1
|
Ito-Harashima S, Sano E, Takada E, Nakashima M, Kawanishi M, Yagi T. Development of a New Reporter Gene Assay for Detecting Juvenile Hormone Agonists Using Yeast Expressing Methoprene-Tolerant of the Freshwater Cladoceran Daphnia magna. J Appl Toxicol 2025. [PMID: 40223157 DOI: 10.1002/jat.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
Juvenile hormones (JHs) play crucial roles in regulating growth, metamorphosis, and reproduction in arthropods. Synthetic JH agonists (JHAs), categorized as insect growth regulators, have been widely employed as insecticides. Natural JHs and synthetic JHAs both exert their physiological effects by binding to the JH receptor methoprene-tolerant (Met), forming a functional heterodimer complex with steroid receptor coactivators (SRCs). These juvenoids induce male offspring production in various daphnids, including Daphnia magna, highlighting the significance of the Met-mediated signaling in environmental sex determination. As a representative invertebrate model for assessing aquatic endocrine-disrupting chemicals, D. magna is incorporated in the test guidelines of the Organization for Economic Corporation and Development. We herein introduced a newly developed yeast-based reporter gene assay (RGA) for easy and rapid screening of JH-like ligands for D. magna Met (Dapma-Met). Dapma-Met was expressed alongside the SRC of D. magna (Dapma-SRC) in yeast cells carrying the lacZ reporter plasmid with a JH-responsive element derived from the Bombyx mori Krüppel homolog 1 gene. The yeast RGA system for Dapma-Met revealed a dose-dependent response to various juvenoids. The rank order of the ligand potencies of natural JHs and synthetic JHAs examined in yeast RGA strongly correlated with those previously observed in RGAs for Daphnia Met proteins established in Chinese hamster ovary cells and positively correlated with the male neonate-inducing activity in vivo. Our novel yeast RGA offers a rapid, easy-to-handle, and cost-effective solution that will be valuable for discriminating Dapma-Met ligands among chemicals with male offspring-inducing activity.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Erika Sano
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Mayuko Nakashima
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
2
|
Depintor TS, Freitas FCP, Hernandes N, Nunes FMF, Simões ZLP. Interactions of juvenile hormone, 20-hydroxyecdysone, developmental genes, and miRNAs during pupal development in Apis mellifera. Sci Rep 2025; 15:10354. [PMID: 40133508 PMCID: PMC11937373 DOI: 10.1038/s41598-025-93580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Insect development is primarily controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E), which regulate gene cascades leading to changes in phenotype, physiology, and behavior. Besides these hormones, microRNAs play a crucial role in insect development by regulating gene expression at the post-transcriptional level. To advance the molecular understanding of holometabolous developmental events, we investigate the pupal phase in the honeybee, Apis mellifera. In this study, we assessed the expression profiles of genes components of JH and 20E cascades - Usp, ftz-f1, EcR, Met, Chd64, InR-2, Kr-h1 and Tai - as well as the microRNAs miRNA-34 and miRNA-281 during pupal development of A. mellifera. We then analyzed the impact of JH and 20E treatments on the expression of these developmental genes and their putative regulators, the microRNAs. Overall, the selected genes and miRNAs remained stable or were downregulated following 20E treatment, while treatments with JH, upregulated most of our candidate developmental genes and microRNAs. Notably, the expression profile of Met, an intracellular receptor of JH, showed a strong correlation with fluctuations in 20E titers during pupal development. Furthermore, a computational analysis, followed by experimental assays, points to both miR-34 and miR-281 as potential regulators of pupal development in A. mellifera. This study paves the way for a better understanding of how JH and 20E hormones interact with developmental genes and microRNAs (miR-34 and miR-281) to regulate pupal development in honeybees, elucidating a piece of this complex network of interactions.
Collapse
Affiliation(s)
- T S Depintor
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - F C P Freitas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - N Hernandes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - F M F Nunes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Genetics and Evolution, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Z L P Simões
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Tian Z, Wang K, Guo S, Li JX, King-Jones K, Zhu F, Liu W, Wang XP. The PBAP chromatin remodeling complex mediates summer diapause via H3K4me3-driven juvenile hormone regulation in Colaphellus bowringi. Proc Natl Acad Sci U S A 2025; 122:e2422328122. [PMID: 40112108 PMCID: PMC11962415 DOI: 10.1073/pnas.2422328122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Diapause, a developmental arrest mechanism, helps animals to survive seasonal changes via endocrine regulation. While obligate diapause is genetically programmed, facultative diapause is typically triggered by environmental cues such as photoperiod. In insects, this often leads to reproductive diapause characterized by reduced juvenile hormone (JH) signaling, resulting in ovarian arrest and lipid accumulation. However, the molecular link between photoperiod and hormonal control remains poorly understood. In this study, we investigated the cabbage beetle Colaphellus bowringi as our model system. This species exhibits a photoperiodic response, where short-day (SD) conditions promote reproduction, whereas long-day (LD) conditions induce diapause. Our research identified the PBAP chromatin remodeling complex as a key regulator of LD-induced summer diapause entry. Through RNAi screening of 56 transcriptional regulators that were differentially expressed between SD and LD females, we identified BAP170, a PBAP-specific component, as a key mediator of diapause. Knockdown of bap170 in SD females induced reproductive diapause traits, which were reversed by treatment with methoprene, a JH analog, suggesting that the PBAP complex regulates diapause by influencing JH production. We further demonstrated that the PBAP complex modulates JH biosynthesis via SET1/COMPASS-mediated trimethylation of H3K4. Transcriptome analysis and a second RNAi screen identified calmodulin, a calcium-binding messenger protein gene, as a direct target of PBAP-SET1/COMPASS-H3K4me3 signaling in the corpora allata (CA), the primary source of JH. These findings reveal how the chromatin remodeling machinery translates photoperiod signals into endocrine responses governing seasonal adaptation.
Collapse
Affiliation(s)
- Zhong Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- Department of Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shuang Guo
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Jia-Xu Li
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2E9, Canada
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
4
|
Chen P, Ai H, Liu Z, Li C, Li B. The dual functions of a newly identified C-type lectin (TcCTL17) in the immunity and development of Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-14. [PMID: 40099412 DOI: 10.1017/s0007485324000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
C-type lectins (CTLs), a diverse family of pattern recognition receptors, are essential for immune recognition and pathogen clearance in invertebrates. TcCTL17 contains one carbohydrate recognition domain and three scavenger receptor Cys-rich domains. Spatial and temporal expression analysis revealed that TcCTL17 is highly expressed in early pupa, early adult stages, and the larval gut at 20 days. The recombinant TcCTL17 exhibited dose-dependent binding to lipopolysaccharides and peptidoglycans, Ca2+-dependent binding and agglutination of bacteria in vitro. Knocking down TcCTL17 before bacterial exposure reduced survival rates and increased bacterial loads in T. castaneum larvae, accompanied by decreased antimicrobial peptide expression and haemolymph phenoloxidase activity. Additionally, TcCTL17 RNA interference caused developmental abnormalities, affecting metamorphosis and fecundity, possibly by influencing the 20E, JH, and vitellogenin pathways. These findings underscore dual functions of TcCTL17 in immunity and development, making it a potential target for pest management.
