1
|
Limboo N, Saha D. Assessment of sublethal effects of permethrin on adult life characteristics and resistance dynamics in Aedes albopictus (Diptera: Culicidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106020. [PMID: 39084808 DOI: 10.1016/j.pestbp.2024.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024]
Abstract
Mosquitoes are regularly exposed to adverse effects of insecticides employed in field during vector control campaigns. Its primary goal is to eliminate the vector population; nevertheless, this practise typically ignores the residual impacts and long-term repercussions on the remaining population. Here, the current study analysed how sublethal exposure of insecticides alter the life qualities, genotypic and biochemical characteristics of mosquitoes. The resistance ratio value in Laboratory Resistant (Lab-R) larvae increased 10 times (0.010 mg/l to 0.108 mg/l) compared to Laboratory Susceptible (LabS) larvae. It also revealed that the surviving mosquitoes had 50% reduction in hatchability but had longer larval and pupal periods (15 days and 2 days), respectively. The survival rates decrease in female by 2 days but increase in male by 7 days which is of concern and necessitates additional study. Moreover, major role of monooxygenase was confirmed behind resistance development which was further supported by piperonyl butoxide assay where reduction in Tolerance Ratio (TR50) by 12-fold occurred and gene expression profile also showed high expression level of CYP6P12 gene. In resistant strain, cuticular thickness increased by 1.23 times and alteration at codon 1532 (ATC to TTC) on VGSC gene leads to mutation I1532F. The data gleaned from our work highlights the threat of sublethal insecticides on vector control techniques and offers ample evidence that the larval selection alters adult life qualities, metabolic properties and transgenerational features which contributes to the damage caused by resistance.
Collapse
Affiliation(s)
- Nilu Limboo
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, District-Darjeeling, 734013 West Bengal, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, District-Darjeeling, 734013 West Bengal, India.
| |
Collapse
|
2
|
Adden AK, Haines LR, Acosta-Serrano Á, Prieto-Godino LL. Tsetse flies ( Glossina morsitans morsitans) choose birthing sites guided by substrate cues with no evidence for a role of pheromones. Proc Biol Sci 2023; 290:20230030. [PMID: 37122250 PMCID: PMC10130706 DOI: 10.1098/rspb.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Tsetse flies significantly impact public health and economic development in sub-Saharan African countries by transmitting the fatal disease African trypanosomiasis. Unusually, instead of laying eggs, tsetse birth a single larva that immediately burrows into the soil to pupate. Where the female chooses to larviposit is, therefore, crucial for offspring survival. Previous laboratory studies suggested that a putative larval pheromone, n-pentadecane, attracts gravid female Glossina morsitans morsitans to appropriate larviposition sites. However, this attraction could not be reproduced in field experiments. Here, we resolve this disparity by designing naturalistic laboratory experiments that closely mimic the physical characteristics found in the wild. We show that gravid G. m. morsitans were neither attracted to the putative pheromone nor, interestingly, to pupae placed in the soil. By contrast, females appear to choose larviposition sites based on environmental substrate cues. We conclude that, among the many cues that likely contribute to larviposition choice in nature, substrate features are a main determinant, while we failed to find evidence for a role of pheromones.
Collapse
Affiliation(s)
- Andrea K Adden
- Neural Circuits and Evolution Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Lee R Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Lucia L Prieto-Godino
- Neural Circuits and Evolution Laboratory, Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Baeshen R. Swarming Behavior in Anopheles gambiae (sensu lato): Current Knowledge and Future Outlook. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:56-66. [PMID: 34617121 PMCID: PMC8755986 DOI: 10.1093/jme/tjab157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 06/13/2023]
Abstract
Effective management of insect disease vectors requires a detailed understanding of their ecology and behavior. In Anopheles gambiae sensu lato (s.l.) (Diptera: Culicidae) mating occurs during swarming, but knowledge of their mating behavior under natural conditions is limited. Mosquitoes mate in flight over specific landmarks, known as swarm markers, at particular locations. Swarms consist of males; the females usually approach the swarm and depart following copulation. The number of mating pairs per swarm is closely associated with swarm size. The shape and height of swarm markers vary and may depend on the environmental conditions at the swarm's location. Male-male interactions in mosquito swarms with similar levels of attractive flight activity can offer a mating advantage to some individuals. Flight tone is used by mosquitoes to recognize the other sex and choose a desirable mate. Clarifying these and other aspects of mosquito reproductive behavior can facilitate the development of population control measures that target swarming sites. This review describes what is currently known about swarming behavior in Anopheles gambiae s.l., including swarm characteristics; mating within and outside of swarms, insemination in females, and factors affecting and stimulating swarming.
