1
|
Chaparro D, Goudeli E. Shape-dependent oxidation rates of nano-structured silver particles. J Chem Phys 2024; 161:124704. [PMID: 39319654 DOI: 10.1063/5.0227329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Reactive molecular dynamics is used to investigate the oxidation of anisotropic silver nanoparticles (nano-Ag) of various shapes, including sphere, cube, disk, cylinder, triangle, and pyramid. The effect of the nano-Ag initial morphology on their stability and composition during oxidation is quantified. Surface oxidation at 600 K leads to the formation of a core-shell structure for all nano-Ag shapes. The surface composition of facet orientations of pristine nano-Ag can be correlated with particle stability due to their different surface energies and oxygen reactivity. In particular, pyramid and triangular nano-Ag, having a high surface fraction of (110) facets, are more prone to morphological changes upon oxidation and loss of their crystallinity, compared to nanospheres and nanocubes, which exhibit the highest stability among all shapes, attributed to the large fraction of highly coordinated atoms. Spherical and cubic nano-Ag oxidize faster, owing to their large surface fractions of (100) and (111) facets, which are more reactive than (110) ones. Understanding the effect of surface crystal structure and shape of anisotropic nano-Ag can improve the design of superior metal oxide nanomaterials with desired characteristics.
Collapse
Affiliation(s)
- Diego Chaparro
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| | - Eirini Goudeli
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
2
|
Li Y, Yin Y, Li L. Conferring NiTi alloy with controllable antibacterial activity and enhanced corrosion resistance by exploiting Ag@PDA films as a platform through a one-pot construction route. Heliyon 2024; 10:e34154. [PMID: 39113964 PMCID: PMC11304019 DOI: 10.1016/j.heliyon.2024.e34154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
The lack of antibacterial activity and the leaching of Ni ions seriously limit the potential applications of the near equiatomic nickel-titanium (NiTi) alloy in the biomedical field. In this study, a silver nanoparticles (Ag NPs) wrapped in a polydopamine (Ag@PDA) film modified NiTi alloy with controllable antibacterial activity and enhanced corrosion resistance was achieved using a one-pot approach in a mixed solution of AgNO3 and dopamine. The controllable antibacterial activity could be achieved by adjusting the initial concentration of dopamine (Cdop), which obtained Ag@PDA films with varying thickness of polydopamine layers coated on Ag NPs, thereby conferring different levels of antibacterial activity to the modified NiTi alloy. In vitro antibacterial ratios (24 h) of Ag@PDA film-modified NiTi alloy against E.coli and S.aureus ranged from 46 % to 100 % and from 42 % to 100 %, respectively. The release curves of Ag ions indicated the persistent antibacterial effect of Ag@PDA film-modified NiTi alloy for at least 21 days. Moreover, in vitro cytotoxicity and in vivo implantation tests demonstrated the satisfactory biosafety of the Ag@PDA film-modified NiTi alloy when used as bioimplants. This research offers valuable insight into meeting various antibacterial demands for NiTi alloy implantations and highlights the potential of Ag-containing film-modified biomaterials in addressing different types of infections induced by implantations.
Collapse
Affiliation(s)
- Ying Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
- School of Health Management, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang Province, PR China
| |
Collapse
|
3
|
Maher N, Mahmood A, Fareed MA, Kumar N, Rokaya D, Zafar MS. An updated review and recent advancements in carbon-based bioactive coatings for dental implant applications. J Adv Res 2024:S2090-1232(24)00300-X. [PMID: 39033875 DOI: 10.1016/j.jare.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Surface coating of dental implants with a bioactive biomaterial is one of the distinguished approaches to improve the osseointegration potential, antibacterial properties, durability, and clinical success rate of dental implants. Carbon-based bioactive coatings, a unique class of biomaterial that possesses excellent mechanical properties, high chemical and thermal stability, osteoconductivity, corrosion resistance, and biocompatibility, have been utilized successfully for this purpose. AIM This review aims to present a comprehensive overview of the structure, properties, coating techniques, and application of the various carbon-based coatings for dental implant applicationswith a particular focuson Carbon-based nanomaterial (CNMs), which is an advanced class of biomaterials. KEY SCIENTIFIC CONCEPTS OF REVIEW Available articles on carbon coatings for dental implants were reviewed using PubMed, Science Direct, and Google Scholar resources. Carbon-based coatings are non-cytotoxic, highly biocompatible, chemically inert, and osteoconductive, which allows the bone cells to come into close contact with the implant surface and prevents bacterial attachment and growth. Current research and advancements are now more focused on carbon-based nanomaterial (CNMs), as this emerging class of biomaterial possesses the advantage of both nanotechnology and carbon and aligns closely with ideal coating material characteristics. Carbon nanotubes, graphene, and its derivatives have received the most attention for dental implant coating. Various coating techniques are available for carbon-based materials, chosen according to substrate type, application requirements, and desired coating thickness. Vapor deposition technique, plasma spraying, laser deposition, and thermal spraying techniques are most commonly employed to coat the carbon structures on the implant surface. Longer duration trials and monitoring are required to ascertain the role of carbon-based bioactive coating for dental implant applications.
Collapse
Affiliation(s)
- Nazrah Maher
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Anum Mahmood
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Muhammad Amber Fareed
- Clinical Sciences Department College of Dentistry Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates.
