1
|
Van Hove H, Glück C, Mildenberger W, Petrova E, Maheshwari U, Häne P, Kreiner V, Bijnen M, Mussak C, Utz SG, Droux J, Ingelfinger F, Ashworth C, Stifter SA, Roussel E, Lelios I, Vermeer M, Huang SF, Zhou Q, Chen Z, Calvet C, Bourgeois S, Schaffenrath J, Razansky D, Juang JX, Asano K, Pelczar P, Mundt S, Weber B, Wegener S, Tugues S, Stockmann C, Becher B, Keller A, El Amki M, Greter M. Interleukin-34-dependent perivascular macrophages promote vascular function in the brain. Immunity 2025; 58:1289-1305.e8. [PMID: 40315842 DOI: 10.1016/j.immuni.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 05/04/2025]
Abstract
The development of most macrophages depends on the colony-stimulating factor 1 (CSF-1) receptor, which has two ligands: CSF-1 and interleukin-34 (IL-34). While IL-34 is required for the homeostasis of microglia, the parenchymal macrophages in the central nervous system (CNS), it is unclear whether brain border-associated macrophages (BAMs) also depend on this cytokine. Here, we demonstrated that the embryonic development of murine BAMs in the choroid plexus, leptomeninges, and perivascular spaces required CSF-1, while IL-34 was critical for their maintenance in adulthood. In the brain, Il34 was expressed by mural cells and perivascular fibroblasts, and its transgenic deletion in these cells interrupted BAM maintenance. Il34 deficiency coincided with transcriptional changes in vascular cells, leading to increased flow velocity and vasomotion in pial and penetrating arterioles. Similarly, Mrc1CreCsf1rfl/fl mice lacking CD206+ perivascular BAMs exhibited increased hemodynamics in arterial networks. These findings reveal a crosstalk between vascular cells and CNS macrophages regulating cerebrovascular function.
Collapse
Affiliation(s)
- Hannah Van Hove
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Chaim Glück
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekaterina Petrova
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Häne
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Victor Kreiner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Mussak
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jeanne Droux
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christian Ashworth
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Elsa Roussel
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Charlotte Calvet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jean X Juang
- Department of Biochemistry and Structural Biology, University of Texas Science Center, San Antonio, TX 78229, USA
| | - Kenichi Asano
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Experimental Imaging and Neuroenergetics, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Woolf Z, Stevenson TJ, Lee K, Highet B, Macapagal Foliaki J, Ratiu R, Rustenhoven J, Correia J, Schweder P, Heppner P, Weinert M, Coppieters N, Park T, Montgomery J, Smith AM, Dragunow M. In vitro models of microglia: a comparative study. Sci Rep 2025; 15:15621. [PMID: 40320508 PMCID: PMC12050316 DOI: 10.1038/s41598-025-99867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Microglia perform key homeostatic functions to protect the central nervous system (CNS). However, in many brain disorders their protective functions are abrogated, contributing to disease progression. Therefore, studies of microglial function are critical to developing treatments for brain disorders. Different in vitro microglia models have been established, including primary human and rodent cells, induced pluripotent stem cell (iPSC)-derived models, and immortalised cell lines. However, a direct comparative analysis of the phenotypic and functional characteristics of these models has not been undertaken. Accurate modelling of human microglia in vitro is critical for ensuring the translatability of results from the bench to the brain. Therefore, our study aimed to characterise and compare commonly utilised in vitro microglia models. We assessed four established microglia models: primary human microglia, human iPSC-derived microglia, the human microglial clone 3 (HMC3) cell line, and primary mouse microglia, with primary human brain pericytes acting as a negative control. Primary human microglia, iPSC-derived microglia, and mouse microglia stained positive for myeloid-cell markers (Iba1, CD45 and PU.1), while HMC3 cells only stained positive for mural-cell markers (PDGFRβ and NG2). Distinct secretomes were observed in all cell models in response to inflammatory treatment, with iPSC-derived microglia showing the most significant inflammatory secretions. Notably, nitric oxide was only secreted by mouse microglia. Although all cell types exhibited phagocytic capacity, primary human microglia and iPSC-derived microglia displayed significantly higher levels of phagocytosis. Overall, comparative analysis revealed notable differences between human microglia, iPSC-derived microglia, HMC3 cells and mouse microglia. Such differences should be considered when using these models to study human brain diseases. Experimental findings obtained from mouse models or cell lines should ultimately be cross validated to ensure the translatability of results to the human condition.
Collapse
Affiliation(s)
- Zoe Woolf
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Taylor J Stevenson
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurological Surgery, University of California San Francisco, Francisco, CA, USA
| | - Blake Highet
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Jena Macapagal Foliaki
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Ramona Ratiu
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Jason Correia
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Patrick Schweder
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, Dementia Research Institute, London, UK
| | - Natacha Coppieters
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Thomas Park
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Johanna Montgomery
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Amy M Smith
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| | - Michael Dragunow
- Department of Pharmacology, The University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Hiraki C, Tsuruta F. The Meninges as CNS Interfaces and the Roles of Meningeal Macrophages. Biomolecules 2025; 15:497. [PMID: 40305192 PMCID: PMC12024811 DOI: 10.3390/biom15040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The brain, the most important component of the central nervous system (CNS), is protected by multiple intricate barriers that strictly regulate the entry of proteins and cells. Thus, the brain is often described as an organ with immune privilege. Within the brain parenchyma, microglia are thought to be the primary resident immune cells, with no other immune-related cells present under normal conditions. On the other hand, recent studies in the meningeal border regions have revealed the presence of meningeal-specific lymphatic vessels and channels that connect to the skull bone marrow. Importantly, resident macrophage populations specific to these boundary regions, known as CNS-associated macrophages (CAMs) or border-associated macrophages (BAMs), have been identified. In contrast to the brain parenchyma, the meninges contain many immune-related structures and cells, making them an important immune interface at the CNS border. CAMs serve a dual function, triggering immune responses under pathological conditions and supporting the maintenance of brain homeostasis. This review focuses on the immune architecture of the meninges and the roles of CAMs in humans and mice, summarizing and discussing recent advances in this field.
