1
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
2
|
Qian D, Liu Y, Zheng J, Cai J. Dendritic cell therapy for neurospoagioma: Immunomodulation mediated by tumor vaccine. Cell Death Discov 2024; 10:11. [PMID: 38184649 PMCID: PMC10771477 DOI: 10.1038/s41420-023-01782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Neurospagioma, arising from different glial cells such as astrocytes, oligodendrocytes, and ependymal cells, stands as the prevalent intracranial tumor within the central nervous system. Among its variants, glioblastoma (GBM) represents the most aggressive form, characterized by a notably high occurrence rate and a discouragingly low survival prognosis. The formidable challenge posed by glioblastoma underscores its critical importance as a life-threatening ailment. Currently, clinical approaches often involve surgical excision along with a combination of radiotherapy and chemotherapy. However, these treatments frequently result in a notable recurrence rate, accompanied by substantial adverse effects that significantly compromise the overall prognosis. Hence, there is a crucial need to investigate novel and dependable treatment strategies. Dendritic cells (DCs), being specialized antigen-presenting cells (APCs), hold a significant position in both innate and adaptive immune responses. Presently, DC vaccines have gained widespread application in the treatment of various tumors, including neurospoagioma. In this review, we summarize the immunomodulatory effects and related mechanisms of DC vaccines in neurospoagioma as well as the progress of clinical trials to propose possible challenges of DC vaccines and new development directions.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China.
| | - Yuxiang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | - Jie Zheng
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China.
| |
Collapse
|
3
|
Sun Z, Zhang L, Liu L. Reprogramming the lipid metabolism of dendritic cells in tumor immunomodulation and immunotherapy. Biomed Pharmacother 2023; 167:115574. [PMID: 37757492 DOI: 10.1016/j.biopha.2023.115574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human body. They detect and process environmental signals and communicate with T cells to bridge innate and adaptive immunity. Cell activation, function, and survival are closely associated with cellular metabolism. An increasing number of studies have revealed that lipid metabolism affects DC activation as well as innate and acquired immune responses. Combining lipid metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T-cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in cancer therapy. This review summarizes the lipid metabolism of DCs under physiological conditions, analyzes the role of reprogramming the lipid metabolism of DCs in tumor immune regulation, and discusses potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
5
|
Weizman OE, Luyten S, Krykbaeva I, Song E, Mao T, Bosenberg M, Iwasaki A. Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1146-1155. [PMID: 36881866 PMCID: PMC10067787 DOI: 10.4049/jimmunol.2200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The progression of transformed primary tumors to metastatic colonization is a lethal determinant of disease outcome. Although circulating adaptive and innate lymphocyte effector responses are required for effective antimetastatic immunity, whether tissue-resident immune circuits confer initial immunity at sites of metastatic dissemination remains ill defined. Here we examine the nature of local immune cell responses during early metastatic seeding in the lung using intracardiac injection to mimic monodispersed metastatic spread. Using syngeneic murine melanoma and colon cancer models, we demonstrate that lung-resident conventional type 2 dendritic cells (DC2) orchestrate a local immune circuit to confer host antimetastatic immunity. Tissue-specific ablation of lung DC2, and not peripheral DC populations, led to increased metastatic burden in the presence of an intact T cell and NK cell compartment. We demonstrate that DC nucleic acid sensing and transcription factors IRF3 and IRF7 signaling are required for early metastatic control and that DC2 serve as a robust source of proinflammatory cytokines in the lung. Critically, DC2 direct the local production of IFN-γ by lung-resident NK cells, which limits the initial metastatic burden. Collectively, our results highlight, to our knowledge, a novel DC2-NK cell axis that colocalizes around pioneering metastatic cells to orchestrate an early innate immune response program to limit initial metastatic burden in the lung.
Collapse
Affiliation(s)
- Orr-El Weizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Sophia Luyten
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Irina Krykbaeva
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Marcus Bosenberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
6
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
7
|
Han M, Ma J, Ouyang S, Wang Y, Zheng T, Lu P, Zheng Z, Zhao W, Li H, Wu Y, Zhang B, Hu R, Otsu K, Liu X, Wan Y, Li H, Huang G. The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. Cell Mol Immunol 2022; 19:805-819. [PMID: 35551270 PMCID: PMC9243149 DOI: 10.1038/s41423-022-00873-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in controlling T helper 2 (Th2) cell-dependent diseases, but the signaling mechanism that triggers this function is not fully understood. We showed that p38α activity in DCs was decreased upon HDM stimulation and dynamically regulated by both extrinsic signals and Th2-instructive cytokines. p38α-specific deletion in cDC1s but not in cDC2s or macrophages promoted Th2 responses under HDM stimulation. Further study showed that p38α in cDC1s regulated Th2-cell differentiation by modulating the MK2−c-FOS−IL-12 axis. Importantly, crosstalk between p38α-dependent DCs and Th2 cells occurred during the sensitization phase, not the effector phase, and was conserved between mice and humans. Our results identify p38α signaling as a central pathway in DCs that integrates allergic and parasitic instructive signals with Th2-instructive cytokines from the microenvironment to regulate Th2-cell differentiation and function, and this finding may offer a novel strategy for the treatment of allergic diseases and parasitic infection.