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah 41311, Saudi Arabia; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Dentistry, University of Jordan, Amman 11942, Jordan; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
4
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
5
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Bonilla-Gameros L, Chevallier P, Delvaux X, Yáñez-Hernández LA, Houssiau L, Minne X, Houde VP, Sarkissian A, Mantovani D. Fluorocarbon Plasma-Polymerized Layer Increases the Release Time of Silver Ions and the Antibacterial Activity of Silver-Based Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:609. [PMID: 38607143 PMCID: PMC11013325 DOI: 10.3390/nano14070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Silver-based antibacterial coatings limit the spread of hospital-acquired infections. Indeed, the use of silver and silver oxide nanoparticles (Ag and AgO NPs) incorporated in amorphous hydrogenated carbon (a-C:H) as a matrix demonstrates a promising approach to reduce microbial contamination on environmental surfaces. However, its success as an antibacterial coating hinges on the control of Ag+ release. In this sense, if a continuous release is required, an additional barrier is needed to extend the release time of Ag+. Thus, this research investigated the use of a plasma fluoropolymer (CFx) as an additional top layer to elongate Ag+ release and increase the antibacterial activity due to its high hydrophobic nature. Herein, a porous CFx film was deposited on a-C:H containing Ag and AgO NPs using pulsed afterglow low pressure plasma polymerization. The chemical composition, surface wettability and morphology, release profile, and antibacterial activity were analyzed. Overall, the combination of a-C:H:Ag (12.1 at. % of Ag) and CFx film (120.0°, F/C = 0.8) successfully inactivated 88% of E. coli and delayed biofilm formation after 12 h. Thus, using a hybrid approach composed of Ag NPs and a hydrophobic polymeric layer, it was possible to increase the overall antibacterial activity of the coating.
Collapse
Affiliation(s)
- Linda Bonilla-Gameros
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada (L.A.Y.-H.)
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada (L.A.Y.-H.)
| | - Xavier Delvaux
- Laboratoire Interdisciplinaire de Spectroscopie Electronique, Namur Institute of Structured Matter, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (X.D.); (L.H.)
| | - L. Astrid Yáñez-Hernández
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada (L.A.Y.-H.)
| | - Laurent Houssiau
- Laboratoire Interdisciplinaire de Spectroscopie Electronique, Namur Institute of Structured Matter, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (X.D.); (L.H.)
| | - Xavier Minne
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada
| | - Vanessa P. Houde
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Quebec City, QC G1V 0A6, Canada
| | - Andranik Sarkissian
- Plasmionique Inc., 171-1650 Boul Lionel Boulet, Varennes, QC J3X1S2, Canada;
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada (L.A.Y.-H.)
| |
Collapse
|
7
|
Biscari G, Malkoch M, Fiorica C, Fan Y, Palumbo FS, Indelicato S, Bongiorno D, Pitarresi G. Gellan gum-dopamine mediated in situ synthesis of silver nanoparticles and development of nano/micro-composite injectable hydrogel with antimicrobial activity. Int J Biol Macromol 2024; 258:128766. [PMID: 38096933 DOI: 10.1016/j.ijbiomac.2023.128766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Infected skin wounds represent a serious health threat due to the long healing process and the risk of colonization by multi-drug-resistant bacteria. Silver nanoparticles (AgNPs) have shown broad-spectrum antimicrobial activity. This study introduces a novel approach to address the challenge of infected skin wounds by employing gellan gum-dopamine (GG-DA) as a dual-functional agent, serving both as a reducing and capping agent, for the in situ green synthesis of silver nanoparticles. Unlike previous methods, this work utilizes a spray-drying technique to convert the dispersion of GG-DA and AgNPs into microparticles, resulting in nano-into-micro systems (AgNPs@MPs). The microparticles, with an average size of approximately 3 μm, embed AgNPs with a 13 nm average diameter. Furthermore, the study explores the antibacterial efficacy of these AgNPs@MPs directly and in combination with other materials against gram-positive and gram-negative bacteria. The versatility of the antimicrobial material is showcased by incorporating the microparticles into injectable hydrogels. These hydrogels, based on oxidized Xanthan Gum (XGox) and a hyperbranched synthetic polymer (HB10K-G5-alanine), are designed with injectability and self-healing properties through Shiff base formation. The resulting nano-into-micro-into-macro hybrid hydrogel emerges as a promising biomedical solution, highlighting the multifaceted potential of this innovative approach in wound care and infection management.
Collapse
Affiliation(s)
| | - Michael Malkoch
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44, Sweden.
| | | | - Yanmiao Fan
- KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44, Sweden.
| | | | | | - David Bongiorno
- University of Palermo, Via Archirafi 32, Palermo 90123, Italy.
| | | |
Collapse
|
8
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
9
|
Kumara SPSNBS, Senevirathne SWMAI, Mathew A, Bray L, Mirkhalaf M, Yarlagadda PKDV. Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2799. [PMID: 37887949 PMCID: PMC10609396 DOI: 10.3390/nano13202799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Bacterial infections and antibiotic resistance remain significant contributors to morbidity and mortality worldwide. Despite recent advances in biomedical research, a substantial number of medical devices and implants continue to be plagued by bacterial colonisation, resulting in severe consequences, including fatalities. The development of nanostructured surfaces with mechano-bactericidal properties has emerged as a promising solution to this problem. These surfaces employ a mechanical rupturing mechanism to lyse bacterial cells, effectively halting subsequent biofilm formation on various materials and, ultimately, thwarting bacterial infections. This review delves into the prevailing research progress within the realm of nanostructured mechano-bactericidal polymeric surfaces. It also investigates the diverse fabrication methods for developing nanostructured polymeric surfaces with mechano-bactericidal properties. We then discuss the significant challenges associated with each approach and identify research gaps that warrant exploration in future studies, emphasizing the potential for polymeric implants to leverage their distinct physical, chemical, and mechanical properties over traditional materials like metals.
Collapse
Affiliation(s)
- S. P. S. N. Buddhika Sampath Kumara
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - S. W. M. Amal Ishantha Senevirathne
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Asha Mathew
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia
| | - Laura Bray
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Mohammad Mirkhalaf
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Prasad K. D. V. Yarlagadda
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (S.P.S.N.B.S.K.); (S.W.M.A.I.S.); (A.M.); (L.B.)
