1
|
Li F, Chen D, Zeng Q, Du Y. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms 2023; 11:2640. [PMID: 38004652 PMCID: PMC10672989 DOI: 10.3390/microorganisms11112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). In lymphopenia, T cells are typically characterized by progressive loss and a decrease in their count results. Lymphopenia can hinder immune responses and lead to systemic immunosuppression, which is strongly associated with mortality. Lymphopenia is a significant immunological abnormality in the majority of patients with severe and advanced TB, and its severity is linked to disease outcomes. However, the underlying mechanism remains unclear. Currently, the research on the pathogenesis of lymphopenia during M. tuberculosis infection mainly focuses on how it affects lymphocyte production, survival, or tissue redistribution. This includes impairing hematopoiesis, inhibiting T-cell proliferation, and inducing lymphocyte apoptosis. In this study, we have compiled the latest research on the possible mechanisms that may cause lymphopenia during M. tuberculosis infection. Lymphopenia may have serious consequences in severe TB patients. Additionally, we discuss in detail potential intervention strategies to prevent lymphopenia, which could help understand TB immunopathogenesis and achieve the goal of preventing and treating severe TB.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (D.C.); (Q.Z.); (Y.D.)
| | | | | | | |
Collapse
|
2
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
3
|
Saidakova EV. Lymphopenia and Mechanisms of T-Cell Regeneration. CELL AND TISSUE BIOLOGY 2022; 16:302-311. [PMID: 35967247 PMCID: PMC9358362 DOI: 10.1134/s1990519x2204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Chronic lymphopenia, in particular, T-lymphocyte deficiency, increases the risk of death from cancer, cardiovascular and respiratory diseases and serves as a risk factor for a severe course and poor outcome of infectious diseases such as COVID-19. The regeneration of T-lymphocytes is a complex multilevel process, many questions of which still remain unanswered. The present review considers two main pathways of increasing the T-cell number in lymphopenia: production in the thymus and homeostatic proliferation in the periphery. Literature data on the signals that regulate each pathway are summarized. Their contribution to the quantitative and qualitative restoration of the immune cell pool is analyzed. The features of CD4+ and CD8+ T-lymphocytes’ regeneration are considered.
Collapse
Affiliation(s)
- E. V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences—Branch of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, 614081 Perm, Russia
| |
Collapse
|
4
|
A novel activity on thymocytes cells exerted by the rattlesnake (Crotalus durissus cumanensis) venom. ACTA ACUST UNITED AC 2021; 41:449-457. [PMID: 34559492 PMCID: PMC8519596 DOI: 10.7705/biomedica.5599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 11/30/2022]
Abstract
Introduction: The thymus is active mainly during the neonatal and pre-adolescent periods. Objective: To test naïve thymocytes proliferation and monocytes stimulation. Materials and methods: We collected fresh thymus tissue from neonate mice after surgery. Suspension cells were coated onto Ficoll-Hypaque support. The obtained cells (thymocytes) were cultured measuring the proliferation of naïve T cells stimulated by Crotalus durissus cumanensis (Cdc) venom at sub-lethal doses (20 ng). Then, we supplemented the wells with AlamarBlue™ and incubated them for 5 h to test their proliferation. Mononuclear cells from mice peripheral blood were collected and layered onto the support of the Ficoll-Hypaque solution. We added the thymocytes actively dividing (25 x 105 cells) from cultures stimulated with Cdc venom at 20 ng/well to cultured monocytes freshly obtained from the Ficoll-Hypaque separation. Both cell populations were incubated for 36 h until monocytes matured to macrophages. Results: The naïve thymocytes rapidly proliferated after stimulation with the Cdc venom (NTCdc) and these successively induced the maturation and function of monocytes progenitor cells to mature macrophages, which ingested Chinese ink. Conclusions: The naïve thymocytes proliferated by stimulation with the Cdc venom and subsequently the NT/Cdc induced the rapid maturation and function of monocytes progenitor cells becoming mature macrophages with their phenotypic characteristics.
Collapse
|
5
|
Yamauchi R, Takeyama Y, Takata K, Fukunaga A, Sakurai K, Tanaka T, Fukuda H, Fukuda S, Kunimoto H, Umeda K, Morihara D, Yokoyama K, Irie M, Shakado S, Sakisaka S, Hirai F. Hepatitis B Virus Reactivation after Receiving Cancer Chemotherapy under Administration of Leuprorelin Acetate. Intern Med 2020; 59:1163-1166. [PMID: 31956202 PMCID: PMC7270765 DOI: 10.2169/internalmedicine.3805-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An 88-year-old man was admitted for elevated liver enzyme levels. Nine years earlier, the patient had been diagnosed with diffuse large B-cell lymphoma (DLBCL) and undergone rituximab, cyclophosphamide, doxorubicin hydrochloride, oncovin, prednisone (R-CHOP) therapy. This patient previously had had a hepatitis B virus (HBV) infection before chemotherapy. After the chemotherapy, he was administered an luteinizing hormone-releasing hormone (LHRH) agonist for prostate cancer. We diagnosed him with HBV reactivation because of positive serum HBV-DNA. HBV reactivation can occur a long time after chemotherapy, particularly if another treatment with immunity-altering drugs is added. In such cases, additional surveillance may be required to detect HBV reactivation.