Collapse
Affiliation(s)
- Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Peishan Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China
| | - Weiheng Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Hongjin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Basic Department of Cancer Center, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,School of Cardiovascular Medicine and Sciences, King's College London, London, SE59NU, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China.
| | - Huabin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China.
| |
Collapse
|
8
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol 2022; 19:3-13. [PMID: 34480145 PMCID: PMC8752832 DOI: 10.1038/s41423-021-00741-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical success of immune checkpoint therapy (ICT) has produced explosive growth in tumor immunology research because ICT was discovered through basic studies of immune regulation. Much of the current translational efforts are aimed at enhancing ICT by identifying therapeutic targets that synergize with CTLA4 or PD1/PD-L1 blockade and are solidly developed on the basis of currently accepted principles. Expanding these principles through continuous basic research may help broaden translational efforts. With this mindset, we focused this review on three threads of basic research directly relating to mechanisms underlying ICT. Specifically, this review covers three aspects of dendritic cell (DC) biology connected with antitumor immune responses but are not specifically oriented toward therapeutic use. First, we review recent advances in the development of the cDC1 subset of DCs, identifying important features distinguishing these cells from other types of DCs. Second, we review the antigen-processing pathway called cross-presentation, which was discovered in the mid-1970s and remains an enigma. This pathway serves an essential in vivo function unique to cDC1s and may be both a physiologic bottleneck and therapeutic target. Finally, we review the longstanding field of helper cells and the related area of DC licensing, in which CD4 T cells influence the strength or quality of CD8 T cell responses. Each topic is connected with ICT in some manner but is also a fundamental aspect of cell-mediated immunity directed toward intracellular pathogens.
Collapse
Affiliation(s)
- Theresa L. Murphy
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110 USA
| | - Kenneth M. Murphy
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
10
|
Chang Y, Kang JS, Jung K, Chung DH, Ha SJ, Kim YJ, Kim HY. OASL1-Mediated Inhibition of Type I IFN Reduces Influenza A Infection-Induced Airway Inflammation by Regulating ILC2s. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:99-116. [PMID: 34983110 PMCID: PMC8724833 DOI: 10.4168/aair.2022.14.1.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Purpose Three observations drove this study. First, 2′-5′-oligoadenylate synthetase-like protein (OASL) is a negative regulator of type I interferon (IFN). Second, type I IFN plays a central role during virus infections and the pathogenesis of various diseases, including asthma. Third, influenza A virus (IAV) causes non-eosinophilic asthma. To evaluate the potential relationships between OASL, type I IFN, and pulmonary innate immune cells in IAV-induced acute airway inflammation by using Oasl1-/- mice. Methods Asthma was induced in wild-type (WT) and Oasl1-/- mice with IAV or ovalbumin (OVA). Airway hyperreactivity (AHR) and immune cell infiltration in the bronchoalveolar lavage (BAL) fluids were measured. The immune cells in the lungs were analyzed by flow cytometry. To investigate the ability of type I IFN to shape the response of lung type 2 innate lymphoid cells (ILC2s), IFN-α was treated intratracheally. Plasmacytoid dendritic cells (pDCs) sorted from bone marrow and ILC2s sorted from lungs of naive mice were co-cultured with/without interferon-alpha receptor subunit 1 (IFNAR-1)-blocking antibodies. Results In the IAV-induced asthma model, Oasl1-/- mice developed greater AHR and immune cell infiltration in the BAL fluids than WT mice. This was not observed in OVA-induced asthma, a standard model of allergen-induced asthma. The lungs of infected Oasl1-/- mice also had elevated DC numbers and Ifna expression and depressed IAV-induced ILC2 responses, namely, proliferation and type 2 cytokine and amphiregulin production. Intratracheal administration of type I IFN in naïve mice suppressed lung ILC2 production of type 2 cytokines and amphiregulin. Co-culture of ILC2s with pDCs showed that pDCs inhibit the function of ILC2s by secreting type I IFN. Conclusions OASL1 may impede the IAV-induced acute airway inflammation that drives AHR by inhibiting IAV-induced type I IFN production from lung DCs, thereby preserving the functions of lung ILC2s, including their amphiregulin production.
Collapse
Affiliation(s)
- Yuna Chang
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Seon Kang
- Genome Research Center, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department for Integrated OMICs for Biomedical Science, Yonsei University, Seoul, Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Jun Ha
- System Immunology Laboratory, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Young-Joon Kim
- Genome Research Center, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Department for Integrated OMICs for Biomedical Science, Yonsei University, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
11
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
12
|
Cordeiro B, Jeon P, Boukhaled GM, Corrado M, Lapohos O, Roy DG, Williams K, Jones RG, Gruenheid S, Sagan SM, Krawczyk CM. MicroRNA-9 Fine-Tunes Dendritic Cell Function by Suppressing Negative Regulators in a Cell-Type-Specific Manner. Cell Rep 2020; 31:107585. [PMID: 32375032 DOI: 10.1016/j.celrep.2020.107585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/08/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.