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia
| |
Collapse
|
10
|
Ippili S, Jung JS, Thomas AM, Vuong VH, Lee JM, Sha MS, Sadasivuni KK, Jella V, Yoon SG. An Overview of Polymer Composite Films for Antibacterial Display Coatings and Sensor Applications. Polymers (Basel) 2023; 15:3791. [PMID: 37765645 PMCID: PMC10536203 DOI: 10.3390/polym15183791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating presence of pathogenic microbes has spurred a heightened interest in antimicrobial polymer composites tailored for hygiene applications. These innovative composites ingeniously incorporate potent antimicrobial agents such as metals, metal oxides, and carbon derivatives. This integration equips them with the unique ability to offer robust and persistent protection against a diverse array of pathogens. By effectively countering the challenges posed by microbial contamination, these pioneering composites hold the potential to create safer environments and contribute to the advancement of public health on a substantial scale. This review discusses the recent progress of antibacterial polymer composite films with the inclusion of metals, metal oxides, and carbon derivatives, highlighting their antimicrobial activity against various pathogenic microorganisms. Furthermore, the review summarizes the recent developments in antibacterial polymer composites for display coatings, sensors, and multifunctional applications. Through a comprehensive examination of various research studies, this review aims to provide valuable insights into the design, performance, and real-time applications of these smart antimicrobial coatings for interactive devices, thus enhancing their overall user experience and safety. It concludes with an outlook on the future perspectives and challenges of antimicrobial polymer composites and their potential applications across diverse fields.
Collapse
Affiliation(s)
- Swathi Ippili
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Jang-Su Jung
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Alphi Maria Thomas
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Van-Hoang Vuong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Jeong-Min Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Mizaj Shabil Sha
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (K.K.S.)
| | - Kishor Kumar Sadasivuni
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.S.); (K.K.S.)
- Department of Mechanical and Industrial Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Venkatraju Jella
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-S.J.); (A.M.T.); (V.-H.V.); (J.-M.L.)
| |
Collapse
|
11
|
Soltanolzakerin-Sorkhabi T, Fallahi-Samberan M, Kumaravel V. Antimicrobial Activities of Polyethylene Terephthalate-Waste-Derived Nanofibrous Membranes Decorated with Green Synthesized Ag Nanoparticles. Molecules 2023; 28:5439. [PMID: 37513311 PMCID: PMC10383445 DOI: 10.3390/molecules28145439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Thermoplastic polymers are one of the synthetic materials produced with high tonnage in the world and are so omnipresent in industries and everyday life. One of the most important polymeric wastes is polyethylene terephthalate (PET), and the disposal of used PET bottles is an unsolved environmental problem, and many efforts have been made to find practical solutions to solve it. In this present work, nanofibrous membranes were produced from waste PET bottles using the electrospinning process. The surface of membranes was modified using NaOH and then decorated with green synthesized Ag nanoparticles (10 ± 2 nm) using an in situ chemical reduction method. The morphology, size, and diameter of the Ag nanoparticles decorating the nanofibers were characterized through transmission electron microscopy (TEM), a field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy techniques. Finally, the antimicrobial activity of the nanofibrous membranes was tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using disc diffusion and colony-forming count methods. The growth of bacteria was not affected by the pure nanofibrous membranes, while the Ag-decorated samples showed inhibition zones of 17 ± 1, 16 ± 1, and 14 ± 1 mm for Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, respectively. The planktonic culture results of Pseudomonas aeruginosa showed that the membranes had a relatively low inhibitory effect on its growth. The obtained results showed that Pseudomonas aeruginosa has a relatively low ability to form biofilms on the nanostructured membranes too. A good agreement was observed between the data of biofilm formation and the planktonic cultures of bacteria. The plastic-waste-derived PET/Ag nanocomposite membranes can be used for wound dressings, air filters, and water purification applications.
Collapse
Affiliation(s)
- Tannaz Soltanolzakerin-Sorkhabi
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar P.O. Box 5451116714, Iran
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Mehrab Fallahi-Samberan
- Department of Chemical Engineering, Ahar Branch, Islamic Azad University, Ahar P.O. Box 5451116714, Iran
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
12
|
Slepička P, Slepičková Kasálková N, Fajstavr D, Frýdlová B, Sajdl P, Kolská Z, Švorčík V. Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4280. [PMID: 37374464 DOI: 10.3390/ma16124280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
This study is focused on polytetrafluoroethylene (PTFE) porous nanotextile and its modification with thin, silver sputtered nanolayers, combined with a subsequent modification with an excimer laser. The KrF excimer laser was set to single-shot pulse mode. Subsequently, the physico chemical properties, morphology, surface chemistry, and wettability were determined. Minor effects of the excimer laser on the pristine PTFE substrate were described, but significant changes were observed after the application of the excimer laser to the polytetrafluoroethylene with sputtered silver, where the formation of a silver nanoparticles/PTFE/Ag composite was described, with a wettability similar to that of a superhydrophobic surface. Both scanning electron microscopy and atomic force microscopy revealed the formation of superposed globular structures on the polytetrafluoroethylene lamellar primary structure, which was also confirmed using energy dispersive spectroscopy. The combined changes in the surface morphology, chemistry, and thus wettability induced a significant change in the PTFE's antibacterial properties. Samples coated with silver and further treated with the excimer laser 150 mJ/cm2 inhibited 100% of the bacterial strain E. coli. The motivation of this study was to find a material with flexible and elastic properties and a hydrophobic character, with antibacterial properties that could be enhanced with silver nanoparticles, but hydrophobic properties that would be maintained. These properties can be used in different types of applications, mainly in tissue engineering and the medicinal industry, where water-repellent materials may play important roles. This synergy was achieved via the technique we proposed, and even when the Ag nanostructures were prepared, the high hydrophobicity of the system Ag-polytetrafluorethylene was maintained.
