1
|
Morín IO, Depaepe F, Reynvoet B. Sharpening the number sense: Developmental trends in numerosity perception. J Exp Child Psychol 2025; 256:106262. [PMID: 40239424 DOI: 10.1016/j.jecp.2025.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025]
Abstract
Numerosity perception, the ability to process and estimate the number of objects in a set without explicitly counting, has been widely studied, and one well-established finding is that children become more accurate at perceiving numerosity with age. The question remains, however, what the underlying cognitive processes and mechanisms are that drive this improvement. Some authors have suggested that this is due to an increased numerical precision (i.e., the sharpening hypothesis), whereas others have proposed that the more accurate performance is due to the improved ability to inhibit non-numerical features of the display such as object size and spacing of items (i.e., the filtering hypothesis). The current study examined the developmental trajectory of numerosity perception across three age groups (M = 5.65, M = 11.03, and M = 20.10 years). As expected, more accurate performance was observed with age. Regression and analyses of variance revealing the contribution of numerical and non-numerical predictors in performance show that the performance in all age groups was primarily driven by numerical information and that its contribution increased with age. In addition, a consistent bias toward non-numerical features was observed in all age groups. These results support the sharpening hypothesis for children from 5 years of age to early adulthood, suggesting that from this age onward children increasingly focus on numerical information as they get older. These results have important implications for the understanding of the development and specific improvements of numerical perception.
Collapse
Affiliation(s)
- Irene Oeo Morín
- Brain and Cognition, KU (Katholieke Universiteit) Leuven 3000 Leuven, Belgium; Faculty of Psychology and Educational Sciences, KU Leuven, Kulak Campus, 8500 Kortrijk, Belgium.
| | - Fien Depaepe
- Faculty of Psychology and Educational Sciences, KU Leuven, Kulak Campus, 8500 Kortrijk, Belgium; ITEC, IMEC (Interuniversity Microelectronics Centre) Research Group, KU Leuven, Kulak Campus, 8500 Kortrijk, Belgium
| | - Bert Reynvoet
- Brain and Cognition, KU (Katholieke Universiteit) Leuven 3000 Leuven, Belgium; Faculty of Psychology and Educational Sciences, KU Leuven, Kulak Campus, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Long MN, Odic D. Evidence for a Low Number Prior in Children's Intuitive Number Sense. Child Dev 2025. [PMID: 40183483 DOI: 10.1111/cdev.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Children rely on their Approximate Number System to intuitively perceive number. Such adaptations often exhibit sensitivity to real-world statistics. This study investigates a potential manifestation of the ANS's sensitivity to real-world statistics: a negative power-law distribution of objects in natural scenes should be reflected in children's expectations about number, or in more Bayesian terms, a low number prior distribution. Five- to eight-year-old children (n = 80; 39 girls, 41 boys) and adults (n = 20) in 2022 completed a number discrimination task in which one side was corrupted by perceptual noise. Children and adults demonstrate a low number prior. No age-related differences were observed, suggesting that the prior is formed by age five and does not strengthen with age.
Collapse
Affiliation(s)
- Miranda N Long
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darko Odic
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Skagenholt M, Skagerlund K, Träff U. Numerical cognition across the lifespan: A selective review of key developmental stages and neural, cognitive, and affective underpinnings. Cortex 2025; 184:263-286. [PMID: 39919570 DOI: 10.1016/j.cortex.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/29/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Numerical cognition constitutes a set of hierarchically related skills and abilities that develop-and may subsequently begin to decline-over developmental time. An innate "number sense" has long been argued to provide a foundation for the development of increasingly complex and applied numerical cognition, such as symbolic numerical reference, arithmetic, and financial literacy. However, evidence for a direct link between basic perceptual mechanisms that allow us to determine numerical magnitude (e.g., "how many" objects are in front of us and whether some of these are of a "greater" or "lesser" quantity), and later symbolic applications for counting and mathematics, has recently been challenged. Understanding how one develops an increasingly precise sense of number and which neurocognitive mechanisms support arithmetic development and achievement is crucial for developing successful mathematics curricula, supporting individual financial literacy and decision-making, and designing appropriate intervention and remediation programs for mathematical learning disabilities as well as mathematics anxiety. The purpose of this review is to provide a broad overview of the cognitive, neural, and affective underpinnings of numerical cognition-spanning the earliest hours of infancy to senior adulthood-and highlight gaps in our knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Mikael Skagenholt
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden.
| | - Kenny Skagerlund
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden; Department of Management and Engineering, JEDI-Lab, Linköping University, Linköping, Sweden; Center for Social and Affective Neuroscience (CSAN), Linköping University, Linköping, Sweden
| | - Ulf Träff
- Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Howard SR. The origins of number sense: a commentary on "Is there an innate sense of number in the brain?". Cereb Cortex 2025; 35:bhaf021. [PMID: 39932132 DOI: 10.1093/cercor/bhaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 05/08/2025] Open
Abstract
The question of whether a "sense of number" is innate has been posed in a new article by Lorenzi et al. (2025). The article explores the behavioral and neurobiological evidence from newborn animals to delve into the evolutionary origins of a sense of number. Lorenzi et al.(2025) raises new questions, interpretations, and ideas for future work to understand how number sense has evolved in humans and nonhuman animals. In this commentary, I discuss the arguments for an innate number sense, evaluate the implications for numerical cognition, and suggest how future work could fill the current gaps in our knowledge.
Collapse
Affiliation(s)
- Scarlett R Howard
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton 3800, Victoria, Australia
| |
Collapse
|
5
|
Lorenzi E, Kobylkov D, Vallortigara G. Is there an innate sense of number in the brain? Cereb Cortex 2025; 35:bhaf004. [PMID: 39932126 DOI: 10.1093/cercor/bhaf004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 05/08/2025] Open
Abstract
The approximate number system or «sense of number» is a crucial, presymbolic mechanism enabling animals to estimate quantities, which is essential for survival in various contexts (eg estimating numerosities of social companions, prey, predators, and so on). Behavioral studies indicate that a sense of number is widespread across vertebrates and invertebrates. Specific brain regions such as the intraparietal sulcus and prefrontal cortex in primates, or equivalent areas in birds and fish, are involved in numerical estimation, and their activity is modulated by the ratio of quantities. Data gathered across species strongly suggest similar evolutionary pressures for number estimation pointing to a likely common origin, at least across vertebrates. On the other hand, few studies have investigated the origins of the sense of number. Recent findings, however, have shown that numerosity-selective neurons exist in newborn animals, such as domestic chicks and zebrafish, supporting the hypothesis of an innateness of the approximate number system. Control-rearing experiments on visually naïve animals further support the notion that the sense of number is innate and does not need any specific instructive experience in order to be triggered.
Collapse
Affiliation(s)
- Elena Lorenzi
- Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Dmitry Kobylkov
- Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, TN 30868, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, TN 30868, Italy
| |
Collapse
|
6
|
Togoli I, Collignon O, Bueti D, Fornaciai M. The Mechanisms and Neural Signature of Time-averaged Numerosity Perception. J Cogn Neurosci 2025; 37:498-514. [PMID: 39436233 DOI: 10.1162/jocn_a_02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The animal brain is endowed with an innate sense of number allowing to intuitively perceive the approximate quantity of items in a scene, or "numerosity." This ability is not limited to items distributed in space, but also to events unfolding in time and to the average numerosity of dynamic scenes. How the brain computes and represents the average numerosity over time, however, remains unclear. Here, we investigate the mechanisms and EEG signature of the perception of average numerosity over time. To do so, we used stimuli composed of a variable number (3-12) of briefly presented dot arrays (50 msec each) and asked participants to judge the average numerosity of the sequence. We first show that the weight of different portions of the stimuli in determining the judgment depends on how many arrays are included in the sequence itself: the longer the sequence, the lower the weight of the latest arrays. Second, we show systematic adaptation effects across stimuli in consecutive trials. Importantly, the EEG results highlight two processing stages whereby the amplitude of occipital ERPs reflects the adaptation effect (∼300 msec after stimulus onset) and the accuracy and precision of average numerosity judgments (∼450-700 msec). These two stages are consistent with processes involved with the representation of perceived average numerosity and with perceptual decision-making, respectively. Overall, our findings provide new evidence showing how the visual system computes the average numerosity of dynamic visual stimuli, and support the existence of a dedicated, relatively low-level perceptual mechanism mediating this process.