Collapse
Affiliation(s)
- Ryo Yamauchi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Yasuaki Takeyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Kazuhide Takata
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | | | | | - Takashi Tanaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Hiromi Fukuda
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Sho Fukuda
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Hideo Kunimoto
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Kaoru Umeda
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Daisuke Morihara
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Keiji Yokoyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Makoto Irie
- Department of Gastroenterology, Fukuoka University Nishijn Hospital, Japan
| | - Satoshi Shakado
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- General Medical Research Center, Fukuoka University Faculty of Medicine, Japan
| | - Fumihito Hirai
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| |
Collapse
|
6
|
Zhang Y, Li Q, Hou P, Lu Y, Yang H, Lin X, Su C, Wei Y, Yang X, Yang H, Zhao X, Chen X. Transcription-Related Dynamics from Immune Disability into Endogenous Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900767. [PMID: 31832307 PMCID: PMC6891922 DOI: 10.1002/advs.201900767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/13/2019] [Indexed: 02/05/2023]
Abstract
So far, thymus involution in adults is believed to be irreversible, and endogenous innovation for thymus-related immunodeficiency remains to be an intractable puzzle. With the expectation of addressing this dilemma, human ovarian surface epithelium (OSE) has been reengineered as epithelial-mesenchymal transition (EMT)-tridimensional-spheroid biologics (ETSB) using a dynamic EMT-3D-floating system along with 160 Gy X-ray-amelioration, which inoculates subcutaneously into aging rhesus and athymic Balb/c nu/nu mice. Herein, it is bioinformatically validated that ETSB can reset Clock/Arntl-Per3/Tim molecule rhythm dynamics to re-prime thymus residual (parathyroid or fatty-like invalid vesicles yet no thymic architecture) to evolutionary transcription with overall cortex-medulla endogenized by TECs undergoing MET/EMT reversion. Rhythm dynamics immediately resettles the bHLH-LTβR-NFκB-RelA/B loop as a cascade to provoke the core immune microenvironment for multifunctional innovation of dynamic TCR orchestration, with harmonious naïve T-subsets and TRECs renewals (P < 0.005). Subsequently, peripheral biological burden and tumor metastasis dynamics are addressed by innovative TCR-defense/attack dynamics quickly (P < 0.005 vs Control), yet without autoimmune indication to hosts. Moreover, a functional blockade of core-rhythm dynamics deeply impedes the endogenous innovation of invalid thymus residual. Thus this study may help pioneer a prospective strategy to innovate panoramic central-peripheral immune microenvironments and defense dynamics for immune-deficient/aging victims.
Collapse
Affiliation(s)
- Yanna Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Qian Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Panyan Hou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Yanan Lu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Huanhuan Yang
- Department of Gynecology & ObstetricsWest China Hospital/Second HospitalSichuan UniversityNo 20, Section 3, South Renmin RoadChengduSichuan610041P. R. China
| | - Xiaojuan Lin
- Department of Gynecology & ObstetricsWest China Hospital/Second HospitalSichuan UniversityNo 20, Section 3, South Renmin RoadChengduSichuan610041P. R. China
| | - Chao Su
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Xiulin Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| | - Xia Zhao
- Department of Gynecology & ObstetricsWest China Hospital/Second HospitalSichuan UniversityNo 20, Section 3, South Renmin RoadChengduSichuan610041P. R. China
| | - Xiancheng Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China HospitalSichuan UniversityKeyuan Road 4 No. 1, High Technological Development ZoneChengduSichuan610041P. R. China
| |
Collapse
|
7
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
8
|
Pawelec G. Does patient age influence anti-cancer immunity? Semin Immunopathol 2018; 41:125-131. [DOI: 10.1007/s00281-018-0697-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
9
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Wang HX, Cheng JS, Chu S, Qiu YR, Zhong XP. mTORC2 in Thymic Epithelial Cells Controls Thymopoiesis and T Cell Development. THE JOURNAL OF IMMUNOLOGY 2016; 197:141-50. [PMID: 27233961 DOI: 10.4049/jimmunol.1502698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Thymic epithelial cells (TECs) play important roles in T cell generation. Mechanisms that control TEC development and function are still not well defined. The mammalian or mechanistic target of rapamycin complex (mTORC)2 signals to regulate cell survival, nutrient uptake, and metabolism. We report in the present study that mice with TEC-specific ablation of Rictor, a critical and unique adaptor molecule in mTORC2, display thymic atrophy, which accompanies decreased TEC numbers in the medulla. Moreover, generation of multiple T cell lineages, including conventional TCRαβ T cells, regulatory T cells, invariant NKT cells, and TCRγδ T cells, was reduced in TEC-specific Rictor-deficient mice. Our data demonstrate that mTORC2 in TECs is important for normal thymopoiesis and efficient T cell generation.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Joyce S Cheng
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; Pre-Med (BS/MD) Health Scholar Program, Temple University, Philadelphia, PA 19222
| | - Shuai Chu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China;
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; Department of Immunology, Duke University Medical Center, Durham, NC 27710; and Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
11
|
Wang HX, Shin J, Wang S, Gorentla B, Lin X, Gao J, Qiu YR, Zhong XP. mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of γδT17 Development and TCRγ/δ Recombination. PLoS Biol 2016; 14:e1002370. [PMID: 26889835 PMCID: PMC4758703 DOI: 10.1371/journal.pbio.1002370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy. The thymus is essential for making T cells but undergoes age- or stress-associated atrophy. This study demonstrates that mTOR complex 1 in thymic epithelial cells is crucial for correct thymic architecture and the production of mature T cells. The thymus is the primary organ for T cell generation. Abnormal thymus function profoundly affects host immunity and numerous diseases. Thymopoiesis and thymus function rely on orchestrated interaction between multiple cell types representing different origins. Among them, thymic epithelial cells (TECs) are crucial for thymus development and maintenance and T cell generation. How TEC development and function are regulated is poorly understood. The mammalian/mechanistic target of rapamycin (mTOR), a serine/threonine kinase, signals with two complexes, mTORC1 and mTOC2, to control metabolism, growth, proliferation, and survival. Using a mouse model with mTORC1 selectively ablated in TECs, we demonstrate that mTORC1 in TECs plays critical roles in thymopoiesis and thymus function. Absence of mTORC1 results in impaired TEC maturation and function, altered thymic architecture, severe thymic atrophy, and impaired development of virtually all T-cell lineages. Moreover, it also causes increased generation of IL-17–producing γδT (γδT17) cells and fetal-specific γδT subsets in adult thymus, revealing that mTORC1 in TECs is central for temporal control of γδT17 differentiation and TCRVγ/δ recombination. Our results establish mTORC1 as a central regulator for TEC development/function and for the establishment of normal thymic environment for proper T cell development. We suggest modulating mTORC1 activity as a strategy for preventing thymic involution/atrophy.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinwook Shin
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shang Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Balachandra Gorentla
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xingguang Lin
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (XPZ); (YQ)
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (XPZ); (YQ)
| |
Collapse
|
12
|
Bredenkamp N, Jin X, Liu D, O'Neill KE, Manley NR, Blackburn CC. Construction of a functional thymic microenvironment from pluripotent stem cells for the induction of central tolerance. Regen Med 2016; 10:317-29. [PMID: 25933240 DOI: 10.2217/rme.15.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The thymus is required for generation of a self-tolerant, self-restricted T-cell repertoire. The capacity to manipulate or replace thymus function therapeutically would be beneficial in a variety of clinical settings, including for improving recovery following bone marrow transplantation, restoring immune system function in the elderly and promoting tolerance to transplanted organs or cells. An attractive strategy would be transplantation of thymus organoids generated from cells produced in vitro, for instance from pluripotent stem cells. Here, we review recent progress toward this goal, focusing on advances in directing differentiation of pluripotent stem cells to thymic epithelial cells, a key cell type of the thymic stroma, and related direct reprogramming strategies.
