1
|
Madhusankha GDMP, Siow LF, Dos Santos Silva Amaral M, Lee SY, Marriott PJ, Thoo YY. Carbohydrate-based co-encapsulation of spice oleoresin blends: Impact on flavor release profiles, storage stability, and sensory acceptance. Food Chem 2025; 471:142767. [PMID: 39799684 DOI: 10.1016/j.foodchem.2025.142767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
The study highlights the impact of different carbohydrate-based wall materials on the encapsulation and release of flavors and physicochemical characteristics of spray-dried oleoresin blends. The inlet temperature and the wall material type significantly affected the spray drying yield, and Hi-Cap 100, at 150 °C, produced the highest yield. All the wall materials had high water solubility, and Hi-Cap 100 reported the best wettability. Gum Arabic denoted the highest encapsulation efficiency (77.3 ± 0.6%) and the best encapsulation capacity of pungent compounds, phytochemicals, and colors, being approximately two-fold higher than Hi-Cap 100. The blend of gum Arabic and Hi-Cap 100 produced the most efficient volatile release (31 compounds). Thermal treatments accelerated the release of pungent and aroma compounds, while 2% salt concentration delivered the maximum flavor release. Encapsulation retained more than 85% of compounds during 3 months of storage, and thus, the findings suggest industrial applications of encapsulated oleoresin powders would be favorable.
Collapse
Affiliation(s)
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Michelle Dos Santos Silva Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Siang Yin Lee
- Unit Inovasi dan Teknologi Elastomer (UITE), Bahagian Teknologi dan Kejuruteraan (BTK), Stesen Penyelidikan RRIM Sungai Buloh, Lembaga Getah Malaysia (LGM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Philip J Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yin Yin Thoo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Rajabi H, Razavi SMA. Incorporation of co-encapsulated extracts of saffron petal and Stachys schtschegleevii into chitosan/basil seed gum/graphene oxide bionanocomposite: Effects on physical, mechanical, antioxidant, and antibacterial properties. Int J Biol Macromol 2025; 309:143116. [PMID: 40246102 DOI: 10.1016/j.ijbiomac.2025.143116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The effects of encapsulation order and concentration (25 % & 50 %) of saffron petal (SPE) and Stachys schtschegleevii (SSE) extracts on the properties of bionanocomposites (BNCs) composed of basil seed gum (BSG), chitosan (CH), and graphene oxide (GO) were evaluated. Two encapsulation approaches were employed: in the first, SPE was encapsulated via complex coacervation using CH and gum Arabic, then mixed with SSE, maltodextrin, BSG, and GO (0.1-0.2 %) before spray drying; in the second, the encapsulation order of SPE and SSE was reversed. Encapsulation order and GO concentration significantly increased thickness (by 20 %), water vapor permeability (by 50 %), and solubility (by 45 %). Thermal stability improved by 10 % in bionanocomposites containing 50 % co-encapsulated extracts. Fourier transform infrared spectroscopy confirmed the successful incorporation of co-encapsulated extracts, while microscopic analysis revealed small cracks with micro- and nano-sized particles (219 nm to 8.3 μm) in BNCs with spray-dried coacervates. Co-encapsulation enhanced antibacterial and antioxidant activity, while encapsulation order regulated the sequential release of bioactive compounds, enabling controlled antimicrobial or antioxidant release based on food deterioration patterns. These findings highlight the potential of co-encapsulated extracts in developing advanced BNCs for active food packaging, where controlled release of bioactive compounds is essential for preserving food quality.
Collapse
Affiliation(s)
- Hamid Rajabi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran; Incubator Center of Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
3
|
Mohamed SA, Elsherbini AM, Alrefaey HR, Adelrahman K, Moustafa A, Egodawaththa NM, Crawford KE, Nesnas N, Sabra SA. Gum Arabic: A Commodity with Versatile Formulations and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:290. [PMID: 39997853 PMCID: PMC11858195 DOI: 10.3390/nano15040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Gum Arabic (GA), or acacia gum, refers to the dried exudate produced by certain Acacia trees. GA is composed mainly of a mixture of polysaccharides and glycoproteins, with proportions that can slightly differ from one species to another. It is commonly utilized in the food and pharmaceutical industries as a stabilizer or an emulsifier owing to its biocompatibility, hydrophilicity, and antibacterial properties. In addition, GA can be manipulated as it possesses many functional groups that can be used in grafting, cross-linking, or chemical modifications to add a new feature to the developed material. In this review, we highlight recent GA-based formulations, including nanoparticles, hydrogels, nanofibers, membranes, or scaffolds, and their possible applications in tissue regeneration, cancer therapy, wound healing, biosensing, bioimaging, food packaging, and antimicrobial and antifouling membranes.
Collapse
Affiliation(s)
- Shaymaa A. Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Asmaa M. Elsherbini
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| | - Heba R. Alrefaey
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kareem Adelrahman
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
| | - Alshaimaa Moustafa
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| | - Nishal M. Egodawaththa
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Kaitlyn E. Crawford
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA; (K.A.); (K.E.C.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nasri Nesnas
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA; (H.R.A.); (N.M.E.)
| | - Sally A. Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (S.A.M.); (A.M.E.)
| |
Collapse
|
4
|
Chuesomboon P, Rades T, Chaiyana W. Potential of Encapsulated Bovine Colostrum in Powder-Based Formulations for Facial Clay, Peel-Off Gel, and Sleeping Gel Masks. Gels 2025; 11:111. [PMID: 39996654 PMCID: PMC11854522 DOI: 10.3390/gels11020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Bovine colostrum is a bioactive compound with potential in cosmetic applications but has a limited shelf life. This study aimed to develop an effective encapsulation system for bovine colostrum using the complex coacervation method and incorporate it into powder formulations for facial masks. The research explored various gelatin-to-gum Arabic ratios to optimize the physical and chemical stability, encapsulation efficiency, and loading capacity of the encapsulated bovine colostrum (EBC). The EBC was further incorporated into powder formulations for clay masks, peel-off gel masks, and sleeping gel masks. The optimal gelatin-to-gum Arabic ratio was found to be 2:1, yielding the highest entrapment efficiency (66.6 ± 3.3% w/w) and loading capacity (67.6 ± 3.4% w/w) of bovine colostrum. For clay masks, the most effective powder blend incorporating EBC enhanced the moisture content, water solubility, and hygroscopicity, without affecting the drying time (9.7 ± 0.6 min). Additionally, peel-off gel masks incorporating EBC significantly reduced water activity and improved moisture content and hygroscopicity, while the drying time decreased from 44.3 ± 0.6 to 25.0 ± 1.7 min. For sleeping gel masks, the formulation with EBC increased water activity, while other parameters remained stable. In conclusion, the EBC with enhanced stability was effectively integrated into various powders for facial mask formulations.