Collapse
Affiliation(s)
- Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Huayi Ai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiping Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Eberhardt L, Doria HB, Bulut B, Feldmeyer B, Pfenninger M. Transcriptomics predicts artificial light at night's (ALAN) negative fitness effects and altered gene expression patterns in the midge Chironomus riparius (Diptera:Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125827. [PMID: 39923976 DOI: 10.1016/j.envpol.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
The emission of artificial light at night (ALAN) is rapidly increasing worldwide. Yet, evidence for its detrimental effects on various species is accumulating. While the effects of ALAN on phenotypic traits have been widely investigated, effects on the molecular level are less well understood. Here we aimed to integrate the effects of ALAN at the transcriptomic and the phenotypic level. We tested these effects on Chironomus riparius, a multivoltine, holometabolous midge with high ecological relevance for which genomic resources are available. We performed life-cycle experiments in which we exposed midges to constant light and control conditions for one generation. We observed reduced fertility under ALAN from which we predicted the population size to decline to 1% after 200 days. The transcriptomic analysis revealed expression changes of genes related to circadian rhythmicity, moulting, catabolism and oxidative stress. From the transcriptomic analysis we hypothesised that under ALAN, oxidative stress is increased, and that moulting begins earlier. We were able to confirm both hypotheses in two posthoc experiments, showing that transcriptomics can be a powerful tool for predicting effects on higher level phenotypic traits.
Collapse
Affiliation(s)
- Linda Eberhardt
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany.
| | - Halina Binde Doria
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Burak Bulut
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Barbara Feldmeyer
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128, Mainz, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Huang H, Li D, Xu M, Zhong S, Liu S, Gao X, Xu Y, Chen Z. Krüppel homolog 1 mediates juvenile hormone action to suppress photoperiodic reproductive diapause-related phenotypes in the female Chrysoperla nipponensis (Neuroptera: Chrysopidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:7. [PMID: 40116215 PMCID: PMC11926538 DOI: 10.1093/jisesa/ieaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Juvenile hormone (JH) has been revealed to be a critical factor in regulating photoperiod reproductive diapause in various insect species, however, little information is known about the detailed mechanisms. In this study, we investigated the roles of JH signaling in photoperiod reproductive diapause in a green lacewing, Chrysoperla nipponensis (Okamoto), which is a potentially important biological control predator. Our results showed that the short-day condition induces a diapause state including JH synthesis suppression, ovarian development arrest, and triglyceride accumulation. The interference of JH response genes, Krüppel homolog 1 (Kr-h1), in reproductive females exhibited a diapause-related phenotype such as ovarian development arrest and larger triglyceride storage. Exogenous JH III suppresses diapause to promote ovarian development and inhibit triglyceride synthesis. However, exogenous JH III fails to rescue the Kr-h1-silenced phenotype. Accordingly, our results demonstrate the critical role of Kr-h1 in regulating JH signaling to promote reproduction.
Collapse
Affiliation(s)
- Haiyi Huang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Dandan Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Minghui Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Shaofeng Zhong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Shaoye Liu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Xingke Gao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Yongyu Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Zhenzhen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
7
|
Force E, Alvarez C, Fuentes A, Maria A, Bozzolan F, Debernard S. Diet influence on male sexual maturation through interplay between insulin signaling and juvenile hormone in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104252. [PMID: 39701395 DOI: 10.1016/j.ibmb.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
In animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals. We turned to the male moth Agrotis ipsilon for which sexual maturation, including accessory sex glands (ASGs) development concomitantly with antennal lobes (ALs) maturation for female sex pheromone processing and display of sexual behavior, is known to be JH- and diet-dependent. Indeed, a diet rich in sugars with sodium was previously shown to accelerate sexual maturation, which was achieved from the third day of adult life. In this study, we demonstrated that such a diet raised i) the expression of JH signaling actors (Methoprene-tolerant, Taiman, and Krüppel homolog 1) in ALs and ASGs, ii) the biosynthesis and circulating levels of JH, and iii) the expression of both insulin receptor (InR) and insulin-like peptides (ILPs) in corpora allata (CAs) and brain respectively. Insulin injection raised JH biosynthesis following increased HMG-CoA reductase expression in CAs; opposite effects were induced in InR-deficient males. Thus, we highlighted that promoting effects of a diet composed of sugars with sodium on male sexual maturation results from an early induction of ISP causing an increase in JH biosynthesis followed by a potentiation of JH actions on the development of ASGs and ALs in A. ipsilon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| | | | - Annabelle Fuentes
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Annick Maria
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, France.
| |
Collapse
|
8
|
Parisot N, Ribeiro Lopes M, Peignier S, Baa-Puyoulet P, Charles H, Calevro F, Callaerts P. Annotation of transcription factors, chromatin-associated factors, and basal transcription machinery in the pea aphid, Acyrthosiphon pisum, and development of the ATFdb database, a resource for studies of transcriptional regulation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104217. [PMID: 39579797 DOI: 10.1016/j.ibmb.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/15/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The pea aphid, Acyrthosiphon pisum, is an emerging model system in functional and comparative genomics, in part due to the availability of new genomic approaches and the different sequencing and annotation efforts that the community has dedicated to this important crop pest insect. The pea aphid is also used as a model to study fascinating biological traits of aphids, such as their extensive polyphenisms, their bacteriocyte-confined nutritional symbiosis, or their adaptation to the highly unbalanced diet represented by phloem sap. To get insights into the molecular basis of all these processes, it is important to have an appropriate annotation of transcription factors (TFs), which would enable the reconstruction/inference of gene regulatory networks in aphids. Using the latest version of the A. pisum genome assembly and annotation, which represents the first chromosome-level pea aphid genome, we annotated the complete repertoire of A. pisum TFs and complemented this information by annotating genes encoding chromatin-associated and basal transcription machinery proteins. These annotations were done combining information from the model Drosophila melanogaster, for which we also provide a revisited list of these proteins, and de novo prediction. The comparison between the two model systems allowed the identification of major losses or expansions in each genome, while a deeper analysis was made of ZNF TFs (with certain families expanded in the pea aphid), and the Hox gene cluster (showing reorganization in gene position in the pea aphid compared to D. melanogaster). All annotations are available to the community through the Aphid Transcription Factors database (ATFdb), consolidating the various annotations we generated. ATFdb serves as a valuable resource for gene regulation studies in aphids.
Collapse
Affiliation(s)
- Nicolas Parisot
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France.
| | | | - Sergio Peignier
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Hubert Charles
- INSA Lyon, INRAE, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Patrick Callaerts
- KU Leuven, University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, B-3000, Leuven, Belgium.
