1
|
Vaseghi-Shanjani M, Samra S, Yousefi P, Biggs CM, Turvey SE. Primary atopic disorders: inborn errors of immunity causing severe allergic disease. Curr Opin Immunol 2025; 94:102538. [PMID: 40020536 DOI: 10.1016/j.coi.2025.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, and food allergies, are driven by dysregulated immune responses, often involving IgE-mediated mast cell and basophil activation, Th2 inflammation, and epithelial dysfunction. While environmental factors are well-known contributors, the genetic components underpinning these conditions are increasingly understood. Traditionally viewed as polygenic multifactorial disorders, allergic diseases can also be caused by single-gene defects affecting the immune system and skin epithelial barrier, leading to profoundly dysregulated allergic responses. These monogenic allergic disorders are collectively referred to as primary atopic disorders or PADs. To date, over 48 single-gene defects have been established to cause PADs. This review highlights (i) the significance of PADs, (ii) the biological pathways involved in the pathogenesis of PADs, (iii) clinical strategies to differentiate PADs from their much more common polygenic counterparts, and (iv) diagnostic strategies for PADs.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Lim CK, Abolhassani H, Sun J. Editorial: Recent advances in understanding the genetics of immunological disorders. Front Genet 2024; 15:1530187. [PMID: 39687739 PMCID: PMC11646976 DOI: 10.3389/fgene.2024.1530187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Affiliation(s)
- Che Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Programme (ACP), DUKE-NUS Medical School, Singapore, Singapore
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jinqiao Sun
- Department of Clinical Immunology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Bucciol G, Delafontaine S, Meyts I, Poli C. Inborn errors of immunity: A field without frontiers. Immunol Rev 2024; 322:15-27. [PMID: 38062988 DOI: 10.1111/imr.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The study of primary immunodeficiencies or inborn errors of immunity continues to drive our knowledge of the function of the human immune system. From the outset, the study of inborn errors has focused on unraveling genetic etiologies and molecular mechanisms. Aided by the continuous growth in genetic diagnostics, the field has moved from the study of an infection dominated phenotype to embrace and unravel diverse manifestations of autoinflammation, autoimmunity, malignancy, and severe allergy in all medical disciplines. It has now moved from the study of ultrarare presentations to producing meaningful impact in conditions as diverse as inflammatory bowel disease, neurological conditions, and hematology. Beyond offering immunogenetic diagnosis, the study of underlying inborn errors of immunity in these conditions points to targeted treatment which can be lifesaving.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Cecilia Poli
- Facultad de Medicina Universidad del Desarrollo-Clínica Alemana, Santiago, Chile
- Unidad de Inmunología y Reumatología, Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
5
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Moratti M, Conti F, Giannella M, Ferrari S, Borghesi A. How to: Diagnose inborn errors of intrinsic and innate immunity to viral, bacterial, mycobacterial, and fungal infections. Clin Microbiol Infect 2022; 28:1441-1448. [PMID: 35934195 DOI: 10.1016/j.cmi.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Inborn errors of intrinsic and innate immunity constitute the focus of a growing research field that investigates the molecular mechanisms underlying susceptibility to infections previously not considered part of the spectrum of inborn errors of immunity. These so-called nonconventional inborn errors of immunity often occur as infections caused by a narrow spectrum of microorganisms in otherwise healthy subjects. OBJECTIVES This review aimed to provide a framework for identifying and evaluating patients with viral, bacterial, mycobacterial, and fungal infection needing further assessment for inborn errors of intrinsic and innate immunity. SOURCES A literature search was performed using PubMed, from inception until 1 May 2022. The search included the following keywords: "inborn errors of immunity"; "inborn errors of innate immunity"; "primary immune deficiency"; "primary immunodeficiency"; "infections"; "infectious susceptibility"; "virus"; "pyogenic bacteria"; "mycobacteria"; "fungi". All article types were considered. CONTENT We review the definition of what can be considered an inborn error of immunity and how the definition changed over the last ∼25 years. We further provide criteria to rule out secondary immunodeficiencies, identify patients needing further clinical and laboratory immunological assessment, and suspect and diagnose an inborn error of intrinsic and innate immunity. These steps are proposed as part of an algorithm. IMPLICATIONS Patients with unexplained life-threatening infections, including otherwise healthy subjects, should be systematically screened for known inborn errors of immunity. The early diagnosis can prevent recurrence of life-threatening infections in the patients and reduce the total burden of infectious diseases.
Collapse
Affiliation(s)
- Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, Bologna, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Fellay Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
"Common variable immunodeficiency: Challenges for diagnosis". J Immunol Methods 2022; 509:113342. [PMID: 36027932 DOI: 10.1016/j.jim.2022.113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Common variable immunodeficiency is a heterogeneous condition characterized by B cell dysfunction with reduced serum immunoglobulin levels and a highly variable spectrum of clinical manifestations ranging from recurrent infections to autoimmune disease. The diagnosis of CVID is often challenging due to the diverse clinical presentation of patients and the existence of multiple diagnostic criteria without a universally adopted consensus. Laboratory evaluation to assist with diagnosis currently includes serum immunoglobulin testing, immunophenotyping, assessment of vaccine response, and genetic testing. Additional emerging techniques include investigation of the B cell repertoire and the use of machine learning algorithms. Advances in our understanding of common variable immunodeficiency will ultimately contribute to earlier diagnosis and novel interventions with the goal of improving prognosis for these patients.
Collapse
|
8
|
Kuijpers TW, Tromp SAM, van Leeuwen EMM, de Bree GJ. Case Report: A Highly Variable Clinical and Immunological Presentation of IKAROS Deficiency in a Single Family. Front Immunol 2022; 13:865838. [PMID: 35479066 PMCID: PMC9036438 DOI: 10.3389/fimmu.2022.865838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Here we describe a novel mutation in the IKZF gene encoding IKAROS, as the cause of common variable immunodeficiency (CVID). The identification of the same defect in the IKZF gene with manifestations of asymptomatic selective IgA deficiency and chronic ITP in the father and her younger brother, respectively, demonstrates the large variability of this genetic defect in one single family, while living in the same environment with a relatively similar genetic background. As discussed, clinical penetrance of the molecular defects identified by mutations in IKZF and other common gene defects in CVID in familial immune-related abnormalities makes genetic testing a necessary step for diagnosis, management, and counseling, as part of the routine immunological workup.
Collapse
Affiliation(s)
- Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory of Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Samantha A. M. Tromp
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Samantha A. M. Tromp,
| | - Ester M. M. van Leeuwen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
v. Hardenberg S, Klemann C, Auber B, Baumann U. Warnzeichen für und moderne Diagnostik von angeborenen Störungen des Immunsystems. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-022-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Eddens T, Mack M, McCormick M, Chong H, Kalpatthi R. Trends in Pediatric Primary Immunodeficiency: Incidence, Utilization, Transplantation, and Mortality. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:286-296.e3. [PMID: 34718217 PMCID: PMC8961698 DOI: 10.1016/j.jaip.2021.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Primary immunodeficiency disorders (PIDDs) describe a myriad of diseases caused by inherited defects within the immune system. As the number of identified genetic defects associated with PIDDs increases, understanding the incidence and outcomes of PIDD patients becomes imperative. OBJECTIVE To characterize the frequency of new diagnoses, patterns of health care utilization, rates of hematopoietic stem cell transplantation (HSCT), and mortality in pediatric patients with PIDDs. METHODS A retrospective cohort analysis of the Pediatric Health Information System database from 2004 to 2018 for pediatric inpatients with an International Classification of Diseases, Ninth and 10th Revisions (ICD-9/ICD-10). code associated with PIDD. RESULTS A total of 17,234 patients with a PIDD were hospitalized from 2004 to 2018. There were 2.8 new PIDD diagnoses and 6.3 PIDD hospitalizations per 1,000 discharges; these metrics were unchanged during the study period. The number of new diagnoses for B-cell and antibody defects significantly increased over time. The number of new PIDD diagnoses significantly increased in adolescents or adults and decreased in infants. T-cell disorders had the highest number of intensive care unit admissions. There were 747 PIDD patients who underwent HSCT; complications of HSCT significantly decreased over time. Mortality rates significantly decreased in all PIDD patients and in patients receiving HSCT. CONCLUSIONS The total hospitalizations and incidence of PIDDs within the hospitalized pediatric population were unchanged. There were significant changes in the class of PIDD diagnosed, the age at diagnosis, and health care utilization metrics. Mortality significantly decreased over time within the PIDD cohort.
