1
|
Mardešić I, Boban Z, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Films in Conditions Involving High Cholesterol Contents, Charged Lipids, and Saline Solutions. MEMBRANES 2024; 14:215. [PMID: 39452827 PMCID: PMC11510074 DOI: 10.3390/membranes14100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Giant unilamellar vesicles (GUVs) are frequently used as membrane models in studies of membrane properties. They are most often produced using the electroformation method. However, there are a number of parameters that can influence the success of the procedure. Some of the most common conditions that have been shown to have a negative effect on GUV electroformation are the presence of high cholesterol (Chol) concentrations, the use of mixtures containing charged lipids, and the solutions with an elevated ionic strength. High Chol concentrations are problematic for the traditional electroformation protocol as it involves the formation of a dry lipid film by complete evaporation of the organic solvent from the lipid mixture. During drying, anhydrous Chol crystals form. They are not involved in the formation of the lipid bilayer, resulting in a lower Chol concentration in the vesicle bilayer compared to the original lipid mixture. Motivated primarily by the issue of artifactual Chol demixing, we have modified the electroformation protocol by incorporating the techniques of rapid solvent exchange (RSE), ultrasonication, plasma cleaning, and spin-coating for reproducible production of GUVs from damp lipid films. Aside from decreasing Chol demixing, we have shown that the method can also be used to produce GUVs from lipid mixtures with charged lipids and in ionic solutions used as internal solutions. A high yield of GUVs was obtained for Chol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) samples with mixing ratios ranging from 0 to 2.5. We also succeeded in preparing GUVs from mixtures containing up to 60 mol% of the charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and in NaCl solutions with low ionic strength (<25 mM).
Collapse
Affiliation(s)
- Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| |
Collapse
|
2
|
Nicolella Z, Okamoto Y, Watanabe NM, Thompson GL, Umakoshi H. Significance of in situ quantitative membrane property-morphology relation (QmPMR) analysis. SOFT MATTER 2024; 20:4935-4949. [PMID: 38873752 DOI: 10.1039/d4sm00253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Deformation of the cell membrane is well understood from the viewpoint of protein interactions and free energy balance. However, the various dynamic properties of the membrane, such as lipid packing and hydrophobicity, and their relationship with cell membrane deformation are unknown. Therefore, the deformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid (OA) giant unilamellar vesicles (GUVs) was induced by heating and cooling cycles, and time-lapse analysis was conducted based on the membrane hydrophobicity and physical parameters of "single-parent" and "daughter" vesicles. Fluorescence ratiometric analysis by simultaneous dual-wavelength detection revealed the variation of different hydrophilic GUVs and enabled inferences of the "daughter" vesicle composition and the "parent" membrane's local composition during deformation; the "daughter" vesicle composition of OA was lower than that of the "parents", and lateral movement of OA was the primary contributor to the formation of the "daughter" vesicles. Thus, our findings and the newly developed methodology, named in situ quantitative membrane property-morphology relation (QmPMR) analysis, would provide new insights into cell deformation and accelerate research on both deformation and its related events, such as budding and birthing.
Collapse
Affiliation(s)
- Zachary Nicolella
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Gary Lee Thompson
- Rowan University, Rowan Hall, Room 333 70 Sewell St., Ste. E Glassboro, NJ 08028, USA
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
3
|
Bhuiyan MTI, Karal MAS, Orchi US, Ahmed N, Moniruzzaman M, Ahamed MK, Billah MM. Probability and kinetics of rupture and electrofusion in giant unilamellar vesicles under various frequencies of direct current pulses. PLoS One 2024; 19:e0304345. [PMID: 38857287 PMCID: PMC11164401 DOI: 10.1371/journal.pone.0304345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Irreversible electroporation induces permanent permeabilization of lipid membranes of vesicles, resulting in vesicle rupture upon the application of a pulsed electric field. Electrofusion is a phenomenon wherein neighboring vesicles can be induced to fuse by exposing them to a pulsed electric field. We focus how the frequency of direct current (DC) pulses of electric field impacts rupture and electrofusion in cell-sized giant unilamellar vesicles (GUVs) prepared in a physiological buffer. The average time, probability, and kinetics of rupture and electrofusion in GUVs have been explored at frequency 500, 800, 1050, and 1250 Hz. The average time of rupture of many 'single GUVs' decreases with the increase in frequency, whereas electrofusion shows the opposite trend. At 500 Hz, the rupture probability stands at 0.45 ± 0.02, while the electrofusion probability is 0.71 ± 0.01. However, at 1250 Hz, the rupture probability increases to 0.69 ± 0.03, whereas the electrofusion probability decreases to 0.46 ± 0.03. Furthermore, when considering kinetics, at 500 Hz, the rate constant of rupture is (0.8 ± 0.1)×10-2 s-1, and the rate constant of fusion is (2.4 ± 0.1)×10-2 s-1. In contrast, at 1250 Hz, the rate constant of rupture is (2.3 ± 0.8)×10-2 s-1, and the rate constant of electrofusion is (1.0 ± 0.1)×10-2 s-1. These results are discussed by considering the electrical model of the lipid bilayer and the energy barrier of a prepore.