| |
Collapse
|
9
|
Miyakawa H. Environmentally Dependent Alteration of Reproductive Strategies and Juvenile Hormone Signaling in Daphnia (Crustacea: Cladocera). Zoolog Sci 2025; 42. [PMID: 39932751 DOI: 10.2108/zs240054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/11/2024] [Indexed: 05/08/2025]
Abstract
Daphnia switches between asexual and sexual reproductive strategies, depending on environmental conditions. For sexual reproduction, unfavorable environmental signals induce production of males and formation of meiotic eggs. Induction of both these phenotypes is strongly dependent upon the arthropod endocrine factor juvenile hormone (JH). This review presents the current state of research on regulatory mechanisms of reproductive strategy alteration in Daphnia, focusing on studies related to JH signaling conducted during the past several decades. Additionally, it discusses what is needed in future research to fully understand these mechanisms and evolution of complicated life cycle and environmental adaptation systems in Daphnia.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan,
| |
Collapse
|
10
|
Hafeez A, Wang K, Liu W, Wang XP. Juvenile hormone regulates reproductive diapause through both canonical and noncanonical pathways in the bean bug Riptortus pedestris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104233. [PMID: 39622304 DOI: 10.1016/j.ibmb.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Diapause is an adaptive developmental arrest commonly utilized by animals to cope with seasonal changes. Central to this process are hormonal events that bridge photoperiodic cues and physiological changes. In insect reproductive diapause, the absence of juvenile hormone (JH) serves as the primary endocrine event that governs key diapause traits, including ovarian developmental arrest and lipid accumulation. Conventionally, it is believed that the effects of JH are conveyed through the receptor Methoprene-tolerant (Met) and its transcriptional factor Krüppel homolog 1 (Kr-h1). However, our study with the bean bug Riptortus pedestris reveals that JH independently regulates lipid accumulation, bypassing Met and Kr-h1 pathways. R. pedestris enters reproduction under long-day (LD) conditions, while diapause occurs under short-day (SD) conditions. Treatment of SD females with the JH mimic methoprene stimulated reproductive activities, enhancing ovary development and reducing lipid accumulation. In contrast, silencing genes essential for JH biosynthesis in LD females led to pronounced diapause characteristics, including ovarian developmental arrest and substantial lipid accumulation. Interestingly, disruptions in the JH action genes, either Met or Kr-h1, solely affected ovary development, leaving lipid accumulation unchanged, indicating an independent pathway for regulating JH in lipid accumulation. This was further confirmed by RNA interference experiments in SD females, where knockdown of Met or Kr-h1 did not alter the effects of methoprene on lipid reduction. Collectively, these results suggest that JH controls ovary development through the established Met-Kr-h1 pathway, while it modulates lipid accumulation through an alternative, yet to be identified noncanonical pathway during reproductive diapause in R. pedestris.
Collapse
Affiliation(s)
- Abdul Hafeez
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kou Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Biological Sciences, University of Alberta, Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Force E, Debernard S. [microRNAs: regulators of metamorphosis in insects]. Biol Aujourdhui 2025; 218:165-175. [PMID: 39868715 DOI: 10.1051/jbio/2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/28/2025]
Abstract
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis. Recently, another regulatory network has emerged trough the discovery of microRNAs, non-coding RNAs of 19 to 25 nucleotides that are highly conserved among taxa and act by modulating gene expression at the post-transcriptional level. Experiments carried out on model insects highlighted the relevance of microRNAs in several developmental processes during metamorphosis. This review aims to give an overview of the regulatory actions of microRNAs in the programming of cellular and molecular events associated with the metamorphosis of insects and also to provide new insights into the evolutionary history of this taxon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
12
|
Han S, Wang X, Han H, Wang D, He Y. Hairy and Krüppel homolog 1 Comediate the Action of Juvenile Hormone/ Methoprene-Tolerant Signaling Pathway in Vitellogenesis of Spodoptera frugiperda (J.E. Smith). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1122-1130. [PMID: 39745858 DOI: 10.1021/acs.jafc.4c08653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Spodoptera frugiperda is a major migratory invasive pest and is of global concern. Vitellogenesis, a crucial process for population multiplication in oviparous insects, is regulated by endocrine hormones. In this study, three primary responders to JH signaling, the JH receptor gene Met, and the downstream transcription factor Kr-h1 and Hairy, were first cloned and identified. RNA interference results showed that silencing SfMet significantly down-regulated the transcription levels of SfKr-h1 and SfHairy, as well as the key reproductive genes Vitellogenin (SfVg) and Vitellogenin receptor (SfVgR). Similarly, silencing SfKr-h1 and SfHairy also inhibited the transcription of SfVg and SfVgR. Silencing of SfMet, SfKr-h1, and SfHairy genes resulted in blocked ovarian development and a significant decrease in reproduction. These findings confirm that Hairy and Kr-h1 comediate the action of the JH-Met signaling pathway in vitellogenesis of S. frugiperda, providing new targets and insights for pest control.
Collapse
Affiliation(s)
- Shipeng Han
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271000, P. R. China
| | - Xiaoqi Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Hui Han
- College of Life Science, Zaozhuang University, Zaozhuang, Shandong 277000, P. R. China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| |
Collapse
|
13
|
Cruz J, Ureña E, Iñiguez LP, Irimia M, Franch-Marro X, Martín D. E93 controls adult differentiation by repressing broad in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2403162121. [PMID: 39671182 DOI: 10.1073/pnas.2403162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
In Drosophila melanogaster, successful development relies on the precise coordination of both spatial and temporal regulatory axes. The temporal axis governs stage-specific identity and developmental transitions through a number of genes, collectively forming the Metamorphic Gene Network. Among these, Ecdysone inducible protein 93F (E93) serves as the critical determinant for adult specification, but its mechanism of action remains unclear. Here, we found that, rather than acting mainly as an instructive signal, E93 promotes adult differentiation through the repression of the pupal specifier broad (br). In the absence of E93, sustained high levels of Br during the pupal stage strongly represses pupal-specific enhancers that are essential for the terminal differentiation of the wing. Notably, RNA-seq analysis confirmed that the majority of E93-dependent transcriptomic changes in pupal wings are primarily driven by br repression. In addition, we also show that Br represses the pupal-enhancers during the larval and prepupal stages preventing the premature implementation of the adult genetic program, and that it also dampens the activity of larval enhancers during the latter stages of larval development. This mechanism of action seems to be a derived feature acquired in Diptera, as in the coleopteran Tribolium castaneum, repression of br by E93 is not sufficient to allow adult differentiation. In summary, our study elucidates the crucial role of the intricate interplay between E93 and Br as the governing mechanism in the process of terminal differentiation in Drosophila. This finding holds significant implications for advancing our understanding of the evolution of insect metamorphosis.
Collapse
Affiliation(s)
- Josefa Cruz
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Enric Ureña
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Luis P Iñiguez
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Barcelona 08002, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - David Martín
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
14
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
15
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
16
|
Kurogi Y, Mizuno Y, Hayashi R, Goyins K, Okamoto N, Barton L, Niwa R. The seminal vesicle is a juvenile hormone-responsive tissue in adult male Drosophila melanogaster. Open Biol 2024; 14:240315. [PMID: 39689858 DOI: 10.1098/rsob.240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insect life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analogue administration, while suppression occurs upon knockdown of a gene encoding the intracellular JH receptor, germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on the biology of the insect reproductive regulatory system.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Ryosuke Hayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Krystal Goyins
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lacy Barton
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
17
|
Yokoi T. Design, synthesis, and biological evaluation of insect hormone agonists. JOURNAL OF PESTICIDE SCIENCE 2024; 49:303-310. [PMID: 39877879 PMCID: PMC11770153 DOI: 10.1584/jpestics.j24-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 01/31/2025]
Abstract
Agonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes. On the other hand, a virtual screening cascade combining ligand- and structure-based methods identified a piperazine derivative as a novel JH agonist. The results obtained in this study will be useful for the future development of novel insect growth regulators.
Collapse
|
18
|
Yu X, Wang X, Ma K, Gao D, Deng Y, Zhou D, Ding W, Zhao Y, Liu Q, Zhou Z. Tai/NCOA2 suppresses the Hedgehog pathway by directly targeting the transcription factor Ci/GLI. Proc Natl Acad Sci U S A 2024; 121:e2409380121. [PMID: 39531503 PMCID: PMC11588115 DOI: 10.1073/pnas.2409380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The Hedgehog (Hh) pathway plays diverse roles in cellular processes by activating the transcription factor Cubitus interruptus (Ci). Abnormal regulation of this pathway has been linked to various human diseases. While previous studies have focused on how Ci is regulated in the cytoplasm, the control of nuclear Ci remains poorly understood. In this study, we have found that the transcriptional cofactor Taiman (Tai) functions as an inhibitor of the Hh pathway. Tai interferes with the response of Hh signal, rather than Hh secretion. Our epistatic analyses reveal that Tai works in parallel with Ci to reduce its activity, thereby counteracting organ overgrowth and the activation of target genes caused by Ci overexpression. Specifically, Tai interacts with Ci to decrease its binding to target gene promoters. The Hh signal weakens the interaction between Ci and Tai, releasing the inhibition on Ci. Importantly, this regulatory mechanism is conserved from Drosophila to mammalian cells. Moreover, NCOA1-3 are the mammalian ortholog of Drosophila protein Tai, but only NCOA2 plays a similar role in inhibiting the Hh pathway. These findings reveal an additional way to modulate the transcriptional activity of nuclear Ci.