Collapse
Affiliation(s)
- Rowida Baeshen
- Faculty of Sciences, Biology Department, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Cruz Y Celis Peniche P. Drivers of insect consumption across human populations. Evol Anthropol 2021; 31:45-59. [PMID: 34644813 DOI: 10.1002/evan.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 09/28/2021] [Indexed: 11/10/2022]
Abstract
Discussions regarding entomophagy in humans have been typically led by entomologists. While anthropologists devote much time to understanding diverse human subsistence practices, historical and cultural variation in insect consumption remains largely unexplained. This review explores the relation between variable ecologies, subsistence strategies, and social norms on insect consumption patterns across past and contemporary human populations. Ecological factors, such as the nutritional contribution of edible insects relative to those of other foraged or farmed resources available, may help explain variation in their consumption. Additionally, our evolved social learning strategies may help propagate social norms that prohibit or prioritize the consumption of some or all edible insects, independent of their profitability. By adopting a behavioral ecological and cultural evolutionary approach, this review aims to resolve current debates on insect consumption and provide directions for future research.
Collapse
|
5
|
Savini G, Scolari F, Ometto L, Rota-Stabelli O, Carraretto D, Gomulski LM, Gasperi G, Abd-Alla AMM, Aksoy S, Attardo GM, Malacrida AR. Viviparity and habitat restrictions may influence the evolution of male reproductive genes in tsetse fly (Glossina) species. BMC Biol 2021; 19:211. [PMID: 34556101 PMCID: PMC8461966 DOI: 10.1186/s12915-021-01148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glossina species (tsetse flies), the sole vectors of African trypanosomes, maintained along their long evolutionary history a unique reproductive strategy, adenotrophic viviparity. Viviparity reduces their reproductive rate and, as such, imposes strong selective pressures on males for reproductive success. These species live in sub-Saharan Africa, where the distributions of the main sub-genera Fusca, Morsitans, and Palpalis are restricted to forest, savannah, and riverine habitats, respectively. Here we aim at identifying the evolutionary patterns of the male reproductive genes of six species belonging to these three main sub-genera. We then interpreted the different patterns we found across the species in the light of viviparity and the specific habitat restrictions, which are known to shape reproductive behavior. RESULTS We used a comparative genomic approach to build consensus evolutionary trees that portray the selective pressure acting on the male reproductive genes in these lineages. Such trees reflect the long and divergent demographic history that led to an allopatric distribution of the Fusca, Morsitans, and Palpalis species groups. A dataset of over 1700 male reproductive genes remained conserved over the long evolutionary time scale (estimated at 26.7 million years) across the genomes of the six species. We suggest that this conservation may result from strong functional selective pressure on the male imposed by viviparity. It is noteworthy that more than half of these conserved genes are novel sequences that are unique to the Glossina genus and are candidates for selection in the different lineages. CONCLUSIONS Tsetse flies represent a model to interpret the evolution and differentiation of male reproductive biology under different, but complementary, perspectives. In the light of viviparity, we must take into account that these genes are constrained by a post-fertilization arena for genomic conflicts created by viviparity and absent in ovipositing species. This constraint implies a continuous antagonistic co-evolution between the parental genomes, thus accelerating inter-population post-zygotic isolation and, ultimately, favoring speciation. Ecological restrictions that affect reproductive behavior may further shape such antagonistic co-evolution.
Collapse
Affiliation(s)
- Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
| | - Davide Carraretto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
6
|
Camargo C, Ahmed-Braimah YH, Amaro IA, Harrington LC, Wolfner MF, Avila FW. Mating and blood-feeding induce transcriptome changes in the spermathecae of the yellow fever mosquito Aedes aegypti. Sci Rep 2020; 10:14899. [PMID: 32913240 PMCID: PMC7484758 DOI: 10.1038/s41598-020-71904-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Aedes aegypti mosquitoes are the primary vectors of numerous viruses that impact human health. As manipulation of reproduction has been proposed to suppress mosquito populations, elucidation of biological processes that enable males and females to successfully reproduce is necessary. One essential process is female sperm storage in specialized structures called spermathecae. Aedes aegypti females typically mate once, requiring them to maintain sperm viably to fertilize eggs they lay over their lifetime. Spermathecal gene products are required for Drosophila sperm storage and sperm viability, and a spermathecal-derived heme peroxidase is required for long-term Anopheles gambiae fertility. Products of the Ae. aegypti spermathecae, and their response to mating, are largely unknown. Further, although female blood-feeding is essential for anautogenous mosquito reproduction, the transcriptional response to blood-ingestion remains undefined in any reproductive tissue. We conducted an RNAseq analysis of spermathecae from unfed virgins, mated only, and mated and blood-fed females at 6, 24, and 72 h post-mating and identified significant differentially expressed genes in each group at each timepoint. A blood-meal following mating induced a greater transcriptional response in the spermathecae than mating alone. This study provides the first view of elicited mRNA changes in the spermathecae by a blood-meal in mated females.