Collapse
Affiliation(s)
- Pornpansa Chuesomboon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Silva NC, Chevigny C, Domenek S, Almeida G, Assis OBG, Martelli-Tosi M. Nanoencapsulation of active compounds in chitosan by ionic gelation: Physicochemical, active properties and application in packaging. Food Chem 2025; 463:141129. [PMID: 39265301 DOI: 10.1016/j.foodchem.2024.141129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
The ionic gelation technique using chitosan to encapsulate active compounds has received lots of attention in the literature due to its ease-of-use and known biodegradability, biocompatibility and antimicrobial properties of the polymer. In this review, main studies from the last five years involving encapsulation of active compounds (natural and commercial/synthetic) are brought together in order to understand the encapsulation mechanisms of components with chitosan as well as the physical, chemical and morphological properties of the resulting particles. The application of these nanostructures in polymeric films was then investigated, since additives for packaging are an attractive premise and have only recently started being studied in the literature. Herein, comparisons are made between free and encapsulated bioactive compounds in different film matrices, as well as the effect of this activation on structure. Finally, this work details the mechanisms involved in the production of chitosan nanoparticles with active compounds and encourages new studies to focus on their application in packaging.
Collapse
Affiliation(s)
- Natalia Cristina Silva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Postgraduate Programme in Materials Science and Engineering, 13635-900 Pirassununga, SP, Brazil; National Nanotechnology Laboratory for Agriculture, Embrapa Instrumentação, 13561-206 São Carlos, SP, Brazil
| | - Chloe Chevigny
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Sandra Domenek
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Giana Almeida
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | | | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Postgraduate Programme in Materials Science and Engineering, 13635-900 Pirassununga, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther 2025; 19:201-218. [PMID: 39816849 PMCID: PMC11734513 DOI: 10.2147/dddt.s483404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds. Patients and Methods This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements provided by phytosome technology when applied to secondary metabolites. Results Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer pathways, including NF-κB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models. Conclusion Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Collapse
Affiliation(s)
- Lia Mardiana
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjari, Banjarmasin, 70123, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
7
|
Najafi Z, Altay F, Şahin-Yeşilçubuk N. In vitro transdermal release of crocin from electrospun saffron and its comparison with in vitro digestion. Food Res Int 2025; 199:115279. [PMID: 39658144 DOI: 10.1016/j.foodres.2024.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers. The release of SE from NFs was investigated in stimulated gastrointestinal media (SGF and SIF) using a dialysis bag, and transdermal permeation studies were performed via a membrane in a Franz diffusion cell. The wettability and swelling ratio of the NFs were determined. The Pl-Pc-SE sample, which has the lowest contact angle and the highest swelling index, resulted in the highest release of SE during digestion. The Ritger-Peppas and Higuchi models best represented the experimental release data from digestion and transdermal permeation. The release profile of SE from zein NFs in SGF was described using a non-Fickian mechanism. In contrast, the release mechanism for Pl-based NFs in SGF and all NFs during both release experiments was Fickian-controlled diffusion transport. The results indicate that NFs can be successfully used for the controlled delivery of SE and have the potential for transdermal applications as a dietary supplement.
Collapse
Affiliation(s)
- Zahra Najafi
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| | - Filiz Altay
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey.
| | - Neşe Şahin-Yeşilçubuk
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| |
Collapse
|
8
|
Hadian M, Fathi M, Mohammadi A, Eskandari MH, Asadsangabi M, Pouraghajan K, Shohrati M, Mohammadpour M, Samadi M. Characterization of chitosan/Persian gum nanoparticles for encapsulation of Nigella sativa extract as an antiviral agent against avian coronavirus. Int J Biol Macromol 2024; 265:130749. [PMID: 38467218 DOI: 10.1016/j.ijbiomac.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate the physicochemical characteristics of nanoparticles formed by the ionic gelation method between chitosan and water-soluble fraction of Persian gum (WPG) for encapsulation of Nigella sativa extract (NSE) as an antiviral agent. Our findings revealed that the particle size, polydispersity index (PDI), and zeta potential of the particles were in the range of 316.7-476.6 nm, 0.259-0.466, and 37.0-58.1 mV, respectively. The amounts of chitosan and WPG as the wall material and the NSE as the core had a considerable impact on the nanoparticle properties. The proper samples were detected at 1:1 chitosan:WPG mixing ratio (MR) and NSE concentration of 6.25 mg/mL. Fourier-transformed infrared (FTIR) spectroscopy proved the interactions between the two biopolymers. The effect of NSE on infectious bronchitis virus (IBV) known as avian coronavirus, was performed by the in-ovo method determining remarkable antiviral activity of NSE (25 mg/mL) and its enhancement through encapsulation in the nanoparticles. These nanoparticles containing NSE could have a promising capability for application in both poultry industry and human medicine as an antiviral product.
Collapse
Affiliation(s)
- Mohammad Hadian
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Fathi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Asadsangabi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Majid Shohrati
- Research Center of Chemical Injuries, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoomeh Mohammadpour
- Department of Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Riseh RS, Vazvani MG, Kennedy JF. The application of chitosan as a carrier for fertilizer: A review. Int J Biol Macromol 2023; 252:126483. [PMID: 37625747 DOI: 10.1016/j.ijbiomac.2023.126483] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The smart combination of agriculture and other sciences can greatly reduce the limits of fertilizer use. Chitosan is a linear amino polysaccharide with a rigid structure which has hydrophilic and crystal properties. The formation of intermolecular hydrogen bonds the presence of reactive groups and cross-linking, the formation of salts with organic and inorganic acids with complexing and chelating properties ionic conductivity, film formation are the characteristics of chitosan. With the presence of amino groups, chitosan can form a complex with other compounds and also enter the vascular system of plants and lead to the activation of metabolic-physiological pathways of plants. This polymeric compound can bond with other natural polymers and in combination with fertilizers and nutritional elements, on the one hand, it can provide the nutritional needs of the plant and on the other hand, it also helps to improve the soil texture. Chitosan nanomaterials as a Next-generation fertilizers act as plant immune system enhancers through slow, controlled, and targeted delivery of nutrients to plants. Chitosan can assist agricultural researchers and has become an ideal and effective option with its many applications in various fields.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
11
|
Zheng C, Chen M, Chen Y, Qu Y, Shi W, Shi L, Qiao Y, Li X, Guo X, Wang L, Wu W. Preparation of polysaccharide-based nanoparticles by chitosan and flaxseed gum polyelectrolyte complexation as carriers for bighead carp (Aristichthys nobilis) peptide delivery. Int J Biol Macromol 2023; 249:126121. [PMID: 37541467 DOI: 10.1016/j.ijbiomac.2023.126121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Polysaccharide-based nanoparticles formed by the polyelectrolyte complexation between chitosan (CS) and flaxseed gum (FG) was developed in this work, and it was further used as a carrier for bighead carp peptide (BCP) delivery. The CS molecular weight (MW) of 50 kDa and CS/FG mass ratio of 1:2 at pH 3.5 were optimal conditions for the NP preparation, with the minimum particle size (∼155.1 nm) and the maximum BCP encapsulation efficiency (60.3 %). The BCP-loaded CS/FG NPs exhibited the smallest particle size (175.8 nm). Both CS/FG NPs and CS/FG-BCP NPs exhibited roughly uniform spherical shape. FT-IR spectra confirmed the existence of hydrogen bonds and electrostatic interactions in the nanoparticles. The BCP-loaded NPs displayed a higher thermal stability than BCP. Moreover, the release of BCP was controllable and dose-dependent, following a first-order kinetics model. These findings suggested that our CS/FG NPs are a promising carrier for bioactive peptide delivery.