Collapse
Affiliation(s)
- Xuan Yu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Xinyu Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Dongqing Gao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| |
Collapse
|
19
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 PMCID: PMC11573667 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
20
|
Kocher S, Kingwell C. The Molecular Substrates of Insect Eusociality. Annu Rev Genet 2024; 58:273-295. [PMID: 39146360 PMCID: PMC11588544 DOI: 10.1146/annurev-genet-111523-102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The evolution of eusociality in Hymenoptera-encompassing bees, ants, and wasps-is characterized by multiple gains and losses of social living, making this group a prime model to understand the mechanisms that underlie social behavior and social complexity. Our review synthesizes insights into the evolutionary history and molecular basis of eusociality. We examine new evidence for key evolutionary hypotheses and molecular pathways that regulate social behaviors, highlighting convergent evolution on a shared molecular toolkit that includes the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways, juvenile hormone and ecdysteroid signaling, and epigenetic regulation. We emphasize how the crosstalk among these nutrient-sensing and endocrine signaling pathways enables social insects to integrate external environmental stimuli, including social cues, with internal physiology and behavior. We argue that examining these pathways as an integrated regulatory circuit and exploring how the regulatory architecture of this circuit evolves alongside eusociality can open the door to understanding the origin of the complex life histories and behaviors of this group.
Collapse
Affiliation(s)
- Sarah Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA;
| | - Callum Kingwell
- Smithsonian Tropical Research Institute, Ancon, Panama
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
21
|
Lv YN, Zeng M, Yan ZY, Zhang PY, Ban N, Yuan DW, Li S, Luan YX, Bai Y. Juvenile hormone signaling is indispensable for late embryogenesis in ametabolous and hemimetabolous insects. BMC Biol 2024; 22:232. [PMID: 39394161 PMCID: PMC11470741 DOI: 10.1186/s12915-024-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Juvenile hormone (JH) is an insect-exclusive hormone involved in regulating diverse aspects of insect physiology, and the evolution of its diverse function is widely interesting. Studying embryogenesis in basal wingless insects is important to understand the functional evolution of JH; however, experimental studies in this regard are scarce. In this study, we conducted CRISPR/Cas9-mediated knockout (KO) of genes involved in JH biosynthesis and signaling cascades in the ametabolous firebrat, Thermobia domestica. Additionally, we investigated whether the primitive action of JH is conserved in the hemimetabolous cricket, Gryllus bimaculatus. RESULTS We observed that KO of JHAMT, CYP15A1, Met, and Kr-h1 resulted in embryonic lethality in T. domestica. Deprivation of JH or JH signaling arrested the progression of extraembryonic fluid resorption after dorsal closure and hatching, which is consistent with the gene expression pattern showing high Kr-h1 expression in the late embryos of T. domestica. The embryos deficient in JH signaling displayed wrinkled and weak legs. Comparative transcriptome analysis revealed that JH signaling promotes embryonic leg maturation through inducing energy supply and muscle activity, as validated by transmission electron microscopy (TEM). In addition, JH signaling exhibited similar embryonic effects in G. bimaculatus. CONCLUSIONS This study reveals the indispensable role of JH signaling in facilitating the maturation of terminal tissues during late embryogenesis, as demonstrated by the regulation of leg development, in ametabolous and hemimetabolous insects. These findings further indicate that the embryonic functions of JH evolved earlier than its anti-metamorphic functions during postembryonic development.
Collapse
Affiliation(s)
- Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Pei-Yan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| |
Collapse
|
22
|
Kayukawa T, Nagamine K, Inui T, Yokoi K, Kobayashi I, Nakao H, Ishikawa Y, Matsuo T. Dead ringer acts as a major regulator of juvenile hormone biosynthesis in insects. PNAS NEXUS 2024; 3:pgae435. [PMID: 39398620 PMCID: PMC11467689 DOI: 10.1093/pnasnexus/pgae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
In holometabolous insects, proper control of the production of juvenile hormone (JH), which maintains larval traits, is crucial for successful metamorphosis. JH is produced specifically in the corpora allata (CA) via the functioning of a set of JH biosynthetic enzymes (JHBEs). Expression of JHBE genes in the CA is coordinated except for JH acid methyltransferase (JHAMT), which functions in the last step of JH biosynthesis. Here, we sought to determine the mechanism that enables this coordinated expression, assuming the presence of a central regulator of JHBE genes. Comparison of transcriptomes in the CA during active and inactive stages revealed the presence of 3 transcription factors, whose expression patterns matched those of JHBE genes. We propose that one of these, Dead ringer (Dri), is the central up-regulator of CA-specific JHBE genes including JHAMT, based on the following findings: (ⅰ) Knockdown of Dri in the larvae caused precocious metamorphosis, which was rescued by the exogenous application of JH analog, and (ⅱ) knockdown of Dri decreased the expression of most CA-specific JHBE genes examined. Furthermore, RNAi-based reverse genetics indicated that Dri works most upstream in the control of CA-specific JHBE genes, and that shutdown of JHAMT, which occurs independent of other JHBE genes prior to the onset of metamorphosis, can be hypothetically explained by the presence of an unidentified repressor. Our study suggests that Dri, which has been known to regulate embryonic development in a wide range of animals, is conferred a new role in holometabolous insects, i.e. central regulation of CA-specific JHBE genes.