Collapse
Affiliation(s)
- Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Colombia
| | | | - I Alexandra Amaro
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Complejo RutaN, Calle 67 #52-20, Laboratory 4-166, 050010, Medellín, Colombia.
| |
Collapse
|
7
|
Kim S, Trocke S, Sim C. Comparative studies of stenogamous behaviour in the mosquito Culex pipiens complex. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:427-435. [PMID: 29856079 DOI: 10.1111/mve.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 04/09/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Understanding the processes of reproductive behaviour in mosquitoes is crucial for improving mating competitiveness and mating specificity for sterile insect release programmes. The Culex pipiens (Linneaus) (Diptera: Culicidae) forms pipiens and molestus (Forskål), two biotypes of the Cx. pipiens complex, are vectors for West Nile virus, St Louis encephalitis virus and lymphatic filariases. Hybridization of these biotypes is known to occur in nature, although form pipiens mates above ground in large spaces (eurygamy) and form molestus preferentially mates in small spaces (stenogamy) such as sewage tunnels. Hybridization may allow gene flow of biotype-specific characteristics that are crucial in the disease transmission cycle. The present study examined and compared mating behaviours, insemination rates, fecundity and fertility in parental and F1 hybrids between Cx. pipiens f. pipiens and Cx. pipiens f. molestus in conditions of stenogamy. Unique mating behaviour sequences were identified in Cx. pipiens f. molestus, including tapping, mounting, co-flying and copulation. Despite the considerably high insemination rates in hybrid crosses, fertility and fecundity rates were varied. This observation could suggest reproductive isolation in the hybrid zone. The study also documents a failure of heterospecific males to produce fertile eggs in Cx. pipiens f. pipiens females, which may be attributable to gametic incompatibilities and may represent an additional barrier to gene exchange.
Collapse
Affiliation(s)
- S Kim
- Department of Biology, Baylor University, Waco, TX, U.S.A
| | - S Trocke
- Department of Biology, Baylor University, Waco, TX, U.S.A
| | - C Sim
- Department of Biology, Baylor University, Waco, TX, U.S.A
| |
Collapse
|
8
|
Evidence that microRNAs are part of the molecular toolkit regulating adult reproductive diapause in the mosquito, Culex pipiens. PLoS One 2018; 13:e0203015. [PMID: 30496183 PMCID: PMC6264513 DOI: 10.1371/journal.pone.0203015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
For many insects, diapause is the primary mechanism for surviving unfavorable seasons. Some aspects of diapause regulation are well known, but we still lack a mechanistic understanding of molecular mechanisms that control the diapause pathway. Accumulating evidence suggests microRNAs regulate diapause in evolutionarily diverse insect species including flesh flies and moths, and, it is likely that microRNAs regulate multiple characteristics of diapause, including arrested egg follicle development and fat hypertrophy, in females of the Northern house mosquito, Culex pipiens. To investigate microRNA regulation of diapause in this species, we measured changes in egg follicle development and total lipid content over 22 days following adult emergence. We also evaluated changes in the abundance of candidate microRNAs associated with these physical changes during the same time frame. We found egg follicle size and lipid content were nearly the same in diapausing and nondiapausing females on the day of adult emergence, and then diverged over time such that by day 22 diapausing females had significantly smaller egg follicles and higher total lipids than their nondiapausing counterparts. Several microRNAs associated with lipid metabolism in insects, including miR-14-3p, miR-277-3p, and miR-305-5p, were underexpressed in diapausing females compared to nondiapausing females on the day of adult emergence, which suggests microRNA regulation occurs ahead of observed changes in these two features of the diapause phenotype. We also found miR-309-3p, miR-375-3p which stimulate ovarian development in other mosquito species, were underexpressed in diapausing females of Cx. pipiens at times after diapause is fully established and may be responsible for the arrest in ovarian development in this species. Taken together, our results demonstrate that changes in the abundance of some microRNAs is associated with phenotypic changes in diapause Cx. pipiens and suggests this epigenetic mechanism is part of the molecular toolkit regulating diapause.
Collapse
|
9
|
Alaniz AJ, Carvajal MA, Bacigalupo A, Cattan PE. Global spatial assessment of Aedes aegypti and Culex quinquefasciatus: a scenario of Zika virus exposure. Epidemiol Infect 2018; 147:e52. [PMID: 30474578 PMCID: PMC6518585 DOI: 10.1017/s0950268818003102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/12/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.
