1
|
Palanisamy J, Palanichamy VS, Vellaichamy G, Perumal P, Vinayagam J, Gunalan S, Prabhakaran SG, Thiraviam PP, Musthafa F, Balaraman AK, Rathinasamy S. A comprehensive review on the green synthesis of silver nanoparticles from marine sources. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3409-3432. [PMID: 39560753 DOI: 10.1007/s00210-024-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
The primary purpose of this review is to explore the green synthesis of silver nanoparticle (AgNP) using natural biomolecules derived from marine sources. This review aims to evaluate the effectiveness of environmentally friendly approaches for synthesizing AgNPs and to examine their potential applications across various fields such as medicine, biotechnology, and environmental remediation. The key research question focuses on understanding how marine biomolecules, including polysaccharides, proteins, enzymes, amino acids, alkaloids, and vitamins, contribute to the formation of AgNPs and how these green-synthesized nanoparticles retain their functional properties. This review systematically examines current literature on the green synthesis of AgNPs, focusing on marine-derived biomolecules such as polysaccharides, proteins, and alkaloids. The methodology includes analyzing green synthesis techniques and comparing them with traditional chemical methods to highlight environmental benefits and overall efficiency. Various marine species, such as seagrass and seaweed, are explored as potent agents in the reduction of silver ions. The findings reveal that green synthesis of AgNPs using marine biomolecules is not only environmentally sustainable but also retains the desirable properties of the nanoparticles, such as antimicrobial, antioxidant, and anticancer activities. Additionally, the green-synthesized AgNPs show significant potential applications in mosquito control, wound healing, and anticancer therapies. Green synthesis of AgNPs using marine sources presents a viable and sustainable alternative to conventional chemical methods, significantly reducing the environmental impact of nanoparticle production while ensuring biocompatibility and functional integrity. This approach holds promise for diverse applications in biomedicine, environmental remediation, and beyond. Further research is recommended to address challenges in scaling up production and commercialization.
Collapse
Affiliation(s)
- Janagandhan Palanisamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy, Dindigul - 624005, India (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Tamil Nadu, Chennai, India
| | - Vinothkumar Suruli Palanichamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy, Dindigul - 624005, India (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Tamil Nadu, Chennai, India
| | - Ganesan Vellaichamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy, Dindigul - 624005, India (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Tamil Nadu, Chennai, India
| | - Parthasarathi Perumal
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | - Jayaraman Vinayagam
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | - Seshan Gunalan
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | | | | | - Fasna Musthafa
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India
| | - Ashok Kumar Balaraman
- Centre for Research and Innovation, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia.
| | - Suresh Rathinasamy
- Department of Molecular and Cell Biology, Greensmed Labs, Chennai, 600097, Tamil Nadu, India.
| |
Collapse
|
2
|
Tunç AK, Erenler R. Uncovering the in vitro antibiofilm potential of Dittrichia graveolens silver nanoparticle against infectious agents. Prep Biochem Biotechnol 2025:1-7. [PMID: 40022566 DOI: 10.1080/10826068.2025.2472937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Dittrichia graveolens (L.) Desf., an aromatic plant, is used in various treatments in popular medicine. Especially its methanolic and aqueous extracts have many biological activities. Nanotechnology, which has pioneered important research in recent years, has also begun to be preferred in the field of health. Based on this, we aim to investigate the effect of silver nanoparticle synthesized from Dittrichia graveolens on antimicrobial and antibiofilm. We tried to destroy the biofilm structures responsible for antibiotic resistance in bacteria with environmentally friendly nanoparticles. The antimicrobial activity of AgNPs obtained through green synthesis, was evaluated by the liquid medium microdilution method. MIC (minimum inhibitory concentration) values of AgNPs for Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae strains were determined by the microdilution method in 96-well ELISA plates. The effect of AgNPs on biofilm was performed using the crystal violet method in 96-well flat-bottom microplates. The MIC values of the four standard strains were determined to be 128 μg/mL. All standard strains showed antibiofilm effects for every concentration of AgNPs. The lowest concentration of AgNPs for inhibition the biofilm was detected as about 90% at 16 μg/mL. It was concluded that green synthesized AgNPs was effective on bacteria. In addition, this is the first study on this subject. This study may be an innovative approach to the scientific world from a herbal and bacterial perspective.
Collapse
Affiliation(s)
- Ayşe Karacalı Tunç
- Department of Basic Sciences, Faculty of Dentistry, Iğdır University, Iğdır, Turkey
| | - Ramazan Erenler
- Research Laboratory Practice and Research Center, Iğdır, Turkey
| |
Collapse
|
3
|
Fareid MA, El-Sherbiny GM, Askar AA, Abdelaziz AM, Hegazy AM, Ab Aziz R, Hamada FA. Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles-Antibiotic Combination. Biomolecules 2025; 15:266. [PMID: 40001569 PMCID: PMC11852608 DOI: 10.3390/biom15020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to represent a significant clinical challenge, characterized by consistently elevated rates of morbidity and mortality. Care regimen success is still difficult and necessitates assessing new antibiotics as well as supplemental services, including source control and searching for alternative approaches to combating it. Hence, we propose to synthesize silver nanoparticles (Ag-NPs) by employing a cell-free filter (CFF) of Streptomyces sp. to augment antibiotic activity and combat biofilm-forming MRSA. Seven bacterial isolates from clinical samples were identified, antibiotics were profiled with Vitek-2, and the phenotypic detecting of biofilm with Congo red medium and microplate assay was carried out. The PCR technique was used for detecting genes (icaA and icaD) coded in biofilm forming. The characterization of Ag-NPs was performed using several analytical methods, such as UV spectroscopy, dynamic light scattering (DLS), zeta potential measurement, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antibacterial properties of Ag-NPs and oxacillin-Ag-NPs were assessed against standard strains and clinical isolates by employing the agar well diffusion technique and the microdilution assay. The biogenic synthesis Ag-NPs resulted in uniformly spherical particles, with an average size of 20 nm. These Ag-NPs demonstrated significant activity against biofilm-forming MRSA, with minimum inhibitory concentrations (MICs) ranging from 12 to 15 μg/mL. Additionally, Ag-NPs completely impede biofilm formation by MRSA at sublethal doses of 0.75 MICs. The expression levels of the icaA and icaD genes were reduced by 1.9- to 2.2- and 2.4- to 2.8-fold, respectively. A significant synergistic effect was noted when Ag-NPs were used in combination with oxacillin, leading to reduced MICs of 1.87 μg/mL for oxacillin and 4.0 μg/mL for Ag-NPs against MRSA. The FICi of 0.375 further validated the synergistic relationship between oxacillin and Ag-NPs at the concentrations of 1.87 and 4 μg/mL. Findings from the time-kill test demonstrated the highest reduction in log10 (CFU)/mL of the initial MRSA inoculum after 12-hour exposure. The cytotoxicity analysis of Ag-NPs revealed no significant cytotoxic effects on the human skin cell line HFB-4 at low concentrations, with IC50 values of 61.40 µg/mL for HFB-4 and 34.2 µg/mL for HepG-2. Comparable with oxacillin-Ag-NPs, Ag-NPs showed no cytotoxic effects on HFB-4 at different concentrations and exhibited an IC50 value of 31.2 against HepG-2-cells. In conclusion, the biosynthesis of Ag-NPs has demonstrated effective antibacterial activity against MRSA and has completely hindered biofilm formation, suggesting a valuable alternative for clinical applications.