Collapse
Affiliation(s)
- Taylor Eddens
- Pediatric Scientist Development Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pa,Department of Allergy and Immunology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pa
| | - Molly Mack
- Pediatric Residency Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pa
| | - Meghan McCormick
- Department of Hematology and Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pa
| | - Hey Chong
- Department of Allergy and Immunology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pa
| | | |
Collapse
|
11
|
Edwards ESJ, Bosco JJ, Ojaimi S, O'Hehir RE, van Zelm MC. Beyond monogenetic rare variants: tackling the low rate of genetic diagnoses in predominantly antibody deficiency. Cell Mol Immunol 2021; 18:588-603. [PMID: 32801365 PMCID: PMC8027216 DOI: 10.1038/s41423-020-00520-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Predominantly antibody deficiency (PAD) is the most prevalent form of primary immunodeficiency, and is characterized by broad clinical, immunological and genetic heterogeneity. Utilizing the current gold standard of whole exome sequencing for diagnosis, pathogenic gene variants are only identified in less than 20% of patients. While elucidation of the causal genes underlying PAD has provided many insights into the cellular and molecular mechanisms underpinning disease pathogenesis, many other genes may remain as yet undefined to enable definitive diagnosis, prognostic monitoring and targeted therapy of patients. Considering that many patients display a relatively late onset of disease presentation in their 2nd or 3rd decade of life, it is questionable whether a single genetic lesion underlies disease in all patients. Potentially, combined effects of other gene variants and/or non-genetic factors, including specific infections can drive disease presentation. In this review, we define (1) the clinical and immunological variability of PAD, (2) consider how genetic defects identified in PAD have given insight into B-cell immunobiology, (3) address recent technological advances in genomics and the challenges associated with identifying causal variants, and (4) discuss how functional validation of variants of unknown significance could potentially be translated into increased diagnostic rates, improved prognostic monitoring and personalized medicine for PAD patients. A multidisciplinary approach will be the key to curtailing the early mortality and high morbidity rates in this immune disorder.
Collapse
Affiliation(s)
- Emily S J Edwards
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
- Department of Allergy and Immunology, Monash Health, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Kuehn HS, Niemela JE, Stoddard J, Mannurita SC, Shahin T, Goel S, Hintermeyer M, Heredia RJ, Garofalo M, Lucas L, Singh S, Tondo A, Jacobs Z, Gahl WA, Latour S, Verbsky J, Routes J, Cunningham-Rundles C, Boztug K, Gambineri E, Fleisher TA, Chandrakasan S, Rosenzweig SD. Germline IKAROS dimerization haploinsufficiency causes hematologic cytopenias and malignancies. Blood 2021; 137:349-363. [PMID: 32845957 PMCID: PMC7819759 DOI: 10.1182/blood.2020007292] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
IKAROS is a transcription factor forming homo- and heterodimers and regulating lymphocyte development and function. Germline mutations affecting the IKAROS N-terminal DNA binding domain, acting in a haploinsufficient or dominant-negative manner, cause immunodeficiency. Herein, we describe 4 germline heterozygous IKAROS variants affecting its C-terminal dimerization domain, via haploinsufficiency, in 4 unrelated families. Index patients presented with hematologic disease consisting of cytopenias (thrombocytopenia, anemia, neutropenia)/Evans syndrome and malignancies (T-cell acute lymphoblastic leukemia, Burkitt lymphoma). These dimerization defective mutants disrupt homo- and heterodimerization in a complete or partial manner, but they do not affect the wild-type allele function. Moreover, they alter key mechanisms of IKAROS gene regulation, including sumoylation, protein stability, and the recruitment of the nucleosome remodeling and deacetylase complex; none affected in N-terminal DNA binding defects. These C-terminal dimerization mutations are largely associated with hematologic disorders, display dimerization haploinsufficiency and incomplete clinical penetrance, and differ from previously reported allelic variants in their mechanism of action. Dimerization mutants contribute to the growing spectrum of IKAROS-associated diseases displaying a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Sara Ciullini Mannurita
- Department of Neuroscience, Psychology, Pharmaceutical Area and Child Health (NEUROFARBA)/Paediatric Haemato-Oncology Laboratory, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Tala Shahin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Shubham Goel
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Mary Hintermeyer
- Division of Asthma, Allergy, and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Mary Garofalo
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Laura Lucas
- Immunedysregulation and Immuno-Hematology Program, Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and
| | - Smriti Singh
- Genetic Counseling Program, Emory School of Medicine, Atlanta, GA
| | - Annalisa Tondo
- Hematology/Oncology Department, Anna Meyer Children's Hospital, Florence, Italy
| | - Zachary Jacobs
- Department of Internal Medicine, University of Missouri School of Medicine, Colombia, MO
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to Epstein-Barr Virus (EBV) Infection, INSERM Unité Mixte de Recherche (UMR) 1163, Paris, France
| | - James Verbsky
- Division of Asthma, Allergy, and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - John Routes
- Division of Asthma, Allergy, and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; and
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eleonora Gambineri
- Department of Neuroscience, Psychology, Pharmaceutical Area and Child Health (NEUROFARBA)/Paediatric Haemato-Oncology Laboratory, Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Shanmuganathan Chandrakasan
- Immunedysregulation and Immuno-Hematology Program, Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Kalina T, Abraham RS, Rizzi M, van der Burg M. Editorial: Application of Cytometry in Primary Immunodeficiencies. Front Immunol 2020; 11:463. [PMID: 32265921 PMCID: PMC7096470 DOI: 10.3389/fimmu.2020.00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023] Open
Affiliation(s)
- Tomas Kalina
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Hospital Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Simon AJ, Golan AC, Lev A, Stauber T, Barel O, Somekh I, Klein C, AbuZaitun O, Eyal E, Kol N, Unal E, Amariglio N, Rechavi G, Somech R. Whole exome sequencing (WES) approach for diagnosing primary immunodeficiencies (PIDs) in a highly consanguineous community. Clin Immunol 2020; 214:108376. [PMID: 32135276 DOI: 10.1016/j.clim.2020.108376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of monogenic inborn errors of immunity. The genetic causes of these diseases can be identified using whole exome sequencing (WES). Here, DNA samples from 106 patients with a clinical suspicion of PID were subjected to WES in order to test the diagnostic yield of this test in a highly consanguineous community. A likely genetic diagnosis was achieved in 70% of patients. Several factors were considered to possibly influence the diagnostic rate of WES among our cohort including early age, presence of consanguinity, family history suggestive of PID, the number of family members who underwent WES and the clinical phenotype of the patient. The highest diagnostic rate was in patients with combined immunodeficiency or with a syndrome. Notably, WES findings altered the clinical management in 39% (41/106) of patients in our cohort. Our findings support the use of WES as an important diagnostic tool in patients with suspected PID, especially in highly consanguineous communities.
Collapse
Affiliation(s)
- Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel; Division of Haematology and Bone Marrow Transplantation, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel; Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Adi Cohen Golan
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ortal Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ido Somekh
- Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | | | - Eran Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nitzan Kol
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, 2-Molecular Biology and Genetic Department, Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ninette Amariglio
- Division of Haematology and Bone Marrow Transplantation, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel; Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel; The Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gideon Rechavi
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel; The Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
15
|
Lewandowicz-Uszyńska A, Pasternak G, Świerkot J, Bogunia-Kubik K. Primary Immunodeficiencies: Diseases of Children and Adults - A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1289:37-54. [PMID: 32803731 DOI: 10.1007/5584_2020_556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) belong to a group of rare congenital diseases occurring all over the world that may be seen in both children and adults. In most cases, genetic predispositions are already known. As shown in this review, genetic abnormalities may be related to dysfunction of the immune system, which manifests itself as recurrent infections, increased risk of cancer, and autoimmune diseases. This article reviews the various forms of PIDs, including their characterization, management strategies, and complications. Novel aspects of the diagnostics and monitoring of PIDs are presented.
Collapse
Affiliation(s)
- Aleksandra Lewandowicz-Uszyńska
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland. .,Department of Immunology and Pediatrics, The J. Gromkowski Provincial Hospital, Wroclaw, Poland.
| | - Gerard Pasternak
- Third Department and Clinic of Pediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Świerkot
- Department and Clinic of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, The Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
16
|
Abstract
While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.
