1
|
Han J, Klobasa W, de Oliveira L, Rotenberg D, Whitfield AE, Lorenzen MD. CRISPR/Cas9-mediated genome editing of Frankliniella occidentalis, the western flower thrips, via embryonic microinjection. INSECT MOLECULAR BIOLOGY 2024; 33:589-600. [PMID: 38676396 DOI: 10.1111/imb.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The western flower thrips, Frankliniella occidentalis, poses a significant challenge in global agriculture as a notorious pest and a vector of economically significant orthotospoviruses. However, the limited availability of genetic tools for F. occidentalis hampers the advancement of functional genomics and the development of innovative pest control strategies. In this study, we present a robust methodology for generating heritable mutations in F. occidentalis using the CRISPR/Cas9 genome editing system. Two eye-colour genes, white (Fo-w) and cinnabar (Fo-cn), frequently used to assess Cas9 function in insects were identified in the F. occidentalis genome and targeted for knockout through embryonic microinjection of Cas9 complexed with Fo-w or Fo-cn specific guide RNAs. Homozygous Fo-w and Fo-cn knockout lines were established by crossing mutant females and males. The Fo-w knockout line revealed an age-dependent modification of eye-colour phenotype. Specifically, while young larvae exhibit orange-coloured eyes, the colour transitions to bright red as they age. Unexpectedly, loss of Fo-w function also altered body colour, with Fo-w mutants having a lighter coloured body than wild type, suggesting a dual role for Fo-w in thrips. In contrast, individuals from the Fo-cn knockout line consistently displayed bright red eyes throughout all life stages. Molecular analyses validated precise editing of both target genes. This study offers a powerful tool to investigate thrips gene function and paves the way for the development of genetic technologies for population suppression and/or population replacement as a means of mitigating virus transmission by this vector.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - William Klobasa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Lucas de Oliveira
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Marcé D Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Sun K, Fu K, Hu T, Shentu X, Yu X. Leveraging insect viruses and genetic manipulation for sustainable agricultural pest control. PEST MANAGEMENT SCIENCE 2024; 80:2515-2527. [PMID: 37948321 DOI: 10.1002/ps.7878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
The potential of insect viruses in the biological control of agricultural pests is well-recognized, yet their practical application faces obstacles such as host specificity, variable virulence, and resource scarcity. High-throughput sequencing (HTS) technologies have significantly advanced our capabilities in discovering and identifying new insect viruses, thereby enriching the arsenal for pest management. Concurrently, progress in reverse genetics has facilitated the development of versatile viral expression vectors. These vectors have enhanced the specificity and effectiveness of insect viruses in targeting specific pests, offering a more precise approach to pest control. This review provides a comprehensive examination of the methodologies employed in the identification of insect viruses using HTS. Additionally, it explores the domain of genetically modified insect viruses and their associated challenges in pest management. The adoption of these cutting-edge approaches holds great promise for developing environmentally sustainable and effective pest control solutions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kang Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Tao Hu
- Zhejinag Seed Industry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Sui Z, Wu Q, Geng J, Xiao J, Huang D. CRISPR/Cas9-mediated efficient white genome editing in the black soldier fly Hermetia illucens. Mol Genet Genomics 2024; 299:5. [PMID: 38315256 DOI: 10.1007/s00438-023-02088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/17/2023] [Indexed: 02/07/2024]
Abstract
The CRISPR/Cas9 system is the most straightforward genome-editing technology to date, enabling genetic engineering in many insects, including the black soldier fly, Hermetia illucens. The white gene plays a significant role in the multifarious life activities of insects, especially the pigmentation of the eyes. In this study, the white gene of H. illucens (Hiwhite) was cloned, identified, and bioinformatically analysed for the first time. Using quantitative real-time polymerase chain reaction (qPCR), we found that the white gene was expressed in the whole body of the adult flies, particularly in Malpighian tubules and compound eyes. Furthermore, we utilised CRISPR/Cas9-mediated genome-editing technology to successfully generate heritable Hiwhite mutants using two single guide RNAs. During Hiwhite genome editing, we determined the timing, method, and needle-pulling parameters for embryo microinjection by observing early embryonic developmental features. We used the CasOT program to obtain highly specific guide RNAs (gRNAs) at the genome-wide level. According to the phenotypes of Hiwhite knockout strains, the pigmentation of larval stemmata, imaginal compound eyes, and ocelli differed from those of the wild type. These phenotypes were similar to those observed in other insects harbouring white gene mutations. In conclusion, our results described a detailed white genome editing process in black soldier flies, which lays a solid foundation for intensive research on the pigmentation pathway of the eyes and provides a methodological basis for further genome engineering applications in black soldier flies.