Collapse
Affiliation(s)
- Changliang Zheng
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yinghong Qu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Li
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
12
|
Lobato-Guarnido I, Luzón G, Ríos F, Fernández-Serrano M. Synthesis and Characterization of Environmentally Friendly Chitosan-Arabic Gum Nanoparticles for Encapsulation of Oregano Essential Oil in Pickering Emulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2651. [PMID: 37836292 PMCID: PMC10574744 DOI: 10.3390/nano13192651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
The encapsulation of bioactive agents through the utilization of biodegradable nanoparticles is a topic of considerable scientific interest. In this study, microcapsules composed of chitosan (CS) and Arabic gum (GA) nanoparticles were synthesized, encapsulating oregano essential oil (OEO) through Pickering emulsions and subsequent spray drying. The optimization of hybrid chitosan and Arabic gum (CS-GA) nanoparticle formation was carried out via complex coacervation, followed by an assessment of their behavior during the formation of the emulsion. Measurements of the size, contact angle, and interfacial tension of the formed complexes were conducted to facilitate the development of Pickering emulsions for encapsulating the oil under the most favorable conditions. The chitosan-Arabic gum capsules were physically characterized using scanning electron microscopy and fitted to the Beerkan estimation of soil transfer (BEST) model to determine their size distribution. Finally, the OEO encapsulation efficiency was also determined. The optimum scenario was achieved with the CS-GA 1-2 capsules at a concentration of 2% wt, featuring a contact angle of 89.1 degrees, which is ideal for the formation of oil/water (O/W) emulsions. Capsules of approximately 2.5 μm were obtained, accompanied by an encapsulation efficiency of approximately 60%. In addition, the hybrid nanoparticles that were obtained showed high biodegradability. The data within our study will contribute fundamental insights into CS-GA nanoparticles, and the quantitatively analyzed outcomes presented in this study will hold utility for forthcoming applications in environmentally friendly detergent formulations.
Collapse
Affiliation(s)
- Ismael Lobato-Guarnido
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | - Germán Luzón
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.R.); (M.F.-S.)
| | | | | |
Collapse
|
13
|
Xie L, Luo Z, Jia X, Mo C, Huang X, Suo Y, Cui S, Zang Y, Liao J, Ma X. Synthesis of Crocin I and Crocin II by Multigene Stacking in Nicotiana benthamiana. Int J Mol Sci 2023; 24:14139. [PMID: 37762441 PMCID: PMC10532124 DOI: 10.3390/ijms241814139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Crocins are a group of highly valuable water-soluble carotenoids that are reported to have many pharmacological activities, such as anticancer properties, and the potential for treating neurodegenerative diseases including Alzheimer's disease. Crocins are mainly biosynthesized in the stigmas of food-medicine herbs Crocus sativus L. and Gardenia jasminoides fruits. The distribution is narrow in nature and deficient in resources, which are scarce and expensive. Recently, the synthesis of metabolites in the heterologous host has opened up the potential for large-scale and sustainable production of crocins, especially for the main active compounds crocin I and crocin II. In this study, GjCCD4a, GjALDH2C3, GjUGT74F8, and GjUGT94E13 from G. jasminoides fruits were expressed in Nicotiana benthamiana. The highest total content of crocins in T1 generation tobacco can reach 78,362 ng/g FW (fresh weight) and the dry weight is expected to reach 1,058,945 ng/g DW (dry weight). Surprisingly, the primary effective constituents crocin I and crocin II can account for 99% of the total crocins in transgenic plants. The strategy mentioned here provides an alternative platform for the scale-up production of crocin I and crocin II in tobacco.
Collapse
Affiliation(s)
- Lei Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Xunli Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Science, Nanning 530007, China;
| | - Xiyang Huang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Yaran Suo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Yimei Zang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| | - Jingjing Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (L.X.); (Z.L.); (X.J.); (S.C.); (Y.Z.)
| |
Collapse
|
14
|
Tan C, Sun Y, Yao X, Zhu Y, Jafari SM, Sun B, Wang J. Stabilization of anthocyanins by simultaneous encapsulation-copigmentation via protein-polysaccharide polyelectrolyte complexes. Food Chem 2023; 416:135732. [PMID: 36878116 DOI: 10.1016/j.foodchem.2023.135732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
This study prepared a series of polyelectrolyte complexes (PECs) composed of heated whey protein isolate (HWPI) and different polysaccharides for simultaneous encapsulation and copigmentation of anthocyanins (ATC) and their ultimate stabilization. Four polysaccharides including chondroitin sulfate, dextran sulfate, gum arabic, and pectin were chosen due to their abilities to simultaneously complex with HWPI and copigment ATC. At pH 4.0, these PECs were formed with an average particle size of 120-360 nm, the ATC encapsulation efficiency of 62-80%, and the production yield of 47-68%, depending on the type of polysaccharides. The PECs effectively inhibited the degradation of ATC during storage and when exposed to neutral pH, ascorbic acid, and heat. Pectin had the best protection, followed by gum arabic, chondroitin sulfate, and dextran sulfate. The stabilizing effects were associated with the hydrogen bonding, hydrophobic and electrostatic interactions between HWPI and polysaccharides, conferring dense internal network and hydrophobic microenvironment in the complexes.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yan Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xueqing Yao
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
15
|
Zannou O, Oussou KF, Chabi IB, Odouaro OBO, Deli MGEP, Goksen G, Vahid AM, Kayodé APP, Kelebek H, Selli S, Galanakis CM. A comprehensive review of recent development in extraction and encapsulation techniques of betalains. Crit Rev Food Sci Nutr 2023; 64:11263-11280. [PMID: 37477284 DOI: 10.1080/10408398.2023.2235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun, Türkiye
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Kouame F Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ifagbémi B Chabi
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Oscar B O Odouaro
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Mahn G E P Deli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Aïssi M Vahid
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété, Benin
| | - Adéchola P P Kayodé
- Laboratory of Valorization and Quality Management of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Türkiye
| | - Serkan Selli
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
16
|
Ai C, Zhao C, Xiang C, Zheng Y, Zhong S, Teng H, Chen L. Gum arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem X 2023; 18:100724. [PMID: 37397193 PMCID: PMC10314165 DOI: 10.1016/j.fochx.2023.100724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
In this study, a kind of nanoparticle prepared using gum arabic as a sole wall material for loading curcumin was obtained. The properties and digestive characteristics of the curcumin-loaded nanoparticle were determined. Results showed that the maximum loading amount of the nanoparticle was 0.51 µg/mg with an approximately 500 nm size. The Fourier transform infrared (FTIR) spectrum showed that the complexation was mainly related to the -C[bond, double bond]O, -CH, and -C-O-C- groups. The curcumin-loaded nanoparticle exhibited good stability under highly concentrated salinity stress, and the stability of the curcumin loaded in nanoparticles was significantly higher than that of free curcumin under ultraviolet radiation. The curcumin loaded in nanoparticle was released mainly in the intestinal digestion stage, and the release process was sensitive to the pH changes rather than protease. In conclusion, these nanoparticles can be a potential nanocarrier for enhancing the stability of curcumin which can be applied in the salt-containing food system.