Collapse
Affiliation(s)
- Brendan Cordeiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Peter Jeon
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Giselle M Boukhaled
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Mario Corrado
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Orsolya Lapohos
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dominic G Roy
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kelsey Williams
- Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Russell G Jones
- Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Connie M Krawczyk
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 1Y6, Canada; Goodman Cancer Research Center, Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Metabolic and Nutritional Programming Group, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
13
|
Xia X, Zhu L, Lei Z, Song Y, Tang F, Yin Z, Wang J, Huang J. Feruloylated Oligosaccharides Alleviate Dextran Sulfate Sodium-Induced Colitis in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9522-9531. [PMID: 31379161 DOI: 10.1021/acs.jafc.9b03647] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The imbalance of T lymphocyte subsets substantially conduces to disturbed intestinal immune system and succeeding colonic tissue damage in inflammatory bowel diseases. It is considered that regulation of phytochemicals on cytokine production potentially provides a broad prospect for the exploitation of immunomodulatory agents. Here, we reported that oral administration of feruloylated oligosaccharides (FOs) effectively alleviated mice colitis disease induced by dextran sulfate sodium (DSS). FOs decreased the percentage of T helper (Th)17 cells and downregulated the production of Th17-specific cytokines. In contrast, FOs increased the percentage of regulatory T (Treg) cells and elevated the production of Treg-specific cytokines in colons of DSS-challenged mice. These results indicated that FOs restored the immunologic equilibrium of Th17 and Treg subsets, hereby ameliorating the deterioration of colitis. Furthermore, FOs diminished the secretion of interleukin (IL)-23 and IL-6 but enhanced the transforming growth factor-β1 (TGF-β1) in dendritic cells in vitro and in vivo, which contributed to the restoration of Th17 and Treg cells immune balance. The mechanistic analysis showed that the regulation of FOs on IL-23 and IL-6 was associated with the nuclear factor-κ-gene binding signaling pathway and TGF-β1 with mitogen-activated protein kinase-activator protein 1 signaling pathway. Taken together, oral administration of FOs exerted potent immunomodulatory effects against mice colitis via restoring the immune balance of Th17 and Treg cells.
Collapse
Affiliation(s)
- Xichun Xia
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Leqing Zhu
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhiwei Lei
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
- Department of Basic Medical Research , The Sixth Affiliated Hospital of Guangzhou Medical University, Qing Yuan People's Hospital , Qingyuan , Guangdong 511518 , China
| | - Yueqi Song
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Fen Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Zhao Yin
- Formula-pattern Research Center, College of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , China
| | - Jing Wang
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology and Business University , Beijing 100048 , China
| | - Junqing Huang
- Formula-pattern Research Center, College of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
14
|
Sie C, Perez LG, Kreutzfeldt M, Potthast M, Ohnmacht C, Merkler D, Huber S, Krug A, Korn T. Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on α4 Integrins. THE JOURNAL OF IMMUNOLOGY 2019; 203:1417-1427. [PMID: 31399516 DOI: 10.4049/jimmunol.1900468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
Abstract
Homing of pathogenic CD4+ T cells to the CNS is dependent on α4 integrins. However, it is uncertain whether α4 integrins are also required for the migration of dendritic cell (DC) subsets, which sample Ags from nonlymphoid tissues to present it to T cells. In this study, after genetic ablation of Itga4 in DCs and monocytes in mice via the promoters of Cd11c and Lyz2 (also known as LysM), respectively, the recruitment of α4 integrin-deficient conventional and plasmacytoid DCs to the CNS was unaffected, whereas α4 integrin-deficient, monocyte-derived DCs accumulated less efficiently in the CNS during experimental autoimmune encephalomyelitis in a competitive setting than their wild-type counterparts. In a noncompetitive setting, α4 integrin deficiency on monocyte-derived DCs was fully compensated. In contrast, in small intestine and colon, the fraction of α4 integrin-deficient CD11b+CD103+ DCs was selectively reduced in steady-state. Yet, T cell-mediated inflammation and host defense against Citrobacter rodentium were not impaired in the absence of α4 integrins on DCs. Thus, inflammatory conditions can promote an environment that is indifferent to α4 integrin expression by DCs.