Collapse
Affiliation(s)
- Zhuoxiao Sui
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qi Wu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin Geng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Han WK, Tang FX, Gao HL, Wang Y, Yu N, Jiang JJ, Liu ZW. Co-CRISPR: A valuable toolkit for mutation enrichment in the gene editing of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:625-636. [PMID: 36169087 DOI: 10.1111/1744-7917.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system has been successfully applied in dozens of diverse species; although the screening of successful CRISPR/Cas9 editing events remains particularly laborious, especially for those that occur at relatively low frequency. Recently, a co-CRISPR strategy was proved to enrich the desired CRISPR events. Here, the co-CRISPR strategy was developed in the Fall armyworm, Spodoptera frugiperda, with kynurenine 3-monooxygenase gene (kmo) as a marker. The kmo mosaics induced by single-guide RNAs (sgRNAs)/Cas9 displayed the darker green color phenotype in larvae, compared with wild type (brown), and mosaic-eye adults were significantly acquired from the mosaic larvae group. In the kmo knockout strain, no significant difference was observed in larval development and adult reproduction. Acetylcholinesterase 2 (ace2) and Wnt1 were selected as target genes to construct the co-CRISPR strategy using kmo marker. By co-injection of kmo and ace2 sgRNAs, the mutant efficiency of ace2 was significantly increased in the kmo mosaic (larvae or adults) groups. Similarly, more malformed pupae with Wnt1 mutations were observed in the darker green larvae group. Taken together, these results demonstrated that kmo was a suitable visible marker gene for the application and extension of co-CRISPR strategy in Fall armyworm. Using darker green color in larvae or mosaic-eye in adults from kmo knockout as a marker, the mutant efficiency of a target gene could be enriched in a Fall armyworm group consisting of marked individuals. The co-CRISPR strategy is helpful for gene function studies by the knockout technique with no or lethal phenotypes.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao-Li Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jun Jiang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Science, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. STRESSES 2022. [DOI: 10.3390/stresses2040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global crop yield and food security are being threatened by phytophagous insects. Innovative methods are required to increase agricultural output while reducing reliance on hazardous synthetic insecticides. Using the revolutionary CRISPR-Cas technology to develop insect-resistant plants appears to be highly efficient at lowering production costs and increasing farm profitability. The genomes of both a model insect, Drosophila melanogaster, and major phytophagous insect genera, viz. Spodoptera, Helicoverpa, Nilaparvata, Locusta, Tribolium, Agrotis, etc., were successfully edited by the CRISPR-Cas toolkits. This new method, however, has the ability to alter an insect’s DNA in order to either induce a gene drive or overcome an insect’s tolerance to certain insecticides. The rapid progress in the methodologies of CRISPR technology and their diverse applications show a high promise in the development of insect-resistant plant varieties or other strategies for the sustainable management of insect pests to ensure food security. This paper reviewed and critically discussed the use of CRISPR-Cas genome-editing technology in long-term insect pest management. The emphasis of this review was on the prospective uses of the CRISPR-Cas system for insect stress management in crop production through the creation of genome-edited crop plants or insects. The potential and the difficulties of using CRISPR-Cas technology to reduce pest stress in crop plants were critically examined and discussed.
Collapse
|
6
|
Wu MM, Chen X, Xu QX, Zang LS, Wang S, Li M, Xiao D. Melanin Synthesis Pathway Interruption: CRISPR/Cas9-mediated Knockout of dopa decarboxylase (DDC) in Harmonia axyridis (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6694719. [PMID: 36082675 PMCID: PMC9459435 DOI: 10.1093/jisesa/ieac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 05/28/2023]
Abstract
CRISPR/Cas9 technology is a very powerful genome editing tool and has been used in many insect species for functional genomics studies through targeted gene mutagenesis. Here, we successfully established CRISPR/Cas9 research platform in Asian multi-colored ladybird beetle, Harmonia axyridis, an important natural enemy in biological control. In this study, one pivotal gene dopa decarboxylase (DDC) in melanin synthesis was targeted by CRISPR/Cas9 to generate mutants in H. axyridis by CRISPR/Cas9 technology. Our results showed that injection of single guide RNA of the DDC and Cas9 protein into preblastoderm eggs induced one insertion and four deletion (indels) mutant H. axyridis. Mutations of HaDDC gene generated 25% mutant rate with melanin missing phenotype in larva, pupa,l and adult stage. The predation ability of the fourth instar larvae has no significant difference between wild (control) and mutant H. axyridis (G0), while these mutant fourth instar larvae had longer developmental period than that of the wild type. Consequently, the total predation of the fourth instar larvae was significantly increased in H. axyridis mutants comparing with the wild type. These results indicated that the success of CRISPR/Cas9 gene editing in H. axyridis. The gene editing platform in H. axyridis would facilitate the gene function research and promote special strain of predatory ladybird beetle generation.
Collapse
Affiliation(s)
| | | | - Qing-xuan Xu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lian-sheng Zang
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering of Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Li
- Corresponding author, e-mail: (M.L.), (D.X.)
| | - Da Xiao
- Corresponding author, e-mail: (M.L.), (D.X.)
| |
Collapse
|
7
|
Vitelline Membrane Protein 26 Mutagenesis, Using CRISPR/Cas9, Results in Egg Collapse in Plutella xylostella. Int J Mol Sci 2022; 23:ijms23179538. [PMID: 36076934 PMCID: PMC9455775 DOI: 10.3390/ijms23179538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Vitelline membrane proteins (VMPs) are the main proteins that form the inner shell (vitelline membrane layer) of insect eggs and are an integral part of egg formation and embryo development. Here, we characterized the molecular structure and expression patterns of the VMP26 gene and analyzed its reproductive functions in diamondback moth, Plutella xylostella (L.), a worldwide migratory pest of cruciferous plants. The PxVMP26 gene was shown to be a single exon gene that contained an open reading frame of 852 base pairs (bp) encoding 283 amino acids. Both qPCR and western blot analyses showed that PxVMP26 was specifically expressed in female adults and was significantly highly expressed in the ovary. Further anatomical analysis indicated that the expression level of PxVMP26 in the ovarian tube with an incomplete yolk was significantly higher than that in the ovarian tube with a complete yolk. CRISPR/Cas9-induced PxVMP26 knockout successfully created two homozygous strains with 8- and 46-bp frameshift mutations. The expression deficiency of the PxVMP26 protein was detected in the mutant strains using immunofluorescence and western blot. No significant difference was found in the number of eggs laid within three days between wild and mutant individuals, but there was a lower egg hatchability. The loss of the PxVMP26 gene changed the mean egg size, damaged the structure of the vitelline membrane, and increased the proportion of abnormal eggs due to water loss, resulting in egg collapse. This first analysis of the roles of the VMP gene in the oocyte formation and embryonic development of P. xylostella, using CRISPR/Cas9 technology, provides a basis for screening new genetic control targets of P. xylostella.