Collapse
|
17
|
Eskandarian Z, Fliegauf M, Bulashevska A, Proietti M, Hague R, Smulski CR, Schubert D, Warnatz K, Grimbacher B. Assessing the Functional Relevance of Variants in the IKAROS Family Zinc Finger Protein 1 ( IKZF1) in a Cohort of Patients With Primary Immunodeficiency. Front Immunol 2019; 10:568. [PMID: 31057532 PMCID: PMC6477086 DOI: 10.3389/fimmu.2019.00568] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency. Patients with CVID are prone to recurrent bacterial infection due to the failure of adequate immunoglobulin production. Monogenetic defects have been identified in ~25% of CVID patients. Recently, mutations in IKZF1, encoding the zinc-finger transcription factor IKAROS which is broadly expressed in hematopoietic cells, have been associated with a CVID-like phenotype. Herein we describe 11 patients with heterozygous IKZF1 variants from eight different families with autosomal dominant CVID and two siblings with an IKZF1 variant presenting with inflammatory bowel disease (IBD). This study shows that mutations affecting the DNA binding domain of IKAROS can impair the interaction with the target DNA sequence thereby preventing heterochromatin and pericentromeric localization (HC-PC) of the protein. Our results also indicate an impairment of pericentromeric localization of IKAROS by overexpression of a truncated variant, caused by an immature stop codon in IKZF1. We also describe an additional variant in TNFSF10, encoding Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL), additionally presented in individuals of Family A. Our results indicate that this variant may impair the TRAIL-induced apoptosis in target cell lines and prohibit the NFκB activation by TRAIL and may act as a modifier in Family A.
Collapse
Affiliation(s)
- Zoya Eskandarian
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Rosie Hague
- Royal Hospital for Children, Glasgow, United Kingdom
| | - Cristian Roberto Smulski
- Department of Medical Physics, Centro Atómico Bariloche, CONICET, San Carlos de Bariloche, Argentina
| | - Desirée Schubert
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Clinic for Rheumatology and Clinical Immunology, Faculty of Medicine, CCI, Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University of Freiburg, Freiburg, Germany.,Satellite Center Freiburg, RESIST-Cluster of Excellence 2155, Hanover Medical School, Freiburg, Germany.,Satellite Center Freiburg, German Center for Infection Research, Freiburg, Germany.,Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
18
|
Fatal Enteroviral Encephalitis in a Patient with Common Variable Immunodeficiency Harbouring a Novel Mutation in NFKB2. J Clin Immunol 2019; 39:324-335. [DOI: 10.1007/s10875-019-00602-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
19
|
Chang LS, Barroso-Sousa R, Tolaney SM, Hodi FS, Kaiser UB, Min L. Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocr Rev 2019; 40:17-65. [PMID: 30184160 PMCID: PMC6270990 DOI: 10.1210/er.2018-00006] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Immune checkpoints are small molecules expressed by immune cells that play critical roles in maintaining immune homeostasis. Targeting the immune checkpoints cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) with inhibitory antibodies has demonstrated effective and durable antitumor activity in subgroups of patients with cancer. The US Food and Drug Administration has approved several immune checkpoint inhibitors (ICPis) for the treatment of a broad spectrum of malignancies. Endocrinopathies have emerged as one of the most common immune-related adverse events (irAEs) of ICPi therapy. Hypophysitis, thyroid dysfunction, insulin-deficient diabetes mellitus, and primary adrenal insufficiency have been reported as irAEs due to ICPi therapy. Hypophysitis is particularly associated with anti-CTLA-4 therapy, whereas thyroid dysfunction is particularly associated with anti-PD-1 therapy. Diabetes mellitus and primary adrenal insufficiency are rare endocrine toxicities associated with ICPi therapy but can be life-threatening if not promptly recognized and treated. Notably, combination anti-CTLA-4 and anti-PD-1 therapy is associated with the highest incidence of ICPi-related endocrinopathies. The precise mechanisms underlying these endocrine irAEs remain to be elucidated. Most ICPi-related endocrinopathies occur within 12 weeks after the initiation of ICPi therapy, but several have been reported to develop several months to years after ICPi initiation. Some ICPi-related endocrinopathies may resolve spontaneously, but others, such as central adrenal insufficiency and primary hypothyroidism, appear to be persistent in most cases. The mainstay of management of ICPi-related endocrinopathies is hormone replacement and symptom control. Further studies are needed to determine (i) whether high-dose corticosteroids in the treatment of ICPi-related endocrinopathies preserves endocrine function (especially in hypophysitis), and (ii) whether the development of ICPi-related endocrinopathies correlates with tumor response to ICPi therapy.
Collapse
Affiliation(s)
- Lee-Shing Chang
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Romualdo Barroso-Sousa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Le Min
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Cardinez C, Miraghazadeh B, Tanita K, da Silva E, Hoshino A, Okada S, Chand R, Asano T, Tsumura M, Yoshida K, Ohnishi H, Kato Z, Yamazaki M, Okuno Y, Miyano S, Kojima S, Ogawa S, Andrews TD, Field MA, Burgio G, Morio T, Vinuesa CG, Kanegane H, Cook MC. Gain-of-function IKBKB mutation causes human combined immune deficiency. J Exp Med 2018; 215:2715-2724. [PMID: 30337470 PMCID: PMC6219745 DOI: 10.1084/jem.20180639] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/27/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Genetic mutations account for many devastating early onset immune deficiencies. In contrast, less severe and later onset immune diseases, including in patients with no prior family history, remain poorly understood. Whole exome sequencing in two cohorts of such patients identified a novel heterozygous de novo IKBKB missense mutation (c.607G>A) in two separate kindreds in whom probands presented with immune dysregulation, combined T and B cell deficiency, inflammation, and epithelial defects. IKBKB encodes IKK2, which activates NF-κB signaling. IKK2V203I results in enhanced NF-κB signaling, as well as T and B cell functional defects. IKK2V203 is a highly conserved residue, and to prove causation, we generated an accurate mouse model by introducing the precise orthologous codon change in Ikbkb using CRISPR/Cas9. Mice and humans carrying this missense mutation exhibit remarkably similar cellular and biochemical phenotypes. Accurate mouse models engineered by CRISPR/Cas9 can help characterize novel syndromes arising from de novo germline mutations and yield insight into pathogenesis.
Collapse
Affiliation(s)
- Chelisa Cardinez
- Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Department of Immunology Canberra Hospital, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Bahar Miraghazadeh
- Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Department of Immunology Canberra Hospital, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Kay Tanita
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Rochna Chand
- Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Department of Immunology Canberra Hospital, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan.,Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | | | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Daniel Andrews
- Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Matthew A Field
- Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Tomohiro Morio
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Carola G Vinuesa
- Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Matthew C Cook
- Centre for Personalised Immunology, Australian National University, Canberra, Australia .,Department of Immunology Canberra Hospital, Canberra, Australia.,Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
21
|
Nasereddin A, Ereqat S. Deep sequencing of SMPD1 gene revealed a heterozygous frameshift mutation (p.Ser192Alafs) in a Palestinian infant with Niemann-Pick disease type A: a case report. J Med Case Rep 2018; 12:272. [PMID: 30223864 PMCID: PMC6142321 DOI: 10.1186/s13256-018-1805-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Background Niemann–Pick disease is caused by reduced level of the lysosomal enzyme acid sphingomyelinase. Children can survive between 2 and 12 years based on the disease type. Two main types are well known: type A and B. Niemann–Pick disease type A is characterized by severe central nervous system deterioration and hepatosplenomegaly while type B is a progressive hypersplenism accompanied with gradual deterioration of pulmonary function. Case presentation We describe an 11-month-old Palestinian baby boy with hepatosplenomegaly, hypotonia, delayed motor development, laryngomalacia, bilateral cherry-red spots, and failure to thrive. Metabolic screening, blood count, differential tests, immunology screen, infectious disease screen, urine, biochemical tests as well as molecular diagnosis were performed. The molecular diagnosis was done by amplifying the whole sphingomyelin phosphodiesterase 1 (SMPD1) gene, followed by deep sequencing. The obtained sequences were aligned, de novo assembled and compared to human reference gene (GenBank GeneID: NG_011780.1, Ensembl version ENSG00000166311 and protein identified as UniProtKB – P17405). Two known mutations were identified in our patient: the pathogenic frameshift mutation NM_000543.4(SMPD1):c.573delT (p.Ser192Alafs) and the benign polymorphism NM_000543.4(SMPD1):c.107T>C (p.Val36Ala). The enzyme study showed a very low level of enzymatic activity of acidic sphingomyelinase (0.1 nmol/ml per hour). Correlations between clinical findings, laboratory data, and sequence analysis are presented. Conclusions In conclusion, this is the first report about a heterozygote frameshift p.Ser192AlafsX65 in a Palestinian patient with Niemann–Pick disease type A, emphasizing the importance of deep sequencing in genetic diagnosis of this rare inherited disease.