Collapse
Affiliation(s)
- Takumi Kayukawa
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Keisuke Nagamine
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Tomohiro Inui
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Kakeru Yokoi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Isao Kobayashi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Hajime Nakao
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
- Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, Laboratory of Applied Entomology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Xu TT, Wu X, Luo ZB, Tang LD, Gao JY, Zang LS. Light intensity differentially mediates the life cycle of lepidopteran leaf feeders and stem borers. PEST MANAGEMENT SCIENCE 2024; 80:4216-4222. [PMID: 38619050 DOI: 10.1002/ps.8125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Leaf feeders, such as Spodoptera frugiperda and Spodoptera litura, and stem borers Ostrinia furnacalis and Chilo suppressalis, occupy two different niches and are well adapted to their particular environments. Borer larvae burrow and inhabit the interior of stems, which are relatively dark. By contrast, the larvae of leaf feeders are exposed to sunlight during feeding. We therefore designed series of experiments to evaluate the effect of light intensity (0, 2000, and 10 000 lx) on these pests with different feeding modes. RESULTS The development of all four pests was significantly delayed at 0 lx. Importantly, light intensity affected the development of both male and female larvae of borers, but only significantly affected male larvae of leaf feeders. Furthermore, the proportion of female offspring of leaf feeders increased with increasing light intensity (S. frugiperda: 33.89%, 42.26%, 57.41%; S. litura: 38.90%, 51.75%, 65.08%), but no significant differences were found in stem borers. This research also revealed that the survival rate of female leaf feeders did not vary across light intensities, but that of males decreased with increasing light intensity (S. frugiperda: 97.78%, 85.86%, 61.21%; S. litura: 95.83%, 73.54%, 58.99%). CONCLUSION These results improve our understanding of how light intensity affects sex differences in important lepidopteran pests occupying different feeding niches and their ecological interactions with abiotic factors in agroecosystems. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ting-Ting Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhen-Bao Luo
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Liang-De Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jun-Yi Gao
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Lian-Sheng Zang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
24
|
Qian K, Wan Y, Yuan J, Tang Y, Zheng X, Wang J, Cao H, Zhang Y, Chen S, Zhang Y, Wu Q. Identification and analysis of JHBP/TO family genes and their roles in the reproductive fitness cost of resistance in Frankliniella occidentalis (Pergande). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106058. [PMID: 39277374 DOI: 10.1016/j.pestbp.2024.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
The juvenile hormone binding protein (JHBP) and takeout (TO) genes, mediated by the juvenile hormone (JH), play a crucial role in regulating the reproductive physiology of insects. Our previous study revealed that spinosad-resistant Frankliniella occidentalis (NIL-R) exhibited reduced fecundity and significant changes in JHBP/TO family gene expression. We hypothesized that these genes were involved in regulating the fitness costs associated with resistance. In this study, 45 JHBP/TO genes were identified in F. occidentalis, among which FoTO2 and FoTO10 were duplicates. Additionally, eight genes exhibited significant down-regulation in the NIL-R population. Two genes (FoTO6 and FoTO24) that exhibited the most significant differential expression between the spinosad-susceptible (Ivf03) and NIL-R populations were selected to investigate their roles in resistance fitness using RNA interference (RNAi). Following interference with FoTO6, FoTO24, and their combination, the expression levels of vitellogenin (Vg) were downregulated by 3%-30%, 13%-28%, and 14%-32% from the 2nd day to the 5th day, respectively; Krüppel-homolog 1 (Kr-h1) expression was down-regulated by 3%-65%, 11%-34%, and 11%-39% from the 2nd day to the 5th day, respectively; ovariole length was shortened by approximately 18%, 21%, and 24%, respectively; and the average number of eggs decreased from 407 to 260, 148, and 106, respectively. Additionally, a JH supplementation experiment on the NIL-R population revealed that the expression levels of both FoTO6, FoTO24, Vg and Kr-h1 were significantly upregulated compared with those observed in the Ivf03 population, resulting in increased fecundity. These results suggest that FoTO6 and FoTO24 are involved in JH-mediated regulation of the reproductive fitness cost of resistance to spinosad. Further, FoTO6 and FoTO24 can be considered potential target genes for applying RNAi technology in the scientific management of F. occidentalis.
Collapse
Affiliation(s)
- Kanghua Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Yanran Wan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China; College of Plant Protection, Hebei Agricultural University, 071000, Hebei, China
| | - Jiangjiang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Yingxi Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Xiaobin Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Hongyi Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Ying Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Sirui Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China.
| |
Collapse
|
25
|
Yuan D, Zhang X, Yang Y, Wei L, Li H, Zhao T, Guo M, Li Z, Huang Z, Wang M, Dai Z, Li P, Xia Q, Qian W, Cheng D. Schlank orchestrates insect developmental transition by switching H3K27 acetylation to trimethylation in the prothoracic gland. Proc Natl Acad Sci U S A 2024; 121:e2401861121. [PMID: 39167603 PMCID: PMC11363265 DOI: 10.1073/pnas.2401861121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Insect developmental transitions are precisely coordinated by ecdysone and juvenile hormone (JH). We previously revealed that accumulated H3K27 trimethylation (H3K27me3) at the locus encoding JH signal transducer Hairy is involved in the larval-pupal transition in insects, but the underlying mechanism remains to be fully defined. Here, we show in Drosophila and Bombyx that Rpd3-mediated H3K27 deacetylation in the prothoracic gland during the last larval instar promotes ecdysone biosynthesis and the larval-pupal transition by enabling H3K27me3 accumulation at the Hairy locus to induce its transcriptional repression. Importantly, we find that the homeodomain transcription factor Schlank acts to switch active H3K27 acetylation (H3K27ac) to repressive H3K27me3 at the Hairy locus by directly binding to the Hairy promoter and then recruiting the histone deacetylase Rpd3 and the histone methyltransferase PRC2 component Su(z)12 through physical interactions. Moreover, Schlank inhibits Hairy transcription to facilitate the larval-pupal transition, and the Schlank signaling cascade is suppressed by JH but regulated in a positive feedback manner by ecdysone. Together, our data uncover that Schlank mediates epigenetic reprogramming of H3K27 modifications in hormone actions during insect developmental transition.
Collapse
Affiliation(s)
- Dongqin Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Xing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Yan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing400715, China
| | - Hao Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Tujing Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Mengge Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Zheng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Zhu Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Min Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Zongcai Dai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Peixin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Wenliang Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| | - Daojun Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing400715, China
- State Key Laboratory of Resource Insects, Biological Science Research Center,Southwest University, Chongqing400715, China
| |
Collapse
|
26
|
Li YX, Yan Q, Liu TW, Wang JX, Zhao XF. Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development. BMC Biol 2024; 22:171. [PMID: 39135168 PMCID: PMC11321213 DOI: 10.1186/s12915-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tian-Wen Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
27
|
Li H, Zhang W, Zhang Y, Guo X, Hou J, Li H, Wei J, Li X. Effects of pyriproxyfen on development and hormone of the aphis, Aphis craccivora (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1493-1502. [PMID: 38935064 DOI: 10.1093/jee/toae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Pyriproxyfen (PPF) has been shown to affect the pupal stage and ecdysone levels in holometabolous insects, such as silkworms and mealworms. It remains unknown whether it affects hemimetabolous insects with their hormone levels in insects lacking a pupal stage. In this laboratory study, bioassays were conducted to investigate the effects of varying doses of PPF on Aphis craccivora Koch (Hemiptera: Aphididae). Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the types and titers of juvenile hormone (JH) and 20-hydroxyecdysone (20E). Additionally, the effects of PPF on A. craccivora reproduction and molting, as well as its influence on relevant gene expression, were examined. The results revealed LC50 and LC90 values of 3.84 and 7.49 mg/l for PPF, respectively, after 48 h of exposure. The results demonstrated a significant reduction in the titer of JH III and a significant increase in the titer of 20E following treatment with PPF. However, there was no significant decrease observed in the titer of JH III skipped bisepoxide (JH SB3). A sublethal concentration of PPF was found to inhibit Krüppel homolog 1 (kr-h1) gene expression and reduce aphid reproduction, but it did not significantly impact ecdysone receptor expression and aphid molting. The results of this study demonstrate that PPF exhibits a lethal effect on aphids, thereby providing an effective means of control. Additionally, sublethal concentrations of PPF have been found to inhibit the JH in aphids, resulting in a decline in their reproductive ability and achieving the desired control objectives.
Collapse
Affiliation(s)
- Haolin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yongheng Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xiaxia Guo
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiangan Hou
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Honghong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
28
|
Ye YY, Liu ZH, Wang HL. Fat body-derived juvenile hormone acid methyltransferase functions to maintain iron homeostasis in Drosophila melanogaster. FASEB J 2024; 38:e23805. [PMID: 39003630 DOI: 10.1096/fj.202400119rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Iron homeostasis is of critical importance to living organisms. Drosophila melanogaster has emerged as an excellent model to study iron homeostasis, while the regulatory mechanism of iron metabolism remains poorly understood. Herein, we accidently found that knockdown of juvenile hormone (JH) acid methyltransferase (Jhamt) specifically in the fat body, a key rate-limiting enzyme for JH synthesis, led to iron accumulation locally, resulting in serious loss and dysfunction of fat body. Jhamt knockdown-induced phenotypes were mitigated by iron deprivation, antioxidant and Ferrostatin-1, a well-known inhibitor of ferroptosis, suggesting ferroptosis was involved in Jhamt knockdown-induced defects in the fat body. Further study demonstrated that upregulation of Tsf1 and Malvolio (Mvl, homolog of mammalian DMT1), two iron importers, accounted for Jhamt knockdown-induced iron accumulation and dysfunction of the fat body. Mechanistically, Kr-h1, a key transcription factor of JH, acts downstream of Jhamt inhibiting Tsf1 and Mvl transcriptionally. In summary, the findings indicated that fat body-derived Jhamt is required for the development of Drosophila by maintaining iron homeostasis in the fat body, providing unique insight into the regulatory mechanisms of iron metabolism in Drosophila.