Collapse
|
8
|
Bak JJ, Aguayo-Ortiz R, Rathod N, Primeau JO, Khan MB, Robia SL, Lemieux MJ, Espinoza-Fonseca LM, Young HS. Primitive Phospholamban- and Sarcolipin-like Peptides Inhibit the Sarcoplasmic Reticulum Calcium Pump SERCA. Biochemistry 2022; 61:1419-1430. [PMID: 35771007 PMCID: PMC10588654 DOI: 10.1021/acs.biochem.2c00246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intracellular calcium signaling is essential for all kingdoms of life. An important part of this process is the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which maintains the low cytosolic calcium levels required for intracellular calcium homeostasis. In higher organisms, SERCA is regulated by a series of tissue-specific transmembrane subunits such as phospholamban in cardiac muscles and sarcolipin in skeletal muscles. These regulatory axes are so important for muscle contractility that SERCA, phospholamban, and sarcolipin are practically invariant across mammalian species. With the recent discovery of the arthropod sarcolambans, the family of calcium pump regulatory subunits appears to span more than 550 million years of evolutionary divergence from arthropods to humans. This evolutionary divergence is reflected in the peptide sequences, which vary enormously from one another and only vaguely resemble phospholamban and sarcolipin. The discovery of the sarcolambans allowed us to address two questions. How much sequence variation is tolerated in the regulation of mammalian SERCA activity by the transmembrane peptides? Do divergent peptide sequences mimic phospholamban or sarcolipin in their regulatory activities despite limited sequence similarity? We expressed and purified recombinant sarcolamban peptides from three different arthropods. The peptides were coreconstituted into proteoliposomes with mammalian SERCA1a and the effect of each peptide on the apparent calcium affinity and maximal activity of SERCA was measured. All three peptides were superinhibitors of SERCA, exhibiting either phospholamban-like or sarcolipin-like characteristics. Molecular modeling, protein-protein docking, and molecular dynamics simulations revealed novel features of the divergent peptides and their SERCA regulatory properties.
Collapse
Affiliation(s)
- Jessi J. Bak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nishadh Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Joseph O. Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Seth L. Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
9
|
Nganso BT, Pines G, Soroker V. Insights into gene manipulation techniques for Acari functional genomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103705. [PMID: 35134533 DOI: 10.1016/j.ibmb.2021.103705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Functional genomics is an essential tool for elucidating the structure and function of genes in any living organism. Here, we review the use of different gene manipulation techniques in functional genomics of Acari (mites and ticks). Some of these Acari species inflict severe economic losses to managed crops and health problems to humans, wild and domestic animals, but many also provide important ecosystem services worldwide. Currently, RNA interference (RNAi) is the leading gene expression manipulation tool followed by gene editing via the bacterial type II Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 system (CRISPR-Cas9). Whilst RNAi, via siRNA, does not always lead to expected outcomes, the exploitations of the CRISPR systems in Acari are still in their infancy and are limited only to CRISP/Cas9 to date. In this review, we discuss the advantages and disadvantages of RNAi and CRISPR-Cas9 and the technical challenges associated with their exploitations. We also compare the biochemical machinery of RNAi and CRISPR-Cas9 technologies. We highlight some potential solutions for experimental optimization of each mechanism in gene function studies. The potential benefits of adopting various CRISPR-Cas9 systems for expanding on functional genomics experiments in Acari are also discussed.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Gur Pines
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| | - Victoria Soroker
- Department of Entomology, Chemistry and Nematology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Centre, Rishon LeZion, Israel.
| |
Collapse
|
10
|
Wang XX, Li J, Wang TX, Yang YN, Zhang HK, Zhou M, Kang L, Wei LY. A novel non-invasive identification of genome editing mutants from insect exuviae. INSECT SCIENCE 2022; 29:21-32. [PMID: 33860620 DOI: 10.1111/1744-7917.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
With the wide application of genome editing in insects, a simple and efficient identification method is urgently needed to meet the increasing demand for mutation detection. Here, taking migratory locusts as a model system, we developed a non-invasive method to accurately identify genome-edited mutants by using DNA from insect exuviae. We compared the quantity and quality of genomic DNA from exuviae in five instar hoppers and found that the 1st instar exuviae had the highest DNA yield and content, while the 3rd instar exuviae had the best quality. Consensus genotypes were identified from genomic DNA of hoppers at different developmental stages in the same individuals. Moreover, we demonstrated that the amplification products from DNA extracted from locust exuviae are the consensus sequences with those from the hemolymph and foreleg pre-tarsus. Therefore, non-invasive samples provide the same genotyping results as minimally invasive and invasive samples of the same individuals. Furthermore, this identification method that uses genomic DNA from exuviae can be used for early screening of positive genome-edited individuals in each generation for adult crossing. In our study, the non-invasive identification method was not only simpler and provided results earlier than existing methods, but also had a better reproducibility and accuracy. This non-invasive identification approach using genomic DNA from exuviae can be adapted to meet the growing demand for genetic analysis and will find wide application in insect genome editing research.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Jing Li
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Tong-Xin Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yi-Nuo Yang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Hai-Kang Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Meng Zhou
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
| | - Le Kang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Ya Wei
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei Province, 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Boyle JH, Rastas PMA, Huang X, Garner AG, Vythilingam I, Armbruster PA. A Linkage-Based Genome Assembly for the Mosquito Aedes albopictus and Identification of Chromosomal Regions Affecting Diapause. INSECTS 2021; 12:167. [PMID: 33669192 PMCID: PMC7919801 DOI: 10.3390/insects12020167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
The Asian tiger mosquito, Aedes albopictus, is an invasive vector mosquito of substantial public health concern. The large genome size (~1.19-1.28 Gb by cytofluorometric estimates), comprised of ~68% repetitive DNA sequences, has made it difficult to produce a high-quality genome assembly for this species. We constructed a high-density linkage map for Ae. albopictus based on 111,328 informative SNPs obtained by RNAseq. We then performed a linkage-map anchored reassembly of AalbF2, the genome assembly produced by Palatini et al. (2020). Our reassembled genome sequence, AalbF3, represents several improvements relative to AalbF2. First, the size of the AalbF3 assembly is 1.45 Gb, almost half the size of AalbF2. Furthermore, relative to AalbF2, AalbF3 contains a higher proportion of complete and single-copy BUSCO genes (84.3%) and a higher proportion of aligned RNAseq reads that map concordantly to a single location of the genome (46%). We demonstrate the utility of AalbF3 by using it as a reference for a bulk-segregant-based comparative genomics analysis that identifies chromosomal regions with clusters of candidate SNPs putatively associated with photoperiodic diapause, a crucial ecological adaptation underpinning the rapid range expansion and climatic adaptation of A. albopictus.