Collapse
Affiliation(s)
- Mohamed A. Fareid
- Clinical Laboratory Science Department, Applied Medical Science College, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.F.); (A.M.H.)
| | - Gamal M. El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.A.); (A.M.A.)
| | - Ahmed A. Askar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.A.); (A.M.A.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.A.); (A.M.A.)
| | - Asmaa M. Hegazy
- Clinical Laboratory Science Department, Applied Medical Science College, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.F.); (A.M.H.)
| | - Rosilah Ab Aziz
- Basic Sciences Department, First Year of Health and Medical Colleges, University of Ha’il, Hail 2440, Saudi Arabia; (R.A.A.); (F.A.H.)
| | - Fatma A. Hamada
- Basic Sciences Department, First Year of Health and Medical Colleges, University of Ha’il, Hail 2440, Saudi Arabia; (R.A.A.); (F.A.H.)
| |
Collapse
|
4
|
Mikhailova EO. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics (Basel) 2024; 14:5. [PMID: 39858291 PMCID: PMC11762094 DOI: 10.3390/antibiotics14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Silver nanoparticles (AgNPs) are a promising tool in the fight against pathogenic microorganisms. "Green" nanoparticles are especially valuable due to their environmental friendliness and lower energy consumption during production, as well as their ability to minimize the number of toxic by-products. This review focuses on the features of AgNP synthesis using living organisms (bacteria, fungi, plants) and the involvement of various biological compounds in this process. The mechanism of antibacterial activity is also discussed in detail with special attention given to anti-biofilm and anti-quorum sensing activities. The toxicity of silver nanoparticles is considered in light of their further biomedical applications.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
5
|
Khandare K, Kumar S, Sharma SC, Goswami S. Green synthesis of silver nanoparticles from supercritical CO 2 mediated Lagerstroemia speciosa extract: Characterization, antimicrobial and antibiofilm activity. Biochem Biophys Res Commun 2024; 739:150967. [PMID: 39541925 DOI: 10.1016/j.bbrc.2024.150967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
In the current study, optimal supercritical fluid extract (SFE) of Lagerstroemia speciosa (LS) leaves at pressure 29.59 MPa (MPa), temperature 89.50 °C and extraction time 53.85 min was used to extract phenolic compounds for the synthesis of silver nanoparticles (AgNPs). The synthesis was studied for 0-20 h. Initially the synthesis of nanoparticles (SFELS-AgNPs) was confirmed using UV -spectroscopy. It demonstrated a maximum surface plasmon resonance at 430 nm. The crystallite dimension of nanoparticles was determined using X-ray diffraction (XRD) (13.47 nm), Transmission electron microscopy (TEM), zeta potential analysis and energy-dispersive X-ray analysis (EDAX) were used to analyze the morphology, surface charge and presence of differential elements in SFELS-AgNPs respectively. Developed nanoparticles revealed antimicrobial activity against 2 g-positive viz. Staphylococcus aureus and Bacillus cereus, and 3 g-negative bacteria viz. Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The nanoparticle showed a minimum inhibitory concentration (MIC) of 64 μg/ml whereas the minimum bactericidal concentration (MBC) 128 μg/ml against K. pneumonia. They significantly inhibited K. pneumonia biofilm formation which was confirmed using scanning electron microscopy (SEM). The results were encouraging compared to the standards drug Chloramphenicol and other controls. The generated nanoparticles have highly effective antimicrobial properties against pathogenic bacteria.
Collapse
Affiliation(s)
- Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India; Department of Biochemistry, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Shekhar Kumar
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Saswata Goswami
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India.
| |
Collapse
|
6
|
Francis AL, Namasivayam SKR, Samrat K. Potential of silver nanoparticles synthesized from Justicia adhatoda metabolites for inhibiting biofilm on urinary catheters. Microb Pathog 2024; 196:106957. [PMID: 39326803 DOI: 10.1016/j.micpath.2024.106957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
In the present study, we investigated the anti-biofilm effect of urinary catheters fabricated with biogenic nanoparticles synthesized from metabolites of Justicia adhatoda under in vitro conditions against human pathogenic bacteria. Silver nanoparticles were synthesized in the reaction mixture composed of 2 % w/v of 0.1 M of precursor (silver nitrate) and 0.2 g of the metabolites obtained from ethanolic extract of Justicia adhatoda. Characterization of the nanoparticles was done by UV visible spectroscopy, fourier infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X ray diffraction (XRD) to confirm the structural and functional properties. Primary conformation of nanoparticles synthesis by UV visible spectroscopy revealed the notable absorption spectra at 425 nm with a wavelength shift around 450 nm, likely due to surface plasmon resonance excitation. SEM analysis showed spherical, monodisperse, nano scale particles with a size range of 50-60 nm. Crystaline phase of the synthesized nanoparticles was confirmed by x ray diffraction studies which showed the distinct peaks at (2θ) 27.90, 32.20, 46.30, 54.40, and 67.40, corresponding to (111), (200), (220), (222), and (311) planes of nano scale silver. The biocompatibility of these nanoparticles was assessed through zebrafish embryonic toxicity study which showed more than 90 % of embryos were alive and healthy. No marked changes on the blood cells also confirmed best hemocompatibility of the nanoparticles. Synthesized nanoparticles thus obtained were fabricated on the urinary catheter and the fabrication was confirmed by FTIR and SEM analysis. Notable changes in the absorption peaks, uniform coating and embedding of silver nanoparticles studied by FTIR and SEM analysis confirmed the fabrication of silver nanoparticles. The coated catheters demonstrated significant antibacterial activity against pathogenic bacterial strains, including E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Anti-biofilm studies, conducted using a modified microtiter plate crystal violet assay, revealed effective inhibition of both bacterial adhesion and biofilm development. 85 % of biofilm inhibition was recorded against both the tested strains. The coating method presented in this study shows promise for enhancing infection resistance in commonly used medical devices like urinary catheters, thus addressing device-associated infections.
