demand for animal-based products is rising in the face of dwindling feed resources, and yet a huge pool of agro-industrial by-products (AIBPs) are generated, underutilized, and improperly deposited to landfills leading to environmental pollution. Ruminants have a special microbiome that can bioprocess and convert human inedible fibrous material into meat and milk, which appears as a great opportunity to simultaneously reduce pollution while promoting food security. In this study, we collected 15 domestically produced AIBPs from various regions of Israel during both winter and summer seasons to examine their potential as ruminant feed alternatives. We evaluated their storability, nutritional composition, and in vitro digestibility and performed a hierarchical cluster analysis to categorize them based on their distinctive nutritional characteristics. Among the 15 AIBPs, 8 have rich essential nutrients, and minerals, and have excellent in vitro digestibility, but they have less than 6 days of storability and develop off-odours. Out of 15 AIBPs; 8 have low dry matter (DM) content, ranging from 4.7% to 30.45% while the remaining 7 AIBPs have high DM, ranging from 50.6% to 98.6%. The high crude protein (CP) category included 6 AIBPs with CP ranging from 19.7% in beer pulp to 32.1% in jojoba cake. Starch content was high in 3 AIBPs ranging from 33.7% in timorim mix to 65.2% in Irish potato culls. Considerable crude fat content was reported in 4 AIBPs, the highest being yoghurt waste with 42.8%. In terms of neutral detergent fiber (NDF), 5 AIBPs had low NDF content ranging from 0% to 14.1%; 5 AIBPs had moderate concentration ranging from 34.3% to 50.7%, and 5 AIBPs had high levels between 66.6% and 82.8%. Interestingly, 10/15 AIBPs had medium to high in vitro dry matter digestibility (IVDMD). This study, therefore, suggests that recycling AIPBs for livestock nutrition has enormous potential that is still underutilized and offers excellent ways to gain socioeconomic and environmental benefits by expanding animal feed resources and reducing feed-food competition, and landfill burden. However, additional studies are necessary to focus on affordable storage technology to prolong the storability of AIBPs and feeding trials to determine the productive performance of livestock fed an AIBPs-based diet.
Collapse
|
25
|
Stefanović D, Marinković D, Trailović S, Vasiljević M, Farkaš H, Raj J, Tolimir N, Radulović S, Nešić V, Trailović JN, Petrujkić B. Evaluation of Effectiveness of a Novel Multicomponent Mycotoxins Detoxification Agent in the Presence of AFB1 and T-2 Toxin on Broiler Chicks. Microorganisms 2023; 11:microorganisms11030574. [PMID: 36985148 PMCID: PMC10051569 DOI: 10.3390/microorganisms11030574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
This experimental study was conducted to determine the ability of a novel mycotoxins detoxification agent (MR) at a concentration of 0.2% to reduce the toxicity of aflatoxin B1 (AFB1) or T-2 toxin, alone or in combination, and to examine its effect on performance, pathohistological changes (PH) and the residue of these toxins in the tissues of broiler chicks. A total of 96 broiler chicks were divided into eight equal groups: group C, which served as control (without any additives); group MR, which received the novel detoxification agent (supplemented with 0.2%); group E-I (0.1 mg AFB1/kg of diet); group E-II (0.1 mg AFB1/kg of diet + MR 0.2%); group E-III (0.5 mg T-2 toxin/kg of diet); group E-IV (0.5 mg T-2 toxin/kg of diet + 0.2% MR); group E-V (combination of 0.1 mg AFB1/kg, 0.5 mg T-2 toxin/kg of diet); and group E-VI (combination of 0.1 mg AFB1/kg, 0.5 mg T-2 toxin + 0.2% MR). Results indicate that feeds containing AFB1 and T-2 toxin, alone or in combination, adversely affected the health and performance of poultry. However, the addition of MR to diets containing AFB1 and T-2 toxin singly and in combination exerted a positive effect on body weight, feed intake, weight gain, feed efficiency and microscopic lesions in visceral organs. Residual concentration of AFB1 in liver samples was significantly (p < 0.05) decreased when chicks were fed diets supplemented with 0.2% of MR.
Collapse
Affiliation(s)
- Darko Stefanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Darko Marinković
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Saša Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | | | - Hunor Farkaš
- Patent Co., DOO, Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - Jog Raj
- Patent Co., DOO, Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - Nataša Tolimir
- Institute for Science Application in Agriculture, 11000 Belgrade, Serbia
| | - Stamen Radulović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Vladimir Nešić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jelena Nedeljković Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113615436
| | - Branko Petrujkić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Yammine J, Chihib NE, Gharsallaoui A, Dumas E, Ismail A, Karam L. Essential oils and their active components applied as: free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon 2022; 8:e12472. [PMID: 36590515 PMCID: PMC9798198 DOI: 10.1016/j.heliyon.2022.e12472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial contaminations are responsible for many chronic, healthcare, persistent microbial infections and illnesses in the food sector, therefore their control is an important public health challenge. Over the past few years, essential oils (EOs) have emerged as interesting alternatives to synthetic antimicrobials as they are biodegradable, extracted from natural sources and potent antimicrobials. Through their multiple mechanisms of actions and target sites, no microbial resistance has been developed against them till present. Although extensive documentation has been reported on the antimicrobial activity of EOs, comparisons between the use of whole EOs or their active components alone for an antimicrobial treatment are less abundant. It is also essential to have a good knowledge about EOs to be used as alternatives to the conventional antimicrobial products such as chemical disinfectants. Moreover, it is important to focus not only on planktonic vegetative microorganisms, but to study also the effect on more resistant forms like spores and biofilms. The present article reviews the current knowledge on the mechanisms of antimicrobial activities of EOs and their active components on microorganisms in different forms. Additionally, in this review, the ultimate advantages of encapsulating EOs or combining them with other hurdles for enhanced antimicrobial treatments are discussed.