Collapse
Affiliation(s)
- John H. Boyle
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
- Department of Biology, University of Mary, Bismarck, ND 58504, USA
| | - Pasi M. A. Rastas
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland;
| | - Xin Huang
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
| | - Austin G. Garner
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, 37th and O St, Washington, DC 20057, USA; (J.H.B.); (X.H.); (A.G.G.)
| |
Collapse
|
12
|
Shults P, Cohnstaedt LW, Adelman ZN, Brelsfoard C. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasit Vectors 2021; 14:31. [PMID: 33413518 PMCID: PMC7788963 DOI: 10.1186/s13071-020-04524-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
Biting midges of the genus Culicoides transmit disease-causing agents resulting in a significant economic impact on livestock industries in many parts of the world. Localized control efforts, such as removal of larval habitat or pesticide application, can be logistically difficult, expensive and ineffective if not instituted and maintained properly. With these limitations, a population-level approach to the management of Culicoides midges should be investigated as a means to replace or supplement existing control strategies. Next-generation control methods such as Wolbachia- and genetic-based population suppression and replacement are being investigated in several vector species. Here we assess the feasibility and applicability of these approaches for use against biting midges. We also discuss the technical and logistical hurdles needing to be addressed for each method to be successful, as well as emphasize the importance of addressing community engagement and involving stakeholders in the investigation and development of these approaches.
Collapse
Affiliation(s)
- Phillip Shults
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA.
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Zach N Adelman
- Texas A&M University, 370 Olsen Blvd, College Station, TX, 77843, USA
| | | |
Collapse
|
13
|
Zhu GH, Chereddy SCRR, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103373. [PMID: 32276113 DOI: 10.1016/j.ibmb.2020.103373] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect. We performed CRISPR/Cas9-mediated site-specific mutagenesis of three target genes: two marker genes [Biogenesis of lysosome-related organelles complex 1 subunit 2 (BLOS2) and tryptophan 2, 3-dioxygenase (TO)], and a developmental gene, E93 (a key ecdysone-induced transcription factor that promotes adult development). The knockouts (KO) of BLOS2, TO and E93 induced translucent mosaic integument, olive eye color, and larval-pupal intermediate phenotypes, respectively. Sequencing RNA isolated from wild-type and E93 KO insects showed that E93 promotes adult development by influencing the expression of the genes coding for transcription factor, Krüppel homolog 1, the pupal specifier, Broad-Complex, serine proteases, and heat shock proteins. Often, gene-edited insects display mosaicism in which only a fraction of the cells are edited as intended, and establishing a homozygous line is both costly and time-consuming. To overcome these limitations, a method to completely KO the target gene in S. frugiperda by injecting the Cas9 protein and multiple sgRNAs targeting one exon of the E93 gene into embryos was developed. Ten percent of the G0 larvae exhibited larval-pupal intermediates. The mutations were confirmed by T7E1 assay, and the mutation frequency was determined as >80%. Complete KO of the E93 gene was achieved in one generation using the multiple sgRNA method, demonstrating a powerful approach to improve genome editing in lepidopteran and other non-model insects.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
14
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
15
|
Gregoriou ME, Mathiopoulos KD. Knocking down the sex peptide receptor by dsRNA feeding results in reduced oviposition rate in olive fruit flies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21665. [PMID: 32091155 DOI: 10.1002/arch.21665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Insect pests can cause crop damage in yield or quality, resulting in profit losses for farmers. The primary approach to control them is still the use of chemical pesticides resulting in significant hazards to the environment and human health. Biological control and the sterile insect technique are alternative strategies to improve agriculture protection. However, both strategies have significant limitations. A newly introduced approach that could be both effective and species-specific is the RNA interference mechanism. One key point for the success of this strategy is the delivery method of double-strand RNA (dsRNA) to the insects. A method of dsRNA delivery to insects with potential use in the field is the oral delivery, feeding the insects engineered microorganisms that produce dsRNA. Here, we present the first protocol for dsRNA feeding using modified bacteria, in the olive fruit fly, the most important insect pest of cultivated olives. We chose to target the sex peptide receptor gene. The sex peptide receptor interacts with the sex peptide, a peptide that is responsible for the postmating behavior in the model organism, Drosophila melanogaster. Feeding the female olive fruit fly with bacteria that produced dsRNA for the sex peptide receptor gene resulted in the development of female insects with significantly lower oviposition rates. Administration of dsRNA producing bacteria in insect diet against target genes that lead to genetic sexing or female-specific lethality could be added in the armory of control methods.
Collapse
Affiliation(s)
- Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Kostas D Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
16
|
Chen W, Dong Y, Saqib HSA, Vasseur L, Zhou W, Zheng L, Lai Y, Ma X, Lin L, Xu X, Bai J, He W, You M. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103316. [PMID: 31953191 DOI: 10.1016/j.ibmb.2020.103316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Evolutionary adaptations of herbivorous insects are often dictated by the necessity to withstand a corresponding evolutionary innovation in host plant defense. Glucosinolate sulfatase (GSS) enzyme activity is considered a central adaptation strategy in Plutella xylostella against glucosinolates (GS)-myrosinase defense system in the Brassicales. The high functional versatility of sulfatases suggests that they may perform other vital roles in the process of growth and development. Here, we used a CRISPR/Cas9 system to generate stable homozygous single/double mutant lines of gss1 or/and gss2 with no predicted off-target effects, to analyze the functions of the pair of duplicated genes in the development and host adaptation of P. xylostella. The bioassays showed that, when fed on their usual artificial diet, significant reduction in egg hatching rate and final larval survival rate of the single mutant line of gss2 compared with the original strain or mutant lines of gss1, revealing unexpected functions of GSS2 in embryonic and larval development. When larvae of homozygous mutant lines were transferred onto a new food, Arabidopsis thaliana, no induced effect at protein level of GSS1/2 or gene expression level of gss1/gss2 was detected. The absence of GSS1 or GSS2 reduced the survival rate of larvae and prolonged the duration of the larval stage, indicating that both GSS1 and GSS2 played an important role in adaptation to host plants. The versatile functions of duplicated GSSs in this study provide a foundation for further research to understand potential functions of other sulfatase members and support evidence of adaptation in herbivorous insects.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, 310012, China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoli Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuejiao Xu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianlin Bai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Tsoumani KT, Meccariello A, Mathiopoulos KD, Papathanos PA. Developing CRISPR-based sex-ratio distorters for the genetic control of fruit fly pests: A how to manual. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21652. [PMID: 31845410 DOI: 10.1002/arch.21652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Agricultural pest control using genetic-based methods provides a species-specific and environmentally harmless way for population suppression of fruit flies. One way to improve the efficiency of such methods is through self-limiting, female-eliminating approaches that can alter an insect populations' sex ratio toward males. In this microreview, we summarize recent advances in synthetic sex ratio distorters based on X-chromosome shredding that can induce male-biased progeny. We outline the basic principles to guide the efficient design of an X-shredding system in an XY heterogametic fruit fly species of interest using CRISPR/Cas gene editing, newly developed computational tools, and insect genetic engineering. We also discuss technical aspects and challenges associated with the efficient transferability of this technology in fruit fly pest populations, toward the potential use of this new class of genetic control approaches for pest management purposes.