Collapse
Affiliation(s)
- Abedelmajeed Nasereddin
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine-Al-Quds University, P.O. Box 20760, Abu-Dis-Esat Jerusalem, Palestine. .,Genomics Applications Lab, The Core Research Facility, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | - Suheir Ereqat
- Biochemistry and Molecular Biology Department, Faculty of Medicine-Al-Quds University, Abu Dis-East Jerusalem, Palestine
| |
Collapse
|
22
|
Primary immunodeficiency diseases in a tuberculosis endemic region: challenges and opportunities. Genes Immun 2018; 20:447-454. [PMID: 30185814 DOI: 10.1038/s41435-018-0041-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
While individual primary immunodeficiency diseases (PIDs) are rare, collectively they represent a significant burden of disease. Recent estimates show that about one million people in Africa suffer from a PID. However, data from African PID registries reflect only a small percentage of the estimated prevalence. This disparity is partly due to the lack of PID awareness and the masking of PIDs by the endemic pathogens. Over three million tuberculosis (TB) cases were reported in Africa in 2016, with many of these from southern Africa. Despite concerted efforts to address this high burden of disease, the underlying genetic correlates of susceptibility to TB remain poorly understood. High penetrance mutations in immune system genes can cause PIDs that selectively predispose individuals to TB and other mycobacterial diseases. Additionally, the identification of individuals at a heightened risk of developing TB or of presenting with severe or disseminated TB due to their genetic ancestry is crucial to promote a positive treatment outcome. The screening for and identification of PID mutations in TB-endemic regions by next-generation sequencing (NGS) represents a promising approach to improve the understanding of what constitutes an effective immune response to TB, as well as the range of associated PIDs and phenotypes.
Collapse
|
23
|
Rahmani ES, Azarpara Н, Karimipoor M, Rahimi Н. Whole exome analysis of primary immunodeficiency. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human primary immunodeficiency diseases (PIDs) refer to a rare heterogeneous group of single-gene inherited disorders causing malfunctions in the immune system, and thus the affected patients have a predisposition to severe life-threatening infections. The heterogeneous nature of PIDs, which involves at list 300 different genes, makes diagnosis of the disease a complex issue. Although studies revealed that six million people have a kind of PID, but due to a complex diagnosis procedure many affected individuals have not gotten a correct diagnosis. However, thanks to advancing in the DNA sequencing method and availability of sophisticated sequencers molecular characterization of genetic disorders have been revolutionized. The whole exome sequencing (WES) method can help clinicians detect Mendelian disease and other complex genetic disorders. The presented study used WES to investigate two infants with symptoms of primary immunodeficiency including hemophagocytic lymphohistiocytosis (HLH) and severe combined immunodeficiency (SCID). It has been shown that the HLH patient had a mutation in the UNC13D gene (NM_199242.2:c.627delT), and the SCID patient had a mutation in the RAG1 gene (NM_000448.2:c.322C>G). It has been demonstrated that WES is a fast and cost-effective method facilitating genetic diagnosis in PID sufferers.
Collapse
|
24
|
Slade CA, Bosco JJ, Binh Giang T, Kruse E, Stirling RG, Cameron PU, Hore-Lacy F, Sutherland MF, Barnes SL, Holdsworth S, Ojaimi S, Unglik GA, De Luca J, Patel M, McComish J, Spriggs K, Tran Y, Auyeung P, Nicholls K, O'Hehir RE, Hodgkin PD, Douglass JA, Bryant VL, van Zelm MC. Delayed Diagnosis and Complications of Predominantly Antibody Deficiencies in a Cohort of Australian Adults. Front Immunol 2018; 9:694. [PMID: 29867917 PMCID: PMC5960671 DOI: 10.3389/fimmu.2018.00694] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Predominantly antibody deficiencies (PADs) are the most common type of primary immunodeficiency in adults. PADs frequently pass undetected leading to delayed diagnosis, delayed treatment, and the potential for end-organ damage including bronchiectasis. In addition, PADs are frequently accompanied by comorbid autoimmune disease, and an increased risk of malignancy. Objectives To characterize the diagnostic and clinical features of adult PAD patients in Victoria, Australia. Methods We identified adult patients receiving, or having previously received immunoglobulin replacement therapy for a PAD at four hospitals in metropolitan Melbourne, and retrospectively characterized their clinical and diagnostic features. Results 179 patients from The Royal Melbourne, Alfred and Austin Hospitals, and Monash Medical Centre were included in the study with a median age of 49.7 years (range: 16–87 years), of whom 98 (54.7%) were female. The majority of patients (116; 64.8%) met diagnostic criteria for common variable immunodeficiency (CVID), and 21 (11.7%) were diagnosed with X-linked agammaglobulinemia (XLA). Unclassified hypogammaglobulinemia (HGG) was described in 22 patients (12.3%), IgG subclass deficiency (IGSCD) in 12 (6.7%), and specific antibody deficiency (SpAD) in 4 individuals (2.2%). The remaining four patients had a diagnosis of Good syndrome (thymoma with immunodeficiency). There was no significant difference between the age at diagnosis of the disorders, with the exception of XLA, with a median age at diagnosis of less than 1 year. The median age of reported symptom onset was 20 years for those with a diagnosis of CVID, with a median age at diagnosis of 35 years. CVID patients experienced significantly more non-infectious complications, such as autoimmune cytopenias and lymphoproliferative disease, than the other antibody deficiency disorders. The presence of non-infectious complications was associated with significantly reduced survival in the cohort. Conclusion Our data are largely consistent with the experience of other centers internationally, with clear areas for improvement, including reducing diagnostic delay for patients with PADs. It is likely that these challenges will be in part overcome by continued advances in implementation of genomic sequencing for diagnosis of PADs, and with that opportunities for targeted treatment of non-infectious complications.
Collapse
Affiliation(s)
- Charlotte A Slade
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Tran Binh Giang
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia
| | - Elizabeth Kruse
- Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert G Stirling
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- Department of Infectious Diseases, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Fiona Hore-Lacy
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Michael F Sutherland
- Department of Respiratory and Sleep Medicine, The Austin Hospital, Melbourne, VIC, Australia
| | - Sara L Barnes
- Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Stephen Holdsworth
- Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Samar Ojaimi
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Medicine, Monash Medical Centre, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia
| | - Gary A Unglik
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joseph De Luca
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Mittal Patel
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy McComish
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Kymble Spriggs
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Monash Medical Centre, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Yang Tran
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Priscilla Auyeung
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Katherine Nicholls
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Robyn E O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jo A Douglass
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,School of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, VIC, Australia.,Immunology Division, The Walter and Eliza Hall Institute for Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Menno C van Zelm
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Picard C, Belot A. Les interféronopathies de type I. Mise au point et revue de la littérature. Rev Med Interne 2018; 39:271-278. [DOI: 10.1016/j.revmed.2016.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
|
26
|
Janssen WJM, Grobarova V, Leleux J, Jongeneel L, van Gijn M, van Montfrans JM, Boes M. Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) controls immune synapse stability in human T cells. J Allergy Clin Immunol 2018; 142:1947-1955. [PMID: 29432774 DOI: 10.1016/j.jaci.2018.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/03/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) is a cytosolic adaptor protein involved with T-cell activation, differentiation, and migration. On cognate T-cell contact, PSTPIP1 is recruited to surface-expressed CD2, where it regulates F-actin remodeling. An immune synapse (IS) is thereby rapidly formed, consisting of T-cell receptor clusters surrounded by a ring of adhesion molecules, including CD2. OBJECTIVE From genetic screening of patients with primary immunodeficiencies, we identified 2 mutations in PSTPIP1, R228C and T274M, which we further characterized in the primary patients' T cells. METHODS F-actin dynamics were assessed in primary T cells from the patients and control subjects by using fluorescence-activated cell sorting. HEK293T and Jurkat cells were transfected with R228C, T274M, and wild-type PSTPIP1 to visualize F-actin in IS formation. CD2-PSTPIP1 association was quantified through immunoprecipitation assays. RESULTS The patients presented with immunodeficiency without signs of autoinflammation. The patient with the R228C mutation had expansion of mostly naive phenotype T cells and few memory T cells; the patient with the T274M mutation had 75% reduction in CD4 T cells that were predominantly of the memory subset. We observed F-actin polymerization defects in T cells from both patients with PSTPIP1, most notably the patient with the T274M mutation. Capping of CD2-containing membrane microdomains was disrupted. Analysis of IS formation using Jurkat T-cell transfectants revealed a reduction in F-actin accumulation at the IS, again especially in cells from the patient with the T274M PSTPIP1 mutation. T cells from the patient with the T274M mutation migrated spontaneously at increased speed, as assessed in a 3-dimensional collagen matrix, whereas T-cell receptor cross-linking induced a significantly diminished calcium flux. CONCLUSIONS We propose that PSTPIP1 T-cell differentiation defects are caused by defective control of F-actin polymerization. A preactivated polymerized F-actin status, as seen in T cells from patients with the PSTPIP1 T274M mutation, appears particularly damaging. PSTPIP1 controls IS formation and cell adhesion through its function as an orchestrator of the F-actin cytoskeleton.