Collapse
Affiliation(s)
| | | | - Urbi Shyamolima Orchi
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Nazia Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka, Bangladesh
| | - Md. Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
4
|
Pazzi J, Subramaniam AB. Dynamics of giant vesicle assembly from thin lipid films. J Colloid Interface Sci 2024; 661:1033-1045. [PMID: 38335788 DOI: 10.1016/j.jcis.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
MOTIVATION Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. APPROACH We develop the 'stopped-time' technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. FINDINGS We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, CA 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, CA 95343, United States.
| |
Collapse
|
5
|
Mardešić I, Boban Z, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films with a Focus on Vesicles with High Cholesterol Content. MEMBRANES 2024; 14:79. [PMID: 38668107 PMCID: PMC11051717 DOI: 10.3390/membranes14040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in which Chol forms anhydrous crystals which do not participate in the formation of vesicles. This leads to a lower Chol concentration in the vesicle bilayers compared to the Chol concentration in the initial lipid solution. To address this problem, we propose a novel electroformation protocol that includes rapid solvent exchange (RSE), plasma cleaning, and spin-coating methods to produce GUVs. We tested the protocol, focusing on vesicles with a high Chol content using different spin-coating durations and vesicle type deposition. Additionally, we compared the novel protocol using completely dry lipid film. The optimal spin-coating duration for vesicles created from the phosphatidylcholine/Chol mixture was 30 s. Multilamellar vesicles (MLVs), large unilamellar vesicles (LUVs) obtained by the extrusion of MLVs through 100 nm membrane pores and LUVs obtained by extrusion of previously obtained LUVs through 50 nm membrane pores, were deposited on an electrode for 1.5/1 Chol/phosphatidylcholine (POPC) lipid mixture, and the results were compared. Electroformation using all three deposited vesicle types resulted in a high GUV yield, but the deposition of LUVs obtained by the extrusion of MLVs through 100 nm membrane pores provided the most reproducible results. Using the deposition of these LUVs, we produced high yield GUVs for six different Chol concentrations (from 0% to 71.4%). Using a protocol that included dry lipid film GUVs resulted in lower yields and induced the Chol demixing artifact, proving that the lipid film should never be subjected to drying when the Chol content is high.
Collapse
Affiliation(s)
- Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (I.M.); (Z.B.)
| |
Collapse
|
6
|
Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Anomalous Colloidal Motion under Strong Confinement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302115. [PMID: 37116105 DOI: 10.1002/smll.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Diffusion of biological macromolecules in the cytoplasm is a paradigm of colloidal diffusion in an environment characterized by a strong restriction of the accessible volume. This makes of the understanding of the physical rules governing colloidal diffusion under conditions mimicking the reduction in accessible volume occurring in the cell cytoplasm, a problem of a paramount importance. This work aims to study how the thermal motion of spherical colloidal beads in the inner cavity of giant unilamellar vesicles (GUVs) is modified by strong confinement conditions, and the viscoelastic character of the medium. Using single particle tracking, it is found that both the confinement and the environmental viscoelasticity lead to the emergence of anomalous motion pathways for colloidal microbeads encapsulated in the aqueous inner cavity of GUVs. This anomalous diffusion is strongly dependent on the ratio between the volume of the colloidal particle and that of the GUV under consideration as well as on the viscosity of the particle's liquid environment. Therefore, the results evidence that the reduction of the free volume accessible to colloidal motion pushes the diffusion far from a standard Brownian pathway as a result of the change in the hydrodynamic boundary conditions driving the particle motion.