Collapse
Affiliation(s)
- Chihiro Hiraki
- Master’s and Doctoral Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
| | - Fuminori Tsuruta
- Master’s and Doctoral Program in Biology, Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Doctoral Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Master’s and Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Center for Quantum and Information Life Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
4
|
Pal R, Thomas CM, Salamat K, Jenkins SJ, Bradford BM, Mabbott NA. Acute LPS exposure enhances susceptibility to peripheral prion infection. Sci Rep 2025; 15:9754. [PMID: 40119036 PMCID: PMC11928655 DOI: 10.1038/s41598-025-94003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
After peripheral infections, the initial accumulation of prions within secondary lymphoid tissues is essential for the transmission of disease to the brain. Macrophages are considered to sequester or destroy prions, but little was known of their impact on disease susceptibility after a peripheral infection. Inflammation in the peritoneal cavity can trigger the macrophage disappearance reaction, whereby the macrophages are temporarily contained within cellular aggregates on the mesothelium. We studied the impact of the bacterial lipopolysaccharide (LPS)-mediated macrophage disappearance reaction on susceptibility to an intraperitoneal prion infection. Intraperitoneal LPS injection significantly enhanced prion disease susceptibility approximately 100X when given 24-3 h before infection. The effects on disease susceptibility coincided with the reduced abundance of macrophages within the peritoneal cavity at the time of infection and the enhanced early accumulation of prions in the spleen. This suggests that the reduced recoverable abundance of macrophages in the peritoneal cavity following acute LPS-treatment, increased disease susceptibility by enhancing the initial propagation of the prions from site of exposure (peritoneal cavity) to the spleen from where they subsequently spread to the brain. Further studies may help identify novel macrophage-targeted treatments that can reduce susceptibility to peripherally acquired prion infections.
Collapse
Affiliation(s)
- Reiss Pal
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Charlotte M Thomas
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Khalid Salamat
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stephen J Jenkins
- Queens Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| | - Barry M Bradford
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| |
Collapse
|
5
|
Kooistra SM, Schirmer L. Multiple Sclerosis: Glial Cell Diversity in Time and Space. Glia 2025; 73:574-590. [PMID: 39719685 PMCID: PMC11784844 DOI: 10.1002/glia.24655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
Multiple sclerosis (MS) is the most prevalent human inflammatory disease of the central nervous system with demyelination and glial scar formation as pathological hallmarks. Glial cells are key drivers of lesion progression in MS with roles in both tissue damage and repair depending on the surrounding microenvironment and the functional state of the individual glial subtype. In this review, we describe recent developments in the context of glial cell diversity in MS summarizing key findings with respect to pathological and maladaptive functions related to disease-associated glial subtypes. A particular focus is on the spatial and temporal dynamics of glial cells including subtypes of microglia, oligodendrocytes, and astrocytes. We contextualize recent high-dimensional findings suggesting that glial cells dynamically change with respect to epigenomic, transcriptomic, and metabolic features across the inflamed rim and during the progression of MS lesions. In summary, detailed knowledge of spatially restricted glial subtype functions is critical for a better understanding of MS pathology and its pathogenesis as well as the development of novel MS therapies targeting specific glial cell types.
Collapse
Affiliation(s)
- Susanne M. Kooistra
- Department of Biomedical Sciences, Section Molecular NeurobiologyUniversity of Groningen and University Medical Center Groningen (UMCG)GroningenThe Netherlands
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Center for Translational Neuroscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Mannheim Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
6
|
Bijnen M, Sridhar S, Keller A, Greter M. Brain macrophages in vascular health and dysfunction. Trends Immunol 2025; 46:46-60. [PMID: 39732528 DOI: 10.1016/j.it.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Diverse macrophage populations inhabit the rodent and human central nervous system (CNS), including microglia in the parenchyma and border-associated macrophages (BAMs) in the meninges, choroid plexus, and perivascular spaces. These innate immune phagocytes are essential in brain development and maintaining homeostasis, but they also play diverse roles in neurological diseases. In this review, we highlight the emerging roles of CNS macrophages in regulating vascular function in health and disease. We discuss that, in addition to microglia, BAMs, including perivascular macrophages, play roles in supporting vascular integrity and maintaining blood flow. We highlight recent advancements in understanding how these macrophages are implicated in protecting against vascular dysfunction and modulating the progression of cerebrovascular diseases, as seen in vessel-associated neurodegeneration.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sucheta Sridhar
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Lin R, Luo R, Yu X, Zou J, Huang X, Guo Y. Depleting parenchymal border macrophages alleviates cerebral edema and neuroinflammation following status epilepticus. J Transl Med 2024; 22:1094. [PMID: 39623451 PMCID: PMC11613707 DOI: 10.1186/s12967-024-05912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Status epilepticus (SE) is a common severe neurological emergency. Cerebral edema caused by SE is unavoidable and may exacerbate epilepsy. Recent studies have identified cerebrospinal fluid (CSF) as a crucial fluid source of initial cerebral edema following ischemic stroke and cardiac arrest. Moreover, synchronized neuronal firings drive CSF influx into interstitial fluid (ISF). Parenchymal border macrophages (PBMs) have been found to play a role in regulating CSF flow dynamics. However, the involvement of CSF and PBMs in cerebral edema during SE remains unclear. Here, we investigated the fluid source of cerebral edema in the initial phase of SE with the role of PBMs involved. METHODS Lithium chloride-pilocarpine was used to induce SE in C57BL/6 J mice. Electroencephalogram (EEG) was acquired to assess changes in relative EEG power pre- and post-seizure onset. Apparent diffusion coefficient (ADC) maps reconstructed from diffusion-weighted imaging (DWI) were utilized to evaluate cytotoxic edema. Blood-brain barrier (BBB) permeability was examined using sodium fluorescein (NaFl). CSF tracer influx into the brain was assessed by transcranial imaging and brain slices. PBMs were depleted using clodronate liposomes. Immunohistochemistry was used to evaluate PBM depletion, severity of vasogenic edema, inflammation, and neuronal damage. RESULTS During the initial stage of SE, relative EEG power sharply increased and ADC values significantly decreased. Concurrently, CSF tracer influx into the cortex significantly elevated, though NaFl leakage from blood to brain parenchyma did not evidently alter. Following depletion of PBM, CSF influx declined but AQP4 expression and polarization remained unaffected. Post-PBM depletion, there was no significant alteration in relative EEG power, yet CSF influx decreased substantially during the initial stage of SE. The degree of ADC decline lessened, IgG extravasation after SE decreased, activated microglia and proliferating astrocytes count fell, and neuronal damage post-SE alleviated. CONCLUSIONS CSF appeared to contribute to cerebral edema in SE. Depletion of PBM alleviated cytotoxic edema in the initial phase of SE, and subsequent vasogenic edema, inflammatory response and neurological damage were reduced. These findings may provide potential novel strategies for treating cerebral edema following SE.