Collapse
Affiliation(s)
- Willemijn J M Janssen
- Department of Pediatric Immunology and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Valeria Grobarova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jardin Leleux
- Department of Pediatric Immunology and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lieneke Jongeneel
- Department of Pediatric Immunology and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle van Gijn
- Department of Medical Genetics and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatric Immunology and Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
27
|
Erdle S, Ellis AK, Upton JEM. Advanced clinical testing of the adaptive immune system. Ann Allergy Asthma Immunol 2017; 118:655-663. [PMID: 28583259 DOI: 10.1016/j.anai.2017.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Stephanie Erdle
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Julia E M Upton
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Bosch B, Itan Y, Meyts I. Whole-exome sequencing for detecting inborn errors of immunity: overview and perspectives. F1000Res 2017; 6:2056. [PMID: 29225788 PMCID: PMC5710381 DOI: 10.12688/f1000research.12365.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The study of inborn errors of immunity is based on a comprehensive clinical description of the patient’s phenotype and the elucidation of the underlying molecular mechanisms and their genetic etiology. Deciphering the pathogenesis is key to genetic counseling and the development of targeted therapy. This review shows the power of whole-exome sequencing in detecting inborn errors of immunity along five central steps taken in whole-exome sequencing analysis. In parallel, we highlight the challenges for the clinical and scientific use of the method and how these hurdles are currently being addressed. We end by ruminating on major areas in the field open to future research.
Collapse
Affiliation(s)
- Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,St. Giles Laboratory of the Human Genetics of Infectious Disease, Rockefeller University, New York, USA
| | - Yuval Itan
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Childhood Immunology, KULeuven, Leuven, Belgium
| |
Collapse
|
29
|
Whole exome sequencing in inborn errors of immunity: use the power but mind the limits. Curr Opin Allergy Clin Immunol 2017; 17:421-430. [DOI: 10.1097/aci.0000000000000398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Schlechter N, Glanzmann B, Hoal EG, Schoeman M, Petersen BS, Franke A, Lau YL, Urban M, van Helden PD, Esser MM, Möller M, Kinnear C. Exome Sequencing Identifies a Novel MAP3K14 Mutation in Recessive Atypical Combined Immunodeficiency. Front Immunol 2017; 8:1624. [PMID: 29230214 PMCID: PMC5712007 DOI: 10.3389/fimmu.2017.01624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/09/2017] [Indexed: 11/26/2022] Open
Abstract
Primary immunodeficiency disorders (PIDs) render patients vulnerable to infection with a wide range of microorganisms and thus provide good in vivo models for the assessment of immune responses during infectious challenges. Priming of the immune system, especially in infancy, depends on different environmental exposures and medical practices. This may determine the timing and phenotype of clinical appearance of immune deficits as exemplified with early exposure to Bacillus Calmette-Guérin (BCG) vaccination and dissemination in combined immunodeficiencies. Varied phenotype expression poses a challenge to identification of the putative immune deficit. Without the availability of genomic diagnosis and data analysis resources and with limited capacity for functional definition of immune pathways, it is difficult to establish a definitive diagnosis and to decide on appropriate treatment. This study describes the use of exome sequencing to identify a homozygous recessive variant in MAP3K14, NIKVal345Met, in a patient with combined immunodeficiency, disseminated BCG-osis, and paradoxically elevated lymphocytes. Laboratory testing confirmed hypogammaglobulinemia with normal CD19, but failed to confirm a definitive diagnosis for targeted treatment decisions. NIKVal345Met is predicted to be deleterious and pathogenic by two in silico prediction tools and is situated in a gene crucial for effective functioning of the non-canonical nuclear factor-kappa B signaling pathway. Functional analysis of NIKVal345Met- versus NIKWT-transfected human embryonic kidney-293T cells showed that this mutation significantly affects the kinase activity of NIK leading to decreased levels of phosphorylated IkappaB kinase-alpha (IKKα), the target of NIK. BCG-stimulated RAW264.7 cells transfected with NIKVal345Met also presented with reduced levels of phosphorylated IKKα, significantly increased p100 levels and significantly decreased p52 levels compared to cells transfected with NIKWT. Ideally, these experiments would have been conducted in patient-derived immune cells, but we were unable to source these cells from the patient. The functional analysis described in this paper supports previous illustrations of the importance of NIK in human immune responses and demonstrates the involvement of function-altering mutations in MAP3K14 in PIDs. The genomic approach used for this patient demonstrates its value in the diagnosis of an unusual PID and as a tool for detecting rarer mutations to help guide treatment approaches.
Collapse
Affiliation(s)
- Nikola Schlechter
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitte Glanzmann
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen Garner Hoal
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Yu-Lung Lau
- Shenzhen PID Laboratory, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Michael Urban
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul David van Helden
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Monika Maria Esser
- Immunology Unit National Health Laboratory Service Tygerberg, Division Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
31
|
Kuehn HS, Niemela JE, Sreedhara K, Stoddard JL, Grossman J, Wysocki CA, de la Morena MT, Garofalo M, Inlora J, Snyder MP, Lewis DB, Stratakis CA, Fleisher TA, Rosenzweig SD. Novel nonsense gain-of-function NFKB2 mutations associated with a combined immunodeficiency phenotype. Blood 2017; 130:1553-1564. [PMID: 28778864 PMCID: PMC5620416 DOI: 10.1182/blood-2017-05-782177] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/09/2017] [Indexed: 11/20/2022] Open
Abstract
NF-κB signaling through its NFKB1-dependent canonical and NFKB2-dependent noncanonical pathways plays distinctive roles in a diverse range of immune processes. Recently, mutations in these 2 genes have been associated with common variable immunodeficiency (CVID). While studying patients with genetically uncharacterized primary immunodeficiencies, we detected 2 novel nonsense gain-of-function (GOF) NFKB2 mutations (E418X and R635X) in 3 patients from 2 families, and a novel missense change (S866R) in another patient. Their immunophenotype was assessed by flow cytometry and protein expression; activation of canonical and noncanonical pathways was examined in peripheral blood mononuclear cells and transfected HEK293T cells through immunoblotting, immunohistochemistry, luciferase activity, real-time polymerase chain reaction, and multiplex assays. The S866R change disrupted a C-terminal NF-κΒ2 critical site affecting protein phosphorylation and nuclear translocation, resulting in CVID with adrenocorticotropic hormone deficiency, growth hormone deficiency, and mild ectodermal dysplasia as previously described. In contrast, the nonsense mutations E418X and R635X observed in 3 patients led to constitutive nuclear localization and activation of both canonical and noncanonical NF-κΒ pathways, resulting in a combined immunodeficiency (CID) without endocrine or ectodermal manifestations. These changes were also found in 2 asymptomatic relatives. Thus, these novel NFKB2 GOF mutations produce a nonfully penetrant CID phenotype through a different pathophysiologic mechanism than previously described for mutations in NFKB2.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Karthik Sreedhara
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Jennifer Grossman
- Division of Hematology and Hematologic Malignancies, Alberta Health Services, Calgary, AB, Canada
| | - Christian A Wysocki
- Division of Allergy and Immunology, Department of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - M Teresa de la Morena
- Division of Allergy and Immunology, Department of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mary Garofalo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD
| | | | | | - David B Lewis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA; and
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics
- Program on Developmental Endocrinology and Genetics, and
- Pediatric Endocrinology Inter-institute Training Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
32
|
Abstract
Systems-biology approaches in immunology take various forms, but here we review strategies for measuring a broad swath of immunological functions as a means of discovering previously unknown relationships and phenomena and as a powerful way of understanding the immune system as a whole. This approach has rejuvenated the field of vaccine development and has fostered hope that new ways will be found to combat infectious diseases that have proven refractory to classical approaches. Systems immunology also presents an important new strategy for understanding human immunity directly, taking advantage of the many ways the immune system of humans can be manipulated.