Collapse
Affiliation(s)
- Jina Yammine
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France,Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Nour-Eddine Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Ali Ismail
- Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar,Corresponding author.
| |
Collapse
|
27
|
Gu W, Bao Q, Weng K, Liu J, Luo S, Chen J, Li Z, Cao Z, Zhang Y, Zhang Y, Chen G, Xu Q. Effects of T-2 toxin on growth performance, feather quality, tibia development and blood parameters in Yangzhou goslings. Poult Sci 2022; 102:102382. [PMID: 36535114 PMCID: PMC9791600 DOI: 10.1016/j.psj.2022.102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
T-2 toxin is a dangerous natural pollutant and widely exists in animal feed, often causing toxic damage to poultry, such as slow growth and development, immunosuppression, and death. Although geese are considered the most sensitive poultry to T-2 toxin, the exact damage caused by T-2 toxin to geese is elusive. In the present study, a total of forty two 1-day-old healthy Yangzhou male goslings were randomly allotted seven diets contaminated with 0, 0.2, 0.4, 0.6, 0.8, 1.0, or 2.0 mg/kg T-2 toxin for 21 d, and the effects of T-2 toxin exposure on growth performance, feather quality, tibia development, and blood parameters were investigated. The results showed that T-2 toxin exposure significantly inhibited feed intake, body weight gain, shank length growth, and organ development (e.g., ileum, cecum, liver, spleen, bursa, and tibia) in a dose-dependent manner. In addition, the more serious feathering abnormalities and feather damage were observed in goslings exposed to a high dose of T-2 toxin (0.8, 1.0, and 2.0 mg/kg), which were mainly sparsely covered with short, dry, rough, curly, and gloss-free feathers on the back. We also found that hypertrophic chondrocytes of the tibial growth plate exhibited abnormal morphology and nuclear consolidation or loss, accompanied by necrosis and excessive apoptosis under 2.0 mg/kg T-2 toxin exposure. Moreover, 2.0 mg/kg T-2 toxin exposure triggered erythropenia, thrombocytosis, alanine aminotransferase, and aspartate aminotransferase activity, as well as high blood urea nitrogen, uric acid, and lactic dehydrogenase levels. Collectively, these data indicate that T-2 toxin had an adverse effect on the growth performance, feather quality, and tibia development, and caused liver and kidney damage and abnormal blood parameters in Yangzhou goslings, providing crucial information toward the prevention and control of T-2 toxin contamination in poultry feed.
Collapse
Affiliation(s)
- Wang Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Kaiqi Weng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Jinlu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Shuwen Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Jianzhou Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Zheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Zhengfeng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Yu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, PR China; Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Poultry), Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
28
|
Chen J, Huang Z, Cao X, Chen X, Zou T, You J. Plant-Derived Polyphenols as Nrf2 Activators to Counteract Oxidative Stress and Intestinal Toxicity Induced by Deoxynivalenol in Swine: An Emerging Research Direction. Antioxidants (Basel) 2022; 11:2379. [PMID: 36552587 PMCID: PMC9774656 DOI: 10.3390/antiox11122379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The contamination of deoxynivalenol (DON) in feed is a global problem, which seriously threatens the productivity efficiency and welfare of farm animals and the food security of humans. Pig is the most sensitive species to DON, and is readily exposed to DON through its grain-enriched diet. The intestine serves as the first biological barrier to ingested mycotoxin, and is, therefore, the first target of DON. In the past decade, a growing amount of attention has been paid to plant-derived polyphenols as functional compounds against DON-induced oxidative stress and intestinal toxicity in pigs. In this review, we systematically updated the latest research progress in plant polyphenols detoxifying DON-induced intestinal toxicity in swine. We also discussed the potential underlying mechanism of action of polyphenols as Nrf2 activators in protecting against DON-induced enterotoxicity of swine. The output of this update points out an emerging research direction, as polyphenols have great potential to be developed as feed additives for swine to counteract DON-induced oxidative stress and intestinal toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
29
|
Can Red Yeast ( Sporidiobolus pararoseus) Be Used as a Novel Feed Additive for Mycotoxin Binders in Broiler Chickens? Toxins (Basel) 2022; 14:toxins14100678. [PMID: 36287947 PMCID: PMC9608597 DOI: 10.3390/toxins14100678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycotoxin-contaminated feeds may negatively affect broiler chickens’ health; hence, a sustainable approach to achieve mycotoxin elimination is necessary. This study aimed to evaluate the efficacy of red yeast (Sporidiobolus pararoseus; RY) as a novel mycotoxin binder in broilers. A total of 1440 one-week-old male broiler chicks were randomly assigned to 12 treatments in a 3 × 4 factorial design. The dietary treatments included three levels of mycotoxin-contaminated diets (0 µg kg−1 (0% of mycotoxin; MT), 50 µg kg−1 (50% MT), and 100 µg kg−1 (100% MT)) and four levels of mycotoxin binders (0.0 and 0.5 g kg−1 commercial binder, and 0.5 and 1.0 g kg−1 RY). Experimental diets were contaminated with aflatoxin B1, zearalenone, ochratoxin A, T-2 toxin, and deoxynivalenol in the basal diet. Furthermore, the parameters including feed intake, body weight, and mortality rate were recorded on a weekly basis. After feeding for 28 days, blood and organ samples were collected randomly to determine the blood biochemistry, relative organ weights, and gut health. The results indicated that mycotoxin-contaminated diets reduced the average daily weight gain (ADG), villus height (VH), and villus height per the crypt depth ratio (VH:CD) of the intestine, as well as the population of Lactobacillus sp. and Bifidobacterium sp. in the cecal (p < 0.05), whereas they increased the mycotoxins concentration in the blood samples and the apoptosis cells (TUNEL positive) in the liver tissue (p < 0.01) of broiler chicken. In contrast, RY-supplemented diets had better ADG values and lower chicken mortality rates (p < 0.05). Moreover, these combinations positively impacted the relative organ weights, blood parameters, bacteria population, intestinal morphology, and pathological changes in the hepatocytes (p < 0.05). In conclusion, RY supplementation effectively alleviated the toxicity that is induced by AFB1 and OTA, mainly, and could potentially be applied as a novel feed additive in the broiler industry.