Collapse
Affiliation(s)
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kostas D Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Philippos Aris Papathanos
- Department of Entomology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Peng L, Wang Q, Zou MM, Qin YD, Vasseur L, Chu LN, Zhai YL, Dong SJ, Liu LL, He WY, Yang G, You MS. CRISPR/Cas9-Mediated Vitellogenin Receptor Knockout Leads to Functional Deficiency in the Reproductive Development of Plutella xylostella. Front Physiol 2020; 10:1585. [PMID: 32038281 PMCID: PMC6989618 DOI: 10.3389/fphys.2019.01585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
The vitellogenin receptor (VgR) belongs to the low-density lipoprotein receptor (LDLR) gene superfamily and plays an indispensable role in Vg transport, yolk deposition, and oocyte development. For this reason, it has become a promising target for pest control. The involvement of VgR in Vg transport and reproductive functions remains unclear in diamondback moths, Plutella xylostella (L.), a destructive pest of cruciferous crops. Here, we cloned and identified the complete cDNA sequence of P. xylostella VgR, which encoded 1805 amino acid residues and contained four conserved domains of LDLR superfamily. PxVgR was mainly expressed in female adults, more specifically in the ovary. PxVgR protein also showed the similar expression profile with the PxVgR transcript. CRISPR/Cas9-mediated PxVgR knockout created a homozygous mutant of P. xylostella with 5-bp-nucleotide deletion in the PxVgR. The expression deficiency of PxVgR protein was detected in the ovaries and eggs of mutant individuals. Vg protein was still detected in the eggs of the mutant individuals, but with a decreased expression level. However, PxVg transcripts were not significantly affected by the PxVgR knockout. Knockout of PxVgR resulted in shorter ovarioles of newly emerged females. No significant difference was detected between wild and mutant individuals in terms of the number of eggs laid in the first 3 days after mating. The loss of PxVgR gene resulted in smaller and whiter eggs and lower egg hatching rate. This study represents the first report on the functions of VgR in Vg transport, ovary development, oviposition, and embryonic development of P. xylostella using CRISPR/Cas9 technology. This study lays the foundation for understanding molecular mechanisms of P. xylostella reproduction, and for making use of VgR as a potential genetic-based molecular target for better control of the P. xylostella.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu-Dong Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Li-Na Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Long Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Jie Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Li Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Yi He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min-Sheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China.,Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Mansourian S, Fandino RA, Riabinina O. Progress in the use of genetic methods to study insect behavior outside Drosophila. CURRENT OPINION IN INSECT SCIENCE 2019; 36:45-56. [PMID: 31494407 DOI: 10.1016/j.cois.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In the span of a decade we have seen a rapid progress in the application of genetic tools and genome editing approaches in 'non-model' insects. It is now possible to target sensory receptor genes and neurons, explore their functional roles and manipulate behavioral responses in these insects. In this review, we focus on the latest examples from Diptera, Lepidoptera and Hymenoptera of how applications of genetic tools advanced our understanding of diverse behavioral phenomena. We further discuss genetic methods that could be applied to study insect behavior in the future.
Collapse
Affiliation(s)
| | - Richard A Fandino
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
20
|
de Graeff N, Jongsma KR, Johnston J, Hartley S, Bredenoord AL. The ethics of genome editing in non-human animals: a systematic review of reasons reported in the academic literature. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180106. [PMID: 30905297 PMCID: PMC6452271 DOI: 10.1098/rstb.2018.0106] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, new genome editing technologies have emerged that can edit the genome of non-human animals with progressively increasing efficiency. Despite ongoing academic debate about the ethical implications of these technologies, no comprehensive overview of this debate exists. To address this gap in the literature, we conducted a systematic review of the reasons reported in the academic literature for and against the development and use of genome editing technologies in animals. Most included articles were written by academics from the biomedical or animal sciences. The reported reasons related to seven themes: human health, efficiency, risks and uncertainty, animal welfare, animal dignity, environmental considerations and public acceptability. Our findings illuminate several key considerations about the academic debate, including a low disciplinary diversity in the contributing academics, a scarcity of systematic comparisons of potential consequences of using these technologies, an underrepresentation of animal interests, and a disjunction between the public and academic debate on this topic. As such, this article can be considered a call for a broad range of academics to get increasingly involved in the discussion about genome editing, to incorporate animal interests and systematic comparisons, and to further discuss the aims and methods of public involvement. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Nienke de Graeff
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| | - Josephine Johnston
- Research Department, The Hastings Center, 21 Malcolm Gordon Road, Garrison, NY 10524, USA
| | - Sarah Hartley
- The University of Exeter Business School, University of Exeter, Rennes Drive, Exeter EX4 4PU, UK
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center, University Medical Center Utrecht/Utrecht University, PO Box 85500, Utrecht, GA 3508, The Netherlands
| |
Collapse
|
21
|
Identification of a novel strong promoter from the anhydrobiotic midge, Polypedilum vanderplanki, with conserved function in various insect cell lines. Sci Rep 2019; 9:7004. [PMID: 31065019 PMCID: PMC6504868 DOI: 10.1038/s41598-019-43441-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
Larvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes. Using a luciferase reporter assay, this strong transcriptional activity was shown to be conserved in cell lines from various insect species, including S2 (Drosophila melanogaster, Diptera), SaPe-4 (Sarcophaga peregrina, Diptera), Sf9 (Spodoptera frugiperda, Lepidoptera) and Tc81 (Tribolium castaneum, Coleoptera) cells. In conjunction with an appropriate selection maker gene, the 121 promoter was able to confer zeocin resistance on SaPe-4 cells and allowed the establishment of stable SaPe-4 cell lines expressing the fluorescent protein AcGFP1; this is the first report of heterologous gene expression in this cell line. These results show the 121 promoter to be a versatile tool for exogenous gene expression in a wide range of insect cell lines, particularly useful to those from non-model insect species.