Collapse
Affiliation(s)
- Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| |
Collapse
|
7
|
Boban Z, Mardešić I, Jozić SP, Šumanovac J, Subczynski WK, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films Formed by Vesicle Fusion. MEMBRANES 2023; 13:352. [PMID: 36984739 PMCID: PMC10059949 DOI: 10.3390/membranes13030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Giant unilamellar vesicles (GUVs) are artificial membrane models which are of special interest to researchers because of their similarity in size to eukaryotic cells. The most commonly used method for GUVs production is electroformation. However, the traditional electroformation protocol involves a step in which the organic solvent is completely evaporated, leaving behind a dry lipid film. This leads to artifactual demixing of cholesterol (Chol) in the form of anhydrous crystals. These crystals do not participate in the formation of the lipid bilayer, resulting in a decrease of Chol concentration in the bilayer compared to the initial lipid solution. We propose a novel electroformation protocol which addresses this issue by combining the rapid solvent exchange, plasma cleaning and spin-coating techniques to produce GUVs from damp lipid films in a fast and reproducible manner. We have tested the protocol efficiency using 1/1 phosphatidylcholine/Chol and 1/1/1 phosphatidylcholine/sphingomyelin/Chol lipid mixtures and managed to produce a GUV population of an average diameter around 40 µm, with many GUVs being larger than 100 µm. Additionally, compared to protocols that include the dry film step, the sizes and quality of vesicles determined from fluorescence microscopy images were similar or better, confirming the benefits of our protocol in that regard as well.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Sanja Perinović Jozić
- Department of Organic Technology, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| | - Josipa Šumanovac
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
| |
Collapse
|
8
|
Faizi HA, Tsui A, Dimova R, Vlahovska PM. Bending Rigidity, Capacitance, and Shear Viscosity of Giant Vesicle Membranes Prepared by Spontaneous Swelling, Electroformation, Gel-Assisted, and Phase Transfer Methods: A Comparative Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10548-10557. [PMID: 35993569 PMCID: PMC9671160 DOI: 10.1021/acs.langmuir.2c01402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Closed lipid bilayers in the form of giant unilamellar vesicles (GUVs) are commonly used membrane models. Various methods have been developed to prepare GUVs, however it is unknown if all approaches yield membranes with the same elastic, electric, and rheological properties. Here, we combine flickering spectroscopy and electrodefomation of GUVs to measure, at identical conditions, membrane capacitance, bending rigidity and shear surface viscosity of palmitoyloleoylphosphatidylcholine (POPC) membranes formed by several commonly used preparation methods: thin film hydration (spontaneous swelling), electroformation, gel-assisted swelling using poly(vinyl alcohol) (PVA) or agarose, and phase-transfer. We find relatively similar bending rigidity value across all the methods except for the agarose hydration method. In addition, the capacitance values are similar except for vesicles prepared via PVA gel hydration. Intriguingly, membranes prepared by the gel-assisted and phase-transfer methods exhibit much higher shear viscosity compared to electroformation and spontaneous swelling, likely due to remnants of polymers (PVA and agarose) and oils (hexadecane and mineral) in the lipid bilayer structure.