Collapse
Affiliation(s)
- Renbao Lin
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Rui Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xinyue Yu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Junjie Zou
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Xiaowei Huang
- Dongguan University of Technology, Dongguan, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Kilian M, Quintana FJ. Immunosuppressive dura-derived macrophages in leptomeningeal metastasis. NATURE CANCER 2024; 5:1791-1792. [PMID: 39710800 DOI: 10.1038/s43018-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Affiliation(s)
- Michael Kilian
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Smith EE, Biessels GJ, Gao V, Gottesman RF, Liesz A, Parikh NS, Iadecola C. Systemic determinants of brain health in ageing. Nat Rev Neurol 2024; 20:647-659. [PMID: 39375564 PMCID: PMC11926994 DOI: 10.1038/s41582-024-01016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
Preservation of brain health is a worldwide priority. The traditional view is that the major threats to the ageing brain lie within the brain itself. Consequently, therapeutic approaches have focused on protecting the brain from these presumably intrinsic pathogenic processes. However, an increasing body of evidence has unveiled a previously under-recognized contribution of peripheral organs to brain dysfunction and damage. Thus, in addition to the well-known impact of diseases of the heart and endocrine glands on the brain, accumulating data suggest that dysfunction of other organs, such as gut, liver, kidney and lung, substantially affects the development and clinical manifestation of age-related brain pathologies. In this Review, a framework is provided to indicate how organ dysfunction can alter brain homeostasis and promote neurodegeneration, with a focus on dementia. We delineate the associations of subclinical dysfunction in specific organs with dementia risk and provide suggestions for public health promotion and clinical management.
Collapse
Affiliation(s)
- Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Virginia Gao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Medical Center Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Neal S Parikh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
12
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
13
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
14
|
Keller CW, Mundt S, Segal BM. Editorial: CNS myeloid cell function in health and disease. Front Immunol 2024; 15:1459138. [PMID: 39086488 PMCID: PMC11288962 DOI: 10.3389/fimmu.2024.1459138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Christian W. Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Benjamin M. Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Prapas P, Anagnostouli M. Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics. Int J Mol Sci 2024; 25:7354. [PMID: 39000461 PMCID: PMC11242320 DOI: 10.3390/ijms25137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.
Collapse
Affiliation(s)
- Petros Prapas
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens NKUA, Aeginition University Hospital, Vas. Sofias 72-74, 11528 Athens, Greece
| |
Collapse
|
17
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
18
|
Sadakata M, Fujii K, Kaneko R, Hosoya E, Sugimoto H, Kawabata-Iwakawa R, Kasamatsu T, Hongo S, Koshidaka Y, Takase A, Iijima T, Takao K, Sadakata T. Maternal immunoglobulin G affects brain development of mouse offspring. J Neuroinflammation 2024; 21:114. [PMID: 38698428 PMCID: PMC11064405 DOI: 10.1186/s12974-024-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024] Open
Abstract
Maternal immunoglobulin (Ig)G is present in breast milk and has been shown to contribute to the development of the immune system in infants. In contrast, maternal IgG has no known effect on early childhood brain development. We found maternal IgG immunoreactivity in microglia, which are resident macrophages of the central nervous system of the pup brain, peaking at postnatal one week. Strong IgG immunoreactivity was observed in microglia in the corpus callosum and cerebellar white matter. IgG stimulation of primary cultured microglia activated the type I interferon feedback loop by Syk. Analysis of neonatal Fc receptor knockout (FcRn KO) mice that could not take up IgG from their mothers revealed abnormalities in the proliferation and/or survival of microglia, oligodendrocytes, and some types of interneurons. Moreover, FcRn KO mice also exhibited abnormalities in social behavior and lower locomotor activity in their home cages. Thus, changes in the mother-derived IgG levels affect brain development in offsprings.
Collapse
Affiliation(s)
- Mizuki Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| | - Kazuki Fujii
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Ryosuke Kaneko
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Emi Hosoya
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hisako Sugimoto
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Medical Technology and Clinical Engineering, Gunma University of Health and Walfare, Maebashi, Gunma, 371-0823, Japan
| | - Shoko Hongo
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Akinori Takase
- Medical Science College Office, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takatoshi Iijima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tetsushi Sadakata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
19
|
Muzio L, Perego J. CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis. Int J Mol Sci 2024; 25:4865. [PMID: 38732082 PMCID: PMC11084235 DOI: 10.3390/ijms25094865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.
Collapse
Affiliation(s)
- Luca Muzio
- Neuroimmunology Lab, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20133 Milan, Italy;
| | | |
Collapse
|
20
|
Koller BH, Nguyen M, Snouwaert JN, Gabel CA, Ting JPY. Species-specific NLRP3 regulation and its role in CNS autoinflammatory diseases. Cell Rep 2024; 43:113852. [PMID: 38427558 PMCID: PMC12054400 DOI: 10.1016/j.celrep.2024.113852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
The NLRP3 inflammasome is essential for caspase-1 activation and the release of interleukin (IL)-1β, IL-18, and gasdermin-D in myeloid cells. However, research on species-specific NLRP3's physiological impact is limited. We engineer mice with the human NLRP3 gene, driven by either the human or mouse promoter, via syntenic replacement at the mouse Nlrp3 locus. Both promoters facilitate hNLRP3 expression in myeloid cells, but the mouse promoter responds more robustly to LPS. Investigating the disease impact of differential NLRP3 regulation, we introduce the D305N gain-of-function mutation into both humanized lines. Chronic inflammation is evident with both promoters; however, CNS outcomes vary significantly. Despite poor response to LPS, the human promoter results in D305N-associated aseptic meningitis, mirroring human pathology. The mouse promoter, although leading to increased CNS expression post-LPS, does not induce meningitis in D305N mutants. Therefore, human-like NLRP3 expression may be crucial for accurate modeling of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - MyTrang Nguyen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John N Snouwaert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
22
|
Van Steenwinckel J, Bokobza C, Laforge M, Shearer IK, Miron VE, Rua R, Matta SM, Hill‐Yardin EL, Fleiss B, Gressens P. Key roles of glial cells in the encephalopathy of prematurity. Glia 2024; 72:475-503. [PMID: 37909340 PMCID: PMC10952406 DOI: 10.1002/glia.24474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.