Collapse
Affiliation(s)
| | | | - Chunhong Xiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yimei Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| |
Collapse
|
17
|
Karaaslan A. Nano- and Micro-Encapsulation of Long-Chain-Fatty-Acid-Rich Melon Seed Oil and Its Release Attributes under In Vitro Digestion Model. Foods 2023; 12:2371. [PMID: 37372581 DOI: 10.3390/foods12122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Melon seed oil (MSO) possesses plenty of long-chain fatty acids (LFCAs, oleic-linoleic acid 90%), remarkable antioxidant activity (DPPH (0.37 ± 0.40 µmol TE/g), ABTS (4.98 ± 0.18 µmol TE/g), FRAP (0.99 ± 0.02 µmol TE/g), and CUPRAC (4.94 ± 0.11 µmol TE/g)), and phenolic content (70.14 ± 0.53 mg GAE/100 g). Encapsulation is a sound technology to provide thermal stability and controlled release attributes to functional compounds such as plant seed oil. Nano-sized and micro-sized capsules harboring MSO were generated by utilizing thin film dispersion, spray drying, and lyophilization strategies. Fourier infrared transform analysis (FTIR), scanning electron microscopy (SEM), and particle size analyses were used for the authentication and morphological characterization of the samples. Spray drying and lyophilization effectuated the formation of microscale capsules (2660 ± 14 nm, 3140 ± 12 nm, respectively), while liposomal encapsulation brought about the development of nano-capsules (282.30 ± 2.35 nm). Nano-liposomal systems displayed significant thermal stability compared to microcapsules. According to in vitro release studies, microcapsules started to release MSO in simulated salivary fluid (SSF) and this continued in gastric (SGF) and intestinal (SIF) environments. There was no oil release for nano-liposomes in SSF, while limited release was observed in SGF and the highest release was observed in SIF. The results showed that nano-liposomal systems featured MSO thermal stability and controlled the release attributes in the gastrointestinal system (GIS) tract.
Collapse
Affiliation(s)
- Asliye Karaaslan
- Vocational School of Organized Industrial Zone, Food Processing Programme, Harran University, 63300 Sanliurfa, Turkey
| |
Collapse
|
18
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
19
|
Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Recent developments in improving the emulsifying properties of chitosan. Int J Biol Macromol 2023; 239:124210. [PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
Collapse
Affiliation(s)
- Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
20
|
On the Importance of the Starting Material Choice and Analytical Procedures Adopted When Developing a Strategy for the Nanoencapsulation of Saffron ( Crocus sativus L.) Bioactive Antioxidants. Antioxidants (Basel) 2023; 12:antiox12020496. [PMID: 36830054 PMCID: PMC9951940 DOI: 10.3390/antiox12020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Saffron is known as the most expensive spice in the world. It is comprised of the dried stigmas of the pistil of the Crocus sativus L., which is a cultivated, sterile crocus plant. This plant material is now recognized as the unique edible source of certain bioactive apocarotenoids for which in-vivo antioxidant properties have been reported. Among the latter, crocins, red-orange natural colorants, and their parent molecule crocetin prevail in bioactivity significance. This review is focused on the strategies developed so far for their nanoencapsulation in relation to the characteristics of the starting material, extraction procedures of the bioactive antioxidants and analytical methods applied for their characterization and quantification throughout the process. The literature so far points out gaps that lead to publishable data, on one hand, but not necessarily to repeatable and meaningful processes due to incomplete characterization of the starting and the released material in efficiency and stability studies of the nanoencapsulates. Accurate terminology and quantitative chromatographic or spectrophotometric procedures for the determination of the core compounds are needed. Authenticity control and quality of saffron samples, and the verification of the concentrations of compounds in commercial preparations labeled as 'crocin,' are prerequisites in any experimental design setup.
Collapse
|
21
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
22
|
Cao J, Gao M, Wang J, Liu Y, Zhang X, Ping Y, Liu J, Chen G, Xu D, Huang X, Liu G. Construction of nano slow-release systems for antibacterial active substances and its applications: A comprehensive review. Front Nutr 2023; 10:1109204. [PMID: 36819707 PMCID: PMC9928761 DOI: 10.3389/fnut.2023.1109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
At present, nano-carrier materials with antibacterial activity are of great significance. Due to the widespread resistance of many pathogenic microorganisms, it has seriously threatened human health. The natural antimicrobial substances extracted from fruits and vegetables can significantly improve their stability combined with nano-carrier materials. The resistance of pathogenic microorganisms will be substantially reduced, greatly enhancing the effect of active antimicrobial substances. Nanotechnology has excellent research prospects in the food industry, antibacterial preservation, food additives, food packaging, and other fields. This paper introduces nano-carrier materials and preparation techniques for loading and encapsulating active antibacterial substances in detail by constructing a nano-release system for active antibacterial substances. The antibacterial effect can be achieved by protecting them from adverse external conditions and destroying the membrane of pathogenic microorganisms. The mechanism of the slow release of the bacteriostatic active substance is also described. The mechanism of carrier loading and release is mainly through non-covalent forces between the bacteriostatic active substance and the carrier material, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, etc., as well as the loading and adsorption of the bacteriostatic active substance by the chemical assembly. Finally, its wide application in food and medicine is introduced. It is hoped to provide a theoretical basis and technical support for the efficient utilization and product development of bacteriostatic active substances.