Collapse
Affiliation(s)
- Yun-Yan Ye
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Zhi-Hua Liu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| | - Hui-Li Wang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui, People's Republic of China
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, People's Republic of China
| |
Collapse
|
29
|
Shen S, Zhang L, Zhang L. Population Density-Dependent Developmental Regulation in Migratory Locust. INSECTS 2024; 15:443. [PMID: 38921158 PMCID: PMC11203946 DOI: 10.3390/insects15060443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Insect development is intricately governed by hormonal signaling pathways, yet the pivotal upstream regulator that potentiates hormone activation remains largely elusive. The migratory locust, Locusta migratoria, exhibits population density-dependent phenotypic plasticity, encompassing traits such as flight capability, body coloration, and behavior. In this study, we elucidated a negative correlation between population density and ontogenetic development during the nymphal stage of locusts. We found that the level of density influences the developmental trajectory by modulating transcript abundance within the ecdysone signaling pathway, with knockdown of the prothoracicotropic hormone (PTTH) resulting in developmental delay. Transcriptomic analysis of locust brains across solitary and gregarious phases revealed significant differential expression of genes involved in various pathways, including protein synthesis, energy metabolism, hormonal regulation, and immunity. Notably, knockdown experiments targeting two energy regulators, adipokinetic hormone (AKH) and insulin-like polypeptide 1 (ilp1), failed to elicit changes in the developmental process in solitary locusts. However, knockdown of immunoglobulin (IG) significantly shortened the developmental time in higher-density populations. Collectively, our findings underscore the regulatory role of population density in determining developmental duration and suggest that an immune-related gene contributes to the observed differences in developmental patterns.
Collapse
Affiliation(s)
- Sifan Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Long Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
30
|
Yan C, Wu Z, Liu Y, Sun Y, Zhang J. Comparative transcriptomic analysis primarily explores the molecular mechanism of compound eye formation in Neocaridina denticulata sinensis. BMC Genomics 2024; 25:570. [PMID: 38844864 PMCID: PMC11155044 DOI: 10.1186/s12864-024-10453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.
Collapse
Affiliation(s)
- Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
31
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
32
|
Truman JW, Riddiford LM, Konopova B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. eLife 2024; 12:RP92643. [PMID: 38568859 PMCID: PMC10994664 DOI: 10.7554/elife.92643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Barbora Konopova
- Department of Zoology, Faculty of Science, University of South BohemiaCeske BudejoviceCzech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and BSI, Florida International UniversityMiamiUnited States
- Department of Parasitology, Faculty of Science, University of South BohemiaCeské BudejoviceCzech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| |
Collapse
|
33
|
Andreenkova OV, Adonyeva NV, Efimov VM, Gruntenko NE. Fertility differences between two wild-type Drosophila melanogaster lines correlate with differences in the expression of the Jheh1 gene, which codes for an enzyme degrading juvenile hormone. Vavilovskii Zhurnal Genet Selektsii 2024; 28:185-189. [PMID: 38680182 PMCID: PMC11043515 DOI: 10.18699/vjgb-24-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/18/2023] [Indexed: 05/01/2024] Open
Abstract
Juvenile hormone plays a "status quo" role in Drosophila melanogaster larvae, preventing the untimely metamorphosis, and performs a gonadotropic function in imagoes, ensuring the ovaries' preparedness for vitellogenesis. The decreased level of juvenile hormone results in reproductive disorders in D. melanogaster females including a delay in the oviposition onset and a fertility decrease. Another factor that can affect the insect reproduction is an infection with the maternally inherited symbiotic α-proteobacterium Wolbachia. The present study is devoted to the analysis of the expression of two juvenile hormone metabolism genes encoding enzymes of its synthesis and degradation, juvenile hormone acid O-methyltransferase ( jhamt) and juvenile hormone epoxide hydrase (Jheh1), respectively, in four wild-type D. melanogaster lines, two of them being infected with Wolbachia. Lines w153 and Bi90 were both derived from an individual wild-caught females infected with Wolbachia, while lines w153T and Bi90T were derived from them by tetracycline treatment and are free of infection. Line Bi90 is known to be infected with the Wolbachia strain wMel, and line w153, with the Wolbachia strain wMelPlus belonging to the wMelCS genotype. It was found that infection with either Wolbachia strain does not affect the expression of the studied genes. At the same time, it was shown that the w153 and w153T lines differ from the Bi90 and Bi90T lines by an increased level of the Jheh1 gene expression and do not differ in the jhamt gene expression level. Analysis of the fertility of these four lines showed that it does not depend on Wolbachia infection either, but differs between lines with different nuclear genotypes: in w153 and w153T, it is significantly lower than in lines Bi90 and Bi90T. The data obtained allow us to reasonably propose that the inter-line D. melanogaster polymorphism in the metabolism of the juvenile hormone is determined by its degradation (not by its synthesis) and correlates with the fertility level.
Collapse
Affiliation(s)
- O V Andreenkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Adonyeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V M Efimov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Gruntenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
34
|
He Q, Fan X, Wang S, Chen S, Chen J. Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter. INSECT MOLECULAR BIOLOGY 2024; 33:124-135. [PMID: 37916965 DOI: 10.1111/imb.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40-93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked-while knocking down of Kr-h1 attenuated-the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the "status quo" action of JH on the Drosophila adult metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
35
|
Kurogi Y, Mizuno Y, Okamoto N, Barton L, Niwa R. The seminal vesicle is a juvenile hormone-responsive tissue in adult male Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585833. [PMID: 38562788 PMCID: PMC10983971 DOI: 10.1101/2024.03.20.585833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Juvenile hormone (JH) is one of the most essential hormones controlling insect metamorphosis and physiology. While it is well known that JH affects many tissues throughout the insects life cycle, the difference in JH responsiveness and the repertoire of JH-inducible genes among different tissues has not been fully investigated. In this study, we monitored JH responsiveness in vivo using transgenic Drosophila melanogaster flies carrying a JH response element-GFP (JHRE-GFP) construct. Our data highlight the high responsiveness of the epithelial cells within the seminal vesicle, a component of the male reproductive tract, to JH. Specifically, we observe an elevation in the JHRE-GFP signal within the seminal vesicle epithelium upon JH analog administration, while suppression occurs upon knockdown of genes encoding the intracellular JH receptors, Methoprene-tolerant and germ cell-expressed. Starting from published transcriptomic and proteomics datasets, we next identified Lactate dehydrogenase as a JH-response gene expressed in the seminal vesicle epithelium, suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this study sheds new light on biology of the insect reproductive regulatory system.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| | - Lacy Barton
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
36
|
Yamanaka N. Germ cell migration: Unexpected role of juvenile hormone before juvenile stages. Curr Biol 2024; 34:R84-R86. [PMID: 38320477 DOI: 10.1016/j.cub.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Juvenile hormone is best known for its role in maintaining juvenile-stage insects in their immature states during postembryonic development. A new study finds an unexpected role for this signaling lipid in guiding primordial germ cell migration during embryogenesis - possibly an ancestral function of isoprenoid signaling molecules.