Collapse
Affiliation(s)
- Hammad A Faizi
- Department of Mechanical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Annie Tsui
- Department of Industrial Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Petia M Vlahovska
- Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Boban Z, Mardešić I, Subczynski WK, Jozić D, Raguz M. Optimization of Giant Unilamellar Vesicle Electroformation for Phosphatidylcholine/Sphingomyelin/Cholesterol Ternary Mixtures. MEMBRANES 2022; 12:membranes12050525. [PMID: 35629851 PMCID: PMC9144572 DOI: 10.3390/membranes12050525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Artificial vesicles are important tools in membrane research because they enable studying membrane properties in controlled conditions. Giant unilamellar vesicles (GUVs) are specially interesting due to their similarity in size to eukaryotic cells. We focus on optimization of GUV production from phosphatidylcholine/sphingomyelin/cholesterol mixtures using the electroformation method. This mixture has been extensively researched lately due to its relevance for the formation of lipid rafts. We measured the effect of voltage, frequency, lipid film thickness, and cholesterol (Chol) concentration on electroformation successfulness using spin-coating for reproducible lipid film deposition. Special attention is given to the effect of Chol concentrations above the phospholipid bilayer saturation threshold. Such high concentrations are of interest to groups studying the role of Chol in the fiber cell plasma membranes of the eye lens or development of atherosclerosis. Utilizing atomic force and fluorescence microscopy, we found the optimal lipid film thickness to be around 30 nm, and the best frequency–voltage combinations in the range of 2–6 V and 10–100 Hz. Increasing the Chol content, we observed a decrease in GUV yield and size. However, the effect was much less pronounced when the optimal lipid film thickness was used. The results underline the need for simultaneous optimization of both electrical parameters and thickness in order to produce high-quality GUVs for experimental research.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | | | - Dražan Jozić
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Correspondence: ; Tel.: +385-9876-8819
| |
Collapse
|
10
|
Mathiassen PPM, Pomorski TG. A Fluorescence-based Assay for Measuring Phospholipid Scramblase Activity in Giant Unilamellar Vesicles. Bio Protoc 2022; 12:e4366. [PMID: 35434199 PMCID: PMC8983165 DOI: 10.21769/bioprotoc.4366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 07/28/2023] Open
Abstract
Transbilayer movement of phospholipids in biological membranes is mediated by a diverse set of lipid transporters. Among them are scramblases that facilitate rapid bi-directional movement of lipids without metabolic energy input. In this protocol, we describe the incorporation of phospholipid scramblases into giant unilamellar vesicles (GUVs) formed from scramblase-containing large unilamellar vesicles by electroformation. We also describe how to analyze their activity using membrane-impermeant sodium dithionite, to bleach symmetrically incorporated fluorescent ATTO488-conjugated phospholipids. The fluorescence-based readout allows single vesicle tracking for a large number of settled/immobilized GUVs, and provides a well-defined experimental setup to directly characterize these lipid transporters at the molecular level. Graphic abstract: Giant unilamellar vesicles (GUVs) are formed by electroformation from large unilamellar vesicles (LUVs) containing phospholipid scramblases (purple) and trace amounts of a fluorescent lipid reporter (green). The scramblase activity is analyzed by a fluorescence-based assay of single GUVs, using the membrane-impermeant quencher dithionite. Sizes not to scale. Modified from Mathiassen et al. (2021).
Collapse
Affiliation(s)
- Patricia P. M. Mathiassen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
11
|
Boban Z, Mardešić I, Subczynski WK, Raguz M. Giant Unilamellar Vesicle Electroformation: What to Use, What to Avoid, and How to Quantify the Results. MEMBRANES 2021; 11:membranes11110860. [PMID: 34832088 PMCID: PMC8622294 DOI: 10.3390/membranes11110860] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Since its inception more than thirty years ago, electroformation has become the most commonly used method for growing giant unilamellar vesicles (GUVs). Although the method seems quite straightforward at first, researchers must consider the interplay of a large number of parameters, different lipid compositions, and internal solutions in order to avoid artifactual results or reproducibility problems. These issues motivated us to write a short review of the most recent methodological developments and possible pitfalls. Additionally, since traditional manual analysis can lead to biased results, we have included a discussion on methods for automatic analysis of GUVs. Finally, we discuss possible improvements in the preparation of GUVs containing high cholesterol contents in order to avoid the formation of artifactual cholesterol crystals. We intend this review to be a reference for those trying to decide what parameters to use as well as an overview providing insight into problems not yet addressed or solved.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Correspondence: ; Tel.: +385-98-768-819
| |
Collapse
|
12
|
Endoplasmic reticulum phospholipid scramblase activity revealed after protein reconstitution into giant unilamellar vesicles containing a photostable lipid reporter. Sci Rep 2021; 11:14364. [PMID: 34257324 PMCID: PMC8277826 DOI: 10.1038/s41598-021-93664-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023] Open
Abstract
Transbilayer movement of phospholipids in biological membranes is mediated by a diverse set of lipid transporters. Among them are scramblases that facilitate a rapid bi-directional movement of lipids without metabolic energy input. Here, we established a new fluorescence microscopy-based assay for detecting phospholipid scramblase activity of membrane proteins upon their reconstitution into giant unilamellar vesicles formed from proteoliposomes by electroformation. The assay is based on chemical bleaching of fluorescence of a photostable ATTO-dye labeled phospholipid with the membrane-impermeant reductant sodium dithionite. We demonstrate that this new methodology is suitable for the study of the scramblase activity of the yeast endoplasmic reticulum at single vesicle level.