Collapse
Affiliation(s)
- A L Francis
- Centre of Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Centre of Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India.
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| |
Collapse
|
7
|
Vadakkan K, Hemapriya J, Ngangbam AK, Sathishkumar K, Mapranathukaran VO. Biofilm inhibition of Staphylococcus aureus by silver nanoparticles derived from Hellenia speciosa rhizome extract. Microb Pathog 2024; 196:106933. [PMID: 39270757 DOI: 10.1016/j.micpath.2024.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Staphylococcus aureus is the most common cause of serious health conditions because of the formation of biofilm, which lowers antibiotic efficacy and enhances infection transmission and tenacious behavior. This bacteria is a major threat to the worldwide healthcare system. Silver nanoparticles have strong antibacterial characteristics and emerged as a possible alternative. This work is most relevant since it investigates the parameters influencing the biogenic nanoparticle-assisted control of bacterial biofilms by Staphylococcus aureus. Nanoparticles were fabricated utilizing Hellenia speciosa rhizome extracts, which largely comprised physiologically active components such as spirost-5-en-3-yl acetate, thymol, stigmasterol, and diosgenin, enhanced with the creation of silver nanocomposites. GC-MS, XRD, DLS, SEM, EDX, FTIR and TEM were used to investigate the characteristics of nanoparticles. The microtiter plate experiment showed that nanoparticles destroyed biofilms by up to 92.41 % at doses that ranged from 0 to 25 μg/ml. Fluorescence microscopy and SEM demonstrated the nanoparticles' capacity to prevent bacterial surface adhesion. EDX research revealed that the organic extract efficiently formed silver nanoparticles with considerable oxygen incorporation, which was attributed to phytochemicals that stabilize AgNPs and prevent accumulation. FTIR spectroscopy indicated the existence of hydroxyl, carbonyl, and carboxylate groups, which are essential for nanoparticle stability. TEM revealed that the AgNPs were spheroidal, with diameters ranging from 40 to 60 nm and an average of 46 nm. These results demonstrate the efficacy of H. speciosa extract in creating stable, well-defined AgNPs suited for a variety of applications. This work underlines the potential of green-synthesized AgNPs in biomedical applications, notably in the treatment of S. aureus biofilm-associated illnesses. The thorough characterization gives important information on the stability and efficiency of these biogenic nanoparticles.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala, 680020, India; Manipur International University, Imphal, Manipur, 795140, India.
| | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu, 632001, India
| | | | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | | |
Collapse
|
8
|
Tsou MH, Lin HY, Lin HM. Multifunctional and novelty green composite film containing sodium alginate, chitosan, rice husk and curcumin. Int J Biol Macromol 2024; 280:136298. [PMID: 39482136 DOI: 10.1016/j.ijbiomac.2024.136298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Foodborne diseases are a global public health issue, with their causes often originating from lapses in food production or transportation leading to food contamination. Therefore, food packaging plays a crucial role in preserving the safety and quality of food. In pursuit of sustainable development, this study aims to utilize agricultural waste-derived functional mesoporous silica nanoparticles in combination with biodegradable molecules to create food packaging films. Through recycling and the use of environmentally friendly green films, the goal is to achieve sustainability and the objectives of green chemistry. The study anticipates the production of biodegradable films and the testing of their antibacterial capabilities, antioxidant properties, biocompatibility, and film stress coefficients. This research will provide robust support for advancing green packaging technology to address the challenges of global food safety and environmental sustainability. The experiment is divided into two parts. The first part involves the synthesis of multifunctional mesoporous silica nanoparticles with antibacterial properties derived from rice husk (Rice husk mesoporous silica nanoparticles, rMSN) as nano-fillers. These nanoparticles are surface modified with a biodegradable polymer, chitosan (Chi), that interacts with the material. Natural extract curcumin (Cur), known for its antioxidant capabilities, is loaded into the pores, and the material's inherent antibacterial properties are utilized. The second part involves blending the material with the natural polymer sodium alginate (SA) to form a film (rMSN-Chi@Cur/Alg film). The film's thickness, stress strength, antibacterial, and antioxidant capabilities are tested to ensure the material possesses antibacterial and antioxidant properties.
Collapse
Affiliation(s)
- Min-Hsuan Tsou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsien-Yu Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
9
|
Behera S, Singh D, Mohapatra S, Behera BC, Thatoi H. Organic acid-fractionated lignin silver nanoparticles: Antimicrobial, anticancer, and antioxidant characteristics. Int J Biol Macromol 2024; 280:135738. [PMID: 39293629 DOI: 10.1016/j.ijbiomac.2024.135738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Bioactive substances are utilized to treat a variety of diseases. Green lignin-mediated silver nanoparticles (L-Ag-NPs) have significant promise as a building block in the production of bio-renovation materials. The work optimized organic acid extraction to remove lignin from residual fermented hybrid Napier grass byproducts. We subsequently produced L-Ag-NPs. FTIR, XRD, DLS, and STEM characterized the sample. L-Ag-NPs were tested for antioxidant activity with the DPPH, DMPD, FRAP, and ABTS assays, as well as antibacterial activities. Antimicrobial activity was evaluated using four pathogenic bacteria (Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli). In contrast, cytotoxicity and ROS production assays were carried out using the HeLa cell line. The findings showed that L-Ag-NPs had high antioxidant efficiency. For each bacteria isolate, the antimicrobial activity showed favorable growth inhibition, with significant variations in L-Ag-NPs. L-Ag-NPs were reported to have an IC50 of 43.61 g/mL in the cytotoxicity test, and a significant increase in ROS generation was seen. In conclusion, L-Ag NPs have an excellent prospect in the pharmaceutical and biomedical industries and can be a dependable and environmentally safe material for their potential use.
Collapse
Affiliation(s)
- Sandesh Behera
- Department of Biotechnology, Maharaja Sriram Chandra BhanjaDeo University, Baripada 757003, Odisha, India
| | - Deepika Singh
- Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sonali Mohapatra
- Department of Biological Systems Engineering, Enzyme Institute, University of Wisconsin, Madison 53705, USA
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India.