Collapse
Affiliation(s)
- Naoki Yamanaka
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
37
|
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol 2024; 34:505-518.e6. [PMID: 38215744 PMCID: PMC10872347 DOI: 10.1016/j.cub.2023.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Justina Sanny
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Emily Packard Dawson
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Institute of Parasitology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Fernando Gabriel Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Department of Parasitology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 413 E 69th Street, New York, NY, USA
| | - Ruth Lehmann
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
38
|
Su Y, Wang W, Dai Y, Qi R, Gu H, Guo X, Liu X, Ren Y, Li F, Li B, Sun H. JH degradation pathway participates in hormonal regulation of larval development of Bombyx mori following λ-cyhalothrin exposure. CHEMOSPHERE 2024; 349:140871. [PMID: 38056714 DOI: 10.1016/j.chemosphere.2023.140871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
λ-Cyhalothrin (λ-cyh), a widely utilized pyrethroid insecticide, poses serious threats to non-target organisms due to its persistence nature in the environment. Exposure to low concentrations of λ-cyh has been observed to result in prolonged larval development in Bombyx mori, leading to substantial financial losses in sericulture. The present study was undertaken to elucidate the underlying mechanisms for prolonged development caused by λ-cyh (LC10) exposure. The results showed that the JH Ⅲ titer was significantly increased at 24 h of λ-cyh exposure, and the JH interacting genes Methoprene-tolerant 2, Steroid Receptor Co-activator, Krüppel-homolog 1, and JH binding proteins were also up-regulated. Although the target of rapamycin (Tor) genes were induced by λ-cyh, the biosynthesis of JH in the corpora allata was not promoted. Notably, 13 JH degradation genes were found to be significantly down-regulated in the midgut of B. mori. The mRNA levels and enzyme activity assays indicated that λ-cyh had inhibitory effects on JH esterase, JH epoxide hydrolase, and JH diol kinase (JHDK). Furthermore, the suppression of JHDK (KWMTBOMO01580) was further confirmed by both western blot and immunohistochemistry. This study has offered a comprehensive perspective on the mechanisms underlying the prolonged development caused by insecticides, and our results also hold significant implications for the safe production of sericulture.
Collapse
Affiliation(s)
- Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Wanwan Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yixin Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Ruinan Qi
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xinyu Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
39
|
Zhu S, Chen X, Xia S, Li Q, Ye Z, Zhao S, Liu K, Liu F. Hexamerin and allergen are required for female reproduction in the American cockroach, Periplaneta americana. INSECT SCIENCE 2024; 31:186-200. [PMID: 37327125 DOI: 10.1111/1744-7917.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
Reproduction is of great importance for the continuation of the species. In insects, the fat body is the major tissue for nutrient storage and involved in vitellogenesis, which is essential for female reproduction. Here, 2 proteins, hexamerin and allergen, were separated from the fat bodies of adult female American cockroaches (Periplaneta americana) and identified as storage proteins, encoding for 733 amino acids with molecular weight of 87.88 kDa and 686 amino acids with molecular weight of 82.18 kDa, respectively. The encoding genes of these 2 storage proteins are mainly expressed in the fat body. RNA interference-mediated knockdown of Hexamerin and Allergen in the early stage of the first reproductive cycle in females suppressed vitellogenesis and ovarian maturation, indicating that these storage proteins are involved in controlling reproduction. Importantly, the expression of Hexamerin and Allergen was repressed by knockdown of the juvenile hormone (JH) receptor gene Met and the primary response gene Kr-h1, and was induced by methoprene, a JH analog, in both in vivo and in vitro experiments. Altogether, we have determined that hexamerin and allergen are identified as storage proteins and play an important role in promoting female reproduction in the American cockroach. The expression of their encoding genes is induced by JH signaling. Our data reveal a novel mechanism by which hexamerin and allergen are necessary for JH-stimulated female reproduction.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sishi Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shaoting Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kexin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
40
|
Truman JW, Riddiford LM, Konopová B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561279. [PMID: 37873170 PMCID: PMC10592639 DOI: 10.1101/2023.10.06.561279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Lynn M. Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Barbora Konopová
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, FL ,USA
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceské Budejovice, Czech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| |
Collapse
|
41
|
Gong ZX, Cheng FP, Xu JN, Yan WY, Wang ZL. The Juvenile-Hormone-Responsive Factor AmKr-h1 Regulates Caste Differentiation in Honey Bees. Biomolecules 2023; 13:1657. [PMID: 38002339 PMCID: PMC10669509 DOI: 10.3390/biom13111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Honey bees are typical model organisms for the study of caste differentiation, and the juvenile hormone (JH) is a crucial link in the regulatory network of caste differentiation in honey bees. To investigate the mechanism of JH-mediated caste differentiation, we analyzed the effect of the JH response gene AmKr-h1 on this process. We observed that AmKr-h1 expression levels were significantly higher in queen larvae than in worker larvae at the 48 h, 84 h, and 120 h larval stages, and were regulated by JH. Inhibiting AmKr-h1 expression in honey bee larvae using RNAi could lead to the development of larvae toward workers. We also analyzed the transcriptome changes in honey bee larvae after AmKr-h1 RNAi and identified 191 differentially expressed genes (DEGs) and 682 differentially expressed alternative splicing events (DEASEs); of these, many were related to honey bee caste differentiation. Our results indicate that AmKr-h1 regulates caste differentiation in honey bees by acting as a JH-responsive gene.
Collapse
Affiliation(s)
- Zhi-Xian Gong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Fu-Ping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Jia-Ning Xu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Wei-Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zi-Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Z.-X.G.); (F.-P.C.); (J.-N.X.); (W.-Y.Y.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
42
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
43
|
Tomberlin JK, Miranda C, Flint C, Harris E, Wu G. Nutrients limit production of insects for food and feed: an emphasis on nutritionally essential amino acids. Anim Front 2023; 13:64-71. [PMID: 37583806 PMCID: PMC10425138 DOI: 10.1093/af/vfad032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
| | - Chelsea Miranda
- Department of Entomology, Texas A&M University, College Station, TX
| | - Casey Flint
- Department of Entomology, Texas A&M University, College Station, TX
| | - Erin Harris
- Department of Entomology, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
44
|
Kodama A, Matsumoto K, Shinada T, Goto SG. Juvenile hormone identification in the cabbage bug Eurydema rugosa. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:293-298. [PMID: 36883785 DOI: 10.1017/s0007485321000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Juvenile hormone (JH) plays a pivotal role in almost every aspect of insect development and reproduction. The chemical structure of the JH in heteropteran species has long remained elusive until methyl (2R,3S,10R)-2,3;10,11-bisepoxyfarnesoate, commonly named as juvenile hormone III skipped bisepoxide (JHSB3), was isolated from Plautia stali (Hemiptera: Heteroptera: Pentatomidae). Recently, several groups reported the presence of JHSB3 in other heteropteran species. However, most of the studies paid no attention to the determination of the relative and absolute structure of the JH. In this study, we investigated the JH of the cabbage bug Eurydema rugosa (Hemiptera: Heteroptera: Pentatomidae), known as a pest for wild and cultivated crucifers. JHSB3 was detected in the hexane extract from the corpus allatum (CA) product using a chiral ultraperformance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) which can inform the absolute stereochemistry of the JH. Its stereoisomers were not detected. Topical application of the synthetic JHSB3 to the last instar nymphs inhibited their metamorphosis and induced nymphal-type colouration of the dorsal abdomen in a dose-dependent manner. Additionally, the topical application of JHSB3 effectively terminated summer and winter diapauses in females. These results indicate that the JH of E. rugosa is JHSB3. Although individuals in summer and winter diapauses are physiologically distinct in E. rugosa, the results suggest that the physiological differences between these diapauses are based, not on the responsiveness to JH, but on the processes governing activation of the CA or on its upstream cascades.