Collapse
Affiliation(s)
- Christopher Sie
- Abteilung für Experimentelle Neuroimmunologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,Klinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Laura Garcia Perez
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mario Kreutzfeldt
- Division of Clinical Pathology, Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Potthast
- Center of Allergy and Environment, Helmholtz Center and Technical University of Munich, 80802 Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment, Helmholtz Center and Technical University of Munich, 80802 Munich, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Krug
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany; and
| | - Thomas Korn
- Abteilung für Experimentelle Neuroimmunologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; .,Klinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| |
Collapse
|
15
|
Dress RJ, Dutertre CA, Giladi A, Schlitzer A, Low I, Shadan NB, Tay A, Lum J, Kairi MFBM, Hwang YY, Becht E, Cheng Y, Chevrier M, Larbi A, Newell EW, Amit I, Chen J, Ginhoux F. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat Immunol 2019; 20:852-864. [DOI: 10.1038/s41590-019-0420-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/13/2019] [Indexed: 01/19/2023]
|
16
|
Janela B, Patel AA, Lau MC, Goh CC, Msallam R, Kong WT, Fehlings M, Hubert S, Lum J, Simoni Y, Malleret B, Zolezzi F, Chen J, Poidinger M, Satpathy AT, Briseno C, Wohn C, Malissen B, Murphy KM, Maini AA, Vanhoutte L, Guilliams M, Vial E, Hennequin L, Newell E, Ng LG, Musette P, Yona S, Hacini-Rachinel F, Ginhoux F. A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity 2019; 50:1069-1083.e8. [PMID: 30926233 DOI: 10.1016/j.immuni.2019.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 01/15/2023]
Abstract
Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.
Collapse
Affiliation(s)
- Baptiste Janela
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A(∗)STAR), 11 Mandalay Rd., Singapore 308232, Singapore
| | - Amit A Patel
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Rasha Msallam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Michael Fehlings
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Sandra Hubert
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Yannick Simoni
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Nestlé Skin Health R&D/GALDERMA, La Tour-de-Peilz 1814, Switzerland
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Carlos Briseno
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Christian Wohn
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille 13288, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille 13288, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille 13288, France
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Alexander A Maini
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | - Leen Vanhoutte
- Transgenic Mouse Core Facility, VIB-UGnet Center for Inflammation Research, Technologiepark 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent 9052, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent 9052, Belgium; Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGnet Center for Inflammation Research, Technologiepark 71, Ghent 9052, Belgium
| | - Emmanuel Vial
- Nestlé Skin Health R&D/GALDERMA, La Tour-de-Peilz 1814, Switzerland
| | | | - Evan Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore
| | - Philippe Musette
- Department of Dermatology, Avicenne Hospital and INSERM U1125, Bobigny 93000, France
| | - Simon Yona
- Division of Medicine, University College London, University of London, London WC1E 6BT, England, UK
| | | | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Biopolis, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A(∗)STAR), 11 Mandalay Rd., Singapore 308232, Singapore.
| |
Collapse
|
17
|
Jie Z, Yang JY, Gu M, Wang H, Xie X, Li Y, Liu T, Zhu L, Shi J, Zhang L, Zhou X, Joo D, Brightbill HD, Cong Y, Lin D, Cheng X, Sun SC. NIK signaling axis regulates dendritic cell function in intestinal immunity and homeostasis. Nat Immunol 2018; 19:1224-1235. [PMID: 30250187 PMCID: PMC6195481 DOI: 10.1038/s41590-018-0206-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play an integral role in regulating mucosal immunity and homeostasis, but the signaling network mediating this function of DCs is poorly defined. We identified the noncanonical NF-κB-inducing kinase (NIK) as a crucial mediator of mucosal DC function. DC-specific NIK deletion impaired intestinal immunoglobulin A (IgA) secretion and microbiota homeostasis, rendering mice sensitive to an intestinal pathogen, Citrobacter rodentium. DC-specific NIK was required for expression of the IgA transporter polymeric immunoglobulin receptor (pIgR) in intestinal epithelial cells, which in turn relied on the cytokine IL-17 produced by TH17 cells and innate lymphoid cells (ILCs). NIK-activated noncanonical NF-κB induced expression of IL-23 in DCs, contributing to the maintenance of TH17 cells and type 3 ILCs. Consistent with the dual functions of IL-23 and IL-17 in mucosal immunity and inflammation, NIK deficiency also ameliorated colitis induction. Thus, our data suggest a pivotal role for the NIK signaling axis in regulating DC functions in intestinal immunity and homeostasis.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ting Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Laboratory Medicine, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghyun Joo
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hans D Brightbill
- Department of Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Yingzi Cong
- Department of Pathology and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Lin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
18
|
Abstract
CD4+ T follicular helper (TFH) cells support germinal center (GC) reactions promoting humoral immunity. Dendritic cell (DC) diversification into genetically distinct subsets allows for specialization in promoting responses against several types of pathogens. Whether any classical DC (cDC) subset is required for humoral immunity is unknown, however. We tested several genetic models that selectively ablate distinct DC subsets in mice for their impact on splenic GC reactions. We identified a requirement for Notch2-dependent cDC2s, but not Batf3-dependent cDC1s or Klf4-dependent cDC2s, in promoting TFH and GC B cell formation in response to sheep red blood cells and inactivated Listeria monocytogenes This effect was mediated independent of Il2ra and several Notch2-dependent genes expressed in cDC2s, including Stat4 and Havcr2 Notch2 signaling during cDC2 development also substantially reduced the efficiency of cDC2s for presentation of MHC class II-restricted antigens, limiting the strength of CD4 T cell activation. Together, these results demonstrate a nonredundant role for the Notch2-dependent cDC2 subset in supporting humoral immune responses.