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
10
|
Sadeghi Hosnijeh M, Hosseini Tafreshi SA, Masoum S. Nanophycology, the merging of nanoscience into algal research: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116727. [PMID: 39024948 DOI: 10.1016/j.ecoenv.2024.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Nanophycology is recognized as one of the most important and widely used interdisciplinary sciences by creating a connection between nanotechnology on the one hand and phycology on the other hand. Algal nanoparticle biosynthesis is a starting point in studies and research related to nanophycology. Nanophycology consists of two parts, nano and phycology, and by taking advantage of the high potential of algae such as high biological safety, easy production, fast growth, and high stability in the phycology part of this science, which is also known as algology, algae nanoparticles synthesis and make this section related to nanotechnology. In this way, algae are known as factories of biological nanomaterials and cause the production of bio-stable nanotechnology and the removal of environmental pollutants released due to nanochemistry. Nanotechnology produced by algae in the science of nanophycology, due to algae's unique physical and chemical properties compared to other biological entities such as plants, fungi, and bacteria, is used in various fields including medicine, biorefining, purification Water, etc. In this review article, the most important goals of the science of nanophycology, including the biosynthesis of algal nanoparticles and the potential of these compounds in various fields of application, have been examined and discussed.
Collapse
Affiliation(s)
| | | | - Saeed Masoum
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
11
|
Kazmi MB, Almutairi HH, Andleeb A, Jabeen R, Mustafa G, Habiba UE, Kazmi SA, Naz F, Qammar N. Mentha longifolia assisted nanostructures: An approach to obliterate microbial biofilms. PLoS One 2024; 19:e0303521. [PMID: 38985793 PMCID: PMC11236100 DOI: 10.1371/journal.pone.0303521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Microbes maneuver strategies to become incessant and biofilms perfectly play a role in scaling up virulence to cause long-lasting infections. The present study was designed to assess the use of an eco-friendly formulation of functionalized silver nanoparticles generated from Mentha longifolia leaf extract (MℓE) for the treatment of biofilm-producing microbes. Nanoparticles synthesized using MℓE as a reducing agent were optimized at different strengths of AgNO3 (1 mM, 2 mM, 3 mM, and 4 mM). Synthesis of M. longifolia silver nanoparticles (MℓAgNPs) was observed spectrophotometrically (450 nm) showing that MℓAgNPs (4 mM) had the highest absorbance. Various techniques e.g., Fourier transforms Infrared spectroscopy (FTIR), Dynamic light scattering (DLS), zeta potential (ZP), X-ray Diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM) were used to characterize MℓAgNPs. In the present study, the Kirby-Bauer method revealed 4mM was the most detrimental conc. of MℓAgNPs with MIC and MBC values of 0.62 μg/mL and 1.25 μg/mL, 0.03 μg/mL and 0.078 μg/mL, and 0.07 μg/mL and 0.15 μg/mL against previously isolated and identified clinical strains of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, respectively. Moreover, the MℓAgNP antibiofilm activity was examined via tissue culture plate (TCP) assay that revealed biofilm inhibition of up to 87.09%, 85.6%, 83.11%, and 75.09% against E. coli, P. aeruginosa, K. pneumonia, and S. aureus, respectively. Herbal synthesized silver nanoparticles (MℓAgNPs) tend to have excellent antibacterial and antibiofilm properties and are promising for other biomedical applications involving the extrication of irksome biofilms. For our best knowledge, it is the first study on the use of the green-synthesized silver nanoparticle MℓAgNP as an antibiofilm agent, suggesting that this material has antibiotic, therapeutic, and industrial applications.
Collapse
Affiliation(s)
- Mahwish Batool Kazmi
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ayesha Andleeb
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Raheela Jabeen
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Punjab, Pakistan
| | - Umm-e- Habiba
- Department of Biochemistry & Biotechnology, The Women University Multan, Punjab, Pakistan
| | - Safdar Abbas Kazmi
- Department of Environmental Science, COMSATS, Abbottabad Campus, Abbottabad, Pakistan
| | - Farah Naz
- Department of Statistics, The Women University Multan, Punjab, Pakistan
| | - Najma Qammar
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
12
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
13
|
Kowalska A, Adamska E, Grobelna B. Medical Applications of Silver and Gold Nanoparticles and Core-Shell Nanostructures Based on Silver or Gold Core: Recent Progress and Innovations. ChemMedChem 2024; 19:e202300672. [PMID: 38477448 DOI: 10.1002/cmdc.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Nanoparticles (NPs) of noble metals such as silver (Ag NPs) or gold (Au NPs) draw the attention of scientists looking for new compounds to use in medical applications. Scientists have used metal NPs because of their easy preparation, biocompatibility, ability to influence the shape and size or modification, and surface functionalization. However, to fully use their capabilities, both the benefits and their potential threats should be considered. One possibility to reduce the potential threat and thus prevent the extinction of their properties resulting from the agglomeration, they are covered with a neutral material, thus obtaining core-shell nanostructures that can be further modified and functionalized depending on the subsequent application. In this review, we focus on discussing the properties and applications of Ag NPs and Au NPs in the medical field such as the treatment of various diseases, drug carriers, diagnostics, and many others. In addition, the following review also discusses the use and potential applications of Ag@SiO2 and Au@SiO2 core-shell nanostructures, which can be used in cancer therapy and diagnosis, treatment of infections, or tissue engineering.
Collapse
Affiliation(s)
- Agata Kowalska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stosza Gdańsk, 63, 80-308, Gdansk, Poland
| | - Elżbieta Adamska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stosza Gdańsk, 63, 80-308, Gdansk, Poland
| | - Beata Grobelna
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stosza Gdańsk, 63, 80-308, Gdansk, Poland
| |
Collapse
|
14
|
Behzadnia A, Moosavi-Nasab M, Oliyaei N. Anti-biofilm activity of marine algae-derived bioactive compounds. Front Microbiol 2024; 15:1270174. [PMID: 38680918 PMCID: PMC11055458 DOI: 10.3389/fmicb.2024.1270174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
A large number of microbial species tend to communicate and produce biofilm which causes numerous microbial infections, antibiotic resistance, and economic problems across different industries. Therefore, advanced anti-biofilms are required with novel attributes and targets, such as quorum sensing communication system. Meanwhile, quorum sensing inhibitors as promising anti-biofilm molecules result in the inhibition of particular phenotype expression blocking of cell-to-cell communication, which would be more acceptable than conventional strategies. Many natural products are identified as anti-biofilm agents from different plants, microorganisms, and marine extracts. Marine algae are promising sources of broadly novel compounds with anti-biofilm activity. Algae extracts and their metabolites such as sulfated polysaccharides (fucoidan), carotenoids (zeaxanthin and lutein), lipid and fatty acids (γ-linolenic acid and linoleic acid), and phlorotannins can inhibit the cell attachment, reduce the cell growth, interfere in quorum sensing pathway by blocking related enzymes, and disrupt extracellular polymeric substances. In this review, the mechanisms of biofilm formation, quorum sensing pathway, and recently identified marine algae natural products as anti-biofilm agents will be discussed.