Collapse
|
13
|
Jiang L, Wang Q, Lei J, Tao K, Huang J, Zhao S, Hu N, Yang J. Mechanism study of how lipid vesicle electroformation is suppressed by the presence of sodium chloride. Colloids Surf B Biointerfaces 2021; 206:111951. [PMID: 34243032 DOI: 10.1016/j.colsurfb.2021.111951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Giant lipid vesicles (GLVs) are usually adopted as models of cell membranes and electroformation is the most commonly used method for GLV formation. However, GLV electroformation are known to be suppressed by the presence of salt and the mechanism is not clear so far. In this paper, the lipid hydration and GLV electroformation were investigated as a function of the concentration of sodium chloride by depositing the lipids on the bottom substrates and top substrates. In addition, the electrohydrodynamic force generated by the electroosmotic flow (EOF) on the lipid phase was calculated with COMSOL Multiphysics. It was found that the mechanisms for the failure of GLV electroformation in salt solutions are: 1) the presence of sodium chloride decreases the membrane permeability to aqueous solution by accelerating the formation of well-packed membranes, suppressing the swelling and detachment of the lipid membranes; 2) the presence of sodium chloride decreased the electrohydrodynamic force by increasing the medium conductivity.
Collapse
Affiliation(s)
- Lihua Jiang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Qiong Wang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Jincan Lei
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Ke Tao
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Jing Huang
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Shixian Zhao
- Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 400055, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
14
|
Seo H, Lee H. Recent developments in microfluidic synthesis of artificial cell-like polymersomes and liposomes for functional bioreactors. BIOMICROFLUIDICS 2021; 15:021301. [PMID: 33833845 PMCID: PMC8012066 DOI: 10.1063/5.0048441] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 05/16/2023]
Abstract
Recent advances in droplet microfluidics have led to the fabrication of versatile vesicles with a structure that mimics the cellular membrane. These artificial cell-like vesicles including polymersomes and liposomes effectively enclose an aqueous core with well-defined size and composition from the surrounding environment to implement various biological reactions, serving as a diverse functional reactor. The advantage of realizing various biological phenomena within a compartment separated by a membrane that resembles a natural cell membrane is actively explored in the fields of synthetic biology as well as biomedical applications including drug delivery, biosensors, and bioreactors, to name a few. In this Perspective, we first summarize various methods utilized in producing these polymersomes and liposomes. Moreover, we will highlight some of the recent advances in the design of these artificial cell-like vesicles for functional bioreactors and discuss the current issues and future perspectives.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
15
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
16
|
Kunzler C, Handschuh‐Wang S, Roesener M, Schönherr H. Giant Biodegradable Poly(ethylene glycol)‐
block
‐Poly(ε‐caprolactone) Polymersomes by Electroformation. Macromol Biosci 2020; 20:e2000014. [DOI: 10.1002/mabi.202000014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Cleiton Kunzler
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologyUniversity of Siegen Adolf‐Reichwein‐Str. 2 Siegen 57076 Germany
- Macromolecular ChemistryDepartment of Chemistry and BiologyUniversity of Siegen Adolf‐Reichwein‐Str. 2 Siegen 57076 Germany
| | - Stephan Handschuh‐Wang
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologyUniversity of Siegen Adolf‐Reichwein‐Str. 2 Siegen 57076 Germany
| | - Manuel Roesener
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologyUniversity of Siegen Adolf‐Reichwein‐Str. 2 Siegen 57076 Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologyUniversity of Siegen Adolf‐Reichwein‐Str. 2 Siegen 57076 Germany
| |
Collapse
|
17
|
Boban Z, Puljas A, Kovač D, Subczynski WK, Raguz M. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation. Cell Biochem Biophys 2020; 78:157-164. [PMID: 32319021 DOI: 10.1007/s12013-020-00910-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 10/23/2022]
Abstract