Collapse
|
19
|
Salvermoser J, van Blijswijk J, Papaioannou NE, Rambichler S, Pasztoi M, Pakalniškytė D, Rogers NC, Keppler SJ, Straub T, Reis e Sousa C, Schraml BU. Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo. Front Immunol 2018; 9:699. [PMID: 29713321 PMCID: PMC5911463 DOI: 10.3389/fimmu.2018.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired.
Collapse
Affiliation(s)
- Johanna Salvermoser
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | | | | | - Stephan Rambichler
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | - Maria Pasztoi
- Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | - Dalia Pakalniškytė
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Selina J Keppler
- Technische Universität München, Klinikum Rechts der Isar, Institut für Klinische Chemie und Pathobiochemie, Munich, Germany
| | - Tobias Straub
- Biomedical Center, LMU Munich, Planegg Martinsried, Germany.,Core Facility Bioinformatics, Biomedical Center (BMC), LMU Munich, Planegg Martinsried, Germany
| | | | - Barbara U Schraml
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| |
Collapse
|
20
|
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol 2018; 15:346-352. [PMID: 29563613 DOI: 10.1038/s41423-018-0005-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Humanitas Clinical and Research Institute, Rozzano-Milano, Italy.
| |
Collapse
|
21
|
Dendritic cell recruitment and activation in autoimmunity. J Autoimmun 2017; 85:126-140. [DOI: 10.1016/j.jaut.2017.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
22
|
Abstract
Dendritic cells (DCs) play critical roles in activating innate immune cells and initiating adaptive immune responses. The functions of DCs were originally obscured by their overlap with other mononuclear phagocytes, but new mouse models have allowed for the selective ablation of subsets of DCs and have helped to identify their non-redundant roles in the immune system. These tools have elucidated the functions of DCs in host defense against pathogens, autoimmunity, and cancer. This review will describe the mouse models generated to interrogate the role of DCs and will discuss how their use has progressively clarified our understanding of the unique functions of DC subsets.
Collapse
Affiliation(s)
- Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Janss T, Mesnil C, Pirottin D, Lemaitre P, Marichal T, Bureau F, Desmet CJ. Interferon response factor-3 promotes the pro-Th2 activity of mouse lung CD11b + conventional dendritic cells in response to house dust mite allergens. Eur J Immunol 2016; 46:2614-2628. [PMID: 27546168 DOI: 10.1002/eji.201646513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 11/07/2022]
Abstract
Very few transcription factors have been identified that are required by antigen-presenting cells (APCs) to induce T helper type 2 (Th2) responses. Because lung CD11b+ conventional dendritic cells (CD11b+ cDCs) are responsible for priming Th2 responses in house-dust mite (HDM)-induced airway allergy, we used them as a model to identify transcriptional events regulating the pro-Th2 activity of cDCs. Transcriptomic profiling of lung CD11b+ cDCs exposed to HDM in vivo revealed first that HDM triggers an antiviral defence-like response, and second that the majority of HDM-induced transcriptional changes depend on the transcription factor Interferon Response Factor-3 (Irf3). Validating the functional relevance of these observations, Irf3-deficient CD11b+ cDCs displayed reduced pro-allergic activity. Indeed, Irf3-deficient CD11b+ cDCs induced less Th2, more regulatory T cell, and similar Th1 differentiation in naïve CD4+ T cells compared to their wild-type counterparts. The altered APC activity of Irf3 CD11b+ cDCs was associated with reduced expression of CD86 and was phenocopied by blocking CD86 activity in wild-type CD11b+ cDCs. Altogether, these results establish Irf3, known mostly for its role in antiviral responses, as a transcription factor involved in the induction of Th2 responses through the promotion of pro-Th2 costimulation in CD11b+ DCs.