Collapse
Affiliation(s)
- Asma Behzadnia
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Najmeh Oliyaei
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
15
|
Rasheed R, Uzair B, Raza A, Binsuwaidan R, Alshammari N. Fungus-mediated synthesis of Se-BiO-CuO multimetallic nanoparticles as a potential alternative antimicrobial against ESBL-producing Escherichia coli of veterinary origin. Front Cell Infect Microbiol 2024; 14:1301351. [PMID: 38655284 PMCID: PMC11037251 DOI: 10.3389/fcimb.2024.1301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum β-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 μg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.
Collapse
Affiliation(s)
- Rida Rasheed
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abida Raza
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
16
|
Mekky AE, Abdelaziz AEM, Youssef FS, Elaskary SA, Shoun AA, Alwaleed EA, Gaber MA, Al-Askar AA, Alsamman AM, Yousef A, AbdElgayed G, Suef RA, Selim MA, Saied E, Khedr M. Unravelling the Antimicrobial, Antibiofilm, Suppressing Fibronectin Binding Protein A ( fnba) and cna Virulence Genes, Anti-Inflammatory and Antioxidant Potential of Biosynthesized Solanum lycopersicum Silver Nanoparticles. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:515. [PMID: 38541241 PMCID: PMC10972527 DOI: 10.3390/medicina60030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/06/2025]
Abstract
Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 μg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.
Collapse
Affiliation(s)
- Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, P.O. Box 42522, Port-Said 42522, Egypt;
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shymaa A. Elaskary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Eman A. Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alhadary M. Alsamman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat 32897, Egypt;
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed Khedr
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| |
Collapse
|
17
|
Aravinth A, Dhanasundaram S, Perumal P, Kamaraj C, Khan SU, Ali A, Ragavendran C, Amutha V, Rajaram R, Santhanam P, Luna-Arias JP, Mashwani ZUR. Evaluation of Brown and red seaweeds-extracts as a novel larvicidal agent against the deadly human diseases-vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Exp Parasitol 2024; 256:108651. [PMID: 37944660 DOI: 10.1016/j.exppara.2023.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Infectious diseases such as malaria, dengue, and yellow fever are predominantly transmitted by insect vectors like Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus in tropical regions like India and Africa. In this study, we assessed the larvicidal activity of commonly found seaweeds, including Padina gymnospora, P. pavonica, Gracilaria crassa, Amphiroa fragilissima, and Spatoglossum marginatum, against these mosquito vectors. Our findings indicate that extracts from P. gymnospora Ethyl Acetate (PgEA), P. pavonica Hexane (PpH), and A. fragilissima Ethyl Acetate (AfEA) displayed the highest larval mortality rates for A. stephensi, with LC50 values of 10.51, 12.43, and 6.43 μg/mL, respectively. Additionally, the PgEA extract from P. gymnospora exhibited the highest mortality rate for A. aegypti, with an LC50 of 27.0 μg/mL, while the PgH extract from the same seaweed showed the highest mortality rate for C. quinquefasciatus, with an LC50 of 9.26 μg/mL. Phytochemical analysis of the seaweed extracts revealed the presence of 71 compounds in the solvent extracts. Fourier-transform infrared spectra of the selected seaweeds indicated the presence of functional groups such as alkanes, alcohols, and phenols. Gas chromatography-mass spectrometry analysis of the seaweeds identified major compounds, including hexadecanoic acid in PgEA, tetradecene (e)- in PpEA, octadecanoic acid in GcEA, and 7-hexadecene, (z)-, and trans-7-pentadecene in SmEA.
Collapse
Affiliation(s)
- Annamalai Aravinth
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Sundaramoorthy Dhanasundaram
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Pachiappan Perumal
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Safir Ullah Khan
- Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
| | - Amir Ali
- Nanoscience and Nanotechnology Program Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, 07360, Mexico; Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600 077, India
| | - Vadivel Amutha
- Department of Entomology, Bioscience Research Foundation, Kandamangalam, Kanchipuram, Tamil Nadu, 602 002, India
| | - Rajendran Rajaram
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - Perumal Santhanam
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Juan Pedro Luna-Arias
- Nanoscience and Nanotechnology Program Center for Research and Advanced Studies, National Polytechnic Institute, Mexico City, 07360, Mexico; Department of Zoology, Wildlife & Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | | |
Collapse
|
18
|
Ye M, Yang W, Zhang M, Huang H, Huang A, Qiu B. Biosynthesis, characterization, and antifungal activity of plant-mediated silver nanoparticles using Cnidium monnieri fruit extract. Front Microbiol 2023; 14:1291030. [PMID: 38053552 PMCID: PMC10694205 DOI: 10.3389/fmicb.2023.1291030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
The present study describes a novel method for green synthesis of silver nanoparticles using Cnidium monnieri (CM-AgNPs). Cnidium monnieri fruit is an excellent anti tinea drug that can be used externally to treat superficial fungal infections in the human body. The aqueous ethanolic extract of Cnidium monnieri fruit was prepared and employed in the synthesis of stable silver nanoparticles via biological reduction method. The synthesis conditions of CM-AgNPs was systematically optimized using Box-Behnken design. CM-AgNPs were well characterized by UV-spectroscopy and X-ray powder diffraction (XRD), and it was confirmed that the synthesized particles were AgNPs. The possible functional groups required for the reduction and stabilization of CM-AgNPs in the extract were identified through FTIR spectrum. The size of CM-AgNPs structure was confirmed to be approximately 44.6 nm in polydisperse spherical shape through scanning electron microscopy (SEM), transmission electron microscopy (TEM), and laser dynamic light scattering (DLS). Further, the minimum inhibitory concentration 90% (MIC90) ratios values of Cm-AgNPs against Trichophyton rubrum (7 d), T. mentagrophytes (7 d) and Candida albicans (24 h) were 3.125, 3.125, and 0.78125 μg/mL, respectively, determined by the broth micro dilution method. Finally, the result was concluded that the synthesized AgNPs could be further evaluated in large scale as a potential human topical antifungal agent.