Giant unilamellar vesicles (GUVs) are used extensively as models that mimic cell membranes. The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. Thus, a methodological paper pertaining to preparations of model lipid bilayer membranes with high Chol content would significantly help the study of properties of these membranes. Lipid solutions containing 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and Chol were fluorescently labeled with phospholipid analog 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC18(3)) and spin-coated to produce thin lipid films. GUVs were formed from these films using the electroformation method and the results were obtained using fluorescent microscopy. Electroformation outcomes were examined for different electrical parameters and different Chol concentrations. A wide range of field frequency-field strength (ff-fs) combinations was explored: 10-10,000 Hz and 0.625-9.375 V/mm peak-to-peak. Optimal values for GUVs preparation were found to be 10-100 Hz and 1.25-6.25 V/mm, with largest vesicles occurring for 10 Hz and 3.75 V/mm. Chol:POPC mixing ratios (expressed as a molar ratio) ranged from 0 to 3.5. We show that increasing the Chol concentration decreases the GUVs size, but this effect can be reduced by choosing the appropriate ff-fs combination.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia.,University of Split, Faculty of Science, Doctoral study of Biophysics, Split, Croatia
| | - Ana Puljas
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
| | - Dubravka Kovač
- Department of Physics, Faculty of Science, University of Split, Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia.
| |
Collapse
|
18
|
Morshed A, Karawdeniya BI, Bandara Y, Kim MJ, Dutta P. Mechanical characterization of vesicles and cells: A review. Electrophoresis 2020; 41:449-470. [PMID: 31967658 PMCID: PMC7567447 DOI: 10.1002/elps.201900362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
Abstract
Vesicles perform many essential functions in all living organisms. They respond like a transducer to mechanical stress in converting the applied force into mechanical and biological responses. At the same time, both biochemical and biophysical signals influence the vesicular response in bearing mechanical loads. In recent years, liposomes, artificial lipid vesicles, have gained substantial attention from the pharmaceutical industry as a prospective drug carrier which can also serve as an artificial cell-mimetic system. The ability of these vesicles to enter through pores of even smaller size makes them ideal candidates for therapeutic agents to reach the infected sites effectively. Engineering of vesicles with desired mechanical properties that can encapsulate drugs and release as required is the prime challenge in this field. This requirement has led to the modifications of the composition of the bilayer membrane by adding cholesterol, sphingomyelin, etc. In this article, we review the manufacturing and characterization techniques of various artificial/synthetic vesicles. We particularly focus on the electric field-driven characterization techniques to determine different properties of vesicle and its membranes, such as bending rigidity, viscosity, capacitance, conductance, etc., which are indicators of their content and mobility. Similarities and differences between artificial vesicles, natural vesicles, and cells are highlighted throughout the manuscript since most of these artificial vesicles are intended for cell mimetic functions.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Buddini Iroshika Karawdeniya
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Y.M.NuwanD.Y. Bandara
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
19
|
Abstract
Vesicle structures primarily embody spherical capsules composed of a single or multiple bilayers, entrapping a pool of aqueous solution in their interior. The bilayers can be synthesised by phospholipids or other amphiphiles (surfactants, block copolymers, etc.). Vesicles with broad-spectrum applications in numerous scientific disciplines, including biochemistry, biophysics, biology, and various pharmaceutical industries, have attracted widespread attention. Consequently, a multitude of protocols have been devised and proposed for their fabrication. In this review, with a motivation to derive the basic conditions for the formation of vesicles, the associated thermodynamic and kinetic aspects are comprehensively appraised. Contextually, an all-purpose overview of the underlying thermodynamics of bilayer/membrane generation and deformation, including the chemical potential of aggregates, geometric packing and the concept of elastic properties, is presented. Additionally, the current review highlights the probable, inherent mechanisms of vesicle formation under distinct modes of manufacturing. We lay focus on vesicle formation from pre-existing bilayers, as well as from bilayers, which form when lipids from an organic solvent are transferred into an aqueous medium. Furthermore, we outline the kinetic effects on vesicle formation from the lamellar phase, with and without the presence of shearing force. Wherever required, the experimental and/or theoretical outcomes, the driving forces for vesicle size selection, and various scaling laws are also reviewed, all of which facilitate an overall improved understanding of the vesicle formation mechanisms.