Collapse
Affiliation(s)
- Irene Togoli
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Olivier Collignon
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
- HES-SO Valais-Walis, Lausanne and Sion, Switzerland
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Michele Fornaciai
- Université catholique de Louvain, Louvain-la-Neuve, Belgium
- International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
7
|
Marinova M, Reynvoet B. Are three zebras more than three frogs: examining conceptual and physical congruency in numerosity judgements of familiar objects. PSYCHOLOGICAL RESEARCH 2024; 89:39. [PMID: 39731611 DOI: 10.1007/s00426-024-02044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 12/30/2024]
Abstract
Researchers in numerical cognition have extensively studied the number sense-the innate human ability to extract numerical information from the environment quickly and effortlessly. Much of this research, however, uses abstract stimuli (e.g., dot configurations) that are also strictly controlled for their low-level visual confounds, such as size. Nonetheless, individuals rarely extract numerical information from abstract stimuli in everyday life. Yet, numerical judgments of familiar objects remain poorly understood and understudied. In the current study, we examined the cognitive mechanisms underlying the numerical decisions of familiar objects. In two experiments, we asked adult participants (Experiment 1) and two groups of children (aged 7-9 years and 11-12 years, Experiment 2) to perform an animal numerosity task (i.e., "Which animal is more numerous?"), while the conceptual congruency (i.e., the congruency between an object's real-life size and its numerosity) and physical congruency (the congruency between the number of items and the total space they occupy on the screen) were manipulated. Results showed that the conceptual congruency effect (i.e., better performance when the animal with a larger size in real life is more numerous) and a physical congruency effect (i.e., better performance when the physically larger animal is more numerous) were present in adults and children. However, the effects differed across the age groups and were also a subject of developmental change. To our knowledge, this study is the first one to demonstrate that conceptual knowledge can interfere with numerosity judgements in a top-down manner. This interference effect is distinct from the bottom-up interference effect, which comes from the physical properties of the set. Our results imply that the number sense is not a standalone core system for numbers but is embedded in a more extensive network where both low-level and higher-order influences are possible. We encourage numerical cognition researchers to consider employing not only abstract but also familiar objects when examining numerosity judgements across the lifespan.
Collapse
Affiliation(s)
- Mila Marinova
- Department of Behavioural and Cognitive Sciences, Faculty of Humanities, Education and Social Sciences, Institute of Cognitive Science and Assessment, University of Luxembourg, Esch-Belval, Luxembourg
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Faculty of Psychology and Educational Sciences, KU Leuven @Kulak, Etienne Sabbelaan 51, 8500, Kortrijk, Belgium
| | - Bert Reynvoet
- Brain and Cognition, KU Leuven, Leuven, Belgium.
- Faculty of Psychology and Educational Sciences, KU Leuven @Kulak, Etienne Sabbelaan 51, 8500, Kortrijk, Belgium.
| |
Collapse
|
8
|
Hou K, Zorzi M, Testolin A. Estimating the distribution of numerosity and non-numerical visual magnitudes in natural scenes using computer vision. PSYCHOLOGICAL RESEARCH 2024; 89:31. [PMID: 39625570 DOI: 10.1007/s00426-024-02064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/16/2024] [Indexed: 03/04/2025]
Abstract
Humans share with many animal species the ability to perceive and approximately represent the number of objects in visual scenes. This ability improves throughout childhood, suggesting that learning and development play a key role in shaping our number sense. This hypothesis is further supported by computational investigations based on deep learning, which have shown that numerosity perception can spontaneously emerge in neural networks that learn the statistical structure of images with a varying number of items. However, neural network models are usually trained using synthetic datasets that might not faithfully reflect the statistical structure of natural environments, and there is also growing interest in using more ecological visual stimuli to investigate numerosity perception in humans. In this work, we exploit recent advances in computer vision algorithms to design and implement an original pipeline that can be used to estimate the distribution of numerosity and non-numerical magnitudes in large-scale datasets containing thousands of real images depicting objects in daily life situations. We show that in natural visual scenes the frequency of appearance of different numerosities follows a power law distribution. Moreover, we show that the correlational structure for numerosity and continuous magnitudes is stable across datasets and scene types (homogeneous vs. heterogeneous object sets). We suggest that considering such "ecological" pattern of covariance is important to understand the influence of non-numerical visual cues on numerosity judgements.
Collapse
Affiliation(s)
- Kuinan Hou
- Department of General Psychology, University of Padova, Padua, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padua, Italy
- IRCCS San Camillo Hospital, Lido, VE, Italy
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Padua, Italy.
- Department of Mathematics, University of Padova, Padua, Italy.
| |
Collapse
|
9
|
Liang T, Rong KL, Qiao JD, Ke Y, Yung WH. Automatic Experimental Numerosity Generation and Numerical Training for Rodents. Curr Protoc 2024; 4:e70044. [PMID: 39531170 DOI: 10.1002/cpz1.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Non-symbolic stimuli representing numerosities are invariably associated with continuous magnitudes, complicating the interpretation of experimental studies on numerosity perception. Although various algorithms for experimental numerosity generation have been proposed, they do not consider the quantifiable distribution of values of continuous magnitudes and the degree of numerosity-magnitudes association. Consequently, they cannot thoroughly exclude the possibility of magnitudes integration or strategy switch between different magnitudes in numerical stimulus perception. Here, we introduce a protocol for numerosity generation, animal training, and behavior outcomes analysis that takes the aforementioned issues into consideration. This protocol has been applied to rodents and is applicable to other animals in numerosity studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Algorithm for generating non-symbolic numerical stimuli Alternate Protocol: General algorithm for generating non-symbolic numerical stimuli Basic Protocol 2: Numerical training and testing for rodents.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Da Qiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Dolfi S, Decarli G, Lunardon M, De Filippo De Grazia M, Gerola S, Lanfranchi S, Cossu G, Sella F, Testolin A, Zorzi M. Weaker number sense accounts for impaired numerosity perception in dyscalculia: Behavioral and computational evidence. Dev Sci 2024; 27:e13538. [PMID: 38949566 DOI: 10.1111/desc.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Impaired numerosity perception in developmental dyscalculia (low "number acuity") has been interpreted as evidence of reduced representational precision in the neurocognitive system supporting non-symbolic number sense. However, recent studies suggest that poor numerosity judgments might stem from stronger interference from non-numerical visual information, in line with alternative accounts that highlight impairments in executive functions and visuospatial abilities in the etiology of dyscalculia. To resolve this debate, we used a psychophysical method designed to disentangle the contribution of numerical and non-numerical features to explicit numerosity judgments in a dot comparison task and we assessed the relative saliency of numerosity in a spontaneous categorization task. Children with dyscalculia were compared to control children with average mathematical skills matched for age, IQ, and visuospatial memory. In the comparison task, the lower accuracy of dyscalculics compared to controls was linked to weaker encoding of numerosity, but not to the strength of non-numerical biases. Similarly, in the spontaneous categorization task, children with dyscalculia showed a weaker number-based categorization compared to the control group, with no evidence of a stronger influence of non-numerical information on category choice. Simulations with a neurocomputational model of numerosity perception showed that the reduction of representational resources affected the progressive refinement of number acuity, with little effect on non-numerical bias in numerosity judgments. Together, these results suggest that impaired numerosity perception in dyscalculia cannot be explained by increased interference from non-numerical visual cues, thereby supporting the hypothesis of a core number sense deficit. RESEARCH HIGHLIGHTS: A strongly debated issue is whether impaired numerosity perception in dyscalculia stems from a deficit in number sense or from poor executive and visuospatial functions. Dyscalculic children show reduced precision in visual numerosity judgments and weaker number-based spontaneous categorization, but no increasing reliance on continuous visual properties. Simulations with deep neural networks demonstrate that reduced neural/computational resources affect the developmental trajectory of number acuity and account for impaired numerosity judgments. Our findings show that weaker number acuity in developmental dyscalculia is not necessarily related to increased interference from non-numerical visual cues.