Collapse
Affiliation(s)
- Mingqi Ye
- Fujian University of Traditional Chinese Medicine Fuzong Teaching Hospital (900TH Hospital), Fuzhou, China
| | - Wenwen Yang
- Fujian University of Traditional Chinese Medicine Fuzong Teaching Hospital (900TH Hospital), Fuzhou, China
| | - Minxin Zhang
- Department of Clinical Pharmacy, 900TH Hospital of Joint Logistics Support Force of PLA, Fuzhou, China
| | - Huili Huang
- Department of Clinical Pharmacy, 900TH Hospital of Joint Logistics Support Force of PLA, Fuzhou, China
| | - Aiwen Huang
- Fujian University of Traditional Chinese Medicine Fuzong Teaching Hospital (900TH Hospital), Fuzhou, China
- Department of Clinical Pharmacy, 900TH Hospital of Joint Logistics Support Force of PLA, Fuzhou, China
| | - Bin Qiu
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
19
|
Bano S, Hassan N, Rafiq M, Hassan F, Rehman M, Iqbal N, Ali H, Hasan F, Kang YQ. Biofilms as Battlefield Armor for Bacteria against Antibiotics: Challenges and Combating Strategies. Microorganisms 2023; 11:2595. [PMID: 37894253 PMCID: PMC10609369 DOI: 10.3390/microorganisms11102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial biofilms are formed by communities, which are encased in a matrix of extracellular polymeric substances (EPS). Notably, bacteria in biofilms display a set of 'emergent properties' that vary considerably from free-living bacterial cells. Biofilms help bacteria to survive under multiple stressful conditions such as providing immunity against antibiotics. Apart from the provision of multi-layered defense for enabling poor antibiotic absorption and adaptive persistor cells, biofilms utilize their extracellular components, e.g., extracellular DNA (eDNA), chemical-like catalase, various genes and their regulators to combat antibiotics. The response of biofilms depends on the type of antibiotic that comes into contact with biofilms. For example, excessive production of eDNA exerts resistance against cell wall and DNA targeting antibiotics and the release of antagonist chemicals neutralizes cell membrane inhibitors, whereas the induction of protein and folic acid antibiotics inside cells is lowered by mutating genes and their regulators. Here, we review the current state of knowledge of biofilm-based resistance to various antibiotic classes in bacteria and genes responsible for biofilm development, and the key role of quorum sensing in developing biofilms and antibiotic resistance is also discussed. In this review, we also highlight new and modified techniques such as CRISPR/Cas, nanotechnology and bacteriophage therapy. These technologies might be useful to eliminate pathogens residing in biofilms by combating biofilm-induced antibiotic resistance and making this world free of antibiotic resistance.
Collapse
Affiliation(s)
- Sara Bano
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ying-Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
20
|
Ray S, Jin JO, Choi I, Kim M. Cell-Free Supernatant of Bacillus thuringiensis Displays Anti-Biofilm Activity Against Staphylococcus aureus. Appl Biochem Biotechnol 2023; 195:5379-5393. [PMID: 35593953 DOI: 10.1007/s12010-022-03971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus is an important bacterial pathogen responsible for biofilm formation in medical devices. Due to the increasing antibiotic resistance of S. aureus, it is necessary to search for new anti-biofilm agents. In this study, the cell-free supernatant of Bacillus thuringiensis inhibited biofilm formation up to 93% and dispersed biofilms up to 83% without affecting the growth of S. aureus. The ethyl acetate extract of B. thuringiensis cell-free supernatant exhibited a dose-dependent anti-biofilm activity against S. aureus with the biofilm inhibition concentration ranging from 8 to 64 µg/mL. Scanning electron microscopy revealed that the cell-free supernatant extract of B. thuringiensis resulted in a significant reduction in S. aureus biofilms. The ethyl acetate extract of cell-free supernatant of B. thuringiensis was found to contain various compounds with structural similarity to known anti-biofilm compounds. In particular, squalene, cinnamic acid derivatives, and eicosapentaene seem to act synergistically against S. aureus biofilms. Hence, B. thuringiensis cell-free supernatant proved to be effective against S. aureus biofilms. The results clearly show the potential of natural molecules produced by B. thuringiensis as alternative therapies with anti-biofilm activity instead of bactericidal properties.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
21
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
22
|
Wei Z, Xu S, Jia H, Zhang H. Green synthesis of silver nanoparticles from Mahonia fortunei extracts and characterization of its inhibitory effect on Chinese cabbage soft rot pathogen. Front Microbiol 2022; 13:1030261. [PMID: 36338072 PMCID: PMC9635054 DOI: 10.3389/fmicb.2022.1030261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
The pathogenic bacterium Pectobacterium carotovorum causes soft rot in cabbage and significantly reduces plant yield. In this study, we employed Mhonia fortunei extracts to synthesis silver nanoparticles (Mf-AgNPs) and investigated their functions against P. carotovorum. The results showed that the surface plasmon resonance (SPR) peak of AgNP was 412 nm under optimal synthesis conditions. Furthermore, the results of Scanning electron microscope-Energy dispersive spectrometer (SEM-EDS) and High-resolution transmission electron microscopy (HR-TEM) revealed that the Mf-AgNPs had a spherical structure with an average diameter of 13.19 nm and the content of Ag0 ions accounted for 82.68% of the total elemental content. The X-Ray diffraction (XRD) results confirmed that AgNPs had a face-centered cubic (FCC) crystal structure, while Fourier transform infrared spectroscopy (FTIR) results indicated the presence of various biomolecules as reducing and stabilizing agents on the AgNP surface. Antibacterial activity was first evaluated by an inhibitory zone test, which revealed that 500 μg ml−1 of AgNPs had antibacterial activity against P. carotovorum and four model bacteria including Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa, respectively with an antibacterial function comparable to 1 mM AgNO3 solution. The Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for P. carotovorum were 8 μg ml−1, respectively. Furthermore, AgNPs at 8 μg ml−1 completely inhibited the growth of P. carotovorum, decreased their tolerance to 0.25 mM H2O2 as well as considerably reduced colony formation after 1 h of treatment and thereafter. Treatment with Mf-AgNPs resulted in bacterial cell membrane destruction and biofilm formation inhibition, respectively. With an FIC (fractional inhibitory concentration) index of 0.174, AgNP and zhongshengmycin showed a significant synergistic effect. The infection of P. carotovorum to cabbage explants was significantly inhibited in vitro by a combination of 2 μg ml−1 Mf-AgNP and 5 μg ml−1 zhongshengmycin. In conclusion, the synthesized Mf-AgNP exhibited significant antibacterial activity against P. carotovorum.