Collapse
Affiliation(s)
- Jiayong Cao
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Jian Wang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China,*Correspondence: Jian Wang, ✉
| | - Yuan Liu
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Xuan Zhang
- College of Agriculture and Forestry Science and Technology, Hebei North University, Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Zhangjiakou, China
| | - Yi Ping
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Liu
- Internal Trade Food Science Research Institute Co., Ltd, Beijing, China
| | - Ge Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Donghui Xu, ✉
| | - Xiaodong Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, China,Guangyang Liu, ✉
| |
Collapse
|
23
|
Zong X, Li H, Tang Q, Wang X, Li Y, Li L. Preparation and characterization of glucoamylase microcapsules prepared by W/O/W type complex coacervation freeze drying. J Food Sci 2023; 88:795-809. [PMID: 36579464 DOI: 10.1111/1750-3841.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Glucoamylase was often used in the brewing industry but was unstable to several environmental factors and reacted quickly to produce fermentable sugar, which limited its applications. Microencapsulation could effectively overcome the drawbacks. This study evaluated the feasibility of the preparation of glucoamylase microcapsules (GM) using W/O/W complex coacervation-freeze-drying method. The parameters of the microcapsules were optimized by the response surface optimization design: core-wall ratio at 1:1, wall-material concentration at 8%, and coagulation time for 20 min. Under current condition, the final microencapsulation efficiency reached 85.64 ± 1.60%. Glucoamylase could be slowly released for more than 96 h in the liquid state, and could react slowly for more than 336 h in the solid state. The optimized GM were incubated for 1 h, and the relative enzyme activity was better than that of free glucoamylase under high temperature conditions. The water capacity, solubility, morphology, differential scanning calorimetry, and Fourier transform infrared spectroscopy were conducted. Glucoamylase exhibited good sustained release characteristics. The microcapsules were more resistant to environmental stimuli and showed stronger robustness after optimization. PRACTICAL APPLICATION: Saccharification enzymes are often used in the winemaking industry, and direct addition will cause the fermentation process to heat up too quickly, resulting in the inactivation of microorganisms and saccharification enzymes, affecting the efficiency of saccharification enzymes. Therefore, microcapsules are used to encapsulate the saccharification enzyme, and its efficacy is slowly released for a long time during the fermentation process.
Collapse
Affiliation(s)
- Xuyan Zong
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Huan Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Qian Tang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China.,Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Xiangyu Wang
- Guangdong VTR Bio-Tech Co., Ltd., Zhuhai, People's Republic of China
| | - Yuanyi Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, People's Republic of China
| |
Collapse
|
24
|
Tang Y, Gao C, Tang X. In situ rapid conjugation of chitosan-gum Arabic coacervated complex with cinnamaldehyde in cinnamon essential oil to stabilize high internal phase Pickering emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Purohit D, Jalwal P, Manchanda D, Saini S, Verma R, Kaushik D, Mittal V, Kumar M, Bhattacharya T, Rahman MH, Dutt R, Pandey P. Nanocapsules: An Emerging Drug Delivery System. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:190-207. [PMID: 35142273 DOI: 10.2174/1872210516666220210113256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Controlled drug release and site-specific delivery of drugs make nanocapsules the most approbative drug delivery system for various kinds of drugs, bioactive, protein, and peptide compounds. Nanocapsules (NCs) are spherical shape microscopic shells consisting of a core (solid or liquid) in which the drug is positioned in a cavity enclosed by a distinctive polymeric membrane. OBJECTIVES The main objective of the present patent study is to elaborate on various formulation techniques and methods of nanocapsules (NCs). The review also spotlights various biomedical applications as well as on the patents of NCs to date. METHODS The review was extracted from the searches performed using various search engines such as PubMed, Google Patents, Medline, Google Scholars, etc. In order to emphasize the importance of NCs, some published patents of NCs have also been reported in the review. RESULTS NCs are tiny magical shells having incredible reproducibility. Various techniques can be used to formulate NCs. The pharmaceutical performance of the formulated NCs can be judged by evaluating their shape, size, entrapment efficiency, loading capacity, etc., using different analytical techniques. Their main applications are found in the field of agrochemicals, genetic manipulation, cosmetics, hygiene items, strategic distribution of drugs to tumors, nanocapsule bandages to combat infection, and radiotherapy. CONCLUSION In the present review, our team made a deliberate effort to summarize the recent advances in the field of NCs and focus on new patents related to the implementation of NCs delivery systems in the area of some life-threatening disorders like diabetes, cancer, and cardiovascular diseases.
Collapse
Affiliation(s)
- Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Pawan Jalwal
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, 124001, India
| | - Deeksha Manchanda
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, 123401, India
| | - Sapna Saini
- PDM School of Pharmacy, Karsindhu, Jind, 126102, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manish Kumar
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, 133207, India
| | - Tanima Bhattacharya
- Innovation, Incubation and Industry (i-cube) Laboratory, Techno India NJR Institute of Technology, Udaipur, 313003, Rajasthan, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Rohit Dutt
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
26
|
Physicochemical characterisations of nanoencapsulated Eucalyptus globulus oil with gum Arabic and gum Arabic nanocapsule and their biocontrol effect on anthracnose disease of Syzygium malaccense Fruits. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
28
|
Meiguni MSM, Salami M, Rezaei K, Aliyari MA, Ghaffari SB, Emam-Djomeh Z, Kennedy JF, Ghasemi A. Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation. Int J Biol Macromol 2022; 224:170-180. [DOI: 10.1016/j.ijbiomac.2022.10.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
29
|
Karthik C, Caroline DG, Pandi Prabha S. Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Advances in Nanofabrication Technology for Nutraceuticals: New Insights and Future Trends. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090478. [PMID: 36135026 PMCID: PMC9495680 DOI: 10.3390/bioengineering9090478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Bioactive components such as polyphenolics, flavonoids, bioactive peptides, pigments, and essential fatty acids were known to ward off some deadliest diseases. Nutraceuticals are those beneficial compounds that may be food or part of food that has come up with medical or health benefits. Nanoencapsulation and nanofabricated delivery systems are an imminent approach in the field of food sciences. The sustainable fabrication of nutraceuticals and biocompatible active components indisputably enhances the food grade and promotes good health. Nanofabricated delivery systems include carbohydrates-based, lipids (solid and liquid), and proteins-based delivery systems. Solid nano-delivery systems include lipid nanoparticles. Liquid nano-delivery systems include nanoliposomes and nanoemulsions. Physicochemical properties of nanoparticles such as size, charge, hydrophobicity, and targeting molecules affect the absorption, distribution, metabolism, and excretion of nano delivery systems. Advance research in toxicity studies is necessary to ensure the safety of the nanofabricated delivery systems, as the safety of nano delivery systems for use in food applications is unknown. Therefore, improved nanotechnology could play a pivotal role in developing functional foods, a contemporary concept assuring the consumers to provide programmed, high-priced, and high-quality research toward nanofabricated delivery systems.
Collapse
|
31
|
Fabiano A, De Leo M, Cerri L, Piras AM, Braca A, Zambito Y. Saffron extract self-assembled nanoparticles to prolong the precorneal residence of crocin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Microencapsulation of a Commercial Food-Grade Protease by Spray Drying in Cross-Linked Chitosan Particles. Foods 2022; 11:foods11142077. [PMID: 35885320 PMCID: PMC9317512 DOI: 10.3390/foods11142077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, the use of spray-drying technology for encapsulating Flavourzyme® (protease–peptidase complex) was evaluated to overcome the limitations (low encapsulation efficiency and no large-scale production) of other encapsulation processes. To the best of our knowledge, spray drying has not been applied previously for the immobilization of this enzyme. Firstly, bovine serum albumin (BSA), as a model protein, was encapsulated by spray drying in chitosan and tripolyphoshate (TPP) cross-linked-chitosan shell matrices. The results showed that the chitosan–TPP microcapsules provided a high encapsulation efficiency and better protein stability compared to the non-crosslinked chitosan microcapsules. The effect of enzyme concentration and drying temperature were tested during the spray drying of Flavourzyme®. In this regard, an activity yield of 88.0% and encapsulation efficiency of 78.6% were obtained with a concentration of 0.1% (v/v) and an inlet temperature of 130 °C. Flavourzyme®-loaded chitosan microcapsules were also characterized in terms of their size and morphology using scanning electron microscopy and laser diffractometry.