Collapse
Affiliation(s)
- Thibaut Janss
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Claire Mesnil
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Dimitri Pirottin
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Pierre Lemaitre
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA-I3, GIGA-Research Center and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium.
| |
Collapse
|
24
|
Le Rouzic O, Koné B, Kluza J, Marchetti P, Hennegrave F, Olivier C, Kervoaze G, Vilain E, Mordacq C, Just N, Perez T, Bautin N, Pichavant M, Gosset P. Cigarette smoke alters the ability of human dendritic cells to promote anti-Streptococcus pneumoniae Th17 response. Respir Res 2016; 17:94. [PMID: 27460220 PMCID: PMC4962368 DOI: 10.1186/s12931-016-0408-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/16/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with chronic inflammation and impaired immune response to pathogens leading to bacteria-induced exacerbation of the disease. A defect in Th17 cytokines in response to Streptococcus pneumoniae, a bacteria associated with COPD exacerbations, has been recently reported. Dendritic cells (DC) are professional antigen presenting cells that drive T-cells differentiation and activation. In this study, we hypothesized that exposure to cigarette smoke, the main risk factor of COPD, might altered the pro-Th17 response to S. pneumoniae in COPD patients and human DC. METHODS Pro-Th1 and -Th17 cytokine production by peripheral blood mononuclear cells (PBMC) from COPD patients was analyzed and compared to those from smokers and non-smokers healthy subjects. The effect of cigarette smoke extract (CSE) was analyzed on human monocyte-derived DC (MDDC) from controls exposed or not to S. pneumoniae. Bacteria endocytosis, maturation of MDDC and secretion of cytokines were assessed by flow cytometry and ELISA, respectively. Implication of the oxidative stress was analyzed by addition of antioxidants and mitochondria inhibitors. In parallel, MDDC were cocultured with autologous T-cells to analyze the consequence on Th1 and Th17 cytokine production. RESULTS PBMC from COPD patients exhibited defective production of IL-1β, IL-6, IL-12 and IL-23 to S. pneumoniae compared to healthy subjects and smokers. CSE significantly reduced S. pneumoniae-induced MDDC maturation, secretion of pro-Th1 and -Th17 cytokines and activation of Th1 and Th17 T-cell responses. CSE exposure was also associated with sustained CXCL8 secretion, bacteria endocytosis and mitochondrial oxidative stress. Antioxidants did not reverse these effects. Inhibitors of mitochondrial electron transport chain partly reproduced inhibition of S. pneumoniae-induced MDDC maturation but had no effect on cytokine secretion and T cell activation. CONCLUSIONS We observed a defective pro-Th1 and -Th17 response to bacteria in COPD patients. CSE exposure was associated with an inhibition of DC capacity to activate antigen specific T-cell response, an effect that seems to be not only related to oxidative stress. These results suggest that new therapeutics boosting this response in DC may be helpful to improve treatment of COPD exacerbations.
Collapse
Affiliation(s)
- Olivier Le Rouzic
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- CHU Lille, Service de Pneumologie Immunologie et Allergologie, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
| | - Bachirou Koné
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
| | - Jerome Kluza
- Univ. Lille, UMR-S 1172 – JPArc – Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
- Inserm, UMR-S 1172, F-59000 Lille, France
| | - Philippe Marchetti
- Univ. Lille, UMR-S 1172 – JPArc – Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
- Inserm, UMR-S 1172, F-59000 Lille, France
| | - Florence Hennegrave
- CHU Lille, Service de Pneumologie Immunologie et Allergologie, F-59000 Lille, France
| | - Cécile Olivier
- CHU Lille, Service de Pneumologie Immunologie et Allergologie, F-59000 Lille, France
| | - Gwenola Kervoaze
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
| | - Eva Vilain
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
| | - Clémence Mordacq
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
- CHU Lille, Service de Pédiatrie, F-59000 Lille, France
| | - Nicolas Just
- CH Roubaix, Service de Pneumologie, F-59100 Roubaix, France
| | - Thierry Perez
- CHU Lille, Service de Pneumologie Immunologie et Allergologie, F-59000 Lille, France
| | - Nathalie Bautin
- CHU Lille, Service de Pneumologie Immunologie et Allergologie, F-59000 Lille, France
| | - Muriel Pichavant
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
| | - Philippe Gosset
- Univ. Lille, U1019 – UMR 8204 – CIIL – Center for Infection and Immunity of Lille, F-59000 Lille, France
- CNRS, UMR 8204, F-59000 Lille, France
- Inserm, U1019, F-59000 Lille, France
- Institut Pasteur de Lille, F-59000 Lille, France
- LI3, CIIL - Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
25
|
Méndez-Samperio P. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection. Infect Dis (Lond) 2016; 48:715-20. [PMID: 27348757 DOI: 10.1080/23744235.2016.1194529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- a Departamento de Inmunología, Escuela Nacional de Ciencias Biologicas, IPN , Prol. Carpio y Plan de Ayala , CDMéxico , México
| |
Collapse
|
26
|
Briseño CG, Haldar M, Kretzer NM, Wu X, Theisen DJ, Kc W, Durai V, Grajales-Reyes GE, Iwata A, Bagadia P, Murphy TL, Murphy KM. Distinct Transcriptional Programs Control Cross-Priming in Classical and Monocyte-Derived Dendritic Cells. Cell Rep 2016; 15:2462-74. [PMID: 27264183 PMCID: PMC4941620 DOI: 10.1016/j.celrep.2016.05.025] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Both classical DCs (cDCs) and monocyte-derived DCs (Mo-DCs) are capable of cross-priming CD8(+) T cells in response to cell-associated antigens. We found that Ly-6C(hi)TREML4(-) monocytes can differentiate into Zbtb46(+) Mo-DCs in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) but that Ly-6C(hi)TREML4(+) monocytes were committed to differentiate into Ly-6C(lo)TREML4(+) monocytes. Differentiation of Zbtb46(+) Mo-DCs capable of efficient cross-priming required both GM-CSF and IL-4 and was accompanied by the induction of Batf3 and Irf4. However, monocytes require IRF4, but not BATF3, to differentiate into Zbtb46(+) Mo-DCs capable of cross-priming CD8(+) T cells. Instead, Irf4(-/-) monocytes differentiate into macrophages in response to GM-CSF and IL-4. Thus, cDCs and Mo-DCs require distinct transcriptional programs of differentiation in acquiring the capacity to prime CD8(+) T cells. These differences may be of consideration in the use of therapeutic DC vaccines based on Mo-DCs.