Collapse
Affiliation(s)
- Nicholas Bredenkamp
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | | | | | | | | |
Collapse
|
13
|
Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci U S A 2016; 113:1026-31. [PMID: 26755598 DOI: 10.1073/pnas.1514511113] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Age-related thymic degeneration is associated with loss of naïve T cells, restriction of peripheral T-cell diversity, and reduced healthspan due to lower immune competence. The mechanistic basis of age-related thymic demise is unclear, but prior evidence suggests that caloric restriction (CR) can slow thymic aging by maintaining thymic epithelial cell integrity and reducing the generation of intrathymic lipid. Here we show that the prolongevity ketogenic hormone fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, is expressed in thymic stromal cells along with FGF receptors and its obligate coreceptor, βKlotho. We found that FGF21 expression in thymus declines with age and is induced by CR. Genetic gain of FGF21 function in mice protects against age-related thymic involution with an increase in earliest thymocyte progenitors and cortical thymic epithelial cells. Importantly, FGF21 overexpression reduced intrathymic lipid, increased perithymic brown adipose tissue, and elevated thymic T-cell export and naïve T-cell frequencies in old mice. Conversely, loss of FGF21 function in middle-aged mice accelerated thymic aging, increased lethality, and delayed T-cell reconstitution postirradiation and hematopoietic stem cell transplantation (HSCT). Collectively, FGF21 integrates metabolic and immune systems to prevent thymic injury and may aid in the reestablishment of a diverse T-cell repertoire in cancer patients following HSCT.
Collapse
|
14
|
Iwai H, Inaba M. Fetal thymus graft enables recovery from age-related hearing loss and expansion of CD4-Positive T cells expressing IL-1 receptor type 2 and regulatory T Cells. IMMUNITY & AGEING 2015; 12:26. [PMID: 26673738 PMCID: PMC4678479 DOI: 10.1186/s12979-015-0053-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022]
Abstract
Background Accumulating evidence has indicated the relationship between the systemic immune system and the central nervous system including the inner ear. Results We have shown that age-related developments of T-cell dysfunction, hearing loss, and degeneration of cochlear spiral ganglion (SG) neurons observed in 6-month-old mice were recovered in 12 months old mice which previously given fetal thymus transplants twice. We have also demonstrated that CD4+ T cells expressing interleukin 1 receptor type 2 (IL-1R2) and naturally occurring regulatory T cells (nTregs), which expanded in aged 12-month-old mice, were reduced in the thymus-grafted mice of the same age. Conclusion It is conceivable that the rejuvenation of systemic immune function by fetal thymus grafts contributes not only to the activation of cellular immunity but also to the decrease of IL-1R2+ CD4+ T cells or nTregs, which cells accelerate both age-related hearing loss (AHL) and neurodegeneration of the cochlear neurons. Further studies on the interactions among IL-1R2 expression on CD4+ T cells, Tregs, and neuronal cells and also on the relationships between fetal thymus grafting and the rejuvenation of systemic immunity should be designed in order to advance towards therapeutic effects on neurosenescence, including AHL.
Collapse
Affiliation(s)
- Hiroshi Iwai
- Department of Otolaryngology, Takii Hospital, Kansai Medical University, Moriguchi, Osaka Japan
| | - Muneo Inaba
- First Department of Medicine, Hirakata Hospital, Kansai Medical University, Hirakata, Osaka Japan
| |
Collapse
|
15
|
WEI TIANLI, ZHANG NANNAN, GUO ZHIBIN, CHI FENG, SONG YAN, ZHU XIKE. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep 2015; 12:7568-76. [DOI: 10.3892/mmr.2015.4343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
|
16
|
Shytikov D, Balva O, Debonneuil E, Glukhovskiy P, Pishel I. Aged mice repeatedly injected with plasma from young mice: a survival study. Biores Open Access 2014; 3:226-32. [PMID: 25371859 PMCID: PMC4215333 DOI: 10.1089/biores.2014.0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It was reported using various biological models that the administration of blood factors from young animals to old animals could rejuvenate certain functions. To assess the anti-aging effect of young blood we tested the influence of repeated injections of plasma from young mice on the lifespan of aged mice. One group of 36 CBA/Ca female mice aged 10-12 months was treated by repeated injections of plasma from 2- to 4-month-old females (averaging 75-150 μL per injection, once intravenously and once intraperitoneally per week for 16 months). Their lifespan was compared to a control group that received saline injections. The median lifespan of mice from the control group was 27 months versus 26.4 months in plasma-treated group; the repeated injections of young plasma did not significantly impact either median or maximal lifespan.
Collapse
Affiliation(s)
- Dmytro Shytikov
- D.F. Chebotarev State Institute of Gerontology NAMS , Lab Pathophysiology and Immunology, Kyiv, Ukraine
| | - Olexiy Balva
- D.F. Chebotarev State Institute of Gerontology NAMS , Lab Pathophysiology and Immunology, Kyiv, Ukraine
| | | | - Pavel Glukhovskiy
- National University , Department of Mathematics and Natural Sciences, Los Angeles, California
| | - Iryna Pishel
- D.F. Chebotarev State Institute of Gerontology NAMS , Lab Pathophysiology and Immunology, Kyiv, Ukraine
| |
Collapse
|
17
|
Abstract
The induction of cell reprogramming by transcription factors into alternative cell fates opens new avenues for regenerative medicine. Thymic epithelial cells that were obtained from fibroblasts by Foxn1 overexpression support the formation of an ectopic thymus following transplantation.
Collapse
|
18
|
Bredenkamp N, Nowell CS, Blackburn CC. Regeneration of the aged thymus by a single transcription factor. Development 2014; 141:1627-37. [PMID: 24715454 PMCID: PMC3978836 DOI: 10.1242/dev.103614] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.