Collapse
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
20
|
Qiao H, Wei Z, Wang Y, Hu N, Sun S, Bai J, Fang L, Wang Z. Focused characteristics and effects of light reflected from spherical lipid membrane of giant unilamellar vesicles. Colloids Surf B Biointerfaces 2020; 189:110828. [PMID: 32028133 DOI: 10.1016/j.colsurfb.2020.110828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 10/25/2022]
Abstract
Lipid vesicle is spherical membranous structure with a concave surface on the inside. When a beam of light illuminates a lipid vesicle, the light reflected from the vesicular concave membrane can be focused to have higher intensity and generate enhanced effects. By observing and simulating light reflected from giant unilamellar vesicles (GUVs), the intensity distribution of the light reflected from a spherical concave lipid membrane was investigated. The reflected light had focused characteristics. Its intensity was concentrated 10,000 times and even exceeded the intensity of incident light in a confined region, creating another effective light source in the lipid vesicle. The fluorescence quenching of sulfo-Cy5 encapsulated in spherical GUVs was stronger than that of the outside solution when irradiated by a 632.8 nm laser. When irradiated with ultraviolet light C (UVC), the damage to plasmid DNA encapsulated with spherical GUVs was greater than that of pure plasmid DNA solution and plasmid DNA mixed with lipid membrane fragments. Therefore, in addition to the effects of incident light, the focused light reflected from GUVs could generate incremental effects on encapsulated photoreactive materials if the spherical structure of the lipid membrane was maintained. These results proved that concave lipid membranes of spherical vesicles can focus light and utilize it to generate enhanced effects. The capability of light focusing and its influence on DNA may provide new insights for understanding the function of lipid membranes in cellular life.
Collapse
Affiliation(s)
- Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zixin Wei
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Na Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Sineng Sun
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
22
|
Stuhr-Hansen N, Vagianou CD, Blixt O. Clustering of Giant Unilamellar Vesicles Promoted by Covalent and Noncovalent Bonding of Functional Groups at Membrane-Embedded Peptides. Bioconjug Chem 2019; 30:2156-2164. [DOI: 10.1021/acs.bioconjchem.9b00394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Charikleia-Despoina Vagianou
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
23
|
Ghellab SE, Mu W, Li Q, Han X. Prediction of the size of electroformed giant unilamellar vesicle using response surface methodology. Biophys Chem 2019; 253:106217. [PMID: 31306917 DOI: 10.1016/j.bpc.2019.106217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022]
Abstract
The production of giant unilamellar vesicles (GUVs) with specific size and structure has been a challenge on the design of quantitative biological assays in cell-mimetic micro-compartments. In this study, the effect of electroformation parameters (electric potential, frequency, and temperature) on the size of GUVs was investigated. Using response surface methodology based on Box-Behnken design, GUVs from neutral, positive and negative charges were formulated. The average diameter of GUVs was determined for each formulation. The acquired data of these GUVs were successfully fitted with quadratic regression models. These models were applied to visualize the parameters for ideal GUVs with wanted diameters by the obtained phase diagrams. These results show that response surface methodology can be used to estimate the electroformation parameters for specifically sized GUVs.