Collapse
|
22
|
Zheng W, Li Q, Sun H, Ali MW, Zhang H. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9-mediated mutagenesis of the multiple edematous wings gene induces muscle weakness and flightlessness in Bactrocera dorsalis (Diptera: Tephritidae). INSECT MOLECULAR BIOLOGY 2019; 28:222-234. [PMID: 30260055 DOI: 10.1111/imb.12540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system is a versatile, efficient and heritable gene editing tool that can be useful for genome engineering. Bactrocera dorsalis (Hendel) is a major pest of agriculture that causes great economic losses. We used the B. dorsalis multiple edematous wings (Bdmew) gene as the target gene to explore the effectiveness of CRISPR/Cas9 for B. dorsalis genome manipulation. We studied the physiological functions of the Bdmew gene, particularly those related to muscle development. Site-specific genome editing was feasible using direct microinjection of specific guide RNA and the Cas9-plasmid into B. dorsalis embryos. Mutation frequencies ranged from 12.1 to 30.2% in the injected generation. Mosaic G0, with the mew mutation, was heritable to the next generation. The G1 displayed a series of defective phenotypes including muscle weakness, flightlessness, failure to eclose, wing folds and unbalanced movement. These results demonstrated that CRISPR/Cas9 can act as a highly specific, efficient, heritable tool for genome manipulation in B. dorsalis and this has significance for gene function research and genetic control of pests. The Bdmew gene possesses key functions in muscle development of B. dorsalis. Bdmew mutations cause a series of serious defects by interfering with muscle development and may provide a means for controlling B. dorsalis via a gene-based method such as gene drive.
Collapse
Affiliation(s)
- W Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Q Li
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H Sun
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - M Waqar Ali
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Center for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Martin-Martin I, Aryan A, Meneses C, Adelman ZN, Calvo E. Optimization of sand fly embryo microinjection for gene editing by CRISPR/Cas9. PLoS Negl Trop Dis 2018; 12:e0006769. [PMID: 30180160 PMCID: PMC6150542 DOI: 10.1371/journal.pntd.0006769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/21/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology has rapidly emerged as a very effective tool for gene editing. Although great advances on gene editing in the medical entomology field have arisen, no attempts of gene editing have been reported in sand flies, the vectors of Leishmaniasis. Methodology/Principal findings Here, we described a detailed protocol for sand fly embryo microinjection taking into consideration the sand fly life cycle, and manipulation and oviposition requirements of this non-model organism. Following our microinjection protocol, a hatching rate of injected embryos of 11.90%-14.22% was achieved, a rate consistent with other non-model organism dipterans such as mosquitoes. Essential factors for the adaptation of CRISPR/Cas9 technology to the sand fly field were addressed including the selection of a target gene and the design and production of sgRNA. An in vitro cleavage assay was optimized to test the activity of each sgRNA and a protocol for Streptococcus pyogenes Cas9 (spCas9) protein expression and purification was described. Relevant considerations for a successful gene editing in the sand fly such as specifics of embryology and double-stranded break DNA repair mechanisms were discussed. Conclusion and significance The step-by-step methodology reported in this article will be of significant use for setting up a sand fly embryo microinjection station for the incorporation of CRISPR/Cas9 technology in the sand fly field. Gene editing strategies used in mosquitoes and other model insects have been adapted to work with sand flies, providing the tools and relevant information for adapting gene editing techniques to the vectors of Leishmaniasis. Gene editing in sand flies will provide essential information on the biology of these vectors of medical and veterinary relevance and will rise a better understanding of vector-parasite-host interactions. The CRISPR/Cas9 system, based on the adaptive immune system in bacteria and archaea against viral infections, has been adapted and has rapidly emerged as a very effective genetic engineering tool in many organisms. Although great advances on gene editing in the medical entomology field have arisen, no attempts have been reported in sand flies, the vectors of Leishmania spp. Leishmaniasis is one of the most neglected parasitic diseases with twelve million people affected worldwide. Despite their importance as disease vectors, sand fly genetics and molecular studies are limited when compared to other insects. In this article, gene editing strategies used in mosquitoes and other model insects have been adapted to work with sand flies, providing the tools and relevant information for adapting embryo microinjection techniques to sand flies, an essential step in a successful gene editing experiment. We believe gene editing in sand flies will provide essential information of medical and veterinary relevance on the biology of these vectors, and will further a better understanding of vector-parasite-host interactions.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azadeh Aryan
- Department of Entomology and Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zach N. Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, Texas, United States of America
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Gantz VM, Akbari OS. Gene editing technologies and applications for insects. CURRENT OPINION IN INSECT SCIENCE 2018; 28:66-72. [PMID: 30551769 PMCID: PMC6296244 DOI: 10.1016/j.cois.2018.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 05/09/2023]
Abstract
Initially discovered in bacteria, CRISPR-based genome editing endonucleases have proven remarkably amenable for adaptation to insects. To date, these endonucleases have been utilized in a plethora of both model and non-model insects including diverse flies, bees, beetles, butterflies, moths, and grasshoppers, to name a few, thereby revolutionizing functional genomics of insects. In addition to basic genome editing, they have also been invaluable for advanced genome engineering and synthetic biology applications. Here we explore the recent genome editing advancements in insects for generating site-specific genomic mutations, insertions, deletions, as well as more advanced applications such as Homology Assisted Genome Knock-in (HACK), potential to utilize DNA base editing, generating predictable reciprocal chromosomal translocations, and development gene drives to control the fate of wild populations.