Collapse
Affiliation(s)
- Nicholas Bredenkamp
- Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | |
Collapse
|
19
|
Liu G, Wang L, Pang T, Zhu D, Xu Y, Wang H, Cong X, Liu Y. Umbilical cord-derived mesenchymal stem cells regulate thymic epithelial cell development and function in Foxn1(-/-) mice. Cell Mol Immunol 2014; 11:275-84. [PMID: 24561455 DOI: 10.1038/cmi.2013.69] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/09/2023] Open
Abstract
Thymic microenvironments are essential for the maturation of thymocytes, which can be anatomically compartmentalized into cortical and medullar regions. The absence of the gene encoding the transcription factor forkhead box n1 (Foxn1) causes epithelial differentiation to stall in the precursor stage, resulting in the formation of an abnormal thymus. In this study, we used human umbilical cord-derived mesenchymal stem cells (UC-MSCs) to treat Foxn1(-/-) mice, and then analyzed the maturation and distribution of thymic epithelial cells in the Foxn1(-/-) thymic rudiment and the thymopoiesis of this newly developed rudiment. Our data showed a well-organized cortex-medulla architecture and an obvious improvement in the maturation of thymic epithelial cells along with the appearance of UEA-1(+)MHCII(hi) thymic epithelial cells in the rudiment. We further demonstrated improved thymopoiesis and the enhanced export of mature T cells with increased numbers of regulatory T cells into the peripheral blood. Furthermore, we observed that MSCs can engraft into thymic tissue and express many cytokines or proteins, particularly keratinocyte growth factor (KGF) and CD248, which are essential for thymic development. Collectively, our data identified a new mechanism for MSCs, which may provide a proper microenvironment for the reconstitution and functional maturation of the thymus in Foxn1(-/-) mice. Additionally, we elicited additional insights into the therapeutic efficacy of MSCs in several autoimmune diseases.
Collapse
Affiliation(s)
- Guangyang Liu
- 1] Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China [2] Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Lihua Wang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Graduate School of Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Tianxiang Pang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Graduate School of Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin, China
| | - Delin Zhu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Yi Xu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Hanyu Wang
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| | - Xiuli Cong
- 1] Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China [2] University of Florida, Department of Medicine, Gainesville, FL, USA
| | - Yongjun Liu
- Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin, China
| |
Collapse
|
20
|
Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. AGE (DORDRECHT, NETHERLANDS) 2014; 36:313-51. [PMID: 23877171 PMCID: PMC3889907 DOI: 10.1007/s11357-013-9564-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy,
| | | | | | | | | |
Collapse
|
21
|
Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest 2013; 123:958-65. [PMID: 23454758 DOI: 10.1172/jci64096] [Citation(s) in RCA: 536] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The effects of aging on the immune system are manifest at multiple levels that include reduced production of B and T cells in bone marrow and thymus and diminished function of mature lymphocytes in secondary lymphoid tissues. As a result, elderly individuals do not respond to immune challenge as robustly as the young. An important goal of aging research is to define the cellular changes that occur in the immune system and the molecular events that underlie them. Considerable progress has been made in this regard, and this information has provided the rationale for clinical trials to rejuvenate the aging immune system.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
22
|
|
23
|
ThyagaRajan S, Madden KS, Boehm GW, Stevens SY, Felten DL, Bellinger DL. L-Deprenyl reverses age-associated decline in splenic norepinephrine, interleukin-2 and interferon-γ production in old female F344 rats. Neuroimmunomodulation 2013. [PMID: 23207416 PMCID: PMC3695399 DOI: 10.1159/000345043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Aging in female rats is associated with cessation of reproductive cycles, development of mammary cancer, and increased incidence of autoimmune diseases. Previously, we demonstrated an age-related decline in sympathetic noradrenergic (NA) innervation in the spleen and lymph nodes of female F344 rats accompanied by significantly reduced natural killer cell activity, interleukin (IL)-2 and interferon (IFN)-γ production, and T- and B-cell proliferation, suggesting possible links between sympathetic activity and immunosenescence. OBJECTIVES The aim of this study is to investigate the effects of L-(-)-deprenyl, a monoamine oxidase-B inhibitor, on the sympathetic nervous system and cell-mediated immune responses in old female rats. METHODS Low doses of L-deprenyl (0.25 or 1.0 mg/kg body weight, BW) were administered intraperitoneally to 19- to 21-month-old female F344 rats for 8 weeks. To assess the stereoselectivity of the effects of deprenyl on splenic sympathetic activity and immune responses, the D-enantiomer (D-(+)-deprenyl; 1.0 mg/kg BW) was also included in the studies. Norepinephrine (NE) concentration and content, and mitogen-induced T-cell proliferation and cytokine production were assessed in the splenocytes after deprenyl treatment. RESULTS Treatment with L-deprenyl reversed the age-related decrease in NE concentration and content and IFN-γ production, and increased IL-2 production in the spleen while D-deprenyl did not affect the age-associated reduction in splenic NE levels or cytokine production. CONCLUSIONS These findings demonstrate that L-deprenyl exerts neurorestorative and immunostimulatory effects on the sympathetic nervous system and cell-mediated immune responses during aging and provides evidence for a causal relationship between some aspects of immunosenescence and the age-related decline in sympathetic nerves in the spleens of female F344 rats.
Collapse
Affiliation(s)
- Srinivasan ThyagaRajan
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350
- Corresponding author and Present address: Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, INDIA, , Phone: 91-9940201794
| | - Kelley S. Madden
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, NY 14642
| | - Gary W. Boehm
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129
| | - Suzanne Y. Stevens
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, NY 14642
| | - David L. Felten
- Oakland University William Beaumont School of Medicine, Royal Oak, MI 48073
| | - Denise L. Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350
| |
Collapse
|
24
|
Holland AM, Zakrzewski JL, Tsai JJ, Hanash AM, Dudakov JA, Smith OM, West ML, Singer NV, Brill J, Sun JC, van den Brink MRM. Extrathymic development of murine T cells after bone marrow transplantation. J Clin Invest 2012; 122:4716-26. [PMID: 23160195 DOI: 10.1172/jci60630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function.
Collapse
Affiliation(s)
- Amanda M Holland
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haynes L, Swain SL. Aged-related shifts in T cell homeostasis lead to intrinsic T cell defects. Semin Immunol 2012; 24:350-5. [PMID: 22564707 PMCID: PMC3415577 DOI: 10.1016/j.smim.2012.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/23/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Our recent studies indicate that the longer peripheral persistence of naïve CD4 T cells that occurs with age is necessary for the development of the key aging defects that lead to compromised responses to vaccination and to new pathogens or new strains of circulating infectious agents. This longer persistence is in turn is linked to the decrease in development of new thymic emigrants and thymic involution that occur at adolescence. Therefore the process of development of naïve CD4 aging defects, is closely tied to the homeostasis of T cells and the shifts that occur in their homeostasis with age. Here we review this connection between age-related changes in T cell homeostasis and the development of T cell defects and discuss the implication for approaches to better vaccinating the elderly.