Collapse
Affiliation(s)
- Aya Kodama
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Keiji Matsumoto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Tetsuro Shinada
- Department of Material Science, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
45
|
Chen ZZ, Wang X, Kong X, Zhao YM, Xu MH, Gao YQ, Huang HY, Liu FH, Wang S, Xu YY, Kang ZW. Quantitative transcriptomic and proteomic analyses reveal the potential maintenance mechanism of female adult reproductive diapause in Chrysoperla nipponensis. PEST MANAGEMENT SCIENCE 2023; 79:1897-1911. [PMID: 36683402 DOI: 10.1002/ps.7375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still unknown. RESULTS The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and 5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK, JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the occurrence of vitellogenesis and expression of either Vg or VgR. CONCLUSION Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcriptomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism of C. nipponensis during adult reproductive diapause. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yue-Ming Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming-Hui Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hai-Yi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Fang-Hua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhi-Wei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
46
|
Li Z, Song J, Jiang G, Shang Y, Jiang Y, Zhang J, Xiao L, Chen M, Tang D, Tong X, Dai F. Juvenile hormone suppresses the FoxO-takeout axis to shorten longevity in male silkworm. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105388. [PMID: 37105617 DOI: 10.1016/j.pestbp.2023.105388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Juvenile hormone (JH) plays a crucial endocrine regulatory role in insect metamorphosis, reproduction, and longevity in multiple organisms, such as flies, honeybees, and migratory monarch butterflies. However, the molecular mechanism of JH affecting longevity remains largely unknown. In this study, we showed that JH III and its analog methoprene shortened the survival days significantly in the adulthood of male silkworm. At the same time, the allatostatin, a neuropeptide that inhibits the secretion of JH by the corpora allata, could extend the survival days dramatically after adult eclosion in male silkmoth. Interestingly, a central pro-longevity FoxO transcription factor was reduced upon JH stimulation in silkworm individuals and BmN-SWU1 cells. Furthermore, the analysis of the upstream sequence of the FoxO gene identified a JH response element which suggested that FoxO might be regulated as a target of JH. Surprisingly, we identified a Bmtakeout (BmTO) gene that encodes a JH-binding protein and contains a FoxO response element. As expected, FoxO overexpression and knockdown up- and down-regulated the expression of BmTO respectively, indicating that BmTO functions as a FoxO target. BmTO overexpression could release the inhibitory effect of JH on the BmFoxO gene by reducing JH bioavailability to block its signal transduction. Collectively, these results may provide insights into the mechanism of the JH-FoxO-TO axis in aging research and pest control.
Collapse
Affiliation(s)
- Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangbo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guihua Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yunzhu Shang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yu Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Li Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongmei Tang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Yoon KJ, Cunningham CB, Bretman A, Duncan EJ. One genome, multiple phenotypes: decoding the evolution and mechanisms of environmentally induced developmental plasticity in insects. Biochem Soc Trans 2023; 51:675-689. [PMID: 36929376 PMCID: PMC10246940 DOI: 10.1042/bst20210995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Plasticity in developmental processes gives rise to remarkable environmentally induced phenotypes. Some of the most striking and well-studied examples of developmental plasticity are seen in insects. For example, beetle horn size responds to nutritional state, butterfly eyespots are enlarged in response to temperature and humidity, and environmental cues also give rise to the queen and worker castes of eusocial insects. These phenotypes arise from essentially identical genomes in response to an environmental cue during development. Developmental plasticity is taxonomically widespread, affects individual fitness, and may act as a rapid-response mechanism allowing individuals to adapt to changing environments. Despite the importance and prevalence of developmental plasticity, there remains scant mechanistic understanding of how it works or evolves. In this review, we use key examples to discuss what is known about developmental plasticity in insects and identify fundamental gaps in the current knowledge. We highlight the importance of working towards a fully integrated understanding of developmental plasticity in a diverse range of species. Furthermore, we advocate for the use of comparative studies in an evo-devo framework to address how developmental plasticity works and how it evolves.
Collapse
Affiliation(s)
- Kane J. Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | | | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | - Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| |
Collapse
|
48
|
Aguilar P, Bourgeois T, Maria A, Couzi P, Demondion E, Bozzolan F, Gassias E, Force E, Debernard S. Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon. Horm Behav 2023; 150:105330. [PMID: 36791650 DOI: 10.1016/j.yhbeh.2023.105330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
In insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown. Here, we show that the expression of the paralogous JH receptors, Methoprene-tolerant 1 and 2 (Met1, Met2) and of the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) within ALs raised from the third day of adult life and this dynamic is correlated with increased behavioral responsiveness to sex pheromone. Met1-, Met2- and Kr-h1-depleted sexually mature males exhibited altered sex pheromone-guided orientation flight. Moreover, injection of JH-II into young males enhanced the behavioral response to sex pheromone with increased AL Met1, Met2 and Kr-h1 mRNA levels. By contrast, JH deficiency suppressed the behavioral response to sex pheromone coupled with reduced AL Met1, Met2 and Kr-h1 mRNA levels in allatectomized old males and these inhibitions were compensated by an injection of JH-II in operated males. Our results demonstrated that JH acts through Met-Kr-h1 signaling pathway operating in ALs, to promote the pheromone information processing and consequently the display of sexual behavior in synchronization with fertility to optimize male reproductive fitness. Thus, this study provides insights into the molecular mechanisms underlying the hormonal regulation of reproductive behavior in insects.
Collapse
Affiliation(s)
- Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Evan Force
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France.
| |
Collapse
|
49
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
50
|
Yu Z, Shi J, Jiang X, Song Y, Du J, Zhao Z. Neuropeptide F regulates feeding via the juvenile hormone pathway in Ostrinia furnacalis larvae. PEST MANAGEMENT SCIENCE 2023; 79:1193-1203. [PMID: 36396604 DOI: 10.1002/ps.7289] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Feeding by pests is one of the most important reasons for reductions in agricultural crop yield. This study aimed to reveal how juvenile hormone (JH) participates in larval feeding regulation of the Asian corn borer Ostrinia furnacalis. RESULTS Larvae of O. furnacalis exhibit a daily circadian feeding rhythm, with a peak at ZT18 and a trough at ZT6 under both photoperiod (LD) and constant dark (DD) conditions, which may be eliminated by application of fenoxycarb, a JH active analogue. JH negatively regulates larval feeding as a downstream factor of neuropeptide F (NPF), in which knocking down JH increases larval feeding amount along with body weight and length. The production of JH in the brain-corpora cardiaca-corpora allata (brain-CC-CA) is regulated by brain NPF rather than gut NPF, which was demonstrated in Drosophila larvae through GAL4/UAS genetic analysis. In addition, feeding regulation of JH is closely related to energy homeostasis in the fat body by inhibiting energy storage and promoting degradation. The JH analogue fenoxycarb is an effective pesticide against O. furnacalis, controlling feeding and metabolism. CONCLUSION The brain NPF system regulates JH, with functions in food consumption, feeding rhythms, energy homeostasis and body size. This study provides an important basis for understanding the feeding mechanism and potential pest control of O. furnacalis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhuofan Yu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jian Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuemin Jiang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yu Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| |
Collapse
|