Collapse
Affiliation(s)
- Carlos G Briseño
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole M Kretzer
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaodi Wu
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wumesh Kc
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Vivek Durai
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Arifumi Iwata
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
|
28
|
Puhr S, Lee J, Zvezdova E, Zhou YJ, Liu K. Dendritic cell development-History, advances, and open questions. Semin Immunol 2016; 27:388-96. [PMID: 27040276 DOI: 10.1016/j.smim.2016.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs) are uniquely potent in orchestrating T cell immune response, thus they are indispensable immune sentinels. They originate from progenitors in the bone marrow through hematopoiesis, a highly regulated developmental process involving multiple cellular and molecular events. This review highlights studies of DC development-from the discovery of DCs as glass-adherent antigen presenting cells to the debate and resolution of their origin and lineage map. In particular, we summarize the roles of lineage-specific cytokines, the placement of distinct hematopoietic progenitors within the DC lineage and transcriptional programs governing DC development, which together have allowed us to diagram the current view of DC hematopoiesis. Important open questions and debates on the DC development and relevant models are also discussed.
Collapse
Affiliation(s)
- Sarah Puhr
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| | - Jaeyop Lee
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| | - Ekaterina Zvezdova
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| | - Yu J Zhou
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA
| | - Kang Liu
- Columbia University Medical Center, Department of Microbiology and Immunology, New York, NY 10032, USA.
| |
Collapse
|
29
|
Ohta T, Sugiyama M, Hemmi H, Yamazaki C, Okura S, Sasaki I, Fukuda Y, Orimo T, Ishii KJ, Hoshino K, Ginhoux F, Kaisho T. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep 2016; 6:23505. [PMID: 27005831 PMCID: PMC4804307 DOI: 10.1038/srep23505] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
Intestinal immune homeostasis requires dynamic crosstalk between innate and adaptive immune cells. Dendritic cells (DCs) exist as multiple phenotypically and functionally distinct sub-populations within tissues, where they initiate immune responses and promote homeostasis. In the gut, there exists a minor DC subset defined as CD103(+)CD11b(-) that also expresses the chemokine receptor XCR1. In other tissues, XCR1(+) DCs cross-present antigen and contribute to immunity against viruses and cancer, however the roles of XCR1(+) DCs and XCR1 in the intestine are unknown. We showed that mice lacking XCR1(+) DCs are specifically deficient in intraepithelial and lamina propria (LP) T cell populations, with remaining T cells exhibiting an atypical phenotype and being prone to death, and are also more susceptible to chemically-induced colitis. Mice deficient in either XCR1 or its ligand, XCL1, similarly possess diminished intestinal T cell populations, and an accumulation of XCR1(+) DCs in the gut. Combined with transcriptome and surface marker expression analysis, these observations lead us to hypothesise that T cell-derived XCL1 facilitates intestinal XCR1(+) DC activation and migration, and that XCR1(+) DCs in turn provide support for T cell survival and function. Thus XCR1(+) DCs and the XCR1/XCL1 chemokine axis have previously-unappreciated roles in intestinal immune homeostasis.