Collapse
|
30
|
Ekici H, Yipel M. Total aflatoxin, aflatoxin B 1, ochratoxin A and fuminosin in dry dog food: A risk assessment for dog health. Toxicon 2022; 218:13-18. [PMID: 35995096 DOI: 10.1016/j.toxicon.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
The aim of this study was to measure total aflatoxin (AFT), aflatoxin B1 (AFB1), ochratoxin A (OCA) and fumonisin (FUM) concentrations in dry dog feed and to evaluate the risk to animal health posed by their increased levels. A total of 90 dry food samples, which were commercially available to the owner, were collected from different shops in Turkey. Some of the food samples were collected from open packages, from which the dry food was sold in smaller amounts. Using commercial Enzyme-Linked Immunosorbent Assay test kits, all samples were examined for AFT, AFB1, OCA, and FUM concentrations. High-performance liquid chromatography was used for confirmation of measured parameters in 30 samples. The ELISA tests found AFT, AFB1, OCA, and FM concentrations (ng g -1) as 1.66, 0.64, 2.14, and 87.06, respectively. In terms of risk assessment, consumption of the dry foods, which are contaminated by AFT, AFB1 and OCA due possibly to the fact that the dry foods are produced from inappropriate raw material or sold in open packages in smaller amounts, poses a significant health risk for dogs. As a result, it is necessary to monitor the mycotoxin load in dry dog food as the use of raw materials of poor quality and selling the feed in smaller amounts from open packages over an uncertain time period predispose the dry feed to the growth of mycotoxin, especially when the storage conditions are favorable.
Collapse
Affiliation(s)
- Hüsamettin Ekici
- Kırıkkale University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 71450, Kırıkkale, Turkey
| | - Mustafa Yipel
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 31040, Hatay, Turkey.
| |
Collapse
|
31
|
Feng J, Xue Y, Wang X, Song Q, Wang B, Ren X, Zhang L, Liu Z. Sensitive, simultaneous and quantitative detection of deoxynivalenol and fumonisin B 1 in the water environment using lateral flow immunoassay integrated with smartphone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155354. [PMID: 35460773 DOI: 10.1016/j.scitotenv.2022.155354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Deoxynivalenol (DON) and fumonisin B1 (FB1), as a group of highly toxic secondary metabolites, have become a potential source of water environmental pollutants. To minimize two mycotoxins exposure to consumers, a dual lateral flow immunoassay (LFIA) integrated with the smartphone was reported for simultaneous and quantitative detection of DON and FB1 in the water environment. The significantly improved sensitivity was contributed to a smartphone-based device with the ability to image and analyze results. Under optimized conditions, the detection limits of DON and FB1 were calculated to be 3.46 and 2.65 ng/mL, which were approximately 25 and 10 folds lower than those of the visual detection of the LFIA. This method showed good specificity and a good dynamic linear detection for DON and FB1. The recoveries of DON and FB1 were evaluated by the spiked lake water, river water, and pond water, ranging from 92.47% to 106.2% with the relative standard deviation under 9.13%. Moreover, the results of the developed LFIA showed a high correlation with enzyme-linked immunosorbent assay (ELISA) results, with a correlation coefficient of 0.999 for DON and 0.996 for FB1, respectively. To sum up, the developed LFIA provides a promising platform for sensitive, simultaneous, quantitative, and on-site detection of DON and FB1 in the water environment.
Collapse
Affiliation(s)
- Jiankun Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Xue
- Guizhou Anshun Tobacco Co., Ltd., Anshun 561000, China
| | - Xinwei Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingsong Song
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Baojian Wang
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xuexiang Ren
- Institute of Protection and Agro-Products Safety, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Leigang Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhenjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
32
|
Javaid A, Younas F, Ullah I, Yasinzai M. Impact of an indigenously produced multi-enzyme complex from Bacillus subtilis KT004404 on growth and blood parameters in broiler chicken. PLoS One 2022; 17:e0271445. [PMID: 35895628 PMCID: PMC9328567 DOI: 10.1371/journal.pone.0271445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
A 42-days experiment was conducted on a day old birds (n = 400) to evaluate the effect of enzyme supplements in feed on the growth, blood parameters, phosphorous content in bones, and nitrogen retention. Different treatments included: control (C) without enzyme supplement, while the other three groups included enzyme mixture T1 and T2 with two commercially available enzyme mix, and T3 with indigenously produced multi-enzyme complex from Bacillus subtilis KT004404. Birds that were fed with indigenously produced multi-enzyme complex showed significant weight gain as compared to other groups. The total feed intake of the birds fed with enzyme supplements was higher than the birds in the control group. The feed conversion ratio was significantly improved (p < 0.05) in treatment groups (T1, T2, T3) as compared to the control. The blood parameters which were analyzed included uric acid, triglycerides, total cholesterol, and serum proteins i.e. globulin and albumin. Birds fed with the enzyme in the group T1, T2 and T3 exhibited higher (p < 0.05) body weight gain. Tibia ash content was significantly higher (p < 0.05) in T1, T2, and T3 as compared to the control. The results of the current study indicate that supplementing poultry feed with the exogenous multi-enzyme produced from Bacillus subtilis KT004404 improved the growth of the birds, feed utilization, and exhibited beneficial effects on the blood parameters, phosphorous and nitrogen retention in broiler chicken.