Collapse
|
23
|
Zhang H, Lu Y, Zhang Q, Yang F, Hui A, Wang A. Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Fabrication of silver nanoparticles from marine macro algae Caulerpa sertularioides: Characterization, antioxidant and antimicrobial activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Jang Y, Zhang X, Zhu R, Li S, Sun S, Li W, Liu H. Viola betonicifolia-Mediated Biosynthesis of Silver Nanoparticles for Improved Biomedical Applications. Front Microbiol 2022; 13:891144. [PMID: 35668765 PMCID: PMC9164254 DOI: 10.3389/fmicb.2022.891144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
We report the biosynthesis of silver (Ag) nanoparticles (NAPs) (LEVB-Ag NAPs) by an environmentally friendly green synthesis approach using the phytoconstituents of Viola betonicifolia leaf extract. The spectroscopic techniques were employed to characterize biosynthesized LEVB-Ag NAPs successfully. Biosynthesized LEVB-Ag NAPs were assessed for antibacterial and antimycotic activities against bacterium and mycological strains (H. pylori, S. epidermidis, C. tropicalis, and T. rubrum) using the serial dilution method. They were also evaluated for their biofilm inhibiting potential against both bacterial and fungi species. They were further assessed for the cytobiocompatible potential with two normal cell lines (293T and hMSC). The results demonstrate that the biosynthesized LEVB-Ag NAPs showed superior log10 reduction in bacterial and fungal growth and presented more than 99.50% killing efficiency. Moreover, biosynthesized LEVB-Ag NAPs excellently inhibited the biofilm formation of bacterial (Gram-positive and Gram-negative) and mycological strains and presented more than 80% biofilm inhibiting percentage compared to both plant extract and CHE-Ag NAPs. They further presented good cytobiocompatibility in vitro with 293T and hMSC cells compared to CHE-Ag NAPs. Biosynthesized LEVB-Ag NAPs presented superior antibacterial, antimycotic, biofilm inhibition, and cytobiocompatible results that might be attributed to the synergistic effect of the NAPs’ physiochemical properties and the immobilized phytoconstituents from plant leaf extract on their surface. Hence, biosynthesized LEVB-Ag NAPs may be a promising contender for a variety of therapeutic applications.
Collapse
Affiliation(s)
- Yingping Jang
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoya Zhang
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rongxue Zhu
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Songlin Li
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shiyu Sun
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Wenqiang Li,
| | - Hao Liu
- Department of Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
- Hao Liu,
| |
Collapse
|
26
|
Al-Wrafy FA, Al-Gheethi AA, Ponnusamy SK, Noman EA, Fattah SA. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. CHEMOSPHERE 2022; 288:132603. [PMID: 34678351 DOI: 10.1016/j.chemosphere.2021.132603] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Biofilm represents one of the crucial factors for the emergence of multi-drug resistance bacterial infections. The high mortality, morbidity and medical device-related infections are associated with biofilm formation, which requires primarily seek alternative treatment strategies. Recently, nanotechnology has emerged as a promising method for eradicating bacterial biofilm-related infection. The efficacy of nanoparticles (NPs) against bacterial infections interest great attention, and the researches on the subject are rapidly increasing. However, the majority of studies continue to focus on the antimicrobial effects of NPs in vitro, while only a few achieved in vivo and very few registered as clinical trials. The present review aimed to organize the scattered available information regarding NPs approach to eradicate bacterial biofilm-related infections. The current review highlighted the advantages and disadvantages associated with this approach, in addition to the challenges that prevent reaching the clinical applications. It was appeared that the production of NPs either as antimicrobials or as drug carriers requires further investigations to overcome the obstacles associated with their kinetic and biocompatibility.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen.
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen
| | - Shaima Abdul Fattah
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
27
|
Viswanathan S, Palaniyandi T, Shanmugam R, M T, Rajendran BK, Sivaji A. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1992059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | - Tharani M
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
28
|
Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry-A review. Compr Rev Food Sci Food Saf 2021; 20:5938-5964. [PMID: 34626152 DOI: 10.1111/1541-4337.12852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 01/22/2023]
Abstract
Biofilm is an advanced form of protection that allows bacterial cells to withstand adverse environmental conditions. The complex structure of biofilm results from genetic-related mechanisms besides other factors such as bacterial morphology or substratum properties. Inhibition of biofilm formation of harmful bacteria (spoilage and pathogenic bacteria) is a critical task in the food industry because of the enhanced resistance of biofilm bacteria to stress, such as cleaning and disinfection methods traditionally used in food processing plants, and the increased food safety risks threatening consumer health caused by recurrent contamination and rapid deterioration of food by biofilm cells. Therefore, it is urgent to find methods and strategies for effectively combating bacterial biofilm formation and eradicating mature biofilms. Innovative and promising approaches to control bacteria and their biofilms are emerging. These new approaches range from methods based on natural ingredients to the use of nanoparticles. This literature review aims to describe the efficacy of these strategies and provide an overview of recent promising biofilm control technologies in the food processing sector.