Collapse
|
33
|
Sabaghi M, Tavasoli S, Hoseyni SZ, Mozafari M, Degraeve P, Katouzian I. A critical review on approaches to regulate the release rate of bioactive compounds from biopolymeric matrices. Food Chem 2022; 382:132411. [DOI: 10.1016/j.foodchem.2022.132411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
34
|
Gao Y, Wang Z, Xue C, Wei Z. Modulation of Fabrication and Nutraceutical Delivery Performance of Ovalbumin-Stabilized Oleogel-Based Nanoemulsions via Complexation with Gum Arabic. Foods 2022; 11:foods11131859. [PMID: 35804676 PMCID: PMC9265802 DOI: 10.3390/foods11131859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
Protein–polysaccharide complexes, which involve Maillard-type protein–polysaccharide conjugates and electrostatic protein–polysaccharide complexes, have the potential to stabilize oleogel-based nanoemulsions for nutraceutical delivery. Here, ovalbumin (OVA) and gum arabic (GA) were used to prepare OVA–GA conjugate (OGC) and OVA–GA mixture (OGM), followed by the fabrication of astaxanthin-loaded oleogel-based nanoemulsions. Carnauba wax (5% w/w) and rice bran oil were mixed to prepare food-grade oleogel. The successful preparation of OGC was verified by means of SDS-PAGE analysis and free amino groups determination. OGC endowed oleogel-based nanoemulsions with smaller emulsion droplets and higher stability during 30-day storage, implying more outstanding emulsifying capability than OGM. Both OGC-stabilized nanoemulsions and OGM-stabilized nanoemulsions could enhance the extent of lipolysis and the bioaccessibility of astaxanthin compared with oleogel. Meanwhile, OGC exhibited significantly better than OGM, which indicated that OGC-stabilized oleogel-based nanoemulsions possessed more desirable nutraceutical delivery performance than OGM-stabilized oleogel-based nanoemulsions. This study may fill a gap in the influence of different protein–polysaccharide complexes on oleogel-based nanoemulsions and contribute to deeper insights about novel oleogel-based nanoemulsions for their applications in the food industry.
Collapse
Affiliation(s)
- Yuxing Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
| | - Zihua Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.G.); (Z.W.); (C.X.)
- Correspondence:
| |
Collapse
|
35
|
Wang L, Cao Y, Zhang X, Liu C, Yin J, Kuang L, He W, Hua D. Reactive oxygen species-responsive nanodrug of natural crocin-i with prolonged circulation for effective radioprotection. Colloids Surf B Biointerfaces 2022; 213:112441. [PMID: 35272253 DOI: 10.1016/j.colsurfb.2022.112441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
With the progress of nuclear technology including radiotherapy and radiodiagnosis, radiation has been widely used in many fields as a powerful diagnostic and therapeutic tool in the medical area. Unfortunately, acute radiation disease will occur if the human body is accidentally exposed to a large dosage of ionizing radiation. However, clinical radioprotective agents are being challenged by the short half-life and several side effects. In this work, a reactive oxygen species-responsive nanodrug is developed for efficient radioprotection. The nanodrug was prepared by modifying Crocin-I with 4-pentylphenylboronic acid (PBA) and exhibited effective responsiveness and scavenging activity of reactive oxygen species. PBA-Crocin nanodrug displayed good biocompatibility and radioprotection effect compared to Crocin-I in vitro. The survival rate of cells treated with PBA-Crocin (10 μg mL-1) is comparable to that treated with amifostine (12.5 μg mL-1, the only radioprotector approved by the United States Food and Drug Administration clinically) after 6 Gy irradiation. Importantly, PBA-Crocin resulted in markedly prevention of radiation-induced damage in peripheral blood cells and a 1.6-fold longer retention time of Crocin-I in plasma in comparison with Crocin-I. The finding suggests a new design for natural medicine in effective radioprotection.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yu Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Xiaoyi Zhang
- Changshu No.2 People's Hospital, Changshu 215501, China.
| | - Chang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Jia Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Liangju Kuang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
36
|
Prasad J, Das S, Maurya A, Jain SK, Dwivedy AK. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B 1 contamination in food system. Int J Biol Macromol 2022; 205:240-252. [PMID: 35182563 DOI: 10.1016/j.ijbiomac.2022.02.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022]
Abstract
The present investigation aimed to synthesize Cymbopogon nardus essential oil impregnated chitosan nanoemulsion (Ne-CNEO) and its practical efficacy as novel green delivery system for protection of Syzygium cumini seeds against broad range storage fungi, aflatoxin B1 (AFB1) secretion and lipid peroxidation. Chemical characterization of CNEO revealed citral (62.73%) as major component. Successful impregnation of CNEO inside chitosan nanoemulsion was confirmed through SEM, AFM and FTIR analyses. In vitro release study showed biphasic release profile with initial burst followed by sustained release of CNEO from chitosan nanomatrix. Ne-CNEO exhibited enhancement in in vitro antifungal, antiaflatoxigenic (0.16 μL/mL) and antioxidant activity over CNEO. The antifungal and antiaflatoxigenic mechanism of action of Ne-CNEO was associated with inhibition of ergosterol biosynthesis, increased leakage of cellular contents, and impairment in cellular methylglyoxal biosynthesis. In silico modeling validated interaction of citral with Ver-1 and Omt-A proteins, confirming the molecular action for inhibition of AFB1 production. In situ investigation suggested remarkable protection of S. cumini seeds against fungal inhabitation, AFB1 production and lipid peroxidation without affecting organoleptic attributes. Furthermore, higher mammalian non-toxicity strengthens the application of Ne-CNEO as safe nano-green and smart preservative in place of adversely affecting synthetic preservatives in emerging food, agriculture and pharmaceutical industries.