Collapse
|
26
|
Fetal thymus graft prevents age-related hearing loss and up regulation of the IL-1 receptor type II gene in CD4+ T cells. J Neuroimmunol 2012; 250:1-8. [DOI: 10.1016/j.jneuroim.2012.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/08/2012] [Accepted: 05/04/2012] [Indexed: 12/11/2022]
|
27
|
Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. ACTA ACUST UNITED AC 2012; 79:83-9. [PMID: 22220718 DOI: 10.1111/j.1399-0039.2011.01820.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assessment of the host immune status is becoming a key issue in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the long-term follow-up of these patients, severe post-transplant infections, relapse or secondary malignancies may be directly related to persistent immune defects. In allo-HSCT, T-cell differentiation of donor progenitors within the recipient thymus is required to generate naive recent T-cell emigrants (RTE). These cells account for a durable T-cell reconstitution, generating a diverse T-cell receptor (TCR) repertoire and robust response to infections. It is now possible to quantify the production of RTE by measuring thymic T-cell receptor excision circles or 'TREC' which are small circular DNA produced during the recombination of the genomic segments encoding the TCR alpha chain. Here we discuss the role of thymic function in allo-HSCT. The pre-transplant recipient thymic function correlates with clinical outcome in terms of survival and occurrence of severe infections. Post-transplant, TREC analysis showed that the thymus is a sensitive target to the allogeneic acute graft-versus-host disease (GvHD) reaction but is also prone to recovery in young adult patients. In all, thymus is a key player for the quality of immune reconstitution and clinical outcome after allo-HSCT. Thymic tissue is plastic and it is a future challenge to halt or reverse thymic GVHD therapeutically by acting at the level of T-cell progenitors generation, thymic homing and/or epithelial thymic tissue preservation.
Collapse
Affiliation(s)
- A Toubert
- Sorbonne Paris Cité, INSERM UMR940, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France.
| | | | | | | |
Collapse
|
28
|
T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood 2012; 120:1820-30. [PMID: 22709689 DOI: 10.1182/blood-2012-01-405670] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.
Collapse
|
29
|
Abstract
High-density lipoprotein (HDL) levels are inversely associated with coronary heart disease due to HDL's ability to transport excess cholesterol in arterial macrophages to the liver for excretion [i.e., reverse cholesterol transport (RCT)]. However, recent advances highlight additional atheroprotective roles for HDL beyond bulk cholesterol removal from cells through RCT. By promoting cellular free cholesterol (FC) efflux, HDL and its apolipoproteins (apoA-I and apoE) decrease plasma membrane FC and lipid raft content in immune and hematopoietic stem cells, decreasing inflammatory and cell proliferation signaling pathways. HDL and apoA-I also dampen inflammatory signaling pathways independent of cellular FC efflux. In addition, HDL lipid and protein cargo provide protection against parasitic and bacterial infection, endothelial damage, and oxidant toxicity. Here, current knowledge is reviewed regarding the role of HDL and its apolipoproteins in regulating cellular cholesterol homeostasis, highlighting recent advances on novel functions and mechanisms by which HDLs regulate inflammation and hematopoiesis.
Collapse
Affiliation(s)
- Xuewei Zhu
- Department of Pathology-Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
30
|
Youm YH, Kanneganti TD, Vandanmagsar B, Zhu X, Ravussin A, Adijiang A, Owen JS, Thomas MJ, Francis J, Parks JS, Dixit VD. The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 2012; 1:56-68. [PMID: 22832107 DOI: 10.1016/j.celrep.2011.11.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/07/2011] [Accepted: 11/22/2011] [Indexed: 11/30/2022] Open
Abstract
The collapse of thymic stromal cell microenvironment with age and resultant inability of the thymus to produce naive T cells contributes to lower immune-surveillance in the elderly. Here we show that age-related increase in 'lipotoxic danger signals' such as free cholesterol (FC) and ceramides, leads to thymic caspase-1 activation via the Nlrp3 inflammasome. Elimination of Nlrp3 and Asc, a critical adaptor required for inflammasome assembly, reduces age-related thymic atrophy and results in an increase in cortical thymic epithelial cells, T cell progenitors and maintenance of T cell repertoire diversity. Using a mouse model of irradiation and hematopoietic stem cell transplantation (HSCT), we show that deletion of the Nlrp3 inflammasome accelerates T cell reconstitution and immune recovery in middle-aged animals. Collectively, these data demonstrate that lowering inflammasome-dependent caspase-1 activation increases thymic lymphopoiesis and suggest that Nlrp3 inflammasome inhibitors may aid the re-establishment of a diverse T cell repertoire in middle-aged or elderly patients undergoing HSCT.
Collapse
Affiliation(s)
- Yun-Hee Youm
- Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Complications, Diagnosis, Management, and Prevention of CMV Infections: Current and Future. Hematology 2011; 2011:305-9. [DOI: 10.1182/asheducation-2011.1.305] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Although major progress has been made in the prevention of CMV disease after hematopoietic cell transplantation (HCT), specific problems remain and available antiviral agents are associated with major toxicities. This article reviews current aspects of CMV diagnosis, prevention, and treatment in HCT recipients and defines areas of unmet medical need.
Collapse
|
32
|
Marttila S, Jylhävä J, Pesu M, Hämäläinen S, Jylhä M, Hervonen A, Hurme M. IL-7 concentration is increased in nonagenarians but is not associated with markers of T cell immunosenescence. Exp Gerontol 2011; 46:1000-2. [DOI: 10.1016/j.exger.2011.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/02/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
|
33
|
Engelmann F, Barron A, Urbanski H, Neuringer M, Kohama SG, Park B, Messaoudi I. Accelerated immune senescence and reduced response to vaccination in ovariectomized female rhesus macaques. AGE (DORDRECHT, NETHERLANDS) 2011; 33:275-289. [PMID: 20814751 PMCID: PMC3168610 DOI: 10.1007/s11357-010-9178-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
Aging is associated with a general dysregulation in immune function, commonly referred to as "immune senescence". Several studies have shown that female sex steroids can modulate the immune response. However, the impact of menopause-associated loss of estrogen and progestins on immune senescence remains poorly understood. To help answer this question, we examined the effect of ovariectomy on T-cell homeostasis and function in adult and aged female rhesus macaques. Our data show that in adult female rhesus macaques, ovariectomy increased the frequency of naïve CD4 T cells. In contrast, ovariectomized (ovx) aged female rhesus macaques had increased frequency of terminally differentiated CD4 effector memory T cells and inflammatory cytokine-secreting memory T cells. Moreover, ovariectomy reduced the immune response (T-cell cytokine and IgG production) following vaccination with modified vaccinia ankara in both adult and aged female rhesus macaques compared to ovary-intact age-matched controls. Interestingly, hormone therapy (estradiol alone or in conjunction with progesterone) partially improved the T-cell response to vaccination in aged ovariectomized female rhesus macaques. These data suggest that the loss of ovarian steroids, notably estradiol and progesterone, may contribute to reduced immune function in post-menopausal women and that hormone therapy may improve immune response to vaccination in this growing segment of the population.