Collapse
Affiliation(s)
- Serena Dolfi
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Gisella Decarli
- Department of General Psychology, University of Padova, Padova, Italy
| | | | | | - Silvia Gerola
- Centro Medico di Foniatria - Casa di Cura Trieste, Padova, Italy
| | - Silvia Lanfranchi
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Giuseppe Cossu
- Centro Medico di Foniatria - Casa di Cura Trieste, Padova, Italy
| | - Francesco Sella
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Padova, Italy
- Department of Mathematics, University of Padova, Padova, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Padova, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
11
|
Croteau J, Fornaciai M, Huber DE, Park J. The divisive normalization model of visual number sense: model predictions and experimental confirmation. Cereb Cortex 2024; 34:bhae418. [PMID: 39441025 DOI: 10.1093/cercor/bhae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Our intuitive sense of number allows rapid estimation for the number of objects (numerosity) in a scene. How does the continuous nature of neural information processing create a discrete representation of number? A neurocomputational model with divisive normalization explains this process and existing data; however, a successful model should not only explain existing data but also generate novel predictions. Here, we experimentally test novel predictions of this model to evaluate its merit for explaining mechanisms of numerosity perception. We did so by consideration of the coherence illusion: the underestimation of number for arrays containing heterogeneous compared to homogeneous items. First, we established the existence of the coherence illusion for homogeneity manipulations of both area and orientation of items in an array. Second, despite the behavioral similarity, the divisive normalization model predicted that these two illusions should reflect activity in different stages of visual processing. Finally, visual evoked potentials from an electroencephalography experiment confirmed these predictions, showing that area and orientation coherence modulate brain responses at distinct latencies and topographies. These results demonstrate the utility of the divisive normalization model for explaining numerosity perception, according to which numerosity perception is a byproduct of canonical neurocomputations that exist throughout the visual pathway.
Collapse
Affiliation(s)
- Jenna Croteau
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| | - Michele Fornaciai
- Institute for Research in Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place du Cardinal Mercier 10, Louvain-la-Neuve, 1348, Belgium
| | - David E Huber
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO 80309, United States
| | - Joonkoo Park
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 135 Hicks Way, Amherst, MA 01003, United States
- Commonwealth Honors College, University of Massachusetts Amherst, 157 Commonwealth Avenue, Amherst, MA 01003, United States
| |
Collapse
|
12
|
Dolfi S, Testolin A, Cutini S, Zorzi M. Measuring temporal bias in sequential numerosity comparison. Behav Res Methods 2024; 56:7561-7573. [PMID: 38750387 PMCID: PMC11362239 DOI: 10.3758/s13428-024-02436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 08/30/2024]
Abstract
While several methods have been proposed to assess the influence of continuous visual cues in parallel numerosity estimation, the impact of temporal magnitudes on sequential numerosity judgments has been largely ignored. To overcome this issue, we extend a recently proposed framework that makes it possible to separate the contribution of numerical and non-numerical information in numerosity comparison by introducing a novel stimulus space designed for sequential tasks. Our method systematically varies the temporal magnitudes embedded into event sequences through the orthogonal manipulation of numerosity and two latent factors, which we designate as "duration" and "temporal spacing". This allows us to measure the contribution of finer-grained temporal features on numerosity judgments in several sensory modalities. We validate the proposed method on two different experiments in both visual and auditory modalities: results show that adult participants discriminated sequences primarily by relying on numerosity, with similar acuity in the visual and auditory modality. However, participants were similarly influenced by non-numerical cues, such as the total duration of the stimuli, suggesting that temporal cues can significantly bias numerical processing. Our findings highlight the need to carefully consider the continuous properties of numerical stimuli in a sequential mode of presentation as well, with particular relevance in multimodal and cross-modal investigations. We provide the complete code for creating sequential stimuli and analyzing participants' responses.
Collapse
Affiliation(s)
- Serena Dolfi
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, Italy.
| | - Alberto Testolin
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy
- Department of Mathematics, University of Padova, Padova, Italy
| | - Simone Cutini
- Department of Developmental Psychology and Socialization, University of Padova, Via Venezia 8, 35131, Padova, Italy
| | - Marco Zorzi
- Department of General Psychology, University of Padova, Via Venezia 8, 35131, Padova, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
13
|
Yan L, Qian P, Yan R. Developmental changes in numerosity and area perception in school-age children. Acta Psychol (Amst) 2024; 249:104466. [PMID: 39180832 DOI: 10.1016/j.actpsy.2024.104466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Humans can quickly estimate the quantity of objects in their environment through the Approximate Number System (ANS). However, the developmental trajectories of numerical and spatial perception in school-aged children are not well understood. This study aimed to address this issue by examining the performance of 7-year-olds, 9-year-olds, and 11-year-olds in the dot-number and dot-area tasks. In each trial, participants were presented with pairs of dots array simultaneously and were asked to indicate which array had a greater quantity of dots in the dot-number task, and which array had a larger overall area of dots in the dot-area task. We manipulated number cues and area cues of the dots array in these two tasks, creating three different relationships between dot-number and dot-area: congruent, neutral, and incongruent. Our results showed school-aged children's ability to estimate numerosity improved significantly after the age of 7, with no apparent improvement observed between the ages of 9 and 11. This indicates a marked growth in acuity in the perception of numerical quantities. Conversely, the capacity to estimate area showed consistent stability across the various age groups examined. Additionally, our results demonstrated a pronounced difficulty among participants in ignoring numerical cues when assessing dot quantity or dot area, as opposed to non-numerical cues. This highlights a preferential sensitivity to numerical information in cognitive processing. These findings provide valuable insights into the cognitive development underlying quantity perception and may offer practical guidance for educational practices.
Collapse
Affiliation(s)
- Linlin Yan
- Department of Psychology, Zhejiang Sci-tech University, China.
| | - Ping Qian
- Department of Psychology, Zhejiang Sci-tech University, China
| | - Ruoyuan Yan
- Department of Psychology, Zhejiang Sci-tech University, China
| |
Collapse
|
14
|
Woodin G, Winter B. Numbers in Context: Cardinals, Ordinals, and Nominals in American English. Cogn Sci 2024; 48:e13471. [PMID: 38895756 PMCID: PMC11475258 DOI: 10.1111/cogs.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
There are three main types of number used in modern, industrialized societies. Cardinals count sets (e.g., people, objects) and quantify elements of conventional scales (e.g., money, distance), ordinals index positions in ordered sequences (e.g., years, pages), and nominals serve as unique identifiers (e.g., telephone numbers, player numbers). Many studies that have cited number frequencies in support of claims about numerical cognition and mathematical cognition hinge on the assumption that most numbers analyzed are cardinal. This paper is the first to investigate the relative frequencies of different number types, presenting a corpus analysis of morphologically unmarked numbers (not, e.g., "eighth" or "21st") in which we manually annotated 3,600 concordances in the Corpus of Contemporary American English. Overall, cardinals are dominant-both pure cardinals (sets) and measurements (scales)-except in the range 1,000-10,000, which is dominated by ordinal years, like 1996 and 2004. Ordinals occur less often overall, and nominals even less so. Only for cardinals do round numbers, associated with approximation, dominate overall and increase with magnitude. In comparison with other registers, academic writing contains a lower proportion of measurements as well as a higher proportion of ordinals and, to some extent, nominals. In writing, pure cardinals and measurements are usually represented as number words, but measurements-especially larger, unround ones-are more likely to be numerals. Ordinals and nominals are mostly represented as numerals. Altogether, this paper reveals how numbers are used in American English, establishing an initial baseline for any analyses of number frequencies and shedding new light on the cognitive and psychological study of number.
Collapse
Affiliation(s)
- Greg Woodin
- Department of English Language and LinguisticsUniversity of Birmingham
| | - Bodo Winter
- Department of English Language and LinguisticsUniversity of Birmingham
| |
Collapse
|
15
|
Caponi C, Castaldi E, Burr DC, Binda P. Adaptation to numerosity affects the pupillary light response. Sci Rep 2024; 14:6097. [PMID: 38480839 PMCID: PMC10938002 DOI: 10.1038/s41598-024-55646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
We recently showed that the gain of the pupillary light response depends on numerosity, with weaker responses to fewer items. Here we show that this effect holds when the stimuli are physically identical but are perceived as less numerous due to numerosity adaptation. Twenty-eight participants adapted to low (10 dots) or high (160 dots) numerosities and subsequently watched arrays of 10-40 dots, with variable or homogeneous dot size. Luminance was constant across all stimuli. Pupil size was measured with passive viewing, and the effects of adaptation were checked in a separate psychophysical session. We found that perceived numerosity was systematically lower, and pupillary light responses correspondingly smaller, following adaptation to high rather than low numerosities. This is consistent with numerosity being a primary visual feature, spontaneously encoded even when task irrelevant, and affecting automatic and unconscious behaviours like the pupillary light response.