Collapse
|
33
|
Uhlig HH, Muise AM. Clinical Genomics in Inflammatory Bowel Disease. Trends Genet 2017; 33:629-641. [PMID: 28755896 DOI: 10.1016/j.tig.2017.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Genomic technologies inform the complex genetic basis of polygenic inflammatory bowel disease (IBD) as well as Mendelian disease-associated IBD. Aiming to diagnose patients that present with extreme phenotypes due to monogenic forms of IBD, genomics has progressed from 'orphan disease' research towards an integrated standard of clinical care. Advances in diagnostic clinical genomics are increasingly complemented by pathway-specific therapies that aim to correct the consequences of genetic defects. This highlights the exceptional potential for personalized precision medicine. IBD is nevertheless a challenging example for genomic medicine because the overall fraction of patients with Mendelian defects is low, the number of potential candidate genes is high, and interventional evidence is still emerging. We discuss requirements and prospects of explanatory and predictive clinical genomics in IBD.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, UK; Department of Paediatrics, University of Oxford, UK.
| | - Aleixo M Muise
- Program in Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; SickKids Inflammatory Bowel Disease Centre and Division of Gastroenterology, Hepatology, and Nutrition, Department of Paediatrics, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
34
|
Severe viral respiratory infections in children with IFIH1 loss-of-function mutations. Proc Natl Acad Sci U S A 2017; 114:8342-8347. [PMID: 28716935 DOI: 10.1073/pnas.1704259114] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Viral respiratory infections are usually mild and self-limiting; still they exceptionally result in life-threatening infections in previously healthy children. To investigate a potential genetic cause, we recruited 120 previously healthy children requiring support in intensive care because of a severe illness caused by a respiratory virus. Using exome and transcriptome sequencing, we identified and characterized three rare loss-of-function variants in IFIH1, which encodes an RIG-I-like receptor involved in the sensing of viral RNA. Functional testing of the variants IFIH1 alleles demonstrated that the resulting proteins are unable to induce IFN-β, are intrinsically less stable than wild-type IFIH1, and lack ATPase activity. In vitro assays showed that IFIH1 effectively restricts replication of human respiratory syncytial virus and rhinoviruses. We conclude that IFIH1 deficiency causes a primary immunodeficiency manifested in extreme susceptibility to common respiratory RNA viruses.
Collapse
|
35
|
Afzali B, Grönholm J, Vandrovcova J, O’Brien C, Sun HW, Vanderleyden I, Davis FP, Khoder A, Zhang Y, Hegazy AN, Villarino AV, Palmer IW, Kaufman J, Watts NR, Kazemian M, Kamenyeva O, Keith J, Sayed A, Kasperaviciute D, Mueller M, Hughes JD, Fuss IJ, Sadiyah MF, Montgomery-Recht K, McElwee J, Restifo NP, Strober W, Linterman MA, Wingfield PT, Uhlig HH, Roychoudhuri R, Aitman TJ, Kelleher P, Lenardo MJ, O’Shea JJ, Cooper N, Laurence ADJ. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol 2017; 18:813-823. [PMID: 28530713 PMCID: PMC5593426 DOI: 10.1038/ni.3753] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.
Collapse
Affiliation(s)
- Behdad Afzali
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- MRC Centre for Transplantation, King’s College London, UK
| | - Juha Grönholm
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Jana Vandrovcova
- Molecular Neuroscience, Institute of Neurology, Faculty of Brain Sciences, University College London, UK
- Department of Medicine, Imperial College London, UK
| | | | - Hong-Wei Sun
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ine Vanderleyden
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Fred P Davis
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad Khoder
- Department of Medicine, Imperial College London, UK
| | - Yu Zhang
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Ahmed N Hegazy
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Alejandro V Villarino
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ira W Palmer
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Kaufman
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Norman R Watts
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Olena Kamenyeva
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Julia Keith
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Anwar Sayed
- Department of Medicine, Imperial College London, UK
| | | | - Michael Mueller
- Imperial BRC Genomics Facility Hammersmith hospital, Du Cane road, London, UK
| | - Jason D. Hughes
- Merck Research Laboratories, Merck & Co. Inc., Boston, MA, USA
| | - Ivan J. Fuss
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mohammed F Sadiyah
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Kim Montgomery-Recht
- Clinical Research Directorate/CMRP, Leidos Biomedical Research Inc., NCI at Frederick, Frederick, MD, USA
| | - Joshua McElwee
- Merck Research Laboratories, Merck & Co. Inc., Boston, MA, USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren Strober
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Paul T Wingfield
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Paediatrics, University of Oxford, UK
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Timothy J. Aitman
- Department of Medicine, Imperial College London, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | | | - Michael J Lenardo
- Molecular Development of the Immune System Section, NIAID Clinical Genomics Program, Biological Imaging Section (Research Technologies Branch) and Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - John J O’Shea
- Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), Biodata Mining and Discovery Section and Protein Expression Laboratory, National Institutes of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Arian DJ Laurence
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Haematology Northern Centre for Cancer Care, Freeman road, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Cottineau J, Kottemann MC, Lach FP, Kang YH, Vély F, Deenick EK, Lazarov T, Gineau L, Wang Y, Farina A, Chansel M, Lorenzo L, Piperoglou C, Ma CS, Nitschke P, Belkadi A, Itan Y, Boisson B, Jabot-Hanin F, Picard C, Bustamante J, Eidenschenk C, Boucherit S, Aladjidi N, Lacombe D, Barat P, Qasim W, Hurst JA, Pollard AJ, Uhlig HH, Fieschi C, Michon J, Bermudez VP, Abel L, de Villartay JP, Geissmann F, Tangye SG, Hurwitz J, Vivier E, Casanova JL, Smogorzewska A, Jouanguy E. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 2017; 127:1991-2006. [PMID: 28414293 DOI: 10.1172/jci90727] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022] Open
Abstract
Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.
Collapse
|
37
|
Leiva-Torres GA, Nebesio N, Vidal SM. Discovery of Variants Underlying Host Susceptibility to Virus Infection Using Whole-Exome Sequencing. Methods Mol Biol 2017; 1656:209-227. [PMID: 28808973 PMCID: PMC7120756 DOI: 10.1007/978-1-4939-7237-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The clinical course of any viral infection greatly differs in individuals. This variation results from various viral, host, and environmental factors. The identification of host genetic factors influencing inter-individual variation in susceptibility to several pathogenic viruses has tremendously increased our understanding of the mechanisms and pathways required for immunity. Next-generation sequencing of whole exomes represents a powerful tool in biomedical research. In this chapter, we briefly introduce whole-exome sequencing in the context of genetic approaches to identify host susceptibility genes to viral infections. We then describe general aspects of the workflow for whole-exome sequence analysis together with the tools and online resources that can be used to identify and annotate variant calls, and then prioritize them for their potential association to phenotypes of interest.
Collapse
Affiliation(s)
- Gabriel A Leiva-Torres
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Research Center on Complex Traits, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Nestor Nebesio
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Research Center on Complex Traits, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- McGill University Research Center on Complex Traits, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Abstract
Some autoimmune disorders are monogenetic diseases; however, clinical manifestations among individuals vary, despite the presence of identical mutations in the disease-causing gene. In this issue of the JCI, Massaad and colleagues characterized a seemingly monogenic autoimmune disorder in a family that was linked to homozygous loss-of-function mutations in the gene encoding the endonuclease Nei endonuclease VIII-like 3 (NEIL3), which has not been previously associated with autoimmunity. The identification of an unrelated healthy individual with the same homozygous mutation spurred more in-depth analysis of the data and revealed the presence of a second mutation in a known autoimmune-associated gene. Animals lacking Neil3 had no overt phenotype, but were predisposed to autoantibody production and nephritis following exposure to the TLR3 ligand poly(I:C). Together, these results support further evaluation of the drivers of autoimmunity in supposedly monogenic disorders.
Collapse
|
39
|
Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, Pedergnana V, Moens L, Picard C, Cobat A, Bossuyt X, Abel L, Casanova JL. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol 2016; 138:957-969. [PMID: 27720020 PMCID: PMC5074686 DOI: 10.1016/j.jaci.2016.08.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023]
Abstract
The advent of next-generation sequencing (NGS) in 2010 has transformed medicine, particularly the growing field of inborn errors of immunity. NGS has facilitated the discovery of novel disease-causing genes and the genetic diagnosis of patients with monogenic inborn errors of immunity. Whole-exome sequencing (WES) is presently the most cost-effective approach for research and diagnostics, although whole-genome sequencing offers several advantages. The scientific or diagnostic challenge consists in selecting 1 or 2 candidate variants among thousands of NGS calls. Variant- and gene-level computational methods, as well as immunologic hypotheses, can help narrow down this genome-wide search. The key to success is a well-informed genetic hypothesis on 3 key aspects: mode of inheritance, clinical penetrance, and genetic heterogeneity of the condition. This determines the search strategy and selection criteria for candidate alleles. Subsequent functional validation of the disease-causing effect of the candidate variant is critical. Even the most up-to-date dry lab cannot clinch this validation without a seasoned wet lab. The multifariousness of variations entails an experimental rigor even greater than traditional Sanger sequencing-based approaches in order not to assign a condition to an irrelevant variant. Finding the needle in the haystack takes patience, prudence, and discernment.