Collapse
Affiliation(s)
- Valentino M Gantz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92092, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92092, USA; Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
25
|
Homem RA, Davies TGE. An overview of functional genomic tools in deciphering insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 27:103-110. [PMID: 30025625 PMCID: PMC6060081 DOI: 10.1016/j.cois.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 05/13/2023]
Abstract
In this short review, we highlight three functional genomic technologies that have recently been contributing to the understanding of the molecular mechanisms underpinning insecticide resistance: the GAL4/UAS system, a molecular tool used to express genes of interest in a spatiotemporal controlled manner; the RNAi system, which is used to knock-down gene expression; and the most recently developed gene editing tool, CRISPR/Cas9, which can be used to knock-out and knock-in sequences of interest.
Collapse
Affiliation(s)
- Rafael A Homem
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Thomas G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| |
Collapse
|
26
|
Perera OP, Little NS, Pierce CA. CRISPR/Cas9 mediated high efficiency knockout of the eye color gene Vermillion in Helicoverpa zea (Boddie). PLoS One 2018; 13:e0197567. [PMID: 29771955 PMCID: PMC5957398 DOI: 10.1371/journal.pone.0197567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022] Open
Abstract
Among various genome editing tools available for functional genomic studies, reagents based on clustered regularly interspersed palindromic repeats (CRISPR) have gained popularity due to ease and versatility. CRISPR reagents consist of ribonucleoprotein (RNP) complexes formed by combining guide RNA (gRNA) that target specific genomics regions and a CRISPR associated nuclease (Cas). The gRNA targeting specific gene sequences may be delivered as a plasmid construct that needs to be transcribed or as a synthetic RNA. The Cas nuclease can be introduced as a plasmid construct, mRNA, or purified protein. The efficiency of target editing is dependent on intrinsic factors specific to each species, the target gene sequence, and the delivery methods of CRISPR gRNA and the Cas nuclease. Although intrinsic factors affecting genome editing may not be altered in most experiments, the delivery method for CRISPR/Cas reagents can be optimized to produce the best results. In this study, the efficiency of genome editing by CRISPR/Cas system in the bollworm, Helicoverpa zea (Boddie), was evaluated using ribonucleoprotein (RNP) complexes assembled by binding synthetic gRNA with purified Cas9 nuclease engineered with nuclear localization signals to target the vermillion (eye color) gene. Mutation rates of adults emerging from embryos microinjected with 1, 2, or 4 μM RNP complexes were compared using replicated experiments. Embryos injected with 2 or 4 μM RNP complexes displayed significantly higher mutation rates (>88%) in surviving adults compared to those injected with 1 μM. The hatch rate in embryos injected with RNP complexes and with injection buffer only (mock injections) was reduced by 19.8(±5.2)% compared to noninjected control embryos, but did not differ significantly between injected embryos. Evaluation of potential off-target sites in H. zea genome did not identify any mutations. This study demonstrates that in vitro assembled synthetic RNP complexes can be used to obtain high genome editing rates in a reproducible manner in functional genomics or genetic manipulation studies.
Collapse
Affiliation(s)
- Omaththage P. Perera
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, United States
| | - Nathan S. Little
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, United States
| | - Calvin A. Pierce
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, United States
| |
Collapse
|
27
|
Adrianos S, Lorenzen M, Oppert B. Metabolic pathway interruption: CRISPR/Cas9-mediated knockout of tryptophan 2,3-dioxygenase in Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:104-109. [PMID: 29551569 DOI: 10.1016/j.jinsphys.2018.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The Tribolium castaneum vermilion gene encodes tryptophan 2,3-dioxygenase, a pivotal enzyme in the ommochrome pathway that is required for proper pigmentation of the eye. A white-eyed mutant strain of T. castaneum, vermilionwhite (vw), lacks eye pigmentation due to a deletion of unknown size that removes all but the 3'-end of the vermilion gene. To create a more defined mutation in vermilion, the CRISPR/Cas9-nuclease system was used to target wild type vermilion in preblastoderm T. castaneum embryos. As adults, all injected beetles had wild type (black) eye pigmentation; however, when outcrossed to vw mates, one cross produced 19% white-eyed offspring. When the vermilion locus of these offspring was analyzed by target-site sequencing, it was determined that white-eyed individuals had a 2 bp deletion that resulted in a frame-shift mutation, presumably producing a nonfunctional enzyme. Interestingly, some of their black-eyed siblings also had a small deletion of 6 bp, but the resultant loss of two amino acids had no apparent impact on enzyme function. To establish a mutant strain homozygous for the CRISPR-induced knock-out allele, a CRISPR positive G0 male was crossed to wild type females. Their progeny were self-crossed, and white-eyed progeny were used to establish the new strain. This mutant strain is herein named vermilionICE and will be used in future work in addition to or in place of vw.
Collapse
Affiliation(s)
- Sherry Adrianos
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, United States
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, United States
| | - Brenda Oppert
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, United States.
| |
Collapse
|
28
|
Roggenkamp E, Giersch RM, Schrock MN, Turnquist E, Halloran M, Finnigan GC. Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2018; 8:999-1018. [PMID: 29348295 PMCID: PMC5844318 DOI: 10.1534/g3.117.300557] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
Abstract
Control of biological populations is an ongoing challenge in many fields, including agriculture, biodiversity, ecological preservation, pest control, and the spread of disease. In some cases, such as insects that harbor human pathogens (e.g., malaria), elimination or reduction of a small number of species would have a dramatic impact across the globe. Given the recent discovery and development of the CRISPR-Cas9 gene editing technology, a unique arrangement of this system, a nuclease-based "gene drive," allows for the super-Mendelian spread and forced propagation of a genetic element through a population. Recent studies have demonstrated the ability of a gene drive to rapidly spread within and nearly eliminate insect populations in a laboratory setting. While there are still ongoing technical challenges to design of a more optimal gene drive to be used in wild populations, there are still serious ecological and ethical concerns surrounding the nature of this powerful biological agent. Here, we use budding yeast as a safe and fully contained model system to explore mechanisms that might allow for programmed regulation of gene drive activity. We describe four conserved features of all CRISPR-based drives and demonstrate the ability of each drive component-Cas9 protein level, sgRNA identity, Cas9 nucleocytoplasmic shuttling, and novel Cas9-Cas9 tandem fusions-to modulate drive activity within a population.