Collapse
Affiliation(s)
- Petr Slepička
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Dominik Fajstavr
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Bára Frýdlová
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Petr Sajdl
- Department of Power Engineering, The University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Zdeňka Kolská
- Faculty of Science, J. E. Purkyně University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, The University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
13
|
Mendoza Tolentino Y, Romero‐Zúñiga GY, Ceniceros Reyes MA, Flores Silva PC, Vargas Ramírez Á, Yáñez‐Macías R, Hernández Hernández E, González Morones P. Microwave dielectric heating affects the in‐situ polymerization process of Nylon‐6/
Ag‐NPs
hybrid polymer nanocomposite. J Appl Polym Sci 2023. [DOI: 10.1002/app.53793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
| | | | - Mónica Aimeé Ceniceros Reyes
- Coordinación del Laboratorio Central de Instrumentación Analítica Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | | | - Ángel Vargas Ramírez
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | - Roberto Yáñez‐Macías
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| | | | - Pablo González Morones
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada (CIQA) Saltillo Mexico
| |
Collapse
|
14
|
Ovais M, Ali A, Ullah S, Khalil AT, Atiq A, Atiq M, Dogan N, Shinwari ZK, Abbas M. Fabrication of colloidal silver-peptide nanocomposites for bacterial wound healing. Colloids Surf A Physicochem Eng Asp 2022; 651:129708. [DOI: 10.1016/j.colsurfa.2022.129708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Géczi Z, Róth I, Kőhidai Z, Kőhidai L, Mukaddam K, Hermann P, Végh D, Zelles T. The use of Trojan-horse drug delivery system in managing periodontitis. Int Dent J 2022; 73:346-353. [PMID: 36175203 DOI: 10.1016/j.identj.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this review is to evaluate the possibility of delivering a silver-acid complex via a Trojan-horse mechanism for managing periodontits. We theroised that the complex could be an effective treatment option for bacterial inflammatory processes in the oral cavity. Searches were conducted using MEDLINE, Embase, Web of Science Core Collection, and Google Scholar search engines. We also reviewed several reference lists of the included studies or relevant reviews identified by the search. By using Medical Subject Headings (MeSH) terminology, a comprehensive search was performed for the following keywords: silver, folic acid, periodontitis, macrophages, Trojan-horse mechanism, toxicity, and targeting. Using the keywords mentioned earlier, we selected 110 articles and after appropriate elimination the review was written based on 37 papers. Accordingly the we noted that silver isons were an effective approach to kill oral pathogens. Secondly the Trojan-horse mechanism. could be used by macrophages (as the Trojan horse) to deliver silver ions in large quantities to the inflammatory focus to kill the periodontopathogens. The Trojan-horse mechanism has never been described in the field of dentistry before. The proposed novel approach using the principle of Trojan Horse delivery of drugs/chemicals could be used to manage oral inflammatory conditions. This method can be used to supplement regular treatments.
Collapse
Affiliation(s)
- Zoltán Géczi
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary.
| | - Ivett Róth
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary
| | - Zsófia Kőhidai
- Department of Oral Diagnostics, Semmelweis University, Budapest, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel, University of Basel, Basel, Switzerland
| | - Péter Hermann
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary
| | - Dániel Végh
- Department of Prosthodontics, Semmelweis University,Budapest, Hungary
| | - Tivadar Zelles
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Electrospun alginate mats embedding silver nanoparticles with bioactive properties. Int J Biol Macromol 2022; 213:427-434. [PMID: 35661668 DOI: 10.1016/j.ijbiomac.2022.05.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 01/01/2023]
Abstract
Polysaccharide-based composites embedding silver nanoparticles (AgNPs) represent a promising alternative to common antimicrobial materials because of the effective, broad-spectrum biocidal properties of AgNPs combined with the biocompatibility and environmental safety of the naturally occurring polymeric component. In this work, AgNPs stabilized with alginate chains (Alg@AgNPs) were successfully synthesized in situ within the polysaccharide solution through a wet chemical approach carried out at different concentrations of the silver salt precursor. Once obtained, the aqueous suspensions were electrospun to prepare non-woven membranes, showing a homogeneous nanostructured texture (with fiber diameter between 100 and 150 nm), which was found to be influenced by the size (between 20 and 35 nm) of the embedded metal nanoparticles. The biocidal potential of the nanocomposite mats was preliminarily tested against Gram-negative E. coli. The results showed that the antimicrobial response of the investigated samples occurred within a day of incubation and can be observed for AgNPs content in the polysaccharide fibers far below the nanomolar regime.
Collapse
|
17
|
Sadat Hosseini Z, Abdollahi A, Dashti A, Matin MM, Afkhami-Poostchi A. Synthesis of tertiary amine functionalized Multi-Stimuli-Responsive latex nanoparticles by semicontinuous emulsion Polymerization: Investigation of responsivities and antimicrobial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Beyler Çiğil A, Şen F, Birtane H, Kahraman MV. Covalently bonded nanosilver-hydroxyethyl cellulose/polyacrylic acid/sorbitol hybrid matrix: thermal, morphological and antibacterial properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04089-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Saleem Q, Torabfam M, Kurt H, Yüce M, Bayazit MK. Microwave-promoted continuous flow synthesis of thermoplastic polyurethane–silver nanocomposites and their antimicrobial performance. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study reports a reducing agent-free continuous manufacturing of ∼5 nm silver nanoparticles in a thermoplastic polyurethane matrix using a microwave-promoted fluidic system.