Collapse
Affiliation(s)
- Camilla Caponi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
| | - David Charles Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Liang T, Peng RC, Rong KL, Li JX, Ke Y, Yung WH. Disparate processing of numerosity and associated continuous magnitudes in rats. SCIENCE ADVANCES 2024; 10:eadj2566. [PMID: 38381814 PMCID: PMC10881051 DOI: 10.1126/sciadv.adj2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
The studies of number sense in different species are severely hampered by the inevitable entanglement of non-numerical attributes inherent in nonsymbolic stimuli representing numerosity, resulting in contrasting theories of numerosity processing. Here, we developed an algorithm and associated analytical methods to generate stimuli that not only minimized the impact of non-numerical magnitudes in numerosity perception but also allowed their quantification. We trained number-naïve rats with these stimuli as sound pulses representing two or three numbers and demonstrated that their numerical discrimination ability mainly relied on numerosity. Also, studying the learning process revealed that rats used numerosity before using magnitudes for choices. This numerical processing could be impaired specifically by silencing the posterior parietal cortex. Furthermore, modeling this capacity by neural networks shed light on the separation of numerosity and magnitudes extraction. Our study helps dissect the relationship between magnitude and numerosity processing, and the above different findings together affirm the independent existence of innate number and magnitudes sense in rats.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong-Chao Peng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, Guangdong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia-Xin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Sanford EM, Topaz CM, Halberda J. Modeling Magnitude Discrimination: Effects of Internal Precision and Attentional Weighting of Feature Dimensions. Cogn Sci 2024; 48:e13409. [PMID: 38294098 DOI: 10.1111/cogs.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Given a rich environment, how do we decide on what information to use? A view of a single entity (e.g., a group of birds) affords many distinct interpretations, including their number, average size, and spatial extent. An enduring challenge for cognition, therefore, is to focus resources on the most relevant evidence for any particular decision. In the present study, subjects completed three tasks-number discrimination, surface area discrimination, and convex hull discrimination-with the same stimulus set, where these three features were orthogonalized. Therefore, only the relevant feature provided consistent evidence for decisions in each task. This allowed us to determine how well humans discriminate each feature dimension and what evidence they relied on to do so. We introduce a novel computational approach that fits both feature precision and feature use. We found that the most relevant feature for each decision is extracted and relied on, with minor contributions from competing features. These results suggest that multiple feature dimensions are separately represented for each attended ensemble of many items and that cognition is efficient at selecting the appropriate evidence for a decision.
Collapse
Affiliation(s)
- Emily M Sanford
- Department of Psychological & Brain Sciences, Johns Hopkins University
| | | | - Justin Halberda
- Department of Psychological & Brain Sciences, Johns Hopkins University
| |
Collapse
|
18
|
Bonn CD, Odic D. Effects of spatial frequency cross-adaptation on the visual number sense. Atten Percept Psychophys 2024; 86:248-262. [PMID: 37872436 DOI: 10.3758/s13414-023-02798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
When observing a simple visual scene such as an array of dots, observers can easily and automatically extract their number. How does our visual system accomplish this? We investigate the role of specific spatial frequencies to the encoding of number through cross-adaptation. In two experiments, observers were peripherally adapted to six randomly generated sinusoidal gratings varying from relatively low-spatial frequency (M = 0.44 c/deg) to relatively high-spatial frequency (M = 5.88 c/deg). Subsequently, observers judged which side of the screen had a higher number of dots. We found a strong number-adaptation effect to low-spatial frequency gratings (i.e., participants significantly underestimated the number of dots on the adapted side) but a significantly reduced adaptation effect for high-spatial frequency gratings. Various control conditions demonstrate that these effects are not due to a generic response bias for the adapted side, nor moderated by dot size or spacing effects. In a third experiment, we observed no cross-adaptation for centrally presented gratings. Our results show that observers' peripheral number perception can be adapted even with stimuli lacking any numeric or segmented object information and that low spatial frequencies adapt peripheral number perception more than high ones. Together, our results are consistent with recent number perception models that suggest a key role for spatial frequency in the extraction of number from the visual signal (e.g., Paul, Ackooij, Ten Cate, & Harvey, 2022), but additionally suggest that some spatial frequencies - especially in the low range and in the periphery - may be weighted more by the visual system when estimating number. We argue that the cross-adaptation paradigm is also a useful methodology for discovering the primitives of visual number encoding.
Collapse
Affiliation(s)
- Cory D Bonn
- Strong Analytics, Department of Psychology, University of British Columbia, 330 N. Wabash, Chicago, IL, USA
- Centre for Cognitive Development, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Darko Odic
- Centre for Cognitive Development, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
19
|
Kuzmina Y, Marakshina J, Lobaskova M, Zakharov I, Tikhomirova T, Malykh S. The Interaction between Congruency and Numerical Ratio Effects in the Nonsymbolic Comparison Test. Behav Sci (Basel) 2023; 13:983. [PMID: 38131839 PMCID: PMC10740770 DOI: 10.3390/bs13120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
The nonsymbolic comparison task is used to investigate the precision of the Approximate Number Sense, the ability to process discrete numerosity without counting and symbols. There is an ongoing debate regarding the extent to which the ANS is influenced by the processing of non-numerical visual cues. To address this question, we assessed the congruency effect in a nonsymbolic comparison task, examining its variability across different stimulus presentation formats and numerical proportions. Additionally, we examined the variability of the numerical ratio effect with the format and congruency. Utilizing generalized linear mixed-effects models with a sample of 290 students (89% female, mean age 19.33 years), we estimated the congruency effect and numerical ratio effect for separated and intermixed formats of stimulus presentation, and for small and large numerical proportions. The findings indicated that the congruency effect increased in large numerical proportion conditions, but this pattern was observed only in the separated format. In the intermixed format, the congruency effect was insignificant for both types of numerical proportion. Notably, the numerical ratio effect varied for congruent and incongruent trials in different formats. The results may suggest that the processing of visual non-numerical parameters may be crucial when numerosity processing becomes noisier, specifically when numerical proportion becomes larger. The implications of these findings for refining the ANS theory are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Malykh
- Psychological Institute of Russian Academy of Education, 125009 Moscow, Russia; (Y.K.); (J.M.); (M.L.); (I.Z.); (T.T.)
| |
Collapse
|
20
|
Cheng C, Kibbe MM. Development of precision of non-symbolic arithmetic operations in 4-6-year-old children. Front Psychol 2023; 14:1286195. [PMID: 38034281 PMCID: PMC10684939 DOI: 10.3389/fpsyg.2023.1286195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Children can represent the approximate quantity of sets of items using the Approximate Number System (ANS), and can perform arithmetic-like operations over ANS representations. Previous work has shown that the representational precision of the ANS develops substantially during childhood. However, less is known about the development of the operational precision of the ANS. We examined developmental change in the precision of the solutions to two non-symbolic arithmetic operations in 4-6-year-old U.S. children. We asked children to represent the quantity of an occluded set (Baseline condition), to compute the sum of two sequentially occluded arrays (Addition condition), or to infer the quantity of an addend after observing an initial array and then the array incremented by the unknown addend (Unknown-addend condition). We measured the precision of the solutions of these operations by asking children to compare their solutions to visible arrays, manipulating the ratio between the true quantity of the solution and the comparison array. We found that the precision of ANS representations that were not the result of operations (in the Baseline condition) was higher than the precision of solutions to ANS operations (in the Addition and Unknown-addend conditions). Further, we found that precision in the Baseline and Addition conditions improved significantly between 4 and 6 years, while precision in the Unknown-Addend condition did not. Our results suggest that ANS operations may inject "noise" into the representations they operate over, and that the development of the precision of different operations may follow different trajectories in childhood.
Collapse
Affiliation(s)
- Chen Cheng
- Division of Social Science, School of Humanities and Social Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Melissa M. Kibbe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
21
|
Walker EY, Pohl S, Denison RN, Barack DL, Lee J, Block N, Ma WJ, Meyniel F. Studying the neural representations of uncertainty. Nat Neurosci 2023; 26:1857-1867. [PMID: 37814025 DOI: 10.1038/s41593-023-01444-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
The study of the brain's representations of uncertainty is a central topic in neuroscience. Unlike most quantities of which the neural representation is studied, uncertainty is a property of an observer's beliefs about the world, which poses specific methodological challenges. We analyze how the literature on the neural representations of uncertainty addresses those challenges and distinguish between 'code-driven' and 'correlational' approaches. Code-driven approaches make assumptions about the neural code for representing world states and the associated uncertainty. By contrast, correlational approaches search for relationships between uncertainty and neural activity without constraints on the neural representation of the world state that this uncertainty accompanies. To compare these two approaches, we apply several criteria for neural representations: sensitivity, specificity, invariance and functionality. Our analysis reveals that the two approaches lead to different but complementary findings, shaping new research questions and guiding future experiments.