Collapse
Affiliation(s)
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| | | | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
29
|
Barabadi H, Mojab F, Vahidi H, Marashi B, Talank N, Hosseini O, Saravanan M. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108647] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Rajivgandhi GN, Chenthis Kanisha C, Vijayakumar S, Alharbi NS, Kadaikunnan S, Khaled JM, Alanzi KF, Li WJ. Enhanced anti-biofilm activity of facile synthesized silver oxide nanoparticles against K. pneumoniae. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Rajivgandhi GN, Kanisha CC, Ramachandran G, Manoharan N, Mothana RA, Siddiqui NA, Al-Rehaily AJ, Ullah R, Almarfadi OM. Phytochemical screening and anti-oxidant activity of Sargassum wightii enhances the anti-bacterial activity against Pseudomonas aeruginosa. Saudi J Biol Sci 2021; 28:1763-1769. [PMID: 33732060 PMCID: PMC7938186 DOI: 10.1016/j.sjbs.2020.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022] Open
Abstract
In this study, the phytochemical, phenolic, flavonoid and bioactive compounds were successfully screened from crude extract of Sargassum wightii by LC-MS analysis after NIST interpretation. Bacterial growth inhibition study result was shown with 24 mm zone inhibition at 200 µg/mL concentration against P. aeruginosa. The increased phenolic content was much closed to gallic acid and the range was observed at 250 μg/mL concentration. In addition, flavonoid contents of the algae extract was indicated more significant with rutin at 200 μg/mL. In result, both the phenolic and flavonoid contents of the extract were more correlated with gallic acid and rutin. Further, the total anti-oxidant and DPPH radical scavenging activities were shown increased activity at 200 μg/mL concentrations. Furthermore, the excellent anti-bacterial alteration result was observed at 200 μg/mL concentration by minimum inhibition concentration. Therefore, the result was revealed that the marine algae Sargassum wightii has excellent phytochemical and anti-oxidant activities, and it has improved anti-bacterial activity against P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Natesan Manoharan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Adnan J Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer M Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
Green Phytosynthesis of Silver Nanoparticles Using Echinochloa stagnina Extract with Reference to Their Antibacterial, Cytotoxic, and Larvicidal Activities. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Khaled JM, Alyahya SA, Chenthis Kanisha C, Alharbi NS, Kadaikunnan S, Ramachandran G, Alanzi KF, Rajivgandhi G, Vimala R, Manoharan N. Anti-biofilm activity of LC-MS based Solanum nigrum essential oils against multi drug resistant biofilm forming P. mirabilis. Saudi J Biol Sci 2021; 28:302-309. [PMID: 33424310 PMCID: PMC7785425 DOI: 10.1016/j.sjbs.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 10/24/2022] Open
Abstract
Urinary tract infections are second most important diseases worldwide due to the increased amount of antibiotic resistant microbes. Among the Gram negative bacteria, P. mirabilis is the dominant biofilm producer in urinary tract infections next to E. coli. Biofilm is a process that produced self-matrix of more virulence pathogens on colloidal surfaces. Based on the above fact, this study was concentrated to inhibit the P. mirabilis biofilm formation by various in-vitro experiments. In the current study, the anti-biofilm effect of essential oils was recovered from the medicinal plant of Solanum nigrum, and confirmed the available essential oils by liquid chromatography-mass spectroscopy analysis. The excellent anti-microbial activity and minimum biofilm inhibition concentration of the essential oils against P. mirabilis was indicated at 200 µg/mL. The absence of viability and altered exopolysaccharide structure of treated cells were showed by biofilm metabolic assay and phenol-sulphuric acid method. The fluorescence differentiation of P. mirabilis treated cells was showed with more damages by confocal laser scanning electron microscope. Further, more morphological changes of essential oils treated cells were differentiated from normal cells by scanning electron microscope. Altogether, the results were reported that the S. nigrum essential oils have anti-biofilm ability.
Collapse
Affiliation(s)
- Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sami A Alyahya
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - C Chenthis Kanisha
- Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil, Tamil Nadu 629180, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - G Ramachandran
- Marine Pharmacology & Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Khalid F Alanzi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - G Rajivgandhi
- Marine Pharmacology & Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Rtv Vimala
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - N Manoharan
- Marine Pharmacology & Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| |
Collapse
|
35
|
Zhang D, Ramachandran G, Mothana RA, Siddiqui NA, Ullah R, Almarfadi OM, Rajivgandhi G, Manoharan N. Biosynthesized silver nanoparticles using Caulerpa taxifolia against A549 lung cancer cell line through cytotoxicity effect/morphological damage. Saudi J Biol Sci 2020; 27:3421-3427. [PMID: 33304151 PMCID: PMC7715053 DOI: 10.1016/j.sjbs.2020.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
The Caulerpa taxifolia is excellent marine green algae, which produced enormous bioactive compounds with more biological activities. Also, it is an excellent source for synthesis of Ag NPs with increased bioactivity against various infections. In our study, the marine algae marine algae Caulerpa taxifolia mediated Ag NPs was synthesized effectively. The synthesized Ag NPs was characterized well using UV-spectrometer and X-ray powder diffraction (XRD) and confirmed as synthesized particle was Ag NPs. The available structure of the Ag NPs was morphologically identified by scanning electron microscope (SEM), and exact minimum size, polydispersive spherical shape of the entire Ag NPs structure was confirmed by Transmission electron microscope (TEM). Further, the anti-cancer efficiency of biosynthesized Ag NPs against A549 lung cancer cells was found at 40 µg/mL concentration by cytotoxicity experiment. In addition, the phase contrast images of the result were supported the Ag NPs, which damaged the A549 morphologically clearly. Finally, florescence microscopic images were effectively proved the anti-cancerous effect against A549 lung cancer cells due to the condensed morphology of increased death cells. All the confirmed in-vitro results were clearly stated that the Caulerpa taxifolia mediated Ag NPs has superior anti-cancer agent against A549 lung cancer cells.
Collapse
Affiliation(s)
- Danjie Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Govindan Rajivgandhi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Natesan Manoharan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
36
|
Zhang F, Ramachandran G, Mothana RA, Noman OM, Alobaid WA, Rajivgandhi G, Manoharan N. Anti-bacterial activity of chitosan loaded plant essential oil against multi drug resistant K. pneumoniae. Saudi J Biol Sci 2020; 27:3449-3455. [PMID: 33304155 PMCID: PMC7715482 DOI: 10.1016/j.sjbs.2020.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
The development of antibiotic resistant in K. pneumoniae is an emerging thread worldwide due to the poor antimicrobial drugs. To overcome this issue, researchers are focused on plant material and their essential oils to fight against multi drug resistant bacteria. In this context, the current study was concentrated in medicinal plant of guva leaves and their essential oils to combat multi drug resistant bacterial infections. The essential oils were successfully screened and confirmed by HRLC-MS analysis. The anti-bacterial ability of the compounds were loaded into the chitosan nanoparticles and proved by FT-IR analysis. In addition, the chitosan loaded essential oils morphology was compared with chitosan alone in SEM analysis and suggested that the material was loaded successfully. Further, the anti-bacterial ability of the chitosan loaded essential oils were primarily confirmed by agar well diffusion method. At the 100 µg/mL of lowest concentration of chitosan loaded essential oils, the multi-drug resistant K. pneumoniae was inhibited with 96% and confirmed by minimum inhibition concentration experiment. Hence, all the experiments were proved that the essential oils were successfully loaded into the chitosan nanoparticles, and it has more anti-bacterial activity against multi-drug resistant K. pneumoniae.
Collapse
Affiliation(s)
- Feng Zhang
- Chest Endoscopy Minimally Invasive Area, Shandong Provincial Chest Hospital, Shandong Province 250013, China
| | - G Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. BOX 2457, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. BOX 2457, Riyadh 11451, Saudi Arabia
| | - Waleed A Alobaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. BOX 2457, Riyadh 11451, Saudi Arabia
| | - G Rajivgandhi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - N Manoharan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|