Collapse
Affiliation(s)
- Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium.
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Alexandre Bolze
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Helix, San Carlos, Calif
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Vincent Pedergnana
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Leen Moens
- Laboratory Medicine, Experimental Laboratory Immunology, Department of Laboratory Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Paris Descartes University-Sorbonne Paris Cité, Paris, France; Study Center for Immunodeficiency, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Xavier Bossuyt
- Laboratory Medicine, Experimental Laboratory Immunology, Department of Laboratory Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY; Pediatric Hematology and Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
40
|
Asgari S, McLaren PJ, Peake J, Wong M, Wong R, Bartha I, Francis JR, Abarca K, Gelderman KA, Agyeman P, Aebi C, Berger C, Fellay J, Schlapbach LJ. Exome Sequencing Reveals Primary Immunodeficiencies in Children with Community-Acquired Pseudomonas aeruginosa Sepsis. Front Immunol 2016; 7:357. [PMID: 27703454 PMCID: PMC5028722 DOI: 10.3389/fimmu.2016.00357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023] Open
Abstract
One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B. This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs.
Collapse
Affiliation(s)
- Samira Asgari
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul J McLaren
- National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jane Peake
- Lady Cilento Children's Hospital , Brisbane, QLD , Australia
| | - Melanie Wong
- Children's Hospital Westmead , Sydney, NSW , Australia
| | - Richard Wong
- Pathology Queensland Central Laboratory, Royal Brisbane and Women's Hospital , Brisbane, QLD , Australia
| | - Istvan Bartha
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joshua R Francis
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Royal Darwin Hospital, Darwin, NT, Australia
| | - Katia Abarca
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | | | - Philipp Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern , Bern , Switzerland
| | - Christoph Aebi
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern , Bern , Switzerland
| | | | - Jacques Fellay
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Luregn J Schlapbach
- Lady Cilento Children's Hospital, Brisbane, QLD, Australia; Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Paediatric Critical Care Research Group (PCCRG), Mater Research, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
41
|
Bertinchamp R, Gérard L, Boutboul D, Malphettes M, Fieschi C, Oksenhendler E. Exclusion of Patients with a Severe T-Cell Defect Improves the Definition of Common Variable Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:1147-1157. [PMID: 27522107 DOI: 10.1016/j.jaip.2016.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/01/2016] [Accepted: 07/02/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND In 2014, the European Society for Immune Deficiencies (ESID) revised the common variable immunodeficiency (CVID) diagnosis criteria by incorporating new clinical and biological markers. The new definition appeared more restrictive but had not yet been evaluated in a large cohort of patients. OBJECTIVE The objective of this study was to evaluate the impact of this new definition in a large cohort of patients with primary hypogammaglobulinemia. METHODS Evaluation of 3 different CVID definitions (ESID/Pan-American Group for Immunodeficiency [PAGID] 1999, ESID 2014, DEFI 2015) in 521 patients included in the French DEFI study with a diagnosis of primary hypogammaglobulinemia. RESULTS Using the ESID/PAGID 1999 definition, 351 patients were classified as CVID. The new ESID 2014 definition excluded 62 (18%) patients. Most of them (n = 56; 90%) had a less severe disease, whereas 6 (10%) presented with a severe disease with major T-cell defect. We propose different criteria (occurrence of opportunistic infection or very low naive CD4+ T-cell count) to define this population with severe T-cell defect. Sixty-two patients fulfilled these criteria, represented 20% of the initial CVID population but accounted for 77% of the deaths, with a 5-year overall survival of 67.6% (95% confidence interval, 51.0-79.6), and were considered as late onset combined immunodeficiency (LOCID). CONCLUSIONS The new ESID definition for CVID still fails to exclude a large number of patients with severe T-cell defect. We propose a new definition (DEFI 2015) that excluded more patients with a T-cell defect and consider these patients as LOCID. This population has a poor outcome and should be considered as a distinct group requiring specific care.
Collapse
Affiliation(s)
- Rémi Bertinchamp
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Laurence Gérard
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; EA3518, Université Paris Diderot Paris 7, Paris, France
| | - David Boutboul
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Inserm U1126, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Inserm U1126, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Inserm U1126, Centre Hayem, Hôpital Saint-Louis, Paris, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; EA3518, Université Paris Diderot Paris 7, Paris, France.
| | | |
Collapse
|
42
|
Maffucci P, Filion CA, Boisson B, Itan Y, Shang L, Casanova JL, Cunningham-Rundles C. Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency. Front Immunol 2016; 7:220. [PMID: 27379089 PMCID: PMC4903998 DOI: 10.3389/fimmu.2016.00220] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023] Open
Abstract
Whole exome sequencing (WES) has proven an effective tool for the discovery of genetic defects in patients with primary immunodeficiencies (PIDs). However, success in dissecting the genetic etiology of common variable immunodeficiency (CVID) has been limited. We outline a practical framework for using WES to identify causative genetic defects in these subjects. WES was performed on 50 subjects diagnosed with CVID who had at least one of the following criteria: early onset, autoimmune/inflammatory manifestations, low B lymphocytes, and/or familial history of hypogammaglobulinemia. Following alignment and variant calling, exomes were screened for mutations in 269 PID-causing genes. Variants were filtered based on the mode of inheritance and reported frequency in the general population. Each variant was assessed by study of familial segregation and computational predictions of deleteriousness. Out of 433 variations in PID-associated genes, we identified 17 probable disease-causing mutations in 15 patients (30%). These variations were rare or private and included monoallelic mutations in NFKB1, STAT3, CTLA4, PIK3CD, and IKZF1, and biallelic mutations in LRBA and STXBP2. Forty-two other damaging variants were found but were not considered likely disease-causing based on the mode of inheritance and/or patient phenotype. WES combined with analysis of PID-associated genes is a cost-effective approach to identify disease-causing mutations in CVID patients with severe phenotypes and was successful in 30% of our cohort. As targeted therapeutics are becoming the mainstay of treatment for non-infectious manifestations in CVID, this approach will improve management of patients with more severe phenotypes.
Collapse
Affiliation(s)
- Patrick Maffucci
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles A Filion
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Bertrand Boisson
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Descartes University, Paris, France
| | - Yuval Itan
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Lei Shang
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University , New York, NY , USA
| | - Jean-Laurent Casanova
- Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA; Necker Branch, Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Descartes University, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Charlotte Cunningham-Rundles
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Strande NT, Berg JS. Defining the Clinical Value of a Genomic Diagnosis in the Era of Next-Generation Sequencing. Annu Rev Genomics Hum Genet 2016; 17:303-32. [PMID: 27362341 DOI: 10.1146/annurev-genom-083115-022348] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As with all fields of medicine, the first step toward medical management of genetic disorders is obtaining an accurate diagnosis, which often requires testing at the molecular level. Unfortunately, given the large number of genetic conditions without a specific intervention, only rarely does a genetic diagnosis alter patient management-which raises the question, what is the added value of obtaining a molecular diagnosis? Given the fast-paced advancement of genomic technologies, this is an important question to address in the context of genome-scale testing. Here, we address the value of establishing a diagnosis using genome-scale testing and highlight the benefits and drawbacks of such testing. We also review and compare recent major studies implementing genome-scale sequencing methods to identify a molecular diagnosis in cohorts manifesting a broad range of Mendelian monogenic disorders. Finally, we discuss potential future applications of genomic sequencing, such as screening for rare conditions.
Collapse
Affiliation(s)
- Natasha T Strande
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; ,
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; ,
| |
Collapse
|
44
|
Rozmus J, McDonald R, Fung SY, Del Bel KL, Roden J, Senger C, Schultz KR, McKinnon ML, Davis J, Turvey SE. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation. Clin Immunol 2016; 168:1-5. [PMID: 27109639 DOI: 10.1016/j.clim.2016.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022]
Abstract
MALT1 mutations impair normal NF-κB activation and paracaspase activity to cause a novel combined immunodeficiency. The clinical and immunological phenotype of MALT1 deficiency can be successfully treated with hematopoietic stem cell transplantation following reduced intensity conditioning.