Collapse
Affiliation(s)
- Jitendra Prasad
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Burdwan Raj College, Purba Bardhaman, West Bengal 713104, India
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shreyans Kumar Jain
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
37
|
Alinavaz S, Jabbari P, Mahdavinia G, Jafari H, Sharifi S, Lighvan ZM, Akbari A. Novel magnetic carboxymethylcellulose/chitosan bio‐nanocomposites for smart co‐delivery of sunitinib malate anticancer compound and saffron extract. POLYM INT 2022. [DOI: 10.1002/pi.6408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samira Alinavaz
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science University of Maragheh Maragheh 55181‐83111 Iran
| | - Parinaz Jabbari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science University of Maragheh Maragheh 55181‐83111 Iran
| | - GholamReza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science University of Maragheh Maragheh 55181‐83111 Iran
| | - Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science University of Maragheh Maragheh 55181‐83111 Iran
| | - Sina Sharifi
- Disruptive Technology Laboratory Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School Boston MA 02114 USA
| | - Zohreh Mehri Lighvan
- Department of Polymer Processing Iran Polymer and Petrochemical Institute, P.O. Box 14965‐115 Tehran Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| |
Collapse
|
38
|
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM. Anti-Depressant Properties of Crocin Molecules in Saffron. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072076. [PMID: 35408474 PMCID: PMC9000812 DOI: 10.3390/molecules27072076] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany;
- German Institute of Food Technologies (DIL e.V.), 49610 D-Quakenbrück, Germany
| | - Ali Ali Redha
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK;
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Remmet Snoeck
- Food Technology Study Programme, HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE ‘s-Hertogenbosch, The Netherlands;
| | - Shubhra Singh
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, No. 1, Xuefu Rd, Neipu Township, Pingtung City 912, Taiwan;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, E. Market Street, 1601, Greensboro, NC 24711, USA;
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain;
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189, Iran
- Correspondence:
| |
Collapse
|
39
|
Optimization of Saffron Essential Oil Nanoparticles Using Chitosan-Arabic Gum Complex Nanocarrier with Ionic Gelation Method. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4035033. [PMID: 35295821 PMCID: PMC8920706 DOI: 10.1155/2022/4035033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/18/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
Abstract
This study is aimed at optimizing the Saffron essential oil (SEO) nanoparticles using the ionic gelation method. Response surface methodology (RSM) with Box-Behnken design (BBD) was applied to investigate the optimum conditions and the effects of three independent variables: LWCS concentration (0.1-0.3%), Arabic gum concentration (9.6-9.8%), and ratio (core: wall material) (1 : 5, 1 : 7.5, 1 : 10) on the responses of z-average, polydispersity index (PDI), and zeta potential. The results showed that the quadratic model developed from the RSM was statistically significant (p value < 0.05). The quadratic model can be used to describe well the relationship between the variables on the response observed. The lack of fit was nonsignificant (p value > 0.05) relative to pure error for all response variables, indicating that the model fitted well. The model equation obtained for the process through RSM was adequate. The LWCS concentration and Arabic gum concentration had a significant effect on z-average and PDI. The ratio (oil: Arabic gum/LWCS) has a significant effect on zeta potential. The optimum condition was the LWCS concentration of 0.1% and Arabic gum concentration of 9.6%, and the ratio (oil: Arabic gum/LWCS) 1 : 5 produced the optimum SEO nanoparticles with a z-average value of 16.24, PDI of 0.495, and zeta potential of 15.76. The verification values were close to the predictive value given by the Design Expert® 12 program with p value > 0.05 at the 95% confidence level. Therefore, the application of the RSM with Box-Behnken was suitable for optimizing the saffron oil nanoparticles with desirable responses.
Collapse
|
40
|
Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
A Ferrofluid with High Specific Absorption Rate Prepared in a Single Step Using a Biopolymer. MATERIALS 2022; 15:ma15030788. [PMID: 35160734 PMCID: PMC8836388 DOI: 10.3390/ma15030788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
An exhaustive characterization of the physicochemical properties of gum arabic (GA)-coated Fe3O4 magnetic nanoparticles was conducted in this work. These nanoparticles were obtained via the in-situ coprecipitation method (a fast single-step method) in two GA:Fe ratios, 10:1 and 20:1, respectively. Several experimental techniques were applied in the characterization process, all of them described below. Using Transmission Electron Microcopy images, they were shown to have spherical-like morphology with 11 nm diameter. The Fourier Transform Infrared spectra confirmed the attachment of the GA on the surface of the magnetic nanoparticles (MNPs), providing good colloidal stability from pH 7 to 8. The thickness of the coatings (1.7 nm and 1.1 nm) was determined using thermogravimetric measurements. A high specific absorption rate and superparamagnetic properties were determined using alternant and static magnetic fields, respectively. The GA-coated MNPs were non-cytotoxic, according to tests on HT-29 human intestine cells. Additionally, HT-29 cells were exposed to magnetic fluid hyperthermia at 530 kHz, and the induction of cell death by the magnetic field, due to the heating of GA-coated MNP, was observed.
Collapse
|
42
|
Demir D, Uğurlu MA, Ceylan S, Sakım B, Genç R, Bölgen N. Assessment of Chitosan‐Gum Tragacanth Cryogels For Tissue Engineering Applications. POLYM INT 2022. [DOI: 10.1002/pi.6372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Didem Demir
- Mersin University, Engineering Faculty, Chemical Engineering Department Mersin Turkey
| | - Müge Aşık Uğurlu
- Mersin University, Engineering Faculty, Chemical Engineering Department Mersin Turkey
| | - Seda Ceylan
- Adana Alparslan Türkeş Science and Technology University, Engineering Faculty, Bioengineering Department Adana Turkey
| | - Burcu Sakım
- Mersin University, Engineering Faculty, Chemical Engineering Department Mersin Turkey
| | - Rükan Genç
- Mersin University, Engineering Faculty, Chemical Engineering Department Mersin Turkey
| | - Nimet Bölgen
- Mersin University, Engineering Faculty, Chemical Engineering Department Mersin Turkey
| |
Collapse
|
43
|
Shanmugam H, Rengarajan C, Nataraj S, Sharma A. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haripriya Shanmugam
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Chitra Rengarajan
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Swathika Nataraj
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Aashima Sharma
- Department of Chemistry Panjab University Chandigarh India
| |
Collapse
|
44
|
Physicochemical and release behaviour of phytochemical compounds based on black jamun pulp extracts-filled alginate hydrogel beads through vibration dripping extrusion. Int J Biol Macromol 2022; 194:715-725. [PMID: 34822825 DOI: 10.1016/j.ijbiomac.2021.11.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
The phytochemical-rich extract obtained from black jamun pulp were encapsulated using vibrating dripping extrusion technique. The utilisation of alginate (AL) with four variations of core-shell material comprising gum Arabic (AL-GA), guar gum (AL-GG), pectin (AL-P) and xanthan gum (AL-X) was engaged to form calcium-alginate based lyophilised jamun extract encapsulated beads. It resulted that among four variations, lyophilised alginate with AL-GG based encapsulated jamun extract filled beads have better physicochemical characteristics and 95% encapsulation efficiency. The results revealed the morphological comparison of each variation. The release behaviour of AL-GG based beads has a higher release of total phenolics (TPC) and total anthocyanin content (TAC). The release kinetics model involving Ritger-Peppas and Higuchi model were applied for release TPC and TAC of all variations of beads. The Ritger-Peppas model was found best suitable in terms of average R2 (0.965) and lowest χ2 (0.0039). The release kinetics study showed that AL-GA based beads followed by AL-GG could also be the best suitable in release behaviour using simulated gastrointestinal fluids at 140-160 min. Overall, results shown the encapsulated Jamun beads have the best agro-industrial efficacy in form of phytochemical compounds based microparticles, holding decent antioxidant potential.