Collapse
Affiliation(s)
- Qandeel Saleem
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
| | - Milad Torabfam
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
| | - Hasan Kurt
- Istanbul Medipol University, School of Engineering and Natural Sciences, Istanbul, 34810, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Nanosolar Plasmonics, Ltd., Kocaeli, 41400, Turkey
| | - Meral Yüce
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul 34956, Turkey
| | - Mustafa Kemal Bayazit
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
20
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
21
|
Bharatiya D, Patra S, Parhi B, Swain SK. A materials science approach towards bioinspired polymeric nanocomposites: a comprehensive review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1990057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Debasrita Bharatiya
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Biswajit Parhi
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Sambalpur, India
| |
Collapse
|
22
|
Preparation of Silver Antibacterial Agents with Different Forms and Their Effects on the Properties of Water-Based Primer on Tilia europaea Surface. COATINGS 2021. [DOI: 10.3390/coatings11091066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Micron silver particles prepared by the chemical reduction method, urea formaldehyde resin-coated nano-silver solution microcapsules, and nano-silver solution were used as three kinds of antibacterial agents. These were added to a water-based primer on the surface of Tilia europaea in contents of 1.0%, 4.0%, 7.0%, 10.0%, 13.0%, and 16.0%. In order to achieve the best comprehensive performance of the water-based primer, the mechanical, optical, and antibacterial properties of the three antibacterial coatings with different contents of silver antibacterial agents were explored. It was concluded that when the antibacterial agent content was 4.0%, the color difference, impact resistance, adhesion, and gloss of water-based primer on the Tilia europaea surface were better. When the antibacterial agent content added was 16.0%, the antibacterial properties of the three groups of coatings improved to 94.89%, 81.75%, and 83.98%, respectively. The results provide a research idea for the preparation of antibacterial coatings on the surface of wood furniture.
Collapse
|
23
|
Pryjmaková J, Kaimlová M, Vokatá B, Hubáček T, Slepička P, Švorčík V, Siegel J. Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials. NANOMATERIALS 2021; 11:nano11092285. [PMID: 34578601 PMCID: PMC8472103 DOI: 10.3390/nano11092285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022]
Abstract
As inflammation frequently occurs after the implantation of a medical device, biocompatible, antibacterial materials must be used. Polymer–metal nanocomposites are promising materials. Here we prepared enhanced polyethylene naphthalate (PEN) using surface modification techniques and investigated its suitability for biomedical applications. The PEN was modified by a KrF laser forming periodic ripple patterns with specific surface characteristics. Next, Au/Ag nanowires were deposited onto the patterned PEN using vacuum evaporation. Atomic force microscopy confirmed that the surface morphology of the modified PEN changed accordingly with the incidence angle of the laser beam. Energy-dispersive X-ray spectroscopy showed that the distribution of the selected metals was dependent on the evaporation technique. Our bimetallic nanowires appear to be promising antibacterial agents due to the presence of antibacterial noble metals. The antibacterial effect of the prepared Au/Ag nanowires against E. coli and S. epidermidis was demonstrated using 24 h incubation with a drop plate test. Moreover, a WST-1 cytotoxicity test that was performed to determine the toxicity of the nanowires showed that the materials could be considered non-toxic. Collectively, these results suggest that prepared Au/Ag nanostructures are effective, biocompatible surface coatings for use in medical devices.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (P.S.); (V.Š.)
| | - Markéta Kaimlová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (P.S.); (V.Š.)
| | - Barbora Vokatá
- Department of Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Tomáš Hubáček
- Biology Centre of the Czech Academy of Sciences, SoWa National Research Infrastructure, Na Sádkách 7, 370 05 České Budejovice, Czech Republic;
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (P.S.); (V.Š.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (P.S.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (P.S.); (V.Š.)
- Correspondence: ; Tel.: +420-220-445-149
| |
Collapse
|
24
|
Novel Antibacterial Modification of Polycarbonate for Increment Prototyping in Medicine. MATERIALS 2021; 14:ma14164725. [PMID: 34443247 PMCID: PMC8400390 DOI: 10.3390/ma14164725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022]
Abstract
In the era of modern medicine, the number of invasive treatments increases. Artificial devices used in medicine are associated with an increased risk of secondary infections. Bacterial biofilm development observed on the implanted surface is challenging to treat, primarily due to low antibiotics penetration. In our study, the preparation of a new polycarbonate composite, filled with nanosilver, nanosilica and rhodamine B derivative, suitable for three-dimensional printing, is described. Polymer materials with antimicrobial properties are known. However, in most cases, protection is limited to the outer layers only. The newly developed materials are protected in their entire volume. Moreover, the antibacterial properties are retained after multiple high-temperature processing were performed, allowing them to be used in 3D printing. Bacterial population reduction was observed, which gives an assumption for those materials to be clinically tested in the production of various medical devices and for the reduction of morbidity and mortality caused by multidrug-resistant bacteria.
Collapse
|
25
|
Electrophoretically Deposited Chitosan/Eudragit E 100/AgNPs Composite Coatings on Titanium Substrate as a Silver Release System. MATERIALS 2021; 14:ma14164533. [PMID: 34443056 PMCID: PMC8399341 DOI: 10.3390/ma14164533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Due to the possibility of bacterial infections occurring around peri-implant tissues, it is necessary to provide implant coatings that release antibacterial substances. The scientific goal of this paper was to produce by electrophoretic deposition (EPD) a smart, chitosan/Eudragit E 100/silver nanoparticles (chit/EE100/AgNPs) composite coating on the surface of titanium grade 2 using different deposition parameters, such as the content of AgNPs, applied voltage, and time of deposition. The morphology, surface roughness, thickness, chemical and phase composition, wettability, mechanical properties, electrochemical properties, and silver release rate at different pH were investigated. Using lower values of deposition parameters, coatings with more homogeneous morphology were obtained. The prepared coatings were sensitive to the reduced pH environment.