Collapse
Affiliation(s)
| | - Cindy Bokobza
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
| | | | - Isabelle K. Shearer
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Veronique E. Miron
- Barlo Multiple Sclerosis CentreSt. Michael's HospitalTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- College of Medicine and Veterinary MedicineThe Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Rejane Rua
- CNRS, INSERM, Centre d'Immunologie de Marseille‐Luminy (CIML), Turing Centre for Living SystemsAix‐Marseille UniversityMarseilleFrance
| | - Samantha M. Matta
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Elisa L. Hill‐Yardin
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | - Bobbi Fleiss
- NeuroDiderot, INSERMUniversité Paris CitéParisFrance
- School of Health and Biomedical SciencesSTEM College, RMIT UniversityBundooraVictoriaAustralia
| | | |
Collapse
|
23
|
Xu X, Han Y, Zhang B, Ren Q, Ma J, Liu S. Understanding immune microenvironment alterations in the brain to improve the diagnosis and treatment of diverse brain diseases. Cell Commun Signal 2024; 22:132. [PMID: 38368403 PMCID: PMC10874090 DOI: 10.1186/s12964-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Abnormal inflammatory states in the brain are associated with a variety of brain diseases. The dynamic changes in the number and function of immune cells in cerebrospinal fluid (CSF) are advantageous for the early prediction and diagnosis of immune diseases affecting the brain. The aggregated factors and cells in inflamed CSF may represent candidate targets for therapy. The physiological barriers in the brain, such as the blood‒brain barrier (BBB), establish a stable environment for the distribution of resident immune cells. However, the underlying mechanism by which peripheral immune cells migrate into the brain and their role in maintaining immune homeostasis in CSF are still unclear. To advance our understanding of the causal link between brain diseases and immune cell status, we investigated the characteristics of immune cell changes in CSF and the molecular mechanisms involved in common brain diseases. Furthermore, we summarized the diagnostic and treatment methods for brain diseases in which immune cells and related cytokines in CSF are used as targets. Further investigations of the new immune cell subtypes and their contributions to the development of brain diseases are needed to improve diagnostic specificity and therapy.
Collapse
Affiliation(s)
- Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Han
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.
| | - Binlong Zhang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| |
Collapse
|
24
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Pan Y, Xin W, Wei W, Tatenhorst L, Graf I, Popa-Wagner A, Gerner ST, Huber SE, Kilic E, Hermann DM, Bähr M, Huttner HB, Doeppner TR. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy. Cell Mol Life Sci 2024; 81:30. [PMID: 38212456 PMCID: PMC10784396 DOI: 10.1007/s00018-023-05045-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Sabine E Huber
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
- Department of Neurology, University of Giessen Medical School, Giessen, Germany.
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany.
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey.
| |
Collapse
|
27
|
Frumer GR, Shin SH, Jung S, Kim JS. Not just Glia-Dissecting brain macrophages in the mouse. Glia 2024; 72:5-18. [PMID: 37501579 DOI: 10.1002/glia.24445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.
Collapse
Affiliation(s)
- Gal Ronit Frumer
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sun-Hye Shin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Blank-Stein N, Mass E. Macrophage and monocyte subsets in response to ischemic stroke. Eur J Immunol 2023; 53:e2250233. [PMID: 37467166 DOI: 10.1002/eji.202250233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality. Despite extensive efforts in stroke research, the only pharmacological treatment currently available is arterial recanalization, which has limited efficacy only in the acute phase of stroke. The neuroinflammatory response to stroke is believed to provide a wider time window than recanalization and has therefore been proposed as an attractive therapeutic target. In this review, we provide an overview of recent advances in the understanding of cellular and molecular responses of distinct macrophage populations following stroke, which may offer potential targets for therapeutic interventions. Specifically, we discuss the role of local responders in neuroinflammation, including the well-studied microglia as well as the emerging players, border-associated macrophages, and macrophages originating from the skull bone marrow. Additionally, we focus on the behavior of monocytes stemming from distant tissues such as the bone marrow and spleen. Finally, we highlight aging as a crucial factor modulating the immune response, which is often neglected in animal studies.
Collapse
Affiliation(s)
- Nelli Blank-Stein
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Zhao ZA, Yan L, Wen J, Satyanarayanan SK, Yu F, Lu J, Liu YU, Su H. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. BURNS & TRAUMA 2023; 11:tkad033. [PMID: 37675267 PMCID: PMC10478165 DOI: 10.1093/burnst/tkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/01/2023] [Accepted: 05/26/2023] [Indexed: 09/08/2023]
Abstract
Traumatic brain injury (TBI) disrupts normal brain function and is associated with high morbidity and fatality rates. TBI is characterized as mild, moderate or severe depending on its severity. The damage may be transient and limited to the dura matter, with only subtle changes in cerebral parenchyma, or life-threatening with obvious focal contusions, hematomas and edema. Blood vessels are often injured in TBI. Even in mild TBI, dysfunctional cerebral vascular repair may result in prolonged symptoms and poor outcomes. Various distinct types of cells participate in vascular repair after TBI. A better understanding of the cellular response and function in vascular repair can facilitate the development of new therapeutic strategies. In this review, we analyzed the mechanism of cerebrovascular impairment and the repercussions following various forms of TBI. We then discussed the role of distinct cell types in the repair of meningeal and parenchyma vasculature following TBI, including endothelial cells, endothelial progenitor cells, pericytes, glial cells (astrocytes and microglia), neurons, myeloid cells (macrophages and monocytes) and meningeal lymphatic endothelial cells. Finally, possible treatment techniques targeting these unique cell types for vascular repair after TBI are discussed.
Collapse
Affiliation(s)
- Zi-Ai Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Neurology, General Hospital of Northern Theater Command, 83# Wen-Hua Road, Shenyang 110840, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Senthil Kumaran Satyanarayanan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong U Liu
- Laboratory of Neuroimmunology in Health and Disease Institute, Guangzhou First People’s Hospital School of Medicine, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 511400, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
30
|
Butler T, Wang XH, Chiang GC, Li Y, Zhou L, Xi K, Wickramasuriya N, Tanzi E, Spector E, Ozsahin I, Mao X, Razlighi QR, Fung EK, Dyke JP, Maloney T, Gupta A, Raj A, Shungu DC, Mozley PD, Rusinek H, Glodzik L. Choroid Plexus Calcification Correlates with Cortical Microglial Activation in Humans: A Multimodal PET, CT, MRI Study. AJNR Am J Neuroradiol 2023; 44:776-782. [PMID: 37321857 PMCID: PMC10337614 DOI: 10.3174/ajnr.a7903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE The choroid plexus (CP) within the brain ventricles is well-known to produce cerebrospinal fluid (CSF). Recently, the CP has been recognized as critical in modulating inflammation. MRI-measured CP enlargement has been reported in neuroinflammatory disorders like MS as well as with aging and neurodegeneration. The basis of MRI-measured CP enlargement is unknown. On the basis of tissue studies demonstrating CP calcification as a common pathology associated with aging and disease, we hypothesized that previously unmeasured CP calcification contributes to MRI-measured CP volume and may be more specifically associated with neuroinflammation. MATERIALS AND METHODS We analyzed 60 subjects (43 healthy controls and 17 subjects with Parkinson's disease) who underwent PET/CT using 11C-PK11195, a radiotracer sensitive to the translocator protein expressed by activated microglia. Cortical inflammation was quantified as nondisplaceable binding potential. Choroid plexus calcium was measured via manual tracing on low-dose CT acquired with PET and automatically using a new CT/MRI method. Linear regression assessed the contribution of choroid plexus calcium, age, diagnosis, sex, overall volume of the choroid plexus, and ventricle volume to cortical inflammation. RESULTS Fully automated choroid plexus calcium quantification was accurate (intraclass correlation coefficient with manual tracing = .98). Subject age and choroid plexus calcium were the only significant predictors of neuroinflammation. CONCLUSIONS Choroid plexus calcification can be accurately and automatically quantified using low-dose CT and MRI. Choroid plexus calcification-but not choroid plexus volume-predicted cortical inflammation. Previously unmeasured choroid plexus calcium may explain recent reports of choroid plexus enlargement in human inflammatory and other diseases. Choroid plexus calcification may be a specific and relatively easily acquired biomarker for neuroinflammation and choroid plexus pathology in humans.
Collapse
Affiliation(s)
- T Butler
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - X H Wang
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - G C Chiang
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - Y Li
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - L Zhou
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - K Xi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - N Wickramasuriya
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E Tanzi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E Spector
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - I Ozsahin
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - X Mao
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - Q R Razlighi
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - E K Fung
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - J P Dyke
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - T Maloney
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - A Gupta
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| | - A Raj
- Department of Radiology (A.R.), University of California, San Francisco, San Francisco, California
| | - D C Shungu
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - P D Mozley
- Department of Radiology (X.M., E.K.F., J.P.D., D.C.S., P.D.M.), Weill Cornell Medicine, New York, New York
| | - H Rusinek
- Department of Radiology (H.R.), New York University, New York, New York
| | - L Glodzik
- From the Brain Health Imaging Institute (T.B., X.H.W., G.C.C., Y.L., L.Z., K.X., N.W., E.T., E.S., I.O., X.M., Q.R.R., T.M., A.G., L.G.)
| |
Collapse
|
31
|
Cerneckis J, Shi Y. Modeling brain macrophage biology and neurodegenerative diseases using human iPSC-derived neuroimmune organoids. Front Cell Neurosci 2023; 17:1198715. [PMID: 37342768 PMCID: PMC10277621 DOI: 10.3389/fncel.2023.1198715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
32
|
Distéfano-Gagné F, Bitarafan S, Lacroix S, Gosselin D. Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nat Rev Neurosci 2023:10.1038/s41583-023-00709-6. [PMID: 37268822 DOI: 10.1038/s41583-023-00709-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
As resident macrophages of the CNS, microglia are critical immune effectors of inflammatory lesions and associated neural dysfunctions. In multiple sclerosis (MS) and its animal models, chronic microglial inflammatory activity damages myelin and disrupts axonal and synaptic activity. In contrast to these detrimental effects, the potent phagocytic and tissue-remodelling capabilities of microglia support critical endogenous repair mechanisms. Although these opposing capabilities have long been appreciated, a precise understanding of their underlying molecular effectors is only beginning to emerge. Here, we review recent advances in our understanding of the roles of microglia in animal models of MS and demyelinating lesions and the mechanisms that underlie their damaging and repairing activities. We also discuss how the structured organization and regulation of the genome enables complex transcriptional heterogeneity within the microglial cell population at demyelinating lesions.
Collapse
Affiliation(s)
- Félix Distéfano-Gagné
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Sara Bitarafan
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Steve Lacroix
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - David Gosselin
- Axe Neuroscience, Centre de Recherche du CHU de Québec - Université Laval, Québec, Québec, Canada.
- Département de Médecine Moléculaire de la Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
33
|
Aydin S, Pareja J, Schallenberg VM, Klopstein A, Gruber T, Page N, Bouillet E, Blanchard N, Liblau R, Körbelin J, Schwaninger M, Johnson AJ, Schenk M, Deutsch U, Merkler D, Engelhardt B. Antigen recognition detains CD8 + T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun 2023; 14:3106. [PMID: 37253744 PMCID: PMC10229608 DOI: 10.1038/s41467-023-38703-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown and immune cell infiltration into the central nervous system (CNS) are early hallmarks of multiple sclerosis (MS). High numbers of CD8+ T cells are found in MS lesions, and antigen (Ag) presentation at the BBB has been proposed to promote CD8+ T cell entry into the CNS. Here, we show that brain endothelial cells process and cross-present Ag, leading to effector CD8+ T cell differentiation. Under physiological flow in vitro, endothelial Ag presentation prevented CD8+ T cell crawling and diapedesis resulting in brain endothelial cell apoptosis and BBB breakdown. Brain endothelial Ag presentation in vivo was limited due to Ag uptake by CNS-resident macrophages but still reduced motility of Ag-specific CD8+ T cells within CNS microvessels. MHC class I-restricted Ag presentation at the BBB during neuroinflammation thus prohibits CD8+ T cell entry into the CNS and triggers CD8+ T cell-mediated focal BBB breakdown.
Collapse
Affiliation(s)
- Sidar Aydin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Javier Pareja
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nicolas Blanchard
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for infectious and inflammatory diseases, University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Aaron J Johnson
- Mayo Clinic Graduate School of Biomedical Sciences, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|
34
|
Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, Avramidou E, Manthou ME. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr Issues Mol Biol 2023; 45:4285-4300. [PMID: 37232741 PMCID: PMC10217436 DOI: 10.3390/cimb45050272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (P.E.); (E.D.); (N.E.); (A.C.); (E.A.)
| |
Collapse
|
35
|
Garcia-Bonilla L, Shahanoor Z, Sciortino R, Nazarzoda O, Racchumi G, Iadecola C, Anrather J. Brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535150. [PMID: 37066298 PMCID: PMC10103945 DOI: 10.1101/2023.03.31.535150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cerebral ischemia triggers a powerful inflammatory reaction involving both peripheral leukocytes and brain resident cells. Recent evidence indicates that their differentiation into a variety of functional phenotypes contributes to both tissue injury and repair. However, the temporal dynamics and diversity of post-stroke immune cell subsets remain poorly understood. To address these limitations, we performed a longitudinal single-cell transcriptomic study of both brain and mouse blood to obtain a composite picture of brain-infiltrating leukocytes, circulating leukocytes, microglia and endothelium diversity over the ischemic/reperfusion time. Brain cells and blood leukocytes isolated from mice 2 or 14 days after transient middle cerebral artery occlusion or sham surgery were purified by FACS sorting and processed for droplet-based single-cell transcriptomics. The analysis revealed a strong divergence of post-ischemic microglia, macrophages, and neutrophils over time, while such diversity was less evident in dendritic cells, B, T and NK cells. Conversely, brain endothelial cells and brain associated-macrophages showed altered transcriptomic signatures at 2 days post-stroke, but low divergence from sham at day 14. Pseudotime trajectory inference predicted the in-situ longitudinal progression of monocyte-derived macrophages from their blood precursors into day 2 and day 14 phenotypes, while microglia phenotypes at these two time points were not connected. In contrast to monocyte-derived macrophages, neutrophils were predicted to be continuously de-novo recruited from the blood. Brain single-cell transcriptomics from both female and male aged mice did not show major changes in respect to young mice, but aged and young brains differed in their immune cell composition. Furthermore, blood leukocyte analysis also revealed altered transcriptomes after stroke. However, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification into cellular subsets occurs within the brain in the early and the recovery phase of ischemic stroke. In addition, this resource report contains a searchable database https://anratherlab.shinyapps.io/strokevis/ to allow user-friendly access to our data. The StrokeVis tool constitutes a comprehensive gene expression atlas that can be interrogated at the gene and cell type level to explore the transcriptional changes of endothelial and immune cell subsets from mouse brain and blood after stroke.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Ziasmin Shahanoor
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Rose Sciortino
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Omina Nazarzoda
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Gianfranco Racchumi
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Costantino Iadecola
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Josef Anrather
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
36
|
Como CN, Kim S, Siegenthaler J. Stuck on you: Meninges cellular crosstalk in development. Curr Opin Neurobiol 2023; 79:102676. [PMID: 36773497 PMCID: PMC10023464 DOI: 10.1016/j.conb.2023.102676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The spatial and temporal development of the brain, overlying meninges (fibroblasts, vasculature and immune cells) and calvarium are highly coordinated. In particular, the timing of meningeal fibroblasts into molecularly distinct pia, arachnoid and dura subtypes coincides with key developmental events in the brain and calvarium. Further, the meninges are positioned to influence development of adjacent structures and do so via depositing basement membrane and producing molecular cues to regulate brain and calvarial development. Here, we review the current knowledge of how meninges development aligns with events in the brain and calvarium and meningeal fibroblast "crosstalk" with these structures. We summarize outstanding questions and how the use of non-mammalian models to study the meninges will substantially advance the field of meninges biology.
Collapse
Affiliation(s)
- Christina N Como
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. https://twitter.com/ChristinaComo
| | - Sol Kim
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado, School of Medicine Department of Pediatrics 12800 East 19th Ave MS-8313 Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Bridlance C, Thion MS. Multifaceted microglia during brain development: Models and tools. Front Neurosci 2023; 17:1125729. [PMID: 37034157 PMCID: PMC10076615 DOI: 10.3389/fnins.2023.1125729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Microglia, the brain resident macrophages, are multifaceted glial cells that belong to the central nervous and immune systems. As part of the immune system, they mediate innate immune responses, regulate brain homeostasis and protect the brain in response to inflammation or injury. At the same time, they can perform a wide array of cellular functions that relate to the normal functioning of the brain. Importantly, microglia are key actors of brain development. Indeed, these early brain invaders originate outside of the central nervous system from yolk sac myeloid progenitors, and migrate into the neural folds during early embryogenesis. Before the generation of oligodendrocytes and astrocytes, microglia thus occupy a unique position, constituting the main glial population during early development and participating in a wide array of embryonic and postnatal processes. During this developmental time window, microglia display remarkable features, being highly heterogeneous in time, space, morphology and transcriptional states. Although tremendous progress has been made in our understanding of their ontogeny and roles, there are several limitations for the investigation of specific microglial functions as well as their heterogeneity during development. This review summarizes the current murine tools and models used in the field to study the development of these peculiar cells. In particular, we focus on the methodologies used to label and deplete microglia, monitor their behavior through live-imaging and also discuss the progress currently being made by the community to unravel microglial functions in brain development and disorders.
Collapse
Affiliation(s)
- Cécile Bridlance
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Morgane Sonia Thion
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
38
|
Proulx ST, Engelhardt B. Macrophages clear the way for CNS fluid flow. Lancet Neurol 2023; 22:194-195. [PMID: 36804079 DOI: 10.1016/s1474-4422(23)00028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023]
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern 3012, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Bern 3012, Switzerland.
| |
Collapse
|
39
|
Fang C, Lau WL, Sun J, Chang R, Vallejo A, Lee D, Liu J, Liu H, Hung YH, Zhao Y, Paganini-Hill A, Sumbria RK, Cribbs DH, Fisher M. Chronic kidney disease promotes cerebral microhemorrhage formation. J Neuroinflammation 2023; 20:51. [PMID: 36841828 PMCID: PMC9960195 DOI: 10.1186/s12974-023-02703-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is increasingly recognized as a stroke risk factor, but its exact relationship with cerebrovascular disease is not well-understood. We investigated the development of cerebral small vessel disease using in vivo and in vitro models of CKD. METHODS CKD was produced in aged C57BL/6J mice using an adenine-induced tubulointerstitial nephritis model. We analyzed brain histology using Prussian blue staining to examine formation of cerebral microhemorrhage (CMH), the hemorrhagic component of small vessel disease and the neuropathological substrate of MRI-demonstrable cerebral microbleeds. In cell culture studies, we examined effects of serum from healthy or CKD patients and gut-derived uremic toxins on brain microvascular endothelial barrier. RESULTS CKD was induced in aged C57BL/6J mice with significant increases in both serum creatinine and cystatin C levels (p < 0.0001) without elevation of systolic or diastolic blood pressure. CMH was significantly increased and positively correlated with serum creatinine level (Spearman r = 0.37, p < 0.01). Moreover, CKD significantly increased Iba-1-positive immunoreactivity by 51% (p < 0.001), induced a phenotypic switch from resting to activated microglia, and enhanced fibrinogen extravasation across the blood-brain barrier (BBB) by 34% (p < 0.05). On analysis stratified by sex, the increase in CMH number was more pronounced in male mice and this correlated with greater creatinine elevation in male compared with female mice. Microglial depletion with PLX3397 diet significantly decreased CMH formation in CKD mice without affecting serum creatinine levels. Incubation of CKD serum significantly reduced transendothelial electrical resistance (TEER) (p < 0.01) and increased sodium fluorescein permeability (p < 0.05) across the endothelial monolayer. Uremic toxins (i.e., indoxyl sulfate, p-cresyl sulfate, and trimethylamine-N-oxide) in combination with urea and lipopolysaccharide induced a marked drop in TEER compared with the control group (p < 0.0001). CONCLUSIONS CKD promotes the development of CMH in aged mice independent of blood pressure but directly proportional to the degree of renal impairment. These effects of CKD are likely mediated in part by microglia and are associated with BBB impairment. The latter is likely related to gut-derived bacteria-dependent toxins classically associated with CKD. Overall, these findings demonstrate an important role of CKD in the development of cerebral small vessel disease.
Collapse
Affiliation(s)
- Chuo Fang
- Department of Neurology, University of California, Irvine, CA, USA
| | - Wei Ling Lau
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Adrian Vallejo
- Department of Neurology, University of California, Irvine, CA, USA
| | - Donghy Lee
- Department of Neurology, University of California, Irvine, CA, USA
| | - Jihua Liu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Han Liu
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | - Yu-Han Hung
- Department of Neurology, University of California, Irvine, CA, USA
| | - Yitong Zhao
- Department of Medicine, Division of Nephrology, University of California, Irvine, CA, USA
| | | | - Rachita K Sumbria
- Department of Neurology, University of California, Irvine, CA, USA
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mark Fisher
- Department of Neurology, University of California, Irvine, CA, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA.
- Department of Neurology, UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall (Building 55), Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
40
|
Arseni L, Sharma R, Mack N, Nagalla D, Ohl S, Hielscher T, Singhal M, Pilz R, Augustin H, Sandhoff R, Herold-Mende C, Tews B, Lichter P, Seiffert M. Sphingosine-1-Phosphate Recruits Macrophages and Microglia and Induces a Pro-Tumorigenic Phenotype That Favors Glioma Progression. Cancers (Basel) 2023; 15:cancers15020479. [PMID: 36672428 PMCID: PMC9856301 DOI: 10.3390/cancers15020479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma is the most aggressive brain tumor in adults. Treatment failure is predominantly caused by its high invasiveness and its ability to induce a supportive microenvironment. As part of this, a major role for tumor-associated macrophages/microglia (TAMs) in glioblastoma development was recognized. Phospholipids are important players in various fundamental biological processes, including tumor-stroma crosstalk, and the bioactive lipid sphingosine-1-phosphate (S1P) has been linked to glioblastoma cell proliferation, invasion, and survival. Despite the urgent need for better therapeutic approaches, novel strategies targeting sphingolipids in glioblastoma are still poorly explored. Here, we showed that higher amounts of S1P secreted by glioma cells are responsible for an active recruitment of TAMs, mediated by S1P receptor (S1PR) signaling through the modulation of Rac1/RhoA. This resulted in increased infiltration of TAMs in the tumor, which, in turn, triggered their pro-tumorigenic phenotype through the inhibition of NFkB-mediated inflammation. Gene set enrichment analyses showed that such an anti-inflammatory microenvironment correlated with shorter survival of glioblastoma patients. Inhibition of S1P restored a pro-inflammatory phenotype in TAMs and resulted in increased survival of tumor-bearing mice. Taken together, our results establish a crucial role for S1P in fine-tuning the crosstalk between glioma and infiltrating TAMs, thus pointing to the S1P-S1PR axis as an attractive target for glioma treatment.