Collapse
Affiliation(s)
- Flora Engelmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 09006 USA
| | - Alex Barron
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 09006 USA
| | - Henryk Urbanski
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
| | - Byung Park
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239 USA
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 09006 USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006 USA
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006 USA
| |
Collapse
|
34
|
Abstract
BACKGROUND The thymus has long been recognized as a target for the actions of androgenic hormones, but it has only been recently recognized that alterations in circulating levels of gonadal steroids might affect thymic output of T cells. We had the opportunity to examine parameters of thymic cellular output in several hypogonadal men undergoing androgen replacement therapy. METHODS Circulating naive (CD4+CD45RA+) T cells were quantitated by flow cytometric analysis of peripheral blood mononuclear cells. Cells bearing T-cell receptor excision circles were quantitated using real-time polymerase chain reaction amplification of DNA isolated from peripheral blood mononuclear cells from healthy men and from hypogonadal men before and after testosterone replacement therapy. RESULTS CD4+CD45+ (naive) T cells comprised 10.5% of lymphocytes in healthy males; this proportion was greatly increased in 2 hypogonadal men (35.5% and 44.4%). One man was studied sequentially during treatment with physiologic doses of testosterone. CD4+CD45RA+ cells fell from 37.36% to 20.05% after 1 month and to 12.51% after 7 months of normalized androgen levels. In 2 hypogonadal patients, T-cell receptor excision circle levels fell by 83% and 78% after androgen replacement therapy. CONCLUSIONS Our observations indicate that the hypogonadal state is associated with increased thymic output of T cells and that this increase in recent thymic emigrants in peripheral blood is reversed by androgen replacement.
Collapse
Affiliation(s)
- Nancy J Olsen
- Division of Rheumatology, Department of Medicine, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033-0850, USA
| | | |
Collapse
|
35
|
Identification of Flt3⁺CD150⁻ myeloid progenitors in adult mouse bone marrow that harbor T lymphoid developmental potential. Blood 2011; 118:2723-32. [PMID: 21791413 DOI: 10.1182/blood-2010-09-309989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Common myeloid progenitors (CMPs) were first identified as progenitors that were restricted to myeloid and erythroid lineages. However, it was recently demonstrated that expression of both lymphoid- and myeloid-related genes could be detected in myeloid progenitors. Furthermore, these progenitors were able to give rise to T and B lymphocytes, in addition to myeloid cells. Yet, it was not known whether these progenitors were multipotent at the clonogenic level or there existed heterogeneity within these progenitors with different lineage potential. Here we report that previously defined CMPs possess T-lineage potential, and that this is exclusively found in the Flt3(+)CD150(-) subset of CMPs at the clonal level. In contrast, we did not detect B-lineage potential in CMP subsets. Therefore, these Flt3(+)CD150(-) myeloid progenitors were T/myeloid potent. Yet, Flt3(+)CD150(-) myeloid progenitors are not likely to efficiently traffic to the thymus and contribute to thymopoiesis under normal conditions because of the lack of CCR7 and CCR9 expression. Interestingly, both Flt3(+)CD150(-) and Flt3(-)CD150(-) myeloid progenitors are susceptible to Notch1-mediated T-cell acute lymphoblastic leukemia (T-ALL). Hence, gain-of-function Notch1 mutations occurring in developing myeloid progenitors, in addition to known T-lineage progenitors, could lead to T-ALL oncogenesis.
Collapse
|
36
|
Peters T. [Immunosenescence. Current status and molecular mechanisms]. Hautarzt 2011; 62:598-606. [PMID: 21732162 DOI: 10.1007/s00105-011-2134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the most important biological changes occurring during human aging is termed 'immunosenescence' characterized by a functional decline in immunity leading to a progressive immunodeficiency. Regulatory mechanisms also are diminished, leading to an inefficient and poorly controlled pro-inflammatory activation of the immune response. This increases the risk for disorders such as infectious, autoimmune, neoplastic, cardiovascular and neurodegenerative disease. Many of these entities are quite relevant for dermatology. Hence, immunosenescence constitutes a pathologic process contributing to morbidity and mortality of important clinical relevance in an aging population. Investigation of the underlying pathomechanisms and the application of modern mechanism-directed therapy offer many opportunities for a targeted modulation and "rejuvenation", thus indicating possible targets for the reduction of age-associated morbidity and mortality. Some promising targeted 'molecular' therapies are already currently being used in the context of other diseases, also in the field of dermatology.
Collapse
Affiliation(s)
- T Peters
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm.
| |
Collapse
|
37
|
Dudakov JA, van den Brink MRM. Greater than the sum of their parts: combination strategies for immune regeneration following allogeneic hematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2011; 24:467-76. [PMID: 21925100 DOI: 10.1016/j.beha.2011.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoreductive conditioning regimes designed to allow for successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) paradoxically are also detrimental to recovery of the immune system in general but lymphopoiesis in particular. Post-transplant immune depletion is particularly striking within the T cell compartment which is exquisitely sensitive to negative regulation, evidenced by the profound decline in thymic function with age. As a consequence, regeneration of the immune system remains a significant unmet clinical need. Over the past decade studies have revealed several promising therapeutic strategies to address ineffective lymphopoiesis and post-transplant immune deficiency. These include the use of cytokines such as IL-7, IL-12 and IL-15; growth factors and hormones like keratinocyte growth factor (KGF), insulin-like growth factor (IGF)-1 and growth hormone (GH); adoptive transfer of ex vivo-generated precursor T cells (pre-T) and sex steroid ablation (SSA). Moreover, recently several novel approaches have been proposed to generate whole thymii ex vivo using stem cell technologies and bioscaffolds. Increasingly, however, when transferred to the clinic, these strategies alone are not sufficient to restore thymopoiesis in all patients leading to the potential of combination strategies as a way to reign in non-responders. Synergistic enhancement in combination may be due to differential targets may therefore be effective in improving clinical outcomes in the transplant settings as well as in other lymphopenic states induced by high dose chemotherapy/radiation therapy or HIV, and may also be useful in improving responses to vaccination and augmenting anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
38
|
The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 2011; 23:537-42. [PMID: 21652194 DOI: 10.1016/j.coi.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/17/2011] [Indexed: 01/03/2023]
Abstract
Immune function declines progressively with age, resulting in increased susceptibility of the elderly to infection and impaired responses to vaccines. A diverse repertoire of T cells is essential for a vigorous immune response, and an important manifestation of immune aging is the progressive loss of repertoire diversity, predominantly among CD8 T cells in both mice and humans. Importantly, perturbations in the peripheral T cell repertoire, including reduction of the CD4:CD8 ratio and cytomegalovirus-driven T cell clonal expansions, make a major contribution to the 'immune risk phenotype' defined for humans, which predicts two-year mortality in very old individuals.