Collapse
Affiliation(s)
- Alberto J. Alaniz
- Centro de Estudios en Ecología Espacial y Medio Ambiente – Ecogeografía, Santiago, Chile
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Mario A. Carvajal
- Centro de Estudios en Ecología Espacial y Medio Ambiente – Ecogeografía, Santiago, Chile
| | - Antonella Bacigalupo
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Pedro E. Cattan
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Rivera-Pérez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2017; 23:112-117. [PMID: 29129275 PMCID: PMC5695569 DOI: 10.1016/j.cois.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 05/11/2023]
Abstract
Micronutrients or non-energetic nutrients (NEN) are needed in reduced amounts, but are essential for many mosquito physiological processes that influence biological traits from vector competence to reproductive capacity. The NEN include amino acids (AA), vitamins, salts, metals and sterols. Free AA plays critical roles controlling most physiological processes, from digestion to reproduction. Particularly proline connects metabolic pathways in energy production, flight physiology and ammonia detoxification. Metal, in particular iron and calcium, salts, sterol and vitamin homeostasis are critical for cell signaling, respiration, metabolism and reproduction. Micronutrient homeostasis influence the symbiotic relationships with microorganisms, having important implications in mosquitoes' nutrition, physiology and behavior, as well as in mosquito immunity and vector competence.
Collapse
Affiliation(s)
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
11
|
Abstract
Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry Dept. of Molecular Biophysics & Biochemistry Yale University PO Box 208107, New Haven CT 06520-8107, USA.
| |
Collapse
|
12
|
Abstract
Almost 20 % of all infectious human diseases are vector borne and, together, are responsible for over one million deaths per annum. Over the past decade, the decreasing costs of massively parallel sequencing technologies have facilitated the agnostic interrogation of insect vector genomes, giving medical entomologists access to an ever-expanding volume of high-quality genomic and transcriptomic data. In this review, we highlight how genomics resources have provided new insights into the physiology, behavior, and evolution of human disease vectors within the context of the global health landscape.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - R Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA. .,Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology, and Institutes of Chemical Biology and Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
13
|
George P, Jensen S, Pogorelcnik R, Lee J, Xing Y, Brasset E, Vaury C, Sharakhov IV. Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophila melanogaster. Epigenetics Chromatin 2015; 8:50. [PMID: 26617674 PMCID: PMC4662822 DOI: 10.1186/s13072-015-0041-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Specific genomic loci, termed Piwi-interacting RNA (piRNA) clusters, manufacture piRNAs that serve as guides for the inactivation of complementary transposable elements (TEs). The piRNA pathway has been accurately detailed in Drosophila melanogaster, while it remains poorly examined in other insects. This pathway is increasingly recognized as critical for germline development and reproduction. Understanding of the piRNA functions in mosquitoes could offer an opportunity for disease vector control by the reduction of their reproductive potential. RESULTS To analyze the similarities and differences in this pathway between Drosophila and mosquito, we performed an in-depth analysis of the genomic loci producing piRNAs and their targets in the African malaria vector Anopheles gambiae. We identified 187 piRNA clusters in the An. gambiae genome and 155 piRNA clusters in the D. melanogaster genome. We demonstrate that many more piRNA clusters in the mosquito compared with the fruit fly are uni-directionally transcribed and are located outside pericentromeric heterochromatin. About 11 % of the An. gambiae piRNA population map to gene transcripts. This is a noticeable increase compared with the ~6 % of the piRNA population mapped to genes in D. melanogaster. A subset of the piRNA-enriched genes in An. gambiae has functions related to reproduction and development. At least 24 and 65 % of the mapped piRNAs correspond to genomic TE sequences in An. gambiae and D. melanogaster, respectively. DNA transposons and non-LTR retrotransposons are more abundant in An. gambiae, while LTR retrotransposons are more abundant in D. melanogaster. Yet, piRNAs predominantly target LTR retrotransposons in both species, which may point to a distinct feature of these elements compared to the other classes of TEs concerning their silencing by the piRNA pathway. CONCLUSIONS Here, we demonstrate that piRNA-producing loci have more ubiquitous distribution in the An. gambiae genome than in the genome of D. melanogaster. Also, protein-coding genes have an increased role in production of piRNAs in the germline of this mosquito. Genes involved in germline and embryonic development of An. gambiae generate a substantial portion of piRNAs, suggesting a role of the piRNA pathway in the epigenetic regulation of the reproductive processes in the African malaria vector.
Collapse
Affiliation(s)
- Phillip George
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Silke Jensen
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Romain Pogorelcnik
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Jiyoung Lee
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Yi Xing
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| | - Emilie Brasset
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Chantal Vaury
- />Laboratoire Génétique, Reproduction, et Développement, Clermont Université, Université d’Auvergne, BP 38, 63001 Clermont-Ferrand, France
- />Institut National de la Santé et de la Recherche Médicale, U 1103, BP 38, 63001 Clermont-Ferrand, France
- />Centre National de Recherche Scientifique, UMR 6293, BP 38, 63001 Clermont-Ferrand, France
| | - Igor V. Sharakhov
- />Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
- />The PhD Program in Genomics Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
| |
Collapse
|