Collapse
Affiliation(s)
- Edgar Y Walker
- Department of Physiology and Biophysics, Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Stephan Pohl
- Department of Philosophy, New York University, New York, NY, USA
| | - Rachel N Denison
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - David L Barack
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Philosophy, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Lee
- Center for Neural Science, New York University, New York, NY, USA
| | - Ned Block
- Department of Philosophy, New York University, New York, NY, USA
| | - Wei Ji Ma
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Florent Meyniel
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Bonny JW, Lourenco SF. Electrophysiological Comparison of Cumulative Area and Non-Symbolic Number Judgments. Brain Sci 2023; 13:975. [PMID: 37371453 DOI: 10.3390/brainsci13060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the importance of representing different magnitudes (i.e., number and cumulative area) for action planning and formal mathematics, there is much debate about the nature of these representations, particularly the extent to which magnitudes interact in the mind and brain. Early interaction views suggest that there are shared perceptual processes that form overlapping magnitude representations. However, late interaction views hold that representations of different magnitudes remain distinct, interacting only when preparing a motor response. The present study sheds light on this debate by examining the temporal onset of ratio and congruity effects as participants made ordinal judgments about number and cumulative area. Event-related potentials (ERPs) were recorded to identify whether the onset of such effects aligned with early versus late views. Ratio effects for both magnitudes were observed starting in the P100. Moreover, a congruity effect emerged within the P100. That interactions were observed early in processing, at the same time that initial ratio effects occurred, suggests that number and cumulative area processes interacted when magnitude representations were being formed, prior to preparing a decision response. Our findings are consistent with an early interaction view of magnitude processing, in which number and cumulative area may rely on shared perceptual mechanisms.
Collapse
Affiliation(s)
- Justin W Bonny
- Department of Psychology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | | |
Collapse
|
23
|
Aida S. Numerosity Comparison in Three Dimensions in the Case of Low Numerical Values. Brain Sci 2023; 13:962. [PMID: 37371440 DOI: 10.3390/brainsci13060962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the perception of numbers in humans in 3D stimuli. Recent research has shown that number processing relies on "number sense" for small values, in line with Weber's law. While previous studies have reported 3D numerosity overestimation mainly in higher numerical values, our experiment examined whether this phenomenon occurs at lower numerical values. We also explored whether the Weber ratio follows Weber's law when comparing 2D and 3D stimuli in terms of the number of elements. Observers were presented with pairs of stimuli on a monitor and were asked to identify the stimulus with a larger number of elements. Using the constant method, we calculated the point of subjective equality (PSE), just noticeable difference (JND), and Weber ratios from the collected data. As a result, it was confirmed that the phenomenon of over-estimation of 3D numerical values occurs even when the numerical values are small. Additionally, we observed that the Weber fraction adhered to Weber's law within the measured range. These findings contribute to the existing body of research, supporting the existence of distinct mechanisms for perceiving numerosity and density.
Collapse
Affiliation(s)
- Saori Aida
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 753-8611, Japan
| |
Collapse
|
24
|
Pinhas M, Paulsen DJ, Woldorff MG, Brannon EM. Neurophysiological signatures of approximate number system acuity in preschoolers. Trends Neurosci Educ 2023; 30:100197. [PMID: 36925266 DOI: 10.1016/j.tine.2022.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND A hallmark of the approximate number system (ANS) is ratio dependence. Previous work identified specific event-related potentials (ERPs) that are modulated by numerical ratio throughout the lifespan. In adults, ERP ratio dependence was correlated with the precision of the numerical judgments with individuals who make more precise judgments showing larger ratio-dependent ERP effects. The current study evaluated if this relationship generalizes to preschoolers. METHOD ERPs were recorded from 56 4.5 to 5.5-year-olds while they compared the numerosity of two sequentially presented dot arrays. Nonverbal numerical precision, often called ANS acuity, was assessed using a similar behavioral task. RESULTS Only children with high ANS acuity exhibited a P2p ratio-dependent effect onsetting ∼250 ms after the presentation of the comparison dot array. Furthermore, P2p amplitude positively correlated with ANS acuity across tasks. CONCLUSION Results demonstrate developmental continuity between preschool years and adulthood in the neural basis of the ANS.
Collapse
Affiliation(s)
- Michal Pinhas
- Department of Psychology, Ariel University, Ariel 4070000, Israel.
| | - David J Paulsen
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27708, USA; Department of Psychiatry, Duke University, Durham, NC 27708, USA
| | - Elizabeth M Brannon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Aulet LS, Lourenco SF. No intrinsic number bias: Evaluating the role of perceptual discriminability in magnitude categorization. Dev Sci 2023; 26:e13305. [PMID: 35851738 DOI: 10.1111/desc.13305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023]
Abstract
Accumulating evidence suggests that there is a spontaneous preference for numerical, compared to non-numerical (e.g., cumulative surface area), information. However, given a paucity of research on the perception of non-numerical magnitudes, it is unclear whether this preference reflects a specific bias towards number, or a general bias towards the more perceptually discriminable dimension (i.e., number). Here, we found that when the number and area of visual dot displays were matched in mathematical ratio, number was more perceptually discriminable than area in both adults and children. Moreover, both adults and children preferentially categorized these ratio-matched stimuli based on number, consistent with previous work. However, when number and area were matched in perceptual discriminability, a different pattern of results emerged. In particular, children preferentially categorized stimuli based on area, suggesting that children's previously observed number bias may be due to a mismatch in the perceptual discriminability of number and area, not an intrinsic salience of number. Interestingly, adults continued to categorize the displays on the basis of number. Altogether, these findings suggest a dominant role for area during childhood, refuting the claim that number is inherently and uniquely salient. Yet they also reveal an increased salience of number that emerges over development. Potential explanations for this developmental shift are discussed. RESEARCH HIGHLIGHTS: Previous work found that children and adults spontaneously categorized dot array stimuli by number, over other magnitudes (e.g., area), suggesting number is uniquely salient. However, here we found that when number and area were matched by ratio, as in prior work, number was significantly more perceptually discriminable than area. When number and area were made equally discriminable ('perceptually-matched'), children, contra adults, spontaneously categorized stimuli by area over number (and other non-numerical magnitudes). These findings suggest that area may be uniquely salient early in childhood, with the previously-observed number bias not emerging until later in development.
Collapse
Affiliation(s)
- Lauren S Aulet
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
26
|
The role of spatial information in an approximate cross-modal number matching task. Atten Percept Psychophys 2023; 85:1253-1266. [PMID: 36720781 PMCID: PMC9888741 DOI: 10.3758/s13414-023-02658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
The approximate number system (ANS) is thought to be an innate cognitive system that allows humans to perceive numbers (>4) in a fuzzy manner. One assumption of the ANS is that numerosity is represented amodally due to a mechanism, which filters out nonnumerical information from stimulus material. However, some studies show that nonnumerical information (e.g., spatial parameters) influence the numerosity percept as well. Here, we investigated whether there is a cross-modal transfer of spatial information between the haptic and visual modality in an approximate cross-modal number matching task. We presented different arrays of dowels (haptic stimuli) to 50 undergraduates and asked them to compare haptically perceived numerosity to two visually presented dot arrays. Participants chose which visually presented array matched the numerosity of the haptic stimulus. The distractor varied in number and displayed a random pattern, whereas the matching (target) dot array was either spatially identical or spatially randomized (to the haptic stimulus). We hypothesized that if a "numerosity" percept is based solely on number, neither spatially identical nor spatial congruence between the haptic and the visual target arrays would affect the accuracy in the task. However, results show significant processing advantages for targets with spatially identical patterns and, furthermore, that spatial congruency between haptic source and visual target facilitates performance. Our results show that spatial information was extracted from the haptic stimuli and influenced participants' responses, which challenges the assumption that numerosity is represented in a truly abstract manner by filtering out any other stimulus features.
Collapse
|
27
|
The approximate number system cannot be the leading factor in the acquisition of the first symbolic numbers. COGNITIVE DEVELOPMENT 2023. [DOI: 10.1016/j.cogdev.2022.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Viarouge A, Lee H, Borst G. Attention to number requires magnitude-specific inhibition. Cognition 2023; 230:105285. [PMID: 36152391 DOI: 10.1016/j.cognition.2022.105285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that the ability to process number in the face of conflicting dimensions of magnitude is a crucial aspect of numerosity judgments, relying in part on the inhibition of the non-numerical dimensions. Here we report, for the first time, that these inhibitory control processes are specific to the conflicting dimension of magnitude. Using a non-symbolic numerical comparison task adapted to a conflict adaptation paradigm on a group of 82 adults, we show that congruency effects between numerical and non-numerical information were reduced only when the conflicting dimension was the same in the preceding incongruent trial. Attention to number thus involves inhibitory control processes acting at a specific level of information. These results contribute to better characterize the domain general abilities involved in numerical cognition, and provide evidence for a specific interaction between numerosity perception and inhibitory control.
Collapse
Affiliation(s)
- Arnaud Viarouge
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005 Paris, France.
| | - Hoyeon Lee
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| | - Grégoire Borst
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005 Paris, France
| |
Collapse
|
29
|
A refined description of initial symbolic number acquisition. COGNITIVE DEVELOPMENT 2023. [DOI: 10.1016/j.cogdev.2022.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Odic D, Oppenheimer DM. Visual numerosity perception shows no advantage in real-world scenes compared to artificial displays. Cognition 2023; 230:105291. [PMID: 36183630 DOI: 10.1016/j.cognition.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
Abstract
While the human visual system is sensitive to numerosity, the mechanisms that allow perception to extract and represent the number of objects in a scene remains unknown. Prominent theoretical approaches posit that numerosity perception emerges from passive experience with visual scenes throughout development, and that unsupervised deep neural network models mirror all characteristic behavioral features observed in participants. Here, we derive and test a novel prediction: if the visual number sense emerges from exposure to real-world scenes, then the closer a stimulus aligns with the natural statistics of the real world, the better number perception should be. But - in contrast to this prediction - we observe no such advantage (and sometimes even a notable impairment) in number perception for natural scenes compared to artificial dot displays in college-aged adults. These findings are not accounted for by the difficulty in object identification, visual clutter, the parsability of objects from the rest of the scene, or increased occlusion. This pattern of results represents a fundamental challenge to recent models of numerosity perception based in experiential learning of statistical regularities, and instead suggests that the visual number sense is attuned to abstract number of objects, independent of their underlying correlation with non-numeric features. We discuss our results in the context of recent proposals that suggest that object complexity and entropy may play a role in number perception.
Collapse
|
31
|
Exploring spatiotemporal interactions: On the superiority of time over space. Atten Percept Psychophys 2022; 84:2582-2595. [PMID: 36229633 DOI: 10.3758/s13414-022-02546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Space and time mutually influence each other such that space affects time estimation (space-on-time effect), and conversely (time-on-space effect). These reciprocal interferences suggest that space and time are intrinsically linked in the human mind. Yet, recent evidence for an asymmetrical advantage for space over time challenges the classical theoretical interpretation. In the present study, we tested whether the superiority of space over time in magnitude interference depends on the cognitive resources engaged in the spatial task. We conducted three experiments in which participants performed judgments on temporal intervals and spatial distances in separate blocks. In each trial, two dots were successively flashed at various locations, and participants were to judge whether the duration or distance between the dots was short or long. To manipulate cognitive demands in the spatial task, distances varied across experiments (highly discriminable for the non-demanding spatial task in Experiment 1 and scarcely discriminable for the demanding spatial task in Experiment 2). Importantly, this manipulation tended to enhance perceptual sensitivity (as indexed by Weber Ratios) but slowed down the decision process (as indexed by response times) in the demanding experiment. Our results provide evidence for robust space-on-time and time-on-space effects (Experiments 1 and 2). More crucially, the involvement of cognitive resources in a demanding spatial task causes a massive time-on-space effect: Spatial judgments are indeed more influenced by irrelevant temporal information than the reverse (Experiments 2 and 3). Overall, the flexibility of spatiotemporal interferences has direct theoretical implications and questions the origins of space-time interaction.
Collapse
|
32
|
The malleable impact of non-numeric features in visual number perception. Acta Psychol (Amst) 2022; 230:103737. [PMID: 36095870 DOI: 10.1016/j.actpsy.2022.103737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Non-numeric stimulus features frequently influence observers' number judgments: when judging the number of items in a display, we will often (mis)perceive the set with a larger cumulative surface area as more numerous. These "congruency effects" are often used as evidence for how vision extracts numeric information and have been invoked in arguments surrounding whether non-numeric cues (e.g., cumulative area, density, etc.) are combined for number perception. We test whether congruency effects for one such cue - cumulative area - provide evidence that it is necessarily used and integrated in number perception, or if its influence on number is malleable. In Experiment 1, we replicate and extend prior work showing that the presence of feedback eliminates congruency effects between number and cumulative area, suggesting that the role of cumulative area in number perception is malleable rather than obligatory. In Experiment 2, we test whether this malleable influence is because of use of prior experiences about how number naturalistically correlates with cumulative area, or the result of response competition, with number and cumulative area actively competing for the same behavioral decision. We preserve cumulative area as a visual cue but eliminate response competition with number by replacing one side of the dot array with its corresponding Hindu-Arabic numeral. Independent of the presence or absence of feedback, we do not observe congruency effects in Experiment 2. These experiments suggest that cumulative area is not necessarily integrated in number perception nor a reflection of a rational use of naturalistic correlations, but rather congruency effects between cumulative area and number emerge as a consequence of response competition. Our findings help to elucidate the mechanism through which non-numeric cues and number interact, and provide an explanation for why congruency effects are only sometimes observed across studies.
Collapse
|
33
|
Qu C, DeWind NK, Brannon EM. Increasing entropy reduces perceived numerosity throughout the lifespan. Cognition 2022; 225:105096. [DOI: 10.1016/j.cognition.2022.105096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
34
|
The effect of abstract representation and response feedback on serial dependence in numerosity perception. Atten Percept Psychophys 2022; 84:1651-1665. [PMID: 35610413 DOI: 10.3758/s13414-022-02518-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Serial dependence entails an attractive bias based on the recent history of stimulation, making the current stimulus appear more similar to the preceding one. Although serial dependence is ubiquitous in perception, its nature and mechanisms remain unclear. Here, in two independent experiments, we test the hypothesis that this bias originates from high-level processing stages at the level of abstract information processing (Exp. 1) or at the level of judgment (Exp. 2). In Experiment 1, serial dependence was induced by a task-irrelevant "inducer" stimulus in a numerosity discrimination task, similarly to previous studies. Importantly, in this experiment, the inducers were either arrays of dots similar to the task-relevant stimuli (e.g., 12 dots), or symbolic numbers (e.g., the numeral "12"). Both dots and symbol inducers successfully yielded attractive serial dependence biases, suggesting that abstract information about an image is sufficient to bias the perception of the current stimulus. In Experiment 2, participants received feedback about their responses in each trial of a numerosity estimation task, which was designed to assess whether providing external information about the accuracy of judgments would modulate serial dependence. Providing feedback significantly increased the attractive serial dependence effect, suggesting that external information at the level of judgment may modulate the weight of past perceptual information during the processing of the current image. Overall, our results support the idea that, although serial dependence may operate at a perceptual level, it originates from high-level processing stages at the level of abstract information processing and at the level of judgment.
Collapse
|
35
|
Cai Y, Hofstetter S, Harvey BM, Dumoulin SO. Attention drives human numerosity-selective responses. Cell Rep 2022; 39:111005. [PMID: 35767956 DOI: 10.1016/j.celrep.2022.111005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022] Open
Abstract
Numerosity, the set size of a group of items, helps guide behavior and decisions. Previous studies have shown that neural populations respond selectively to numerosities. How numerosity is extracted from the visual scene is a longstanding debate, often contrasting low-level visual with high-level cognitive processes. Here, we investigate how attention influences numerosity-selective responses. The stimuli consisted of black and white dots within the same display. Participants' attention was focused on either black or white dots, while we systematically changed the numerosity of black, white, and total dots. Using 7 T fMRI, we show that the numerosity-tuned neural populations respond only when attention is focused on their preferred numerosity, irrespective of the unattended or total numerosities. Without attention, responses to preferred numerosity are suppressed. Unlike traditional effects of attention in the visual cortex, where attention enhances already existing responses, these results suggest that attention is required to drive numerosity-selective responses.
Collapse
Affiliation(s)
- Yuxuan Cai
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105BK Amsterdam, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, the Netherlands.
| | - Shir Hofstetter
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105BK Amsterdam, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, 1105BK Amsterdam, the Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Spliethoff L, Li SC, Dix A. Incentive motivation improves numerosity discrimination in children and adolescents. Sci Rep 2022; 12:10038. [PMID: 35710929 PMCID: PMC9203779 DOI: 10.1038/s41598-022-14198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
We recently showed that incentive motivation improves the precision of the Approximate Number System (ANS) in young adults. To shed light on the development of incentive motivation, the present study investigated whether this effect and its underlying mechanisms may also be observed in younger samples. Specifically, seven-year-old children (n = 23; 12 girls) and 14-year-old adolescents (n = 30; 15 girls) performed a dot comparison task with monetary reward incentives. Both age groups showed higher accuracy in a reward compared to a neutral condition and, similarly, higher processing efficiency as revealed by the drift rate parameter of the EZ-diffusion model. Furthermore, in line with the Incentive Salience Hypothesis, phasic pupil dilations—indicating the activation of the brain’s salience network—were greater in incentivized trials in both age groups. Together these finding suggest that incentive modulation improves numerosity discrimination in children and adolescents by enhancing the perceptual saliency of numerosity information. However, the observed reward anticipation effects were less pronounced in children relative to adolescents. Furthermore, unlike previous findings regarding young adults, the decision thresholds of children and adolescents were not raised by the monetary reward, which may indicate a more protracted development of incentive regulation of response caution than perceptual evidence accumulation.
Collapse
Affiliation(s)
- Luca Spliethoff
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01062, Dresden, Germany.,Faculty of Education, Chair of Vocational Education, Technische Universität Dresden, Weberplatz 5, 01217, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01062, Dresden, Germany.,Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062, Dresden, Germany
| | - Annika Dix
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universität Dresden, Zellescher Weg 17, 01062, Dresden, Germany. .,Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062, Dresden, Germany. .,Faculty of Psychology, Chair of Engineering Psychology and Applied Cognitive Research, Technische Universität Dresden, Zellescher Weg 17, 01062, Dresden, Germany.
| |
Collapse
|
37
|
An undeniable interplay: Both numerosity and visual features affect estimation of non-symbolic stimuli. Cognition 2022; 222:104944. [DOI: 10.1016/j.cognition.2021.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023]
|
38
|
Get in touch with numbers - an approximate number comparison task in the haptic modality. Atten Percept Psychophys 2022; 84:943-959. [PMID: 35064556 PMCID: PMC9001573 DOI: 10.3758/s13414-021-02427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
The Approximate Number System (ANS) is conceptualized as an innate cognitive system that allows humans to perceive numbers of objects or events (>4) in a fuzzy, imprecise manner. The representation of numbers is assumed to be abstract and not bound to a particular sense. In the present study, we test the assumption of a shared cross-sensory system. We investigated approximate number processing in the haptic modality and compared performance to that of the visual modality. We used a dot comparison task (DCT), in which participants compare two dot arrays and decide which one contains more dots. In the haptic DCT, 67 participants had to compare two simultaneously presented dot arrays with the palms of their hands; in the visual DCT, participants inspected and compared dot arrays on a screen. Tested ratios ranged from 2.0 (larger/smaller number) to 1.1. As expected, in both the haptic and the visual DCT responses similarly depended on the ratio of the numbers of dots in the two arrays. However, on an individual level, we found evidence against medium or stronger positive correlations between “ANS acuity” in the visual and haptic DCTs. A regression model furthermore revealed that besides number, spacing-related features of dot patterns (e.g., the pattern’s convex hull) contribute to the percept of numerosity in both modalities. Our results contradict the strong theory of the ANS solely processing number and being independent of a modality. According to our regression and response prediction model, our results rather point towards a modality-specific integration of number and number-related features.
Collapse
|
39
|
Quantity perception: The forest and the trees. Cognition 2022; 229:105074. [PMID: 35331546 DOI: 10.1016/j.cognition.2022.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/20/2022]
Abstract
Park (2021) has described "flawed stimulus design(s)" in our recent studies on area perception. Here, we briefly respond to those critiques. While the rigorous, computational approaches taken by Park (and others) certainly have value, we believe that our approach - one that focuses the perceptual reality of quantity rather than the physical reality - is essential. We emphasize again (as we have many times in our work) that the study of quantity perception benefits from both approaches. To further illustrate our point, we collected additional data and show that some of Park's arguments, while sensible in principle, further support our view in practice.
Collapse
|
40
|
Paul JM, van Ackooij M, Ten Cate TC, Harvey BM. Numerosity tuning in human association cortices and local image contrast representations in early visual cortex. Nat Commun 2022; 13:1340. [PMID: 35292648 PMCID: PMC8924234 DOI: 10.1038/s41467-022-29030-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/21/2022] [Indexed: 01/31/2023] Open
Abstract
Human early visual cortex response amplitudes monotonically increase with numerosity (object number), regardless of object size and spacing. However, numerosity is typically considered a high-level visual or cognitive feature, while early visual responses follow image contrast in the spatial frequency domain. We find that, at fixed contrast, aggregate Fourier power (at all orientations and spatial frequencies) follows numerosity closely but nonlinearly with little effect of object size, spacing or shape. This would allow straightforward numerosity estimation from spatial frequency domain image representations. Using 7T fMRI, we show monotonic responses originate in primary visual cortex (V1) at the stimulus's retinotopic location. Responses here and in neural network models follow aggregate Fourier power more closely than numerosity. Truly numerosity tuned responses emerge after lateral occipital cortex and are independent of retinotopic location. We propose numerosity's straightforward perception and neural responses may result from the pervasive spatial frequency analyses of early visual processing.
Collapse
Affiliation(s)
- Jacob M Paul
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht, 3584 CS, Netherlands.
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville, 3010, Victoria, Australia.
| | - Martijn van Ackooij
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht, 3584 CS, Netherlands
| | - Tuomas C Ten Cate
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht, 3584 CS, Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht, 3584 CS, Netherlands
| |
Collapse
|
41
|
Coolen IEJI, Riggs KJ, Bugler M, Castronovo J. The approximate number system and mathematics achievement: it's complicated. A thorough investigation of different ANS measures and executive functions in mathematics achievement in children. JOURNAL OF COGNITIVE PSYCHOLOGY 2022. [DOI: 10.1080/20445911.2022.2044338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Szkudlarek E, Zhang H, DeWind NK, Brannon EM. Young Children Intuitively Divide Before They Recognize the Division Symbol. Front Hum Neurosci 2022; 16:752190. [PMID: 35280204 PMCID: PMC8913505 DOI: 10.3389/fnhum.2022.752190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023] Open
Abstract
Children bring intuitive arithmetic knowledge to the classroom before formal instruction in mathematics begins. For example, children can use their number sense to add, subtract, compare ratios, and even perform scaling operations that increase or decrease a set of dots by a factor of 2 or 4. However, it is currently unknown whether children can engage in a true division operation before formal mathematical instruction. Here we examined the ability of 6- to 9-year-old children and college students to perform symbolic and non-symbolic approximate division. Subjects were presented with non-symbolic (dot array) or symbolic (Arabic numeral) dividends ranging from 32 to 185, and non-symbolic divisors ranging from 2 to 8. Subjects compared their imagined quotient to a visible target quantity. Both children (Experiment 1 N = 89, Experiment 2 N = 42) and adults (Experiment 3 N = 87) were successful at the approximate division tasks in both dots and numeral formats. This was true even among the subset of children that could not recognize the division symbol or solve simple division equations, suggesting intuitive division ability precedes formal division instruction. For both children and adults, the ability to divide non-symbolically mediated the relation between Approximate Number System (ANS) acuity and symbolic math performance, suggesting that the ability to calculate non-symbolically may be a mechanism of the relation between ANS acuity and symbolic math. Our findings highlight the intuitive arithmetic abilities children possess before formal math instruction.
Collapse
|
43
|
Lou C, Zeng H, Chen L. Asymmetric switch cost between subitizing and estimation in tactile modality. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-02858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Yousif SR, Alexandrov E, Bennette E, Aslin R, Keil FC. Do children estimate area using an ‘Additive‐Area Heuristic’? Dev Sci 2022; 25:e13235. [DOI: 10.1111/desc.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/22/2021] [Accepted: 01/06/2022] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - Richard Aslin
- Yale University Department of Psychology
- Haskins Laboratories
- Yale Child Study Center
| | | |
Collapse
|
45
|
Numbers, numerosities, and new directions. Behav Brain Sci 2021; 44:e205. [PMID: 34907882 DOI: 10.1017/s0140525x21001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In our target article, we argued that the number sense represents natural and rational numbers. Here, we respond to the 26 commentaries we received, highlighting new directions for empirical and theoretical research. We discuss two background assumptions, arguments against the number sense, whether the approximate number system (ANS) represents numbers or numerosities, and why the ANS represents rational (but not irrational) numbers.
Collapse
|
46
|
Wilkey ED, Shanley L, Sabb F, Ansari D, Cohen JC, Men V, Heller NA, Clarke B. Sharpening, focusing, and developing: A study of change in nonsymbolic number comparison skills and math achievement in 1st grade. Dev Sci 2021; 25:e13194. [PMID: 34800342 DOI: 10.1111/desc.13194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Children's ability to discriminate nonsymbolic number (e.g., the number of items in a set) is a commonly studied predictor of later math skills. Number discrimination improves throughout development, but what drives this improvement is unclear. Competing theories suggest that it may be due to a sharpening numerical representation or an improved ability to pay attention to number and filter out non-numerical information. We investigate this issue by studying change in children's performance (N = 65) on a nonsymbolic number comparison task, where children decide which of two dot arrays has more dots, from the middle to the end of 1st grade (mean age at time 1 = 6.85 years old). In this task, visual properties of the dot arrays such as surface area are either congruent (the more numerous array has more surface area) or incongruent. Children rely more on executive functions during incongruent trials, so improvements in each congruency condition provide information about the underlying cognitive mechanisms. We found that accuracy rates increased similarly for both conditions, indicating a sharpening sense of numerical magnitude, not simply improved attention to the numerical task dimension. Symbolic number skills predicted change in congruent trials, but executive function did not predict change in either condition. No factor predicted change in math achievement. Together, these findings suggest that nonsymbolic number processing undergoes development related to existing symbolic number skills, development that appears not to be driving math gains during this period. Children's ability to discriminate nonsymbolic number improves throughout development. Competing theories suggest improvement due to sharpening magnitude representations or changes in attention and inhibition. The current study investigates change in nonsymbolic number comparison performance during first grade and whether symbolic number skills, math skills, or executive function predict change. Children's performance increased across visual control conditions (i.e., congruent or incongruent with number) suggesting an overall sharpening of number processing. Symbolic number skills predicted change in nonsymbolic number comparison performance.
Collapse
Affiliation(s)
- Eric D Wilkey
- Brain & Mind Institute, Western University, London, Ontario, Canada
| | - Lina Shanley
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Fred Sabb
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Daniel Ansari
- Brain & Mind Institute, Western University, London, Ontario, Canada
| | - Jason C Cohen
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Virany Men
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Nicole A Heller
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| | - Ben Clarke
- Center on Teaching and Learning, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
47
|
Castaldi E, Piazza M, Eger E. Resources Underlying Visuo-Spatial Working Memory Enable Veridical Large Numerosity Perception. Front Hum Neurosci 2021; 15:751098. [PMID: 34867244 PMCID: PMC8634845 DOI: 10.3389/fnhum.2021.751098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.e., susceptible to biases from non-numerical quantities). Such biases have been found to be particularly pronounced in individuals with developmental dyscalculia (DD), a learning disability affecting the acquisition of arithmetic skills. Motivated by findings showing that DD individuals are also often impaired in visuo-spatial working memory, we hypothesized that resources supporting this type of working memory, which allow for the simultaneous identification of multiple objects, might also be critical for precise and unbiased perception of larger numerosities. We therefore tested whether loading working memory of healthy adult participants during discrimination of large numerosities would lead to increased interference from non-numerical quantities. Participants performed a numerosity discrimination task on multi-item arrays in which numerical and non-numerical stimulus dimensions varied congruently or incongruently relative to each other, either in isolation or in the context of a concurrent visuo-spatial or verbal working memory task. During performance of the visuo-spatial, but not verbal, working memory task, precision in numerosity discrimination decreased, participants' choices became strongly biased by item size, and the strength of this bias correlated with measures of arithmetical skills. Moreover, the interference between numerosity and working memory tasks was bidirectional, with number discrimination impacting visuo-spatial (but not verbal) performance. Overall, these results suggest that representing visual numerosity in a way that is unbiased by non-numerical quantities relies on processes which explicitly segregate/identify the locations of multiple objects that are shared with visuo-spatial (but not verbal) working memory. This shared resource may potentially be impaired in DD, explaining the observed co-occurrence of working memory and numerosity discrimination deficits in this clinical population.
Collapse
Affiliation(s)
- Elisa Castaldi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, INSERM, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
48
|
Park J, Godbole S, Woldorff MG, Brannon EM. Context-Dependent Modulation of Early Visual Cortical Responses to Numerical and Nonnumerical Magnitudes. J Cogn Neurosci 2021; 33:2536-2547. [PMID: 34407187 DOI: 10.1162/jocn_a_01774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Whether and how the brain encodes discrete numerical magnitude differently from continuous nonnumerical magnitude is hotly debated. In a previous set of studies, we orthogonally varied numerical (numerosity) and nonnumerical (size and spacing) dimensions of dot arrays and demonstrated a strong modulation of early visual evoked potentials (VEPs) by numerosity and not by nonnumerical dimensions. Although very little is known about the brain's response to systematic changes in continuous dimensions of a dot array, some authors intuit that the visual processing stream must be more sensitive to continuous magnitude information than to numerosity. To address this possibility, we measured VEPs of participants viewing dot arrays that changed exclusively in one nonnumerical magnitude dimension at a time (size or spacing) while holding numerosity constant and compared this to a condition where numerosity was changed while holding size and spacing constant. We found reliable but small neural sensitivity to exclusive changes in size and spacing; however, exclusively changing numerosity elicited a much more robust modulation of the VEPs. Together with previous work, these findings suggest that sensitivity to magnitude dimensions in early visual cortex is context dependent: The brain is moderately sensitive to changes in size and spacing when numerosity is held constant, but sensitivity to these continuous variables diminishes to a negligible level when numerosity is allowed to vary at the same time. Neurophysiological explanations for the encoding and context dependency of numerical and nonnumerical magnitudes are proposed within the framework of neuronal normalization.
Collapse
|
49
|
Tsouli A, Harvey BM, Hofstetter S, Cai Y, van der Smagt MJ, Te Pas SF, Dumoulin SO. The role of neural tuning in quantity perception. Trends Cogn Sci 2021; 26:11-24. [PMID: 34702662 DOI: 10.1016/j.tics.2021.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Perception of quantities, such as numerosity, timing, and size, is essential for behavior and cognition. Accumulating evidence demonstrates neurons processing quantities are tuned, that is, have a preferred quantity amount, not only for numerosity, but also other quantity dimensions and sensory modalities. We argue that quantity-tuned neurons are fundamental to understanding quantity perception. We illustrate how the properties of quantity-tuned neurons can underlie a range of perceptual phenomena. Furthermore, quantity-tuned neurons are organized in distinct but overlapping topographic maps. We suggest that this overlap in tuning provides the neural basis for perceptual interactions between different quantities, without the need for a common neural representational code.
Collapse
Affiliation(s)
- Andromachi Tsouli
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Ben M Harvey
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Shir Hofstetter
- The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Yuxuan Cai
- The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands
| | - Maarten J van der Smagt
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Susan F Te Pas
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; The Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University, Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Park J. Flawed stimulus design in additive-area heuristic studies. Cognition 2021; 229:104919. [PMID: 34625223 DOI: 10.1016/j.cognition.2021.104919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
In a series of recently published studies purportedly on the "additive-area heuristic," Yousif & Keil (2019, 2020) argue for a systematic distortion in the perception of the cumulative area of an item array and further claim that previous findings of numerical cognition and magnitude perception in general are "at risk" (Yousif & Keil, 2021). This commentary describes serious stimulus design flaws present in all of Yousif and colleagues experiments that prevent from making such conclusions. Specifically, item arrays used in those studies demonstrate a skewed correlational structure between selected magnitude dimensions and exhibit unbalanced ranges across different magnitude dimensions of interest. Because the perception of magnitude dimensions interferes one another and because our perceptual system is sensitive to the statistical regularities of the sensory input, such a biased design makes it difficult, if not impossible, to interpret the choice behavior of an observer making magnitude judgments. By re-introducing the mathematical framework for a systematic construction of dot array stimuli (DeWind et al., 2015) and by re-analyzing the data from another recent study on area perception (Tomlinson et al., 2020), this paper explains-and introduces a MATLAB code for-an optimal method for designing and constructing dot arrays for magnitude perception studies.
Collapse
Affiliation(s)
- Joonkoo Park
- Department of Psychological & Brain Sciences, University of Massachusetts, USA; Commonwealth Honors College, University of Massachusetts, USA.
| |
Collapse
|