Collapse
Affiliation(s)
- Aqsa Javaid
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farhan Younas
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Ikram Ullah
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Masoom Yasinzai
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
33
|
Adunphatcharaphon S, Elliott CT, Sooksimuang T, Charlermroj R, Petchkongkaew A, Karoonuthaisiri N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128706. [PMID: 35339833 DOI: 10.1016/j.jhazmat.2022.128706] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxins present serious threats not only for public health, but also for the economy and environment. The problems become more complex and serious due to co-contamination of multiple hazardous mycotoxins in commodities and environment. To mitigate against this issue, accurate, affordable, and rapid multiplex detection methods are required. This review presents an overview of emerging rapid immuno-based multiplex methods capable of detecting mycotoxins present in agricultural products and feed ingredients published within the past five years. The scientific principles, advantages, disadvantages, and assay performance of these rapid multiplex immunoassays, including lateral flow, fluorescence polarization, chemiluminescence, surface plasmon resonance, surface enhanced Raman scattering, electrochemical sensor, and nanoarray are discussed. From the recent literature landscape, it is predicted that the future trend of the detection methods for multiple mycotoxins will rely on the advance of various sensor technologies, a variety of enhancing and reporting signals based on nanomaterials, rapid and effective sample preparation, and capacity for quantitative analysis.
Collapse
Affiliation(s)
- Saowalak Adunphatcharaphon
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Christopher T Elliott
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Thanasat Sooksimuang
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Ratthaphol Charlermroj
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Nitsara Karoonuthaisiri
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
34
|
Álvarez-Días F, Torres-Parga B, Valdivia-Flores AG, Quezada-Tristán T, Alejos-De La Fuente JI, Sosa-Ramírez J, Rangel-Muñoz EJ. Aspergillus flavus and Total Aflatoxins Occurrence in Dairy Feed and Aflatoxin M 1 in Bovine Milk in Aguascalientes, Mexico. Toxins (Basel) 2022; 14:292. [PMID: 35622539 PMCID: PMC9143994 DOI: 10.3390/toxins14050292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Contamination of food chains by toxigenic fungi and aflatoxins is a global problem that causes damage to human health, as well as to crop and livestock production. The objective is to evaluate Aspergillus flavus and total aflatoxins (AFs) occurrence in totally mixed rations (TMRs) for dairy cows and aflatoxin M1 (AFM1) in milk for human consumption. Ninety-nine dairy production units located in Aguascalientes, Mexico, were randomly selected, and samples were collected from TMRs, raw milk, and milk marketed in the city in two consecutive agricultural cycles. AFs were quantified in TMRs and milk by indirect enzyme immunoassay and HPLC; aflatoxigenic and molecular (PCR) capacity of monosporic A. flavus isolates in the feed was characterized. All feed, raw, and pasteurized milk samples showed aflatoxin contamination (26.0 ± 0.4 µg/kg, 32.0 ± 1.0, and 31.3 ± 0.7 ng/L, respectively), and a significant proportion (90.4, 11.3, and 10.3%) exceeded the locally applied maximum permissible limits for feed and milk (20.0 µg/kg and 50 ng/L). Aflatoxin contamination in both TMRs and milk indicated a seasonal influence, with a higher concentration in the autumn-winter cycle when conditions of higher humidity prevail. The results obtained suggest the existence of contamination by aflatoxigenic A. flavus and aflatoxins in the diet formulated for feeding dairy cows and, consequently, in the dairy food chain of this region of the Mexican Highland Plateau.
Collapse
Affiliation(s)
- Fernanda Álvarez-Días
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Barenca Torres-Parga
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Arturo Gerardo Valdivia-Flores
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Teódulo Quezada-Tristán
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | | | - Joaquín Sosa-Ramírez
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| | - Erika Janet Rangel-Muñoz
- Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (F.Á.-D.); (B.T.-P.); (T.Q.-T.); (J.S.-R.); (E.J.R.-M.)
| |
Collapse
|
35
|
Mixed Contaminants: Occurrence, Interactions, Toxicity, Detection, and Remediation. Molecules 2022; 27:molecules27082577. [PMID: 35458775 PMCID: PMC9029723 DOI: 10.3390/molecules27082577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
The ever-increasing rate of pollution has attracted considerable interest in research. Several anthropogenic activities have diminished soil, air, and water quality and have led to complex chemical pollutants. This review aims to provide a clear idea about the latest and most prevalent pollutants such as heavy metals, PAHs, pesticides, hydrocarbons, and pharmaceuticals—their occurrence in various complex mixtures and how several environmental factors influence their interaction. The mechanism adopted by these contaminants to form the complex mixtures leading to the rise of a new class of contaminants, and thus resulting in severe threats to human health and the environment, has also been exhibited. Additionally, this review provides an in-depth idea of various in vivo, in vitro, and trending biomarkers used for risk assessment and identifies the occurrence of mixed contaminants even at very minute concentrations. Much importance has been given to remediation technologies to understand our current position in handling these contaminants and how the technologies can be improved. This paper aims to create awareness among readers about the most ubiquitous contaminants and how simple ways can be adopted to tackle the same.
Collapse
|
36
|
Pinto ACSM, De Pierri CR, Evangelista AG, Gomes ASDLPB, Luciano FB. Deoxynivalenol: Toxicology, Degradation by Bacteria, and Phylogenetic Analysis. Toxins (Basel) 2022; 14:toxins14020090. [PMID: 35202118 PMCID: PMC8876347 DOI: 10.3390/toxins14020090] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Deoxynivalenol (DON) is a toxic secondary metabolite produced by fungi that contaminates many crops, mainly wheat, maize, and barley. It affects animal health, causing intestinal barrier impairment and immunostimulatory effect in low doses and emesis, reduction in feed conversion rate, and immunosuppression in high doses. As it is very hard to completely avoid DON’s production in the field, mitigatory methods have been developed. Biodegradation has become a promising method as new microorganisms are studied and new enzymatic routes are described. Understanding the common root of bacteria with DON degradation capability and the relationship with their place of isolation may bring insights for more effective ways to find DON-degrading microorganisms. The purpose of this review is to bring an overview of the occurrence, regulation, metabolism, and toxicology of DON as addressed in recent publications focusing on animal production, as well as to explore the enzymatic routes described for DON’s degradation by microorganisms and the phylogenetic relationship among them.
Collapse
Affiliation(s)
- Anne Caroline Schoch Marques Pinto
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Camilla Reginatto De Pierri
- Graduate Program in Sciences—Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Paraná, 100 Coronel Francisco H. dos Santos Avenue, Jardim das Américas, Curitiba 81530-000, Brazil;
| | - Alberto Gonçalves Evangelista
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Ana Silvia de Lara Pires Batista Gomes
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
| | - Fernando Bittencourt Luciano
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 1155 Imaculada Conceição Street, Prado Velho, Curitiba 80215-901, Brazil; (A.C.S.M.P.); (A.G.E.); (A.S.d.L.P.B.G.)
- Correspondence:
| |
Collapse
|
37
|
LIMA CMG, COSTA HRD, PAGNOSSA JP, ROLLEMBERG NDC, SILVA JFD, DALLA NORA FM, BATIHA GES, VERRUCK S. Influence of grains postharvest conditions on mycotoxins occurrence in milk and dairy products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
39
|
Wang Q, Zhao Y, Chen P, Zeng R, Liang Y. Ochratoxin A and zearalenone in poultry feed samples from South China. J Food Saf 2021. [DOI: 10.1111/jfs.12944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qiongshan Wang
- College of Life Science Technology of Huazhong Agricultural University Wuhan China
| | - Yarong Zhao
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Peirong Chen
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Rui Zeng
- Public Monitoring Center for Agro‐products of Guangdong Academy of Agricultural Sciences Guangzhou China
| | - Yunxiang Liang
- College of Life Science Technology of Huazhong Agricultural University Wuhan China
| |
Collapse
|
40
|
Mycotoxins survey in feed materials and feedingstuffs in years 2015-2020. Toxicon 2021; 202:27-39. [PMID: 34562492 DOI: 10.1016/j.toxicon.2021.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
Mycotoxins are secondary metabolites produced by several fungi, mainly from Penicillium, Fusarium, and Aspregillus genera. They can contaminate many raw materials both in the field and during storage under very different conditions. This study aimed to evaluate mycotoxin contamination levels of raw materials and products for animals in Poland in the years 2015-2020. Producers, farmers, and veterinary doctors delivered a total of 3980 samples (642 maize samples, 2027 feed samples, 990 small grain samples, 142 maize silage samples and 179 TMR samples). Samples were analyzed for the occurrence of several mycotoxins, including aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, nivalenol, T-2 toxin, H-2 toxin, and zearalenone. Trichothecenes, zearalenone, and fumonisins were determined using the LC-MS/MS technique. Ochratoxin A and aflatoxins were determined using the HPLC-FLD method. Deoxynivalenol and zearalenone were the most common contamination in maize samples (97.3% and 98.4%, respectively) and feed samples (99.7% and 100% samples, respectively). They were also present in all maize silage and TMR samples. The highest concentration levels of deoxynivalenol and zearalenone were 16,889 μg/kg in the wheat sample and 1420 μg/kg in the maize sample. Additionally, in 51 samples, mycotoxins level (mainly deoxynivalenol and zearalenone levels) was above recommended levels set by the European Union. The present study showed that both feeding and raw materials are contaminated by mycotoxins, often by more than one.
Collapse
|
41
|
Pack ED, Weiland S, Musser R, Schmale DG. Survey of zearalenone and type-B trichothecene mycotoxins in swine feed in the USA. Mycotoxin Res 2021; 37:297-313. [PMID: 34537950 DOI: 10.1007/s12550-021-00442-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/24/2022]
Abstract
New information is needed regarding the types and concentrations of mycotoxins in swine feed. We hypothesized that (1) the mycotoxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), nivalenol (NIV), and zearalenone (ZEN) vary among swine ingredient and feed types, and (2) the inclusion of specific ingredients is associated with mycotoxin contamination in complete feed. A total of 707 samples were collected from cooperators in 14 states between June 2018 and January 2020 then analyzed for DON, 3-AcDON, 15-AcDON, NIV, and ZEN contamination using gas chromatography-mass spectrometry (GC-MS). Ninety-four percent (663/707) of samples contained DON, 33% (230/707) of samples contained 3-AcDON, 57% (404/707) of samples contained 15-AcDON, 1% (6/707) of samples contained NIV, and 47% (335/707) of samples contained ZEN. Seventy-three percent (514/707) of samples contained multiple mycotoxins. Resulting DON concentrations were below the national advisory limits for all sample types, and no advisory limits are imposed for the other mycotoxins studied. Increased incorporation of distiller's dried grains with solubles (DDGS) was associated with increased DON in complete feed (R2 = 0.82).
Collapse
Affiliation(s)
- Erica D Pack
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
42
|
Poloni VL, Bainotti MB, Vergara LD, Escobar F, Montenegro M, Cavaglieri L. Influence of technological procedures on viability, probiotic and anti-mycotoxin properties of Saccharomyces boulardii RC009, and biological safety studies. Curr Res Food Sci 2021; 4:132-140. [PMID: 33778773 PMCID: PMC7985476 DOI: 10.1016/j.crfs.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
The objective was to evaluate the technological processing (protection strategies and storage conditions) influence on viability, on probiotic properties and adsorbent aflatoxin B1 capacity of S. boulardii RC009. Also, the yeast biological safety was evaluated. Lyophilisation (DL) and encapsulation + lyophilisation (EL) were conducted. Yeast protected with maltodextrin (M) or WPC stored at 4 °C reduced 1 and 2 log the viability, respectively. Yeast protected with M stored at 25 °C reduced 1 log after 70 d; with WPC the viability significantly reduced 3 log after 30 d. Technological processing improved the coaggregation’s capacity with pathogens and DL process allowed the greatest AFB1 adsorption. S. boulardii 106 cells/mL were no toxic to Vero cells (p˂0.05). Saccharomyces boulardii RC009 protected with M or WPC maintained viability after technological processing. It possesses a great capacity for AFB1 adsorption and probiotic properties and could be considered a candidate with proven safety for functional food products development. Commercial refinery syrup was a good substrate for Saccharomyces boulardii growth. Maltodextrin and WPC were efficient protectors in ensuring the yeast viability. The lyophilised yeast achieved high percentages of AFB1 adsorption. Saccharomyces boulardii cells were non-toxic in Vero cells up to 106 CFU/mL.
Collapse
Affiliation(s)
- Valeria Lorena Poloni
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
| | - María Belén Bainotti
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Ladislao Díaz Vergara
- Fellow of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.,Centro de Investigaciones y Transferencia Villa María, Universidad Nacional de Villa María-CONICET, Argentina
| | - Franco Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
| | - Mariana Montenegro
- Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.,Centro de Investigaciones y Transferencia Villa María, Universidad Nacional de Villa María-CONICET, Argentina
| | - Lilia Cavaglieri
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.,Member of Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
| |
Collapse
|
43
|
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: A critical review. Anal Chim Acta 2021; 1160:338395. [PMID: 33894965 DOI: 10.1016/j.aca.2021.338395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
Mycotoxin contamination is a current issue affecting several crops and processed products worldwide. Among the diverse mycotoxin group, fumonisin B1 (FB1) has become a relevant compound because of its adverse effects in the food chain. Conventional analytical methods previously proposed to quantify FB1 comprise LC-MS, HPLC-FLD and ELISA, while novel approaches integrate different sensing platforms and fluorescently labelled agents in combination with antibodies. Nevertheless, such methods could be expensive, time-consuming and require experience. Aptamers (ssDNA) are promising alternatives to overcome some of the drawbacks of conventional analytical methods, their high affinity through specific aptamer-target binding has been exploited in various designs attaining favorable limits of detection (LOD). So far, two aptamers specific to FB1 have been reported, and their modified and shortened sequences have been explored for a successful target quantification. In this critical review spanning the last eight years, we have conducted a systematic comparison based on principal component analysis of the aptamer-based techniques for FB1, compared with chromatographic, immunological and other analytical methods. We have also conducted an in-silico prediction of the folded structure of both aptamers under their reported conditions. The potential of aptasensors for the future development of highly sensitive FB1 testing methods is emphasized.
Collapse
Affiliation(s)
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
44
|
Kananub S, Jala P, Laopiem S, Boonsoongnern A, Sanguankiat A. Mycotoxin profiles of animal feeds in the central part of Thailand: 2015-2020. Vet World 2021; 14:739-743. [PMID: 33935421 PMCID: PMC8076449 DOI: 10.14202/vetworld.2021.739-743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/05/2021] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Mycotoxin contamination in animal feeds is of considerable concern because it can affect animal health systems. As a result of contamination in the food chain, humans can indirectly come into contact with mycotoxins. The present study aimed to present mycotoxin contamination patterns in animal feeds from 2015 to 2020 and elucidate associations between the type of feed and the type of ingredient. Materials and Methods: Data were summarized from the records of the Kamphaeng Saen Veterinary Diagnosis Center from 2015 to 2020, which comprised the analyses of aflatoxin (AFL), zearalenone (ZEA), T-2 toxin (T-2), fumonisin (FUM), and deoxynivalenol (DON) contamination in feed ingredients, complete feeds, and unclassified feeds. Descriptive statistics, Chi-squared tests, and Fisher’s exact tests were used for data analysis. Results: ZEA was prevalent in animal feeds. The prevalence of each mycotoxin was constant from 2015 to 2020. Approximately 20-30% of samples were positive for AFL and FUM. The highest contamination was ZEA, which was found in 50% of the samples, and the occurrence of T-2 and DON was <10%. AFL significantly contaminated complete feeds more than feed ingredients. Feed ingredients were related to mycotoxin contaminations. The highest levels of AFL, FUM, and DON contamination occurred in 2017. The data in this year consisted mostly of soybean, corn, and rice bran. Conclusion: The number of positive samples of all five mycotoxins was constant from 2015 to 2020, but the occurrence of ZEA was the highest. Mycotoxins in feedstuffs are significantly related to the type of feed and the type of ingredient.
Collapse
Affiliation(s)
- Suppada Kananub
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Prakorn Jala
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Alongkot Boonsoongnern
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Arsooth Sanguankiat
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| |
Collapse
|
45
|
Geballa-Koukoula A, Gerssen A, Nielen MWF. From Smartphone Lateral Flow Immunoassay Screening to Direct MS Analysis: Development and Validation of a Semi-Quantitative Direct Analysis in Real-Time Mass Spectrometric (DART-MS) Approach to the Analysis of Deoxynivalenol. SENSORS (BASEL, SWITZERLAND) 2021; 21:1861. [PMID: 33800036 PMCID: PMC7962121 DOI: 10.3390/s21051861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
In current food safety monitoring, lateral flow immunoassays (LFIAs) are widely used for rapid food contaminant screening. Recent advances include smartphone readouts, offering semi-quantitative analysis of LFIAs with time, location, and data transfer in case of on-site testing. Following the screening, the next step in the EU regulations is confirmation by, e.g., liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this work, using direct analysis in real time ambient ionization and triple quadrupole MS/MS (DART-QqQ-MS/MS), we achieved rapid confirmation of the identity of the substance(s) causing the LFIA result. In the workflow proposed, an individual performs the (on-site) smartphone LFIA screening, and when the result is suspect, an identification LFIA (ID-LFIA) strip is developed with the same sample extract. The ID-LFIA can be dissociated and rapidly analyzed in a control laboratory with DART-QqQ-MS/MS. The ID-LFIA consists of multiple lines of monoclonal antibodies against the mycotoxin deoxynivalenol, acting as a bioaffinity trap. The ID-LFIA/DART-QqQ-MS/MS approach has been developed and validated, along with the screening smartphone LFIA, and has demonstrated its applicability by analyzing incurred and spiked samples. The developed approach has been critically compared with our previous direct electrospray ionization MS method and was found to provide highly complementary information on the total deoxynivalenol contamination in the sample.
Collapse
Affiliation(s)
- Ariadni Geballa-Koukoula
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.); (M.W.F.N.)
| | - Arjen Gerssen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.); (M.W.F.N.)
| | - Michel W. F. Nielen
- Wageningen Food Safety Research, Wageningen University and Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; (A.G.); (M.W.F.N.)
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
46
|
de Matos CJ, Schabo DC, do Nascimento YM, Tavares JF, Lima EDO, da Cruz PO, de Souza EL, Magnani M, Magalhães HIF. Aflatoxin M 1 in Brazilian goat milk and health risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:415-422. [PMID: 33657979 DOI: 10.1080/03601234.2021.1892434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contamination of goat milk with aflatoxin M1 (AFM1) is a public health concern. This study investigated filamentous fungi in goat feed and quantified AFM1 in milk samples (n = 108) from goat fed forage and concentrate. Based on the detected AFM1 concentration, risk assessment analyses were performed concerning the Estimated Daily Intake (EDI) for one-year-old children and adults. Filamentous fungi were found in goat feed samples in a range of 3.1 ± 1.9 to 4.2 ± 0.2 log CFU/g. Five genera were identified, to cite Aspergillus, Penicillium, Fusarium, Rhizopus and Acremonium. Aspergillus species comprised A. flavus, A. niger, and A. ochraceus. All goat milk samples were contaminated with AFM1 (5.60-48.20 ng/L; mean 21.90 ± 10.28 ng/L) in amounts below the limits imposed by regulatory agencies. However, EDI values for AFM1 through goat milk estimated for one-year-old children were above the Tolerable Daily Intake. The calculated Hazard Index for one-year-old children indicated potential risk of liver cancer due to goat milk consumption. The Margin of Exposure values to AFM1 in one-year-old children and adults consuming goat milk as the unique milk source indicated increased health risk. Therefore, contamination of goat milk with AFM1 should be considered a high priority for Brazil's risk management actions.
Collapse
Affiliation(s)
- Clarisse J de Matos
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Colorado do Oeste, Brazil
| | - Yuri M do Nascimento
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Josean F Tavares
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Edeltrudes de O Lima
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Paloma O da Cruz
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Hemerson I F Magalhães
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
47
|
Impaired Performance of Broiler Chickens Fed Diets Naturally Contaminated with Moderate Levels of Deoxynivalenol. Toxins (Basel) 2021; 13:toxins13020170. [PMID: 33671808 PMCID: PMC7926331 DOI: 10.3390/toxins13020170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Mycotoxin exposure is common in the poultry industry. Deoxynivalenol (DON) is usually detected at levels below the maximum threshold (5000 ppb), but depending on diet and age, broiler performance can be affected. We evaluated the effects of 900 ppb and 2300 ppb DON on the performance, intestinal morphometry, and lesion scores of broiler chickens. One-day-old male Ross broilers (n = 736) were divided into 4 treatments with 8 replicates each, and a pen containing 23 birds was the experimental unit. The animals were fed diets naturally contaminated with two levels of DON: 900 (Low DON—LD) or 2300 (Moderate DON—MD) ppb, with or without activated charcoal, over 28 days. After this, all birds were fed a marginally DON-contaminated diet without charcoal. During the first 28 days, body weight gain (BWG) and feed conversion ratio (FCR) were significantly impaired when broilers were fed a MD diet without activated charcoal. Even after feeding a marginally contaminated diet from D28–35, birds previously fed the MD diet presented a significantly lower performance. The villus height:crypt depth (VH:CD) ratio was significantly higher in the ileum from 14-day-old broilers fed the MD when compared with the LD diet. At D28, the MD diet caused decreased villus height (VH) and increased crypt depth (CD), affecting VH:CD ratio in both intestinal segments, with higher levels in the jejunum from 28-day-old broilers fed a non-supplemented LD diet. Broiler production was negatively affected by DON, even at moderate levels (2300 ppb).
Collapse
|
48
|
Trevisi P, Luise D, Spinelli E, Correa F, De Leo E, Trambajolo G, Diegoli G, Bosi P. Transfer of Mycotoxins from Lactation Feed to Colostrum of Sows. Animals (Basel) 2020; 10:ani10122253. [PMID: 33266144 PMCID: PMC7761246 DOI: 10.3390/ani10122253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023] Open
Abstract
Studies regarding the transfer of mycotoxins from sow feed to colostrum are scarce. A sample of in-house produced lactation feed and one of colostrum were collected from two or three sows per farm (total 49) from 19 farms. The feed contents of aflatoxins (AFs), fumonisins (FUs), deoxynivalenol (DON) and zearalenone (ZEA) were assessed using ELISA and confirmed by liquid chromatography-mass spectrometry (LC-MS), The values were very low (10, 12, 17 and 2 positive samples for AFs, FUs, DON and ZEA, respectively), except for two samples (one AF, one DON). Based on feed values, colostrum samples from 13 farms were tested for at least one mycotoxin (Total 35). Aflatoxins were not found in any sample. A signal for FUs was observed in 5 of 11 colostra, despite low feed values; DON was frequently present in the colostrum (10/14). On the farm where the feed exceeded the DON suggested limits, a higher colostrum content was seen, 10.9 µg/kg, approximately 1/69 of the value showing toxicity in young pigs. The absence of reference values for neonate pigs, and the risk of higher and longer ingestion of DON by sows suggested considering routine checks of sow feed; more research on DON transfer and toxicity in piglets is needed.
Collapse
Affiliation(s)
- Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Elisa Spinelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
| | - Elena De Leo
- LAEMMEGROUP s.r.l., Via Vittime del Vajont 18, 10024 Moncalieri, Torino, Italy;
| | - Giovanna Trambajolo
- Collective Prevention and Public Health Service, Veterinary Health and Food Hygiene Area, Regione Emilia—Romagna, Viale A. Moro 21, 40127 Bologna, Italy; (G.T.); (G.D.)
| | - Giuseppe Diegoli
- Collective Prevention and Public Health Service, Veterinary Health and Food Hygiene Area, Regione Emilia—Romagna, Viale A. Moro 21, 40127 Bologna, Italy; (G.T.); (G.D.)
| | - Paolo Bosi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy; (P.T.); (D.L.); (E.S.); (F.C.)
- Correspondence:
| |
Collapse
|
49
|
Santos RR, Molist F. Effect of different dietary levels of corn naturally contaminated with DON and its derivates 3+15 Ac-DON and DON-3-glucoside on the performance of broilers. Heliyon 2020; 6:e05257. [PMID: 33102864 PMCID: PMC7575869 DOI: 10.1016/j.heliyon.2020.e05257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022] Open
Abstract
In the field of mycotoxin research, there is an increasing requirement to understand the effect of these toxins at realistic contamination levels, and as mixtures, on animal health and performance. Although there are recommendations of maximum levels of some mycotoxins in feed, it is known from practice that concentrations below the maximum recommended levels already negatively affect livestock production. In the present study, we exposed broilers to three different levels of naturally contaminated diets containing deoxynivalenol (DON) and its derivates 3 + 15 Acetyl-DON (3 + 15 Ac-DON) and DON-3-glucoside (DON-3-G) to evaluate their effect on birds performance. 630 day-old Ross 308 broilers were housed in 30 pens (21 birds per pen) and fed diets containing increasing levels of DON (Low: 1,650-1,890 μg/kg; Moderate: 2,500-2,880 μg/kg DON; and High: 3,220-3,900 μg/kg), 3 + 15 Acetyl-DON (Low: 25.6-39.4 μg/kg; Moderate: 42.3-49.1 μg/kg; and High: 58.4-71.1 μg/kg), and DON-3-G (Low: 356-362 μg/kg; Moderate: 405-637 μg/kg; and High: 625-787 μg/kg). Each diet had 10 replicate pens. During the grower period (D13-28) broilers fed diets containing moderate and high contamination levels presented a significantly increased feed intake but accompanied by significant impairment in FCR when the broilers were fed the highest contamination level. Based on this, it can be concluded that broiler production is affected when feed is contaminated with a mixture of DON and its derivates, even at levels below the EU maximum recommendation of 5,000 μg/kg. Furthermore, extra attention should be given to multi-mycotoxins contamination in diets for broilers up to 28 days old.
Collapse
|
50
|
Horky P, Venusova E, Aulichova T, Ridoskova A, Skladanka J, Skalickova S. Usability of graphene oxide as a mycotoxin binder: In vitro study. PLoS One 2020; 15:e0239479. [PMID: 32966310 PMCID: PMC7510967 DOI: 10.1371/journal.pone.0239479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Mycotoxin management in agriculture is an essential challenge for maintaining the health of both animals and humans. Choosing the right adsorbent is still a question for many breeders and an important criterion for feed manufacturers. New adsorbents are still being sought. Graphene oxide is a promising material in the field of nanotechnology, which excels in its adsorption properties. Presented in vitro study investigates graphene oxide for the binding of mycotoxins from crushed wheat. The results show that graphene oxide has an adsorption capacity for aflatoxin 0.045 mg/g, zearalenone 0.53 mg/g and deoxynivalenol 1.69 mg/g at 37° C. In vitro simulation of crushed wheat digestion showed rapid adsorption during the gastric phase. Of the minerals, Mg, Cu and Zn were the most adsorbed. The applied dose of graphene oxide of 10 mg/g caused only a slight inhibition of the digestive enzymes α-amylase and trypsin compared to pepsin and gastric lipase. In vitro results indicated the suitability of graphene oxide in the adsorption of the aflatoxin, zearalenone and deoxynivalenol.
Collapse
Affiliation(s)
- Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Eva Venusova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Tereza Aulichova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
- * E-mail:
| |
Collapse
|