Collapse
|
39
|
Gain and loss of T cell subsets in old age--age-related reshaping of the T cell repertoire. J Clin Immunol 2011; 31:137-46. [PMID: 21243520 DOI: 10.1007/s10875-010-9499-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
The immune system is affected by the aging process and undergoes significant age-related changes, termed immunosenescence. Different T cell subsets are affected by this process. Alterations within the bone marrow and thymus lead to a shift in the composition of the T cell repertoire from naïve to antigen-experienced T cells, thereby compromising the diversity of the T cell pool. Additional infection with latent pathogens such as cytomegalovirus aggravates this process. In this review, we focus on the major age-related changes that occur in the naïve and the antigen-experienced T cell population. We discuss the mechanisms responsible for the generation and maintenance of these subsets and how age-related changes can be delayed or prevented by clinical interventions.
Collapse
|
40
|
Enioutina EY, Bareyan D, Daynes RA. A role for immature myeloid cells in immune senescence. THE JOURNAL OF IMMUNOLOGY 2010; 186:697-707. [PMID: 21148798 DOI: 10.4049/jimmunol.1002987] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reduced efficiency of the mammalian immune system with aging increases host susceptibility to infectious and autoimmune diseases. However, the mechanisms responsible for these pathologic changes are not well understood. In this study, we demonstrate that the bone marrow, blood, and secondary lymphoid organs of healthy aged mice possess increased numbers of immature myeloid cells that are phenotypically similar to myeloid-derived suppressor cells found in lymphoid organs of mice with progressive tumors and other pathologic conditions associated with chronic inflammation. These cells are characterized by the presence of Gr1 and CD11b markers on their surfaces. Gr1(+)CD11b(+) cells isolated from aged mice possess an ability to suppress T cell proliferation/activation and produce heightened levels of proinflammatory cytokines, both constitutively and upon activation, including IL-12, which promotes an excessive production of IFN-γ. IFN-γ priming is essential for excessive proinflammatory cytokine production and the suppressive activities by Gr1(+)CD11b(+) cells from aged mice. These cells suppress T cell proliferation through an NO-dependent mechanism, as depletion of splenic Gr1(+) cells reduces NO levels and restores T cell proliferation. Insights into mechanisms responsible for the proinflammatory and immune suppressive activities of Gr1(+)CD11b(+) cells from aged mice have uncovered a defective PI3K-Akt signaling pathway, leading to a reduced Akt-dependent inactivation of GSK3β. Our data demonstrate that abnormal activities of the Gr1(+)CD11b(+) myeloid cell population from aged mice could play a significant role in the mechanisms responsible for immune senescence.
Collapse
Affiliation(s)
- Elena Y Enioutina
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
41
|
Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 2010; 22:521-8. [PMID: 20650623 DOI: 10.1016/j.coi.2010.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 06/18/2010] [Accepted: 06/29/2010] [Indexed: 12/19/2022]
Abstract
With advancing age, the thymus undergoes striking fibrotic and fatty changes that culminate in its transformation into adipose tissue. As the thymus involutes, reduction in thymocytes and thymic epithelial cells precede the emergence of mature lipid-laden adipocytes. Dogma dictates that adipocytes are 'passive' cells that occupy non-epithelial thymic space or 'infiltrate' the non-cellular thymic niches. The provenance and purpose of ectopic thymic adipocytes during aging in an organ that is required for establishment and maintenance of T cell repertoire remains an unsolved puzzle. Nonetheless, tantalizing clues about elaborate reciprocal relationship between thymic fatness and thymopoietic fitness are emerging. Blocking or bypassing the route toward thymic adiposity may complement the approaches to rejuvenate thymopoiesis and immunity in elderly.
Collapse
|
42
|
Ponchel F, Cuthbert RJ, Goëb V. IL-7 and lymphopenia. Clin Chim Acta 2010; 412:7-16. [PMID: 20850425 DOI: 10.1016/j.cca.2010.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 01/10/2023]
Abstract
Interleukin-7 (IL-7) is a growth and anti-apoptotic factor for T-lymphocytes, with potential for clinical use in the treatment of immunodeficiencies due to loss of T-cells. Lymphopenia induced by disease (HIV infection, hemodialysis or Idiopathic CD4+ lymphopenia) or by treatment (high dose chemotherapy or depleting antibodies) for cancer or auto-immune diseases results in increased circulating levels of IL-7 which decline with T-cell recovery, however, the mechanism of such response remains to be elucidated. Furthermore, IL-7 is a major player in the regulation of peripheral T-cell homeostasis and as such is an important candidate cytokine for therapy aimed at improving T-cell reconstitution following lymphopenia. Anti- IL-7 is on the other hand proposed to treat conditions where IL-7 may play a more direct role in pathogenesis such as autoimmune disease like Rheumatoid Arthritis, Multiple Sclerosis or Inflammatory Bowel disease.
Collapse
Affiliation(s)
- Frederique Ponchel
- Leeds Institute of Molecular Medicine, Section of Musculoskeletal disease, the University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
43
|
Hsu HC, Mountz JD. Metabolic syndrome, hormones, and maintenance of T cells during aging. Curr Opin Immunol 2010; 22:541-8. [PMID: 20591642 DOI: 10.1016/j.coi.2010.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 05/17/2010] [Accepted: 05/30/2010] [Indexed: 12/26/2022]
Abstract
Although the phenotype of T-cell senescence has been extensively investigated, few studies have analyzed the factors that promote the generation and maintenance of naïve and memory T cells that exist throughout the lifespan of the individuals. Unlike senescent T cells, naïve and memory T cells are able to participate in useful immune responses as well as respond to new activation. Hormones such as leptin, ghrelin, insulin-like growth factor 1, IGFBP3, and cytokines, including IL-7, regulate both thymopoiesis and maintenance of naïve T cells in the periphery. Although chronic viruses such as cytomegalovirus (CMV) are thought to drive T-cell senescence, other microbes may be important for the maintenance of nonsenescent T cells. Microbiota of the gut can induce metabolic syndrome as well as modulate T-cell development into specific subpopulations of effector cells. Finally, T-cell generation, maintenance, and apoptosis depend upon pathways of energy utilization within the T cells, which parallel those that regulate overall metabolism. Therefore, better understanding of metabolic syndrome, T-cell metabolism, hormones, and microbiota may lead to new insights into the maintenance of proper immune responses in old age.