Collapse
Affiliation(s)
- Salah Eddine Ghellab
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, 92West Da-Zhi Street, Harbin 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, 92West Da-Zhi Street, Harbin 150001, China
| | - Qingchuang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, 92West Da-Zhi Street, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, 92West Da-Zhi Street, Harbin 150001, China.
| |
Collapse
|
24
|
dos Santos JL, Mendanha SA, Vieira SL, Gonçalves C. Portable Proportional-Integral-Derivative controlled chambers for giant unilamellar vesicles electroformation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1a1b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Rideau E, Wurm FR, Landfester K. Self‐Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies. ACTA ACUST UNITED AC 2019; 3:e1800324. [DOI: 10.1002/adbi.201800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
26
|
Wang Z, Wu C, Fan T, Han X, Wang Q, Lei J, Yang J. Electroformation and collection of giant liposomes on an integrated microchip. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Kang DH, Han WB, Choi N, Kim YJ, Kim TS. Tightly Sealed 3D Lipid Structure Monolithically Generated on Transparent SU-8 Microwell Arrays for Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40401-40410. [PMID: 30404433 DOI: 10.1021/acsami.8b13458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial lipid membranes are excellent candidates for new biosensing platforms because their structures are similar to cell membranes and it is relatively easy to modify the composition of the membrane. The freestanding structure is preferable for this purpose because of the more manageable reconstitution of the membrane protein. Therefore, most of the lipid membranes for biosensing are based on two-dimensional structures that are fixed on a solid substrate (unlike floating liposomes) even though they have some disadvantages, such as low stability, small surface area, and potential retention of solvent in the membrane. In this paper, three-dimensional freestanding lipid bilayer (3D FLB) arrays were fabricated uniformly on SU-8 microwells without any toxic solvent. The 3D FLBs have better stability and larger surface area due to their cell-like structure. In order to improve the sealing characteristics of the 3D FLBs, the applied frequency of the ac field was controlled during the electroformation. The 3D FLBs were observed through transparent SU-8 microwell arrays using confocal microscopy and demonstrated perfect sealing until 5.5 days after the electroformation at more than 1 kHz. Also, the details of the sealing of a fixed 3D freestanding lipid structure were discussed for the first time. The unilamellarity and biofunctionality of the 3D FLBs were verified by a transport protein (α-hemolysin) assay.
Collapse
Affiliation(s)
- Dong-Hyun Kang
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
- Department of Mechanical Engineering , Yonsei University , 50, Yonsei-ro, Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Won Bae Han
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Yong-Jun Kim
- Department of Mechanical Engineering , Yonsei University , 50, Yonsei-ro, Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Tae Song Kim
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| |
Collapse
|
28
|
Steinkühler J, De Tillieux P, Knorr RL, Lipowsky R, Dimova R. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Sci Rep 2018; 8:11838. [PMID: 30087440 PMCID: PMC6081385 DOI: 10.1038/s41598-018-30286-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Giant unilamellar vesicles (GUVs) are increasingly used as a versatile research tool to investigate membrane structure, morphology and phase state. In these studies, GUV preparation is typically enhanced by an externally applied electric field, a process called electroformation. We find that upon osmotic deflation, GUVs electroformed from charged and neutral lipids exhibit inward pointing lipid nanotubes, suggesting negative spontaneous curvature of the membrane. By quenching a fluorescent analog of the charged lipid, zeta potential measurements and experiments with the lipid marker annexin A5, we show that electroformed GUVs exhibit an asymmetric lipid distribution across the bilayer leaflets. The asymmetry is lost either after storing electroformed GUVs at room temperature for one day or by applying higher voltages and temperatures during electroformation. GUVs having the same lipid composition but grown via gel-assisted swelling do not show asymmetric lipid distribution. We discuss possible mechanisms for the generation and relaxation of lipid asymmetry, as well as implications for studies using electroformed vesicles. The observed effects allow to control the molecular assembly of lipid bilayer leaflets. Vesicle tubulation as reported here is an example of protein-free reshaping of membranes and is caused by compositional lipid asymmetry between leaflets.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Philippe De Tillieux
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Roland L Knorr
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
29
|
|
30
|
A reverse-phase method revisited: Rapid high-yield preparation of giant unilamellar vesicles (GUVs) using emulsification followed by centrifugation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Chaurasia AK, Rukangu AM, Philen MK, Seidel GD, Freeman EC. Evaluation of bending modulus of lipