1
|
Li N, Li H, Chen Z, Feng J, Guo T, Guo H, Zhang X, Yan Y, He C, Zong D. Transcriptome and Metabolome Based Mechanisms Revealing the Accumulation and Transformation of Sugars and Fats in Pinus armandii Seed Kernels during the Harvesting Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21533-21547. [PMID: 39306861 DOI: 10.1021/acs.jafc.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Pinus armandii seed kernel is a nutrient-rich and widely consumed nut whose yield and quality are affected by, among other things, harvesting time and climatic conditions, which reduce economic benefits. To investigate the optimal harvesting period of P. armandii seed kernels, this study determined the nutrient composition and seed kernel morphology and analyzed the gene expression and metabolic differences of P. armandii seed kernels during the harvesting period by transcriptomics and metabolomics. The results revealed that during the maturation of P. armandii seed kernels, there was a significant increase in the width, thickness, and weight of the seed kernels, as well as a significant accumulation of sucrose, soluble sugars, proteins, starch, flavonoids, and polyphenols and a significant decrease in lipid content. In addition, transcriptomic and metabolomic analyses of P. armandii seed kernels during the harvesting period screened and identified 103 differential metabolites (DEMs) and 8899 differential genes (DEGs). Analysis of these DEMs and DEGs revealed that P. armandii seed kernel harvesting exhibited gene-metabolite differences in sugar- and lipid-related pathways. Among them, starch and sucrose metabolism, glycolysis, and gluconeogenesis were associated with the synthesis and catabolism of sugars, whereas fatty acid degradation, glyoxylate and dicarboxylic acid metabolism, and glycerophospholipid metabolism were associated with the synthesis and catabolism of lipids. Therefore, the present study hypothesized that these differences in genes and metabolites exhibited during the harvesting period of P. armandii seed kernels might be related to the accumulation and transformation of sugars and lipids. This study may provide a theoretical basis for determining the optimal harvesting time of P. armandii seed kernels, changes in the molecular mechanisms of nutrient accumulation, and quality directed breeding.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhihua Chen
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiayu Feng
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Tiansu Guo
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yi Yan
- Kunming Forestry Scientific Research Institute, Kunming 650221, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
2
|
Interactions with ectoparasitic mites induce host metabolic and immune responses in flies at the expense of reproduction-associated factors. Parasitology 2020; 147:1196-1205. [PMID: 32498733 DOI: 10.1017/s0031182020000918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parasites cause harm to their hosts and represent pervasive causal agents of natural selection. Understanding host proximate responses during interactions with parasites can help predict which genes and molecular pathways are targets of this selection. In the current study, we examined transcriptional changes arising from interactions between Drosophila melanogaster and their naturally occurring ectoparasitic mite, Gamasodes queenslandicus. Shifts in host transcript levels associated with behavioural avoidance revealed the involvement of genes underlying nutrient metabolism. These genetic responses were reflected in altered body lipid and glycogen levels in the flies. Mite infestation triggered a striking immune response, while male accessory gland protein transcript levels were simultaneously reduced, suggesting a trade-off between host immune responses to parasite challenge and reproduction. Comparison of transcriptional analyses during mite infestation to those during nematode and parasitoid attack identified host genes similarly expressed in flies during these interactions. Validation of the involvement of specific genes with RNA interference lines revealed candidates that may directly mediate fly-ectoparasite interactions. Our physiological and molecular characterization of the Drosophila-Gamasodes interface reveals new proximate mechanisms underlying host-parasite interactions, specifically host transcriptional shifts associated with behavioural avoidance and infestation. The results identify potential general mechanisms underlying host resistance and evolutionarily relevant trade-offs.
Collapse
|
3
|
Goossens S, Wybouw N, Van Leeuwen T, Bonte D. The physiology of movement. MOVEMENT ECOLOGY 2020; 8:5. [PMID: 32042434 PMCID: PMC7001223 DOI: 10.1186/s40462-020-0192-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
Movement, from foraging to migration, is known to be under the influence of the environment. The translation of environmental cues to individual movement decision making is determined by an individual's internal state and anticipated to balance costs and benefits. General body condition, metabolic and hormonal physiology mechanistically underpin this internal state. These physiological determinants are tightly, and often genetically linked with each other and hence central to a mechanistic understanding of movement. We here synthesise the available evidence of the physiological drivers and signatures of movement and review (1) how physiological state as measured in its most coarse way by body condition correlates with movement decisions during foraging, migration and dispersal, (2) how hormonal changes underlie changes in these movement strategies and (3) how these can be linked to molecular pathways. We reveale that a high body condition facilitates the efficiency of routine foraging, dispersal and migration. Dispersal decision making is, however, in some cases stimulated by a decreased individual condition. Many of the biotic and abiotic stressors that induce movement initiate a physiological cascade in vertebrates through the production of stress hormones. Movement is therefore associated with hormone levels in vertebrates but also insects, often in interaction with factors related to body or social condition. The underlying molecular and physiological mechanisms are currently studied in few model species, and show -in congruence with our insights on the role of body condition- a central role of energy metabolism during glycolysis, and the coupling with timing processes during migration. Molecular insights into the physiological basis of movement remain, however, highly refractory. We finalise this review with a critical reflection on the importance of these physiological feedbacks for a better mechanistic understanding of movement and its effects on ecological dynamics at all levels of biological organization.
Collapse
Affiliation(s)
- Steven Goossens
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Dries Bonte
- Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|
5
|
Niitepõld K, Saastamoinen M. A Candidate Gene in an Ecological Model Species: Phosphoglucose Isomerase (Pgi) in the Glanville Fritillary Butterfly (Melitaea cinxia). ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kristjan Niitepõld
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| | - Marjo Saastamoinen
- Metapopulation Research Centre, P.O. Box 65, FI-00014 University of Helsinki, Finland
| |
Collapse
|
6
|
Zhang QL, Zhang L, Zhao TX, Wang J, Zhu QH, Chen JY, Yuan ML. Gene sequence variations and expression patterns of mitochondrial genes are associated with the adaptive evolution of two Gynaephora species (Lepidoptera: Lymantriinae) living in different high-elevation environments. Gene 2017; 610:148-155. [DOI: 10.1016/j.gene.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 01/05/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
|
7
|
Bybee S, Córdoba-Aguilar A, Duryea MC, Futahashi R, Hansson B, Lorenzo-Carballa MO, Schilder R, Stoks R, Suvorov A, Svensson EI, Swaegers J, Takahashi Y, Watts PC, Wellenreuther M. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Front Zool 2016; 13:46. [PMID: 27766110 PMCID: PMC5057408 DOI: 10.1186/s12983-016-0176-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.
Collapse
Affiliation(s)
- Seth Bybee
- Brigham Young University, Provo, UT 84606 USA
| | - Alex Córdoba-Aguilar
- Departmento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo, Postal 70-275, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - M. Catherine Duryea
- Evolutionary Ecology Unit, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki 305-8566 Japan
| | - Bengt Hansson
- Evolutionary Ecology Unit, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - M. Olalla Lorenzo-Carballa
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool, L69 7ZB UK
| | - Ruud Schilder
- Departments of Entomology and Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, University of Leuven, 3000 Leuven, Belgium
| | - Anton Suvorov
- Department of Biology, Brigham Young University, LSB 4102, Provo, UT 84602 USA
| | - Erik I. Svensson
- Evolutionary Ecology Unit, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Janne Swaegers
- Laboratory of Aquatic Ecology, Evolution and Conservation, Department of Biology, University of Leuven, 3000 Leuven, Belgium
| | - Yuma Takahashi
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578 Japan
| | | | - Maren Wellenreuther
- Evolutionary Ecology Unit, Department of Biology, Lund University, 223 62 Lund, Sweden
- Plant and Food Research Limited, Nelson, 7010 New Zealand
| |
Collapse
|
8
|
Li Y, Andersson S. The 3-D Structural Basis for the Pgi Genotypic Differences in the Performance of the Butterfly Melitaea cinxia at Different Temperatures. PLoS One 2016; 11:e0160191. [PMID: 27462709 PMCID: PMC4962976 DOI: 10.1371/journal.pone.0160191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Although genotype-by-environment interaction has long been used to unveil the genetic variation that affects Darwinian fitness, the mechanisms underlying the interaction usually remain unknown. Genetic variation at the dimeric glycolytic enzyme phosphoglucoisomerase (Pgi) has been observed to interact with temperature to explain the variation in the individual performance of the butterfly Melitaea cinxia. At relatively high temperature, individuals with Pgi-non-f genotypes generally surpass those with Pgi-f genotypes, while the opposite applies at relatively low temperature. In this study, we did protein structure predictions and BlastP homology searches with the aim to understand the structural basis for this temperature-dependent difference in the performance of M. cinxia. Our results show that, at amino acid (AA) site 372, one of the two sites that distinguish Pgi-f (the translated polypeptide of the Pgi-f allele) from Pgi-non-f (the translated polypeptide of the Pgi-non-f allele), the Pgi-non-f-related residue strengthens an electrostatic attraction between a pair of residues (Glu373-Lys472) that are from different monomers, compared to the Pgi-f-related residue. Further, BlastP searches of animal protein sequences reveal a dramatic excess of electrostatically attractive combinations of the residues at the Pgi AA sites equivalent to sites 373 and 472 in M. cinxia. This suggests that factors enhancing the inter-monomer interaction between these two sites, and therefore helping the tight association of two Pgi monomers, are favourable. Our homology-modelling results also show that, at the second AA site that distinguishes Pgi-f from Pgi-non-f in M. cinxia, the Pgi-non-f-related residue is more entropy-favourable (leading to higher structural stability) than the Pgi-f-related residue. To sum up, this study suggests a higher structural stability of the protein products of the Pgi-non-f genotypes than those of the Pgi-f genotypes, which may explain why individuals carrying Pgi-non-f genotypes outperform those carrying Pgi-f genotypes at stressful high temerature.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | | |
Collapse
|
9
|
De Roissart A, Wybouw N, Renault D, Van Leeuwen T, Bonte D. Life‐history evolution in response to changes in metapopulation structure in an arthropod herbivore. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annelies De Roissart
- Department Biology Terrestrial Ecology Unit Ghent University K.L. Ledeganckstraat 35 Ghent B‐9000 Belgium
| | - Nicky Wybouw
- Department of Crop Protection Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Science Park 904 1098 XH Amsterdam the Netherlands
| | - David Renault
- UMR 6553 ECOBIO CNRS Université de Rennes 1 Avenue du Gal Leclerc 263 CS 74205 35042 Rennes Cedex France
| | - Thomas Van Leeuwen
- Department of Crop Protection Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Science Park 904 1098 XH Amsterdam the Netherlands
| | - Dries Bonte
- Department Biology Terrestrial Ecology Unit Ghent University K.L. Ledeganckstraat 35 Ghent B‐9000 Belgium
| |
Collapse
|
10
|
Boychuk EC, Smiley JT, Dahlhoff EP, Bernards MA, Rank NE, Sinclair BJ. Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:157-166. [PMID: 26231921 DOI: 10.1016/j.jinsphys.2015.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Small ectothermic animals living at high altitude in temperate latitudes are vulnerable to lethal cold throughout the year. Here we investigated the cold tolerance of the leaf beetle Chrysomela aeneicollis living at high elevation in California's Sierra Nevada mountains. These insects spend over half their life cycle overwintering, and may therefore be vulnerable to winter cold, and prior studies have demonstrated that survival is reduced by exposure to summertime cold. We identify overwintering microhabitat of this insect, describe cold tolerance strategies in all life stages, and use microclimate data to determine the importance of snow cover and microhabitat buffering for overwinter survival. Cold tolerance varies among life history stages and is typically correlated with microhabitat temperature: cold hardiness is lowest in chill-susceptible larvae, and highest in freeze-tolerant adults. Hemolymph osmolality is higher in quiescent (overwintering) than summer adults, primarily, but not exclusively, due to elevated hemolymph glycerol. In nature, adult beetles overwinter primarily in leaf litter and suffer high mortality if early, unseasonable cold prevents them from entering this refuge. These data suggest that cold tolerance is tightly linked to life stage. Thus, population persistence of montane insects may become problematic as climate becomes more unpredictable and climate change uncouples the phenology of cold tolerance and development from the timing of extreme cold events.
Collapse
Affiliation(s)
- Evelyn C Boychuk
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada; White Mountain Research Center, 3000 E. Line Street, Bishop, CA 93514, United States
| | - John T Smiley
- White Mountain Research Center, 3000 E. Line Street, Bishop, CA 93514, United States
| | - Elizabeth P Dahlhoff
- White Mountain Research Center, 3000 E. Line Street, Bishop, CA 93514, United States; Department of Biology, Santa Clara University, Santa Clara, CA 95053, United States
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Nathan E Rank
- White Mountain Research Center, 3000 E. Line Street, Bishop, CA 93514, United States; Department of Biology, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Brent J Sinclair
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|