Collapse
Affiliation(s)
- Tomokazu Ohta
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masanaka Sugiyama
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Hiroaki Hemmi
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.,Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Chihiro Yamazaki
- Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Department of Immunology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Okayama 700-8558, Japan
| | - Soichiro Okura
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan
| | - Izumi Sasaki
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.,Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Fukuda
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.,Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Orimo
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuaki Hoshino
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Tsuneyasu Kaisho
- Laboratory for Immune Regulation, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.,Laboratory for Inflammatory Regulation, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Host Defence, RIKEN Center for Integrative Medical Science (IMS-RCAI), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
30
|
The induction of antigen-specific CTL by in situ Ad-REIC gene therapy. Gene Ther 2016; 23:408-14. [PMID: 26836118 DOI: 10.1038/gt.2016.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/17/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
An adenovirus vector carrying the human Reduced Expression in Immortalized Cell (REIC)/Dkk-3 gene (Ad-REIC) mediates simultaneous induction of cancer-selective apoptosis and augmentation of anticancer immunity. In our preclinical and clinical studies, in situ Ad-REIC gene therapy showed remarkable direct and indirect antitumor effects to realize therapeutic cancer vaccines. We herein aimed to confirm the induction of tumor-associated antigen-specific cytotoxic T lymphocytes (CTLs) by Ad-REIC. Using an ovalbumin (OVA), a tumor-associated antigen, expressing E.G7 tumor-bearing mouse model, we investigated the induction and expansion of OVA-specific CTLs responsible for indirect, systemic effects of Ad-REIC. The intratumoral administration of Ad-REIC mediated clear antitumor effects with the accumulation of OVA-specific CTLs in the tumor tissues and spleen. The CD86-positive dendritic cells (DCs) were upregulated in the tumor draining lymph nodes of Ad-REIC-treated mice. In a dual tumor-bearing mouse model in the left and right back, Ad-REIC injection in one side significantly suppressed the tumor growth on both sides and significant infiltration of OVA-specific CTLs into non-injected tumor was also detected. Consequently, in situ Ad-REIC gene therapy is expected to realize a new-generation cancer vaccine via anticancer immune activation with DC and tumor antigen-specific CTL expansion.
Collapse
|
31
|
Abstract
T cells are an essential element that regulates the balance in immunity, by killing infected cells, helping antibody formation and suppressing autoimmune responses. However, T cells are incapable of recognizing native antigens. Instead, they recognize processed peptides presented by MHC molecules. Dendritic cells (DCs) are professional antigen presenting cells that inform the fight against invasive pathogens while enforcing tolerance to self and harmless environmental antigens. They capture pathogens and receive signals from pathogens that influence the outcome of immune responses. On the basis of these signals, DCs orchestrate antigen specific T cell differentiation. Alternatively they can silence self-reactive T cells by inducing deletion, anergy or regulation (Treg). This article will discuss the discovery, function and development of DCs and the mechanisms by which they link innate immunity to adaptive immunity.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Ocular allergy is an IgE-mediated disease that results in inflammation of the conjunctiva and, in more severe cases, the cornea. This is driven by an immediate hypersensitivity response via mast cells, followed by a late phase response mediated by eosinophils both of which are indeed dependent on T helper (Th) lymphocyte activity. Here, we provide an update on Th subsets [Th1, Th2, Th17, and T regulatory (Treg)] and their relevance in ocular allergy. RECENT FINDINGS Recent evidence in ocular allergy points to an involvement of other Th subsets, in addition to Th2. However, how these subsets are activated and their role in mediating the different clinical forms is poorly understood. Novel mouse models may facilitate addressing such unknowns, and future challenges will involve how to translate such findings into more effective and 'patho-specific' treatments. SUMMARY Ocular allergy, especially in severe forms, involves subsets other than Th2. Th1 cells have been detected in mild and severe forms, and recent evidence points to a possible role for IL-17 in severe disease. Tregs, on the other hand, dampen pathogenic Th cell function and allergy immunotherapy is associated with Treg augmentation in disease management. Further understanding of Th biology is warranted and may lead to better therapies.
Collapse
|
33
|
Abstract
Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.
Collapse
Affiliation(s)
- Mateusz Pawel Poltorak
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , Munich , Germany
| | - Barbara Ursula Schraml
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , Munich , Germany
| |
Collapse
|
34
|
Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol 2015; 16:343-53. [PMID: 25789684 PMCID: PMC4507498 DOI: 10.1038/ni.3123] [Citation(s) in RCA: 1360] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Hussaarts L, Yazdanbakhsh M, Guigas B. Priming dendritic cells for th2 polarization: lessons learned from helminths and implications for metabolic disorders. Front Immunol 2014; 5:499. [PMID: 25368615 PMCID: PMC4202775 DOI: 10.3389/fimmu.2014.00499] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
Nearly one quarter of the world's population is infected with helminth parasites. A common feature of helminth infections is the manifestation of a type 2 immune response, characterized by T helper 2 (Th2) cells that mediate anti-helminth immunity. In addition, recent literature describes a close association between type 2 immune responses and wound repair, suggesting that a Th2 response may concurrently mediate repair of parasite-induced damage. The molecular mechanisms that govern Th2 responses are poorly understood, although it is clear that dendritic cells (DCs), which are the most efficient antigen-presenting cells in the immune system, play a central role. Here, we review the molecular mechanisms by which DCs polarize Th2 cells, examining both helminth antigens and helminth-mediated tissue damage as Th2-inducing triggers. Finally, we discuss the implication of these findings in the context of metabolic disorders, as recent literature indicates that various aspects of the Th2-associated inflammatory response contribute to metabolic homeostasis.
Collapse
Affiliation(s)
- Leonie Hussaarts
- Department of Parasitology, Leiden University Medical Center , Leiden , Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center , Leiden , Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center , Leiden , Netherlands ; Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|