Collapse
|
26
|
Fu Y, Yang L, Zhang J, Hu J, Duan G, Liu X, Li Y, Gu Z. Polydopamine antibacterial materials. MATERIALS HORIZONS 2021; 8:1618-1633. [PMID: 34846495 DOI: 10.1039/d0mh01985b] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.
Collapse
Affiliation(s)
- Yu Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dong M, Liu Z, Gao Y, Wang X, Chen J, Yang J. Synergistic effect of copolymeric resin grafted 1,2-benzisothiazol-3(2 H)-one and heterocyclic groups as a marine antifouling coating. RSC Adv 2021; 11:18787-18796. [PMID: 35478638 PMCID: PMC9033553 DOI: 10.1039/d1ra01826d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
In order to find a new type of antifouling coating with higher biological activity and more environmental protection, heterocyclic compounds and benzisothiazolinone were introduced into acrylic resin to prepare a new type of antifouling resin. In this study, a series of grafted acrylic resins simultaneously containing benzoisothiazolinone and heterocyclic monomers were prepared by the copolymerization of an allyl monomer with methyl methacrylate (MMA) and butyl acrylate (BA). Inhibitory activities of the copolymers against marine fouling organisms were also investigated. Results revealed that the copolymers exhibit a clear synergistic inhibitory effect on the growth of three seaweeds: Chlorella, Isochrysis galbana and Chaetoceros curvisetus, respectively, and three bacteria, Staphylococcus aureus, Vibrio coralliilyticus and Vibrio parahaemolyticus, respectively. In addition, the copolymers exhibited excellent inhibition against barnacle larvae. Marine field tests indicated that the resins exhibit outstanding antifouling potency against marine fouling organisms. Moreover, the introduction of the heterocyclic group led to the significantly enhanced antifouling activities of the resins; the addition of the heterocyclic unit in copolymers led to better inhibition than that observed in the case of the resin copolymerized with only the benzoisothiazolinone active monomer.
Collapse
Affiliation(s)
- Miao Dong
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Zheng Liu
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Yuxing Gao
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
| | - Xuemei Wang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Junhua Chen
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| | - Jianxin Yang
- Key Laboratory of Green Catalysis and Reaction Engineering of Haikou, College of Science, Hainan University Haikou 570228 P. R. China
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 P. R. China
| |
Collapse
|
28
|
Spoială A, Ilie CI, Ficai D, Ficai A, Andronescu E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2091. [PMID: 33919022 PMCID: PMC8122305 DOI: 10.3390/ma14092091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance's features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant's retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania;
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
29
|
Zhu P, Zhang X, Wang Y, Li C, Wang X, Tie J, Wang Y. Electrospun
polylactic acid nanofiber membranes containing
Capparis spinosa
L
. extracts for potential wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Zhu
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Xingqun Zhang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yunlong Wang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Changen Li
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Xianzhu Wang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Jiancheng Tie
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Ying Wang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| |
Collapse
|
30
|
Zouari H, Dabert M, Asia L, Wong-Wah-Chung P, Baba M, Balan L, Israëli Y. Influence of in situ photo-induced silver nanoparticles on the ageing of acrylate materials. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Influence of PLGA nanoparticles on the deposition of model water-soluble biocompatible polymers by dip coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
33
|
Ahankari SS, Subhedar AR, Bhadauria SS, Dufresne A. Nanocellulose in food packaging: A review. Carbohydr Polym 2020; 255:117479. [PMID: 33436241 DOI: 10.1016/j.carbpol.2020.117479] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
The research in eco-friendly and sustainable materials for packaging applications with enhanced barrier, thermo-mechanical, rheological and anti-bacterial properties has accelerated in the last decade. Last decade has witnessed immense interest in employing nanocellulose (NC) as a sustainable and biodegradable alternative to the current synthetic packaging barrier films. This review article gathers the research information on NC as a choice for food packaging material. It reviews on the employment of NC and its various forms including its chemico-physical treatments into bio/polymers and its impact on the performance of nanocomposites for food packaging application. The review reveals the fact that the research trends towards NC based materials are quite promising for Active Packaging (AP) applications, including the Controlled Release Packaging (CRP) and Responsive Packaging (RP). Finally, it summarizes with the challenges of sustainable packaging, gray areas that need an improvement/focus in order to commercially exploit this wonderful material for packaging application.
Collapse
Affiliation(s)
- Sandeep S Ahankari
- School of Mechanical Engineering, VIT University, Vellore, TN, 632014, India.
| | - Aditya R Subhedar
- School of Mechanical Engineering, VIT University, Vellore, TN, 632014, India
| | - Swarnim S Bhadauria
- School of Mechanical Engineering, VIT University, Vellore, TN, 632014, India
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000, Grenoble, France
| |
Collapse
|
34
|
Wang Y, Yuan X, Li H, Liu L, Zhao F, Wang G, Wang Q, Yu Q. Antibacterial and drug-release dual-function membranes of cross-linked hyperbranched cationic polymers. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Shah KW, Huseien GF. Inorganic nanomaterials for fighting surface and airborne pathogens and viruses. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abc706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Nowadays, the deadly viruses (including the latest coronavirus) and pathogens transmission became the major concern worldwide. Efforts have been made to combat with these fatal germs transmitted by the airborne, human-to-human contacts and contaminated surfaces. Thus, the antibacterial and antiviral materials have been widely researched. Meanwhile, the development of diverse nanomaterials with the antiviral traits provided several benefits to counter the threats from the surface and airborne viruses especially during the Covid-19 pandemic. Based on these facts, this paper overviewed the advantages of various nanomaterials that can disinfect and deactivate different lethal viruses transmitted through the air and surfaces. The past development, recent progress, future trends, environmental impacts, biocidal effects and prospects of these nanomaterials for the antiviral coating applications have been emphasized.