Collapse
|
45
|
The Effect of the Liposomal Encapsulated Saffron Extract on the Physicochemical Properties of a Functional Ricotta Cheese. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010120. [PMID: 35011352 PMCID: PMC8746351 DOI: 10.3390/molecules27010120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
In this study, the encapsulation of saffron extract (SE) was examined at four various concentrations of soy lecithin (0.5%–4% w/v) and constant concentration of SE (0.25% w/v). Particle size and zeta potential of liposomes were in the range of 155.9–208.1 nm and −34.6–43.4 mV, respectively. Encapsulation efficiency was in the range of 50.73%–67.02%, with the stability of nanoliposomes in all treatments being >90%. Encapsulated SE (2% lecithin) was added to ricotta cheese at different concentrations (0%, 0.125%, 1%, and 2% w/v), and physicochemical and textural properties of the cheese were examined. Lecithin concentration significantly (p ≤ 0.05) affected the particle size, zeta potential, stability, and encapsulation efficiency of the manufactured liposomes. In terms of chemical composition and color of the functional cheese, the highest difference was observed between the control cheese and the cheese enriched with 2% liposomal encapsulated SE. Hardness and chewiness increased significantly (p ≤ 0.05) in the cheeses containing encapsulated SE compared to the control cheese. However, there was no significant difference in the case of adhesiveness, cohesiveness, and gumminess among different cheeses. Overall, based on the findings of this research, liposomal encapsulation was an efficient method for the delivery of SE in ricotta cheese as a novel functional food.
Collapse
|
46
|
Hua Y, Wei Z, Xue C. Chitosan and its composites-based delivery systems: advances and applications in food science and nutrition sector. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34793271 DOI: 10.1080/10408398.2021.2004992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Natural bioactive ingredients have lower bioavailability because of their chemical instability and poor water solubility, which limits their applications in functional foods. Among diverse biopolymers that can be used to construct delivery systems of bioactives, chitosan has attracted extensive attention due to its unique cationic nature, excellent mucoadhesive properties and easy modification. In this review, chitosan and its composites-based food-grade delivery systems as well as the factors affecting their performance are summarized. Modification, crosslinking, combination with other biopolymer or utilization of coating material can effectively overcome the instability of pure chitosan-based carriers under acidic conditions, thereby constructing chitosan and its complex-based carriers with conspicuously improved performance. Furthermore, the applications of chitosan-based delivery systems in nutrition and health as well as their future development trends and challenges are discussed. Functional food ingredients, functional food packaging and biological health are potential applications of chitosan-based food-grade delivery systems. The research trends of nutraceutical delivery systems based on chitosan and its composites include co-delivery of nutrients and essential oils, targeted intestinal delivery, stimulus responsive/sustained release and their applications in real foods. In conclusion, food industry will be significantly promoted with the continuous innovation and development of chitosan-based nutraceutical delivery systems.
Collapse
Affiliation(s)
- Yijie Hua
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
47
|
Lodhi APS, Kumar D. Natural emulsifier assisted lubricity of the colloidal system: Effect of natural emulsifier concentration. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Pullulan films loading saffron extract encapsulated in nanoliposomes; preparation and characterization. Int J Biol Macromol 2021; 188:62-71. [PMID: 34343589 DOI: 10.1016/j.ijbiomac.2021.07.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/25/2021] [Indexed: 01/16/2023]
Abstract
Nanoencapsulation of saffron extract (SE) components into the rapeseed lecithin nanoliposomes were performed by sonication of their aqueous dispersions as a green process. Dynamic light scattering (DLS) results exhibited that empty and SE loaded nanoliposomes (SENL) had average sizes in range of 118-138 nm, negative zeta potentials (-32.0 to -46.8 mV) and polydispersity index (PDI) less than 0.3 during storage for 28 days at 4 °C. Encapsulation efficiency of crocin was approximately 30%. The 70% of crocin released from SENLs within 5 h in PBS solution. Pullulan-based films were fabricated by incorporation of empty and SE loaded nanoliposomes into pullulan solution through casting method. The mechanical resistance and thermal stability of the films reduced by addition of nanoliposomes. FTIR and thermal characterizations indicated that SE was successfully encapsulated in the nanoliposomes and film matrix with high thermal stability. Incorporation of nanoliposomes enhanced the oxygen barrier properties of the films, while it didn't significantly affect the water vapor permeability (WVP) of the films. The obtained edible films or coatings can provide additional benefits due to unique flavor and color of saffron. In addition, the utilization of SE, can provide benefits for health-allegation from SE antioxidant capacity.
Collapse
|
49
|
Rajabi H, Jafari SM, Feizi J, Ghorbani M, Mohajeri SA. Surface-decorated graphene oxide sheets with nanoparticles of chitosan-Arabic gum for the separation of bioactive compounds: A case study for adsorption of crocin from saffron extract. Int J Biol Macromol 2021; 186:1-12. [PMID: 34242644 DOI: 10.1016/j.ijbiomac.2021.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Accepted: 07/04/2021] [Indexed: 12/01/2022]
Abstract
This work provides a new perception toward the application of the graphenic-biopolymeric composites as a solid-bed for separation and purification of bioactive compounds. Graphene oxide nanocomposites with functionalized sheets by soluble and insoluble nanocomplexes of chitosan and Arabic gum, were successfully synthesized and employed for the adsorption and purification of crocin, a nutraceutical from saffron. The composites exhibited a nanostructured scaffold with a particle size of 10 nm and experienced an unprecedented increase in the surface area by about 300% and improved d-spacing sheets by 17%. The optimum conditions for crocin separation were temperature = 318 K, stirring rate = 300 rpm, initial concentration = 100 mg L-1 and pH = 6. Under these conditions, the nanocomposites separated 99.1% of crocin in an equilibrium time of 30 min. The adsorption data were best represented by Freundlich isotherm and pseudo-second-order kinetic models. The thermodynamic studies indicated that the crocin adsorption on nanocomposites was an endothermic, spontaneous and physisorption process. The high-performance liquid chromatography (HPLC) analysis revealed that produced nanocomposites adsorbed crocin efficiently from saffron extract with a purity similar to the standard sample. The possible interaction mechanisms between crocin and nanocomposites were electrostatic interactions and hydrogen bonding.
Collapse
Affiliation(s)
- Hamid Rajabi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Javad Feizi
- Department of Food Quality Control and Safety, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Mohammad Ghorbani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Ahmad Mohajeri
- Faculty of pharmaceuticals, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Tekin İ, Ersus S. Electrically assisted ionic gelling encapsulation of enzymatically extracted zinc‐chlorophyll derivatives from stinging nettle (
Urtica urens
L.). J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- İdil Tekin
- Food Engineering Department Ege University Bornova İzmir Turkey
| | - Seda Ersus
- Food Engineering Department Ege University Bornova İzmir Turkey
| |
Collapse
|