Collapse
Affiliation(s)
- Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.A.); (M.S.)
| | - Rakesh Sharma
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Norman Mack
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Deepthi Nagalla
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Robert Pilz
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hellmut Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group at the University of Heidelberg and the German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (L.A.); (M.S.)
| |
Collapse
|
41
|
Qi Z, Zhao J, Li Y, Zhang B, Hu S, Chen Y, Ma J, Shu Y, Wang Y, Cheng P. Live-attenuated Japanese encephalitis virus inhibits glioblastoma growth and elicits potent antitumor immunity. Front Immunol 2023; 14:982180. [PMID: 37114043 PMCID: PMC10126305 DOI: 10.3389/fimmu.2023.982180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors that have developed resistance to currently available conventional therapies, including surgery, radiation, and systemic chemotherapy. In this study, we investigated the safety of a live attenuated Japanese encephalitis vaccine strain (JEV-LAV) virus as an oncolytic virus for intracerebral injection in mice. We infected different GBM cell lines with JEV-LAV to investigate whether it had growth inhibitory effects on GBM cell lines in vitro. We used two models for evaluating the effect of JEV-LAV on GBM growth in mice. We investigated the antitumor immune mechanism of JEV-LAV through flow cytometry and immunohistochemistry. We explored the possibility of combining JEV-LAV with PD-L1 blocking therapy. This work suggested that JEV-LAV had oncolytic activity against GBM tumor cells in vitro and inhibited their growth in vivo. Mechanistically, JEV-LAV increased CD8+ T cell infiltration into tumor tissues and remodeled the immunosuppressive GBM microenvironment that is non-conducive to immunotherapy. Consequently, the results of combining JEV-LAV with immune checkpoint inhibitors indicated that JEV-LAV therapy improved the response of aPD-L1 blockade therapy against GBM. The safety of intracerebrally injected JEV-LAV in animals further supported the clinical use of JEV-LAV for GBM treatment.
Collapse
Affiliation(s)
- Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhao
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviruses Vaccine, National Institute for Food and Drug Control, Beijing, China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunmeng Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ping Cheng,
| |
Collapse
|
42
|
Abstract
Border-associated macrophages (BAMs) reside at the interface between the brain and the periphery, including the meninges and choroid plexus. In this issue of Immunity, two studies report the dynamics, diversity, and fate of murine BAMs during infection, assigning these cells a neuroprotective role.
Collapse
Affiliation(s)
- Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
43
|
Mundt S, Greter M, Becher B. The CNS mononuclear phagocyte system in health and disease. Neuron 2022; 110:3497-3512. [PMID: 36327896 DOI: 10.1016/j.neuron.2022.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
CNS-resident macrophages-including parenchymal microglia and border-associated macrophages (BAMs)-contribute to neuronal development and health, vascularization, and tissue integrity at steady state. Border-patrolling mononuclear phagocytes such as dendritic cells and monocytes confer important immune functions to the CNS, protecting it from pathogenic threats including aberrant cell growth and brain malignancies. Even though we have learned much about the contribution of lymphocytes to CNS pathologies, a better understanding of differential roles of tissue-resident and -invading phagocytes is slowly emerging. In this perspective, we propose that in CNS neuroinflammatory diseases, tissue-resident macrophages (TRMs) contribute to the clearing of debris and resolution of inflammation, whereas blood-borne phagocytes are drivers of immunopathology. We discuss the remaining challenges to resolve which specialized mononuclear phagocyte populations are driving or suppressing immune effector function, thereby potentially dictating the outcome of autoimmunity or brain cancer.
Collapse
Affiliation(s)
- Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Llorente-Ovejero A, Bengoetxea de Tena I, Martínez-Gardeazabal J, Moreno-Rodríguez M, Lombardero L, Manuel I, Rodríguez-Puertas R. Cannabinoid Receptors and Glial Response Following a Basal Forebrain Cholinergic Lesion. ACS Pharmacol Transl Sci 2022; 5:791-802. [PMID: 36110372 PMCID: PMC9469185 DOI: 10.1021/acsptsci.2c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/28/2022]
Abstract
The endocannabinoid system modulates learning, memory, and neuroinflammatory processes, playing a key role in neurodegeneration, including Alzheimer's disease (AD). Previous results in a rat lesion model of AD showed modulation of endocannabinoid receptor activity in the basalo-cortical pathway following a specific lesion of basal forebrain cholinergic neurons (BFCNs), indicating that the glial neuroinflammatory response accompanying the lesion is related to endocannabinoid signaling. In this study, 7 days after the lesion, decreased astrocyte and increased microglia immunoreactivities (GFAP and Iba-1) were observed, indicating microglia-mediated neuroinflammation. Using autoradiographic studies, the density and functional coupling to G-proteins of endocannabinoid receptor subtypes were studied in tissue sections from different brain areas where microglia density increased, using CB1 and CB2 selective agonists and antagonists. In the presence of the specific CB1 receptor antagonist, SR141716A, [3H]CP55,940 binding (receptor density) was completely blocked in a dose-dependent manner, while the selective CB2 receptor antagonist, SR144528, inhibited binding to 25%, at best. [35S]GTPγS autoradiography (receptor coupling to Gi/0-proteins) evoked by CP55,940 (CB1/CB2 agonist) and HU308 (more selective for CB2) was abolished by SR141716A in all areas, while SR144528 blocked up to 51.8% of the coupling to Gi/0-proteins evoked by CP55,940 restricted to the nucleus basalis magnocellularis. Together, these results demonstrate that there are increased microglia and decreased astrocyte immunoreactivities 1 week after a specific deletion of BFCNs, which projects to cortical areas, where the CB1 receptor coupling to Gi/0-proteins is upregulated. However, at the lesion site, the area with the highest neuroinflammatory response, there is also a limited contribution of CB2.
Collapse
Affiliation(s)
| | | | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Laura Lombardero
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Iván Manuel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| |
Collapse
|
45
|
Reciprocal Interactions between Oligodendrocyte Precursor Cells and the Neurovascular Unit in Health and Disease. Cells 2022; 11:cells11121954. [PMID: 35741083 PMCID: PMC9221698 DOI: 10.3390/cells11121954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are mostly known for their capability to differentiate into oligodendrocytes and myelinate axons. However, they have been observed to frequently interact with cells of the neurovascular unit during development, homeostasis, and under pathological conditions. The functional consequences of these interactions are largely unclear, but are increasingly studied. Although OPCs appear to be a rather homogenous cell population in the central nervous system (CNS), they present with an enormous potential to adapt to their microenvironment. In this review, it is summarized what is known about the various roles of OPC-vascular interactions, and the circumstances under which they have been observed.
Collapse
|