Collapse
Affiliation(s)
- Jacob Rozmus
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rachel McDonald
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shan-Yu Fung
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kate L Del Bel
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Juliana Roden
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christof Senger
- Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kirk R Schultz
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Margaret L McKinnon
- Medical Genetics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey Davis
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, Maffucci P, Pierce KR, Abbott JK, Voelkerding KV, South ST, Augustine NH, Bush JS, Dolen WK, Wray BB, Itan Y, Cobat A, Sorte HS, Ganesan S, Prader S, Martins TB, Lawrence MG, Orange JS, Calvo KR, Niemela JE, Casanova JL, Fleisher TA, Hill HR, Kumánovics A, Conley ME, Rosenzweig SD. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med 2016; 374:1032-1043. [PMID: 26981933 PMCID: PMC4836293 DOI: 10.1056/nejmoa1512234] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by late-onset hypogammaglobulinemia in the absence of predisposing factors. The genetic cause is unknown in the majority of cases, and less than 10% of patients have a family history of the disease. Most patients have normal numbers of B cells but lack plasma cells. METHODS We used whole-exome sequencing and array-based comparative genomic hybridization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility-shift assay (EMSA) and confocal microscopy. Flow cytometry was used to analyze peripheral-blood lymphocytes and bone marrow aspirates. RESULTS Six different heterozygous mutations in IKZF1, the gene encoding the transcription factor IKAROS, were identified in 29 persons from six families. In two families, the mutation was a de novo event in the proband. All the mutations, four amino acid substitutions, an intragenic deletion, and a 4.7-Mb multigene deletion involved the DNA-binding domain of IKAROS. The proteins bearing missense mutations failed to bind target DNA sequences on EMSA and confocal microscopy; however, they did not inhibit the binding of wild-type IKAROS. Studies in family members showed progressive loss of B cells and serum immunoglobulins. Bone marrow aspirates in two patients had markedly decreased early B-cell precursors, but plasma cells were present. Acute lymphoblastic leukemia developed in 2 of the 29 patients. CONCLUSIONS Heterozygous mutations in the transcription factor IKAROS caused an autosomal dominant form of CVID that is associated with a striking decrease in B-cell numbers. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- H S Kuehn
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - B Boisson
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - C Cunningham-Rundles
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J Reichenbach
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Stray-Pedersen
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - E W Gelfand
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - P Maffucci
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K R Pierce
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J K Abbott
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K V Voelkerding
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S T South
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - N H Augustine
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J S Bush
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - W K Dolen
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - B B Wray
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - Y Itan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Cobat
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - H S Sorte
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S Ganesan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S Prader
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - T B Martins
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - M G Lawrence
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J S Orange
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - K R Calvo
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J E Niemela
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - J-L Casanova
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - T A Fleisher
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - H R Hill
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - A Kumánovics
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - M E Conley
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| | - S D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center (H.S.K., K.R.C., J.E.N., T.A.F., S.D.R.), and the Primary Immunodeficiency Clinic (S.D.R.) and Biological Imaging Section, Research Technologies Branch (S.G.), National Institute of Allergy and Infectious Diseases, Bethesda, MD; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University (B.B., Y.I., A.C., J.-L.C., M.E.C.), Howard Hughes Medical Institute (J.-L.C.), and the Department of Medicine and the Immunology Institute, Icahn School of Medicine at Mount Sinai (C.C.-R., P.M.) - all in New York; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 and Paris Descartes University, Imagine Institute, Paris (A.C., J.-L.C.); the Division of Immunology, University Children's Hospital Zurich (J.R., S.P.), Children's Research Center (J.R., S.P.), and University of Zurich (J.R.) - all in Zurich, Switzerland; the Center for Human Immunobiology, Texas Children's Hospital (A.S.-P., J.S.O.), and the Departments of Pediatrics (A.S.-P., J.S.O.) and Molecular and Human Genetics (A.S.-P.), Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston; the Norwegian Unit for National Newborn Screening (A.S.-P.) and the Department of Medical Genetics (H.S.S.), Oslo University Hospital, Oslo; University of Tennessee College of Medicine, Memphis (K.R.P.); the Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver (E.W.G., J.K.A.); the Departments of Pathology (K.V.V., S.T.S., N.H.A., T.B.M., H.R.H., A.K.) and Pediatrics and Medicine (H.R.H.), University of Utah School of Medicine and ARUP (Associated Regional and University Pathologists) Institute for Clinical and Experimental Pathology, ARUP Laboratories (T.B.M.) - both in Salt Lake City; the Division of Allergy-Immunology and Pediatric Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta (J.S.B., W.K.D., B.B.W.); and the Division of Asthma, Allergy, and Immunology, Department of Medicine, University of Virginia, Charlottesville (M.G.L.)
| |
Collapse
|
46
|
Chemokines, their receptors and human disease: the good, the bad and the itchy. Immunol Cell Biol 2016; 93:364-71. [PMID: 25895814 DOI: 10.1038/icb.2015.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/30/2015] [Indexed: 02/04/2023]
Abstract
Chemokines are a highly specialized group of cytokines that coordinate trafficking and homing of leucocytes between bone marrow, lymphoid organs and sites of infection or inflammation. They are also responsible for structural organization within lymphoid organs. Aberrant expression or function of these molecules, or their receptors, has been linked to protection or susceptibility to specific infectious diseases, as well as the risk of autoimmune disease and malignancy, revealing critical roles of chemokines and their receptors in human health, disease and therapeutics. In this review, we focus on human diseases that provide lessons regarding the critical role of these specialized and complex cytokines.
Collapse
|
47
|
Genomics is rapidly advancing precision medicine for immunological disorders. Nat Immunol 2016; 16:1001-4. [PMID: 26382860 DOI: 10.1038/ni.3275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Fodil N, Langlais D, Gros P. Primary Immunodeficiencies and Inflammatory Disease: A Growing Genetic Intersection. Trends Immunol 2016; 37:126-140. [PMID: 26791050 DOI: 10.1016/j.it.2015.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/08/2023]
Abstract
Recent advances in genome analysis have provided important insights into the genetic architecture of infectious and inflammatory diseases. The combined analysis of loci detected by genome-wide association studies (GWAS) in 22 inflammatory diseases has revealed a shared genetic core and associated biochemical pathways that play a central role in pathological inflammation. Parallel whole-exome sequencing studies have identified 265 genes mutated in primary immunodeficiencies (PID). Here, we examine the overlap between these two data sets, and find that it consists of genes essential for protection against infections and in which persistent activation causes pathological inflammation. Based on this intersection, we propose that, although strong or inactivating mutations (rare variants) in these genes may cause severe disease (PIDs), their more subtle modulation potentially by common regulatory/coding variants may contribute to chronic inflammation.
Collapse
Affiliation(s)
- Nassima Fodil
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - David Langlais
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, Complex Traits Group, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Abstract
Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.
Collapse
Affiliation(s)
- Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
50
|
Jackson CC, Best L, Lorenzo L, Casanova JL, Wacker J, Bertz S, Agaimy A, Harrer T. A Multiplex Kindred with Hennekam Syndrome due to Homozygosity for a CCBE1 Mutation that does not Prevent Protein Expression. J Clin Immunol 2015; 36:19-27. [PMID: 26686525 DOI: 10.1007/s10875-015-0225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022]
Abstract
Collagen and calcium-binding EGF domain-containing protein 1 (CCBE1) bi-allelic mutations have been associated with syndromes of widespread congenital lymphatic dysplasia, including Hennekam Syndrome (HS). HS is characterized by lymphedema, lymphangiectasia, and intellectual disability. CCBE1 encodes a putative extracellular matrix protein but the HS-causing mutations have not been studied biochemically. We report two HS siblings, born to consanguineous parents of Turkish ancestry, whose clinical phenotype also includes protein losing enteropathy, painful relapsing chylous ascites, and hypogammaglobulinemia. We identified by whole exome and Sanger sequencing the homozygous CCBE1 C174Y mutation in both siblings. This mutation had been previously reported in another HS kindred from the Netherlands. In over-expression studies, we found increased intracellular expression of all forms (monomers, dimers, trimers) of the CCBE1 C174Y mutant protein, by Western blot, despite mutant mRNA levels similar to wild-type (WT). In addition, we detected increased secretion of the mutant CCBE1 protein by ELISA. We further found the mutant and WT proteins to be evenly distributed in the cytoplasm, by immunofluorescence and confocal microscopy. Finally, we found a strong decrease of lymphatic vessels, with a corresponding diminished expression of CCBE1, by immunohistochemistry of the patients' intestinal biopsies. In contrast, mucosal blood vessels and muscularis mucosae showed normal CCBE1 staining. Our findings show that the mutant CCBE1 C174Y protein is not loss-of-function by loss-of-expression.
Collapse
Affiliation(s)
- Carolyn C Jackson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. .,Department of Pediatrics, The Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Lucy Best
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, INSERM, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Jochen Wacker
- Department of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Bertz
- Department of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Abbas Agaimy
- Department of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Department for Internal Medicine III, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|