Collapse
|
36
|
Zinc-loaded palygorskite nanocomposites for catheter coating with excellent antibacterial and anti-biofilm properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
38
|
Kulkarni AS, Sajjan AM, M A, Banapurmath NR, Ayachit NH, Shirnalli GG. Novel fabrication of PSSAMA_Na capped silver nanoparticle embedded sodium alginate membranes for pervaporative dehydration of bioethanol. RSC Adv 2020; 10:22645-22655. [PMID: 35514580 PMCID: PMC9054592 DOI: 10.1039/d0ra01951h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
Polystyrene-4-sulfonic acid co maleic acid sodium salt (PSSAMA_Na) capped silver nanoparticle (Ag_Np) embedded sodium alginate (Na-Alg) nanocomposite membranes have been developed to improve the pervaporation (PV) dehydration of bioethanol. The effect of PSSAMA_Na capped Ag_Nps on the micro-morphology, physicochemical properties and separation performance of the derived membranes was analyzed as a function of temperature at the azeotropic composition of the bioethanol–water mixture. WAXD analysis shows a decrease in crystalline domains with the increase in PSSAMA_Na capped Ag_Nps content and confirms the presence of Ag_Nps. DSC analysis demonstrated that the hydrophilic nature enhances as the PSSAMA_Na capped Ag_Nps content increases in the membrane matrix. Further, both total permeation flux and separation selectivity were increased with an increase in PSSAMA_Na capped Ag_Nps content. The results revealed that the membrane with 3 mass% of PSSAMA_Na capped Ag_Nps exhibited the highest permeation flux (13.40 × 10−2 kg m−2 h−1) and separation selectivity (11 406) at 30 °C which indicate its better PV performance. The total permeation flux and permeation flux of water values were close to each other, which confirms that the membranes can be efficiently used to remove the water from azeotropic aqueous bioethanol. Polystyrene-4-sulfonic acid co maleic acid sodium salt (PSSAMA_Na) capped silver nanoparticle (Ag_Np) embedded sodium alginate (Na-Alg) nanocomposite membranes have been developed to improve the pervaporation (PV) dehydration of bioethanol.![]()
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Department of Chemistry, KLE Technological University Hubballi 580031 India
| | - Ashok M Sajjan
- Department of Chemistry, KLE Technological University Hubballi 580031 India
| | - Ashwini M
- Department of Food and Industrial Microbiology, University of Agricultural Sciences Dharwad 580 005 India
| | | | - Narasimha H Ayachit
- Center for Material Science, KLE Technological University Hubballi 580031 India
| | - Geeta G Shirnalli
- Department of Food and Industrial Microbiology, University of Agricultural Sciences Dharwad 580 005 India
| |
Collapse
|
39
|
Imidazole-Functionalized Ag/MOFs as Promising Scaffolds for Proper Antibacterial Activity and Toxicity Reduction of Ag Nanoparticles. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01612-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections. Colloids Surf B Biointerfaces 2020; 193:111116. [PMID: 32447202 DOI: 10.1016/j.colsurfb.2020.111116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
In this highlight, we summarize the surface modification approaches for development of infection-resistant coatings for biomedical devices and implants. We discuss the relevant key and highly cited research that have been published over the last five years which report the generation of infection-resistant coatings. An important strategy utilized to prevent bacterial adhesion and biofilm formation on device/implant surface is anti-adhesive protein repellant polymeric coatings based on polymer brushes or highly hydrated hydrogel networks. Further, the attachment of antimicrobial agents that can efficiently kill bacteria on the surface while also prevent bacterial adhesion on the surface is also investigated. Other approaches include the incorporation of antimicrobial agents to the surface coating resulting in a depot of bactericides which can be released on-demand or with time to prevent bacterial colonization on the surface that kill the adhered bacteria on the surface to make surface infection resistant.
Collapse
Affiliation(s)
- Hossein Yazdani Ahmadabadi
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Kai Yu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Man E, Hoskins C. Towards advanced wound regeneration. Eur J Pharm Sci 2020; 149:105360. [PMID: 32361177 DOI: 10.1016/j.ejps.2020.105360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Wound management is a major contributor towards the economic burden placed upon the national health service (NHS), serving as an important target for the development of advanced therapeutic interventions. The economic expenditure of wound care for the NHS exceeds £5 billion per annum, thus presenting a significant opportunity for the introduction of alternative treatments in regards to their approach in tackling the ever increasing prevalence of wound management associated problems. As most wounds typically fall under the acute or chronic category, it is therefore necessary to design a therapeutic intervention capable of effectively resolving the pathologies associated with each problem. Such an intervention should be of increased economic viability and therapeutic effectiveness when compared to standardized treatments, thus helping to alleviate the financial burden imposed upon the NHS. The purpose of this review is to critically analyse the various aspects associated with wound management, detailing the fundamental concepts of dermal regeneration, whilst also providing an evaluation of the different materials and methods that can be utilised to achieve maximal wound regeneration. The primary aspects of this review revolve around the three concepts of antibacterial methodology, enhancement of dermal regeneration and the utilisation of a carrier medium to facilitate the regenerative process. Each aspect is explored, conveying its justifications as a target for dermal regeneration, whilst offering various solutions towards the fulfilment of a therapeutic design that is both effective and financially feasible.