Collapse
Affiliation(s)
- Hui-Chen Hsu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
44
|
Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol 2010; 10:408-24. [PMID: 20595009 DOI: 10.1016/j.coph.2010.04.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 12/20/2022]
Abstract
One of the major fundamental causes for the aging of the immune system is the structural and functional involution of the thymus, and the associated decline in de novo naïve T-lymphocyte output. This loss of naïve T-cell production weakens the ability of the adaptive immune system to respond to new antigenic stimuli and eventually leads to a peripheral T-cell bias to the memory phenotype. While the precise mechanisms responsible for age-associated thymic involution remain unknown, a variety of theories have been forwarded including the loss of expression of various growth factors and hormones that influence the lymphoid compartment and promote thymic function. Extensive studies examining two hormones, namely growth hormone (GH) and ghrelin (GRL), have demonstrated their contributions to thymus biology. In the current review, we discuss the literature supporting a role for these hormones in thymic physiology and age-associated thymic involution and their potential use in the restoration of thymic function in aged and immunocompromised individuals.
Collapse
|
45
|
Holländer GA, Krenger W, Blazar BR. Emerging strategies to boost thymic function. Curr Opin Pharmacol 2010; 10:443-53. [PMID: 20447867 DOI: 10.1016/j.coph.2010.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The thymus constitutes the primary lymphoid organ for the generation of T cells. Its function is particularly susceptible to various negative influences ranging from age-related involution to atrophy as a consequence of malnutrition, infection or harmful iatrogenic influences such as chemotherapy and radiation. The loss of regular thymus function significantly increases the risk for infections and cancer because of a restricted capacity for immune surveillance. In recent years, thymus-stimulatory, thymus-regenerative, and thymus-protective strategies have been developed to enhance and repair thymus function in the elderly and in individuals undergoing hematopoietic stem cell transplantation. These strategies include the use of sex steroid ablation, the administration of growth and differentiation factors, the inhibition of p53, and the transfer of T cell progenitors to alleviate the effects of thymus dysfunction and consequent T cell deficiency.
Collapse
Affiliation(s)
- Georg A Holländer
- Laboratory of Pediatric Immunology, Department of Biomedicine, University of Basel, The University Children's Hospital (UKBB), Mattenstrasse 28, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
46
|
Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol 2010; 31:191-8. [DOI: 10.1016/j.it.2010.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/02/2010] [Accepted: 02/25/2010] [Indexed: 12/28/2022]
|
47
|
Ageing and immunity: addressing immune senescence to ensure healthy ageing. Vaccine 2010; 28:3627-31. [PMID: 20362616 DOI: 10.1016/j.vaccine.2010.03.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Among the greatest achievements of the 20th century, prolongation of life expectancy has been the result of improved health conditions, decreased childhood mortality, lower incidence of infectious diseases. The consequence is the rapid ageing of the world population, with the elderly representing over 25% of the entire population by the year 2030, of which 75% living in less developed countries. Ageing thus represents one of the major public health challenges of the 21st century. Indeed, unhealthy ageing and frailty of the aged population has an important impact on the economic development and social costs of a country, a problem even more acute in less developed countries. A better knowledge of immune senescence and the design of customised vaccination strategies for the elderly are the immediate challenges posed to scientists and physicians. The conference "Ageing and immunity", recently held in Siena (Italy), has addressed these issues and defined the global strategic priorities for research and health policies aimed at ensuring healthy ageing.
Collapse
|
48
|
Dato S, Krabbe KS, Thinggaard M, Pedersen BK, Christensen K, Bruunsgaard H, Christiansen L. Commonly studied polymorphisms in inflammatory cytokine genes show only minor effects on mortality and related risk factors in nonagenarians. J Gerontol A Biol Sci Med Sci 2010; 65:225-35. [PMID: 20083555 DOI: 10.1093/gerona/glp210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Systemic low-grade inflammation is consistently associated with functional status, cognitive functioning, multimorbidity, and survival in oldest olds. If inflammation is either a cause or a consequence of age-related pathology, genetic determinants of late-life survival can reside in cytokine genes polymorphisms, regulating inflammatory responses. The aim of this study was to test associations between commonly studied polymorphisms in interleukin (IL)6, IL10, IL15, and IL18, and tumor necrosis factor-alpha genes and late-life survival in a longitudinal cohort of nonagenarians: the Danish 1905 cohort. Additionally, associations were investigated between inflammatory markers and major predictors of mortality as cognitive and functional status. Modest sex-specific associations were found with survival, cognitive functioning, and handgrip strength. Evaluation of combined genotypes indicated that, in nonagenarian men, the balance of pro- and anti-inflammatory activity at IL18 and IL10 loci is protective against cognitive decline. In conclusion, in this large study with virtually complete follow-up, commonly studied polymorphisms in cytokine genes do not have a major impact on late-life survival or associated risk phenotypes.
Collapse
Affiliation(s)
- Serena Dato
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9, DK-5000 Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
49
|
van den Brink MRM, Porter DL, Giralt S, Lu SX, Jenq RR, Hanash A, Bishop MR. Relapse after allogeneic hematopoietic cell therapy. Biol Blood Marrow Transplant 2009; 16:S138-45. [PMID: 19857588 DOI: 10.1016/j.bbmt.2009.10.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disease relapse remains a major cause of mortality following allogeneic hematopoietic cell transplantation (HCT). Over the past decade, our understanding of the biology underlying the graft-versus-tumor/leukemia (GVT) effect has increased greatly; however, several other factors affect the occurrence and outcome of relapse, including conditioning regimen, type of allograft, and the histology, status, and sensitivity to chemotherapy of the disease being treated. The mainstay of relapse treatment is donor lymphocyte infusion (DLI), but the efficacy of DLI is quite variable depending on disease histology and state. As such, there is a significant need for novel therapies and strategies for relapse following allogeneic HCT, particularly in patients for whom DLI is not an option. The National Cancer Institute is sponsoring an international workshop to address issues and research questions relative to the biology, natural history, prevention, and treatment of relapse following allogeneic HCT.
Collapse
|