Collapse
Affiliation(s)
- Emily Roggenkamp
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Rachael M Giersch
- Department of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Madison N Schrock
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
- Department of Biology, Kansas State University, Manhattan, Kansas 66506
| | - Emily Turnquist
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
29
|
Čartolovni A. Teilhard de Chardin's oeuvre within an ongoing discussion of a gene drive release for public health reasons. LIFE SCIENCES, SOCIETY AND POLICY 2017; 13:18. [PMID: 29264723 PMCID: PMC5738330 DOI: 10.1186/s40504-017-0064-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Within the domain of public health, vector-borne diseases are among the most vehemently discussed issues. Recent scientific breakthroughs in genome editing technology provided a solution to this issue in the form of a gene drive that might decrease and even eradicate vector-borne diseases. Gene drives are engineered, and designed genes that can break typical inheritance rules and be passed to almost all of the carrier's offspring. This genome editing and gene drive technology has become a powerful tool for ecological and environmental engineering, through which man can manipulate his surroundings, adjusting it to himself and directly mastering evolution and the ecosystem. Although the gene drive technology has been perceived as promising in the public health domain, ecological implications of its use are not to be underestimated. The primary aim of this paper is to overcome the ongoing discussion which mostly focuses on whether priority should be given to the environment or to public health, and to find an adequate answer and solution. In this quest to find the proper answer and solution, Pierre Teilhard de Chardin's thought might be useful, especially his concepts of the biosphere and the noosphere which may provide some clarifications as to why we are at the moment so cautious with gene drive technology and how we need to move towards a better common future on earth.
Collapse
Affiliation(s)
- Anto Čartolovni
- Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia.
| |
Collapse
|
30
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
31
|
Meccariello A, Monti SM, Romanelli A, Colonna R, Primo P, Inghilterra MG, Del Corsano G, Ramaglia A, Iazzetti G, Chiarore A, Patti F, Heinze SD, Salvemini M, Lindsay H, Chiavacci E, Burger A, Robinson MD, Mosimann C, Bopp D, Saccone G. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Sci Rep 2017; 7:10061. [PMID: 28855635 PMCID: PMC5577161 DOI: 10.1038/s41598-017-10347-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134, Naples, Italy
| | - Alessandra Romanelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Napoli, Italy
| | - Rita Colonna
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | | | | | - Antonio Ramaglia
- Department of Physics "E. Pancini", University of Naples "Federico II", 80126, Napoli, Italy
| | - Giovanni Iazzetti
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Antonia Chiarore
- Stazione Zoologica Anton Dohrn, Center Villa Dohrn for Benthic Ecology, Punta San Pietro, 80077, Ischia, Italy
| | - Francesco Patti
- Stazione Zoologica Anton Dohrn, Center Villa Dohrn for Benthic Ecology, Punta San Pietro, 80077, Ischia, Italy
| | - Svenia D Heinze
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Marco Salvemini
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, 8057, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy.
| |
Collapse
|
32
|
Trible W, Olivos-Cisneros L, McKenzie SK, Saragosti J, Chang NC, Matthews BJ, Oxley PR, Kronauer DJC. orco Mutagenesis Causes Loss of Antennal Lobe Glomeruli and Impaired Social Behavior in Ants. Cell 2017; 170:727-735.e10. [PMID: 28802042 DOI: 10.1016/j.cell.2017.07.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 06/29/2017] [Indexed: 11/25/2022]
Abstract
Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Saragosti
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Ni-Chen Chang
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 23930, USA
| | - Peter R Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
33
|
Taning CNT, Van Eynde B, Yu N, Ma S, Smagghe G. CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:245-257. [PMID: 28108316 DOI: 10.1016/j.jinsphys.2017.01.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/28/2016] [Accepted: 01/12/2017] [Indexed: 05/13/2023]
Abstract
Discovered as a bacterial adaptive immune system, CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat/CRISPR associated) is being developed as an attractive tool in genome editing. Due to its high specificity and applicability, CRISPR/Cas9-mediated gene editing has been employed in a multitude of organisms and cells, including insects, for not only fundamental research such as gene function studies, but also applied research such as modification of organisms of economic importance. Despite the rapid increase in the use of CRISPR in insect genome editing, results still differ from each study, principally due to existing differences in experimental parameters, such as the Cas9 and guide RNA form, the delivery method, the target gene and off-target effects. Here, we review current reports on the successes of CRISPR/Cas9 applications in diverse insects and insect cells. We furthermore summarize several best practices to give a useful checklist of CRISPR/Cas9 experimental setup in insects for beginners. Lastly, we discuss the biosafety concerns related to the release of CRISPR/Cas9-edited insects into the environment.
Collapse
Affiliation(s)
- Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Benigna Van Eynde
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Na Yu
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Wang XW, Li P, Liu SS. Whitefly interactions with plants. CURRENT OPINION IN INSECT SCIENCE 2017; 19:70-75. [PMID: 28521945 DOI: 10.1016/j.cois.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Abstract
Whiteflies are important pests of many crops worldwide. They are polyphagous and effectively feed on phloem sap using mouthparts modified into long, flexible stylets. Plants respond to whitefly attack by activating defense genes leading to production of toxic compounds. To reach plant phloem and survive on host plants, whiteflies secret effectors in the saliva to regulate plant responses and activate detoxification system to cope with plant defenses. Additionally, whitefly-transmitted viruses may exert substantial effects on host plants and in turn the performance of whiteflies. Understanding the interactions between whiteflies and host plants will promote the development of novel strategies for controlling whiteflies. Here, we summarize the genetics, molecular genetics and genomics of the whitefly's interactions with plants.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ping Li
- The Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Kumar V, Baweja M, Singh PK, Shukla P. Recent Developments in Systems Biology and Metabolic Engineering of Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1421. [PMID: 27725824 PMCID: PMC5035732 DOI: 10.3389/fpls.2016.01421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/06/2016] [Indexed: 05/07/2023]
Abstract
Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant-microbe interactions using gene editing and system biology tools toward the comprehension in improvement of plant traits. Further, system biology tools like FBA (flux balance analysis), OptKnock, and constraint-based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g., single nucleotide polymorphism detection, RNA-seq, proteomics) and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.
Collapse
Affiliation(s)
| | | | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
36
|
More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop 2016; 157:115-30. [PMID: 26774684 DOI: 10.1016/j.actatropica.2016.01.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
Abstract
Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes.
Collapse
|