Collapse
Affiliation(s)
- Ernest Man
- Department of Pure and Applied Chemistry, Faculty of Science, University of Strathclyde, Glasgow, Scotland, G1 1RD, United Kingdom
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, Faculty of Science, University of Strathclyde, Glasgow, Scotland, G1 1RD, United Kingdom.
| |
Collapse
|
42
|
Vieira D, Angel S, Honjol Y, Gruenheid S, Gbureck U, Harvey E, Merle G. Electroceutical Silk-Silver Gel to Eradicate Bacterial Infection. ACTA ACUST UNITED AC 2020; 4:e1900242. [PMID: 32293155 DOI: 10.1002/adbi.201900242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/24/2020] [Indexed: 01/23/2023]
Abstract
With more than 50% of bacteria resistant to standard antibiotics, new strategies to treat bacterial infection and colonization are needed. Based on the concept of targeting the bacteria synergistically on various fronts, it is hypothesized that an electrical insult associated with antibacterial materials may be a highly effective means of killing bacteria. In this work, an injectable conductive gel based on silk fibroin (SF) and silver nanoparticles (Ag-NPs) is synthesized, capable of coating a zone of injury, allowing the application of a low electrical current to decrease bacterial contamination. With a high conductivity of 1.5 S cm-1 , SF/Ag-NPs gels killed 80% of Escherichia coli in 1 min, no toxicity toward Chinese hamster ovary cells is observed. The mechanism of an electrical composite gel combined with electrical wound therapy is associated with silver ion (Ag+ ) release, and reactive oxygen species (ROS) production. The findings in the present study show a similar Ag+ release for treatment with gels and the combined effect, whereas ROS generation is 50% higher when a small electrical current is applied leading to a broad bactericidal effect.
Collapse
Affiliation(s)
- Daniela Vieira
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, H3A 2B2, Canada
| | - Samuel Angel
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, H3A 2B2, Canada
| | - Yazan Honjol
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, H3A 2B2, Canada
| | | | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, 97070, Germany
| | | | - Geraldine Merle
- McGill University, Montreal, H3A 0C5, Canada.,Polytechnique Montréal, C.P. 6079, succ. Centre-ville, Montréal, H3C 3A7, Québec, Canada
| |
Collapse
|
43
|
Li S, Zhu Q, Sun Y, Wang L, Lu J, Nie Q, Ma Y, Jing W. Fabrication of Ag Nanosheet@TiO2 Antibacterial Membranes for Inulin Purification. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuangyu Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qianfeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yuqing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jiahuan Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qiuhai Nie
- Beijing TKS Rubber Technology Development Co., Ltd, Nanjing 211800, Jiangsu, China
| | - Yong Ma
- Beijing TKS Rubber Technology Development Co., Ltd, Nanjing 211800, Jiangsu, China
| | - Wenheng Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
44
|
Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer. COATINGS 2020. [DOI: 10.3390/coatings10030245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the coating’s microstructure and morphology, time-dependent nanosilver dissolution in simulated body fluid, and investigation of the nanomechanical properties of surface coatings composed of chitosan and nanosilver, with or without a surface-active substance, deposited at different voltages for 1 min on a nanotubular TiO2 layer. The microstructure, morphology, topography, and phase composition were examined, and the silver dissolution rate in simulated body fluid, nanoscale mechanical properties, and water contact angle were measured. The voltage value significantly influenced surface roughness. All specimens possessed high biocompatibility. The highest and best adhesion of the coatings was observed in the absence of a surface-active substance. Silver dissolution caused the appearance of silver ions in solution at levels effective against bacteria and below the upper safe limit value.
Collapse
|
45
|
Qian Y, Shen Y, Deng S, Liu T, Qi F, Lu Z, Liu L, Shao N, Xie J, Ding F, Liu R. Dual functional β-peptide polymer-modified resin beads for bacterial killing and endotoxin adsorption. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42833-019-0005-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Background
Bacterial infections and endotoxin contaminations are serious problems in the production/manufacture of food, water, drinks, and injections. The development of effective materials to kill bacteria and adsorb endotoxins, particularly those caused by gram-negative bacteria, represents a major step toward improved safety. As synthetic mimic of host defense peptides, β-peptide polymers are not susceptible to bacterial resistance and exhibit potent bacteria-killing abilities upon antibiotic-resistant bacteria. This study investigated the potential of synthetic β-peptide polymer-modified polyacrylate (PA) beads to kill bacteria and remove endotoxin, i.e. lipopolysaccharide (LPS), produced by these bacteria.
Results
Synthetic β-peptide polymer-modified PA beads displayed strong antimicrobial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus, as well as excellent biocompatibility. In addition, these β-peptide polymer-modified beads removed around 90% of the endotoxins, even at 200 EU/mL of LPS, a very high concentration of LPS.
Conclusions
β-peptide polymer-modified PA beads are efficient in bacterial killing and endotoxin adsorption. Hence, these modified beads demonstrate the potential application in the production/manufacture of food, water, drinks, and injections.
Collapse
|
46
|
Nguyenova H, Vokata B, Zaruba K, Siegel J, Kolska Z, Svorcik V, Slepicka P, Reznickova A. Silver nanoparticles grafted onto PET: Effect of preparation method on antibacterial activity. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
β-Chitin nanofiber hydrogel as a scaffold to in situ fabricate monodispersed ultra-small silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Pavoski G, Baldisserotto DLS, Maraschin T, Brum LFW, dos Santos C, dos Santos JHZ, Brandelli A, Galland GB. Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Das B, Dadhich P, Pal P, Dutta J, Srivas PK, Dutta A, Mohapatra PKD, Maity AM, Bera S, Dhara S. Doping of carbon nanodots for saving cells from silver nanotoxicity: A study on recovering osteogenic differentiation potential. Toxicol In Vitro 2019; 57:81-95. [DOI: 10.1016/j.tiv.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023]
|
50
|
Múgica-Vidal R, Sainz-García E, Álvarez-Ordóñez A, Prieto M, González-Raurich M, López M, López M, Rojo-Bezares B, Sáenz Y, Alba-Elías F. Production of Antibacterial Coatings Through Atmospheric Pressure Plasma: a Promising Alternative for Combatting Biofilms in the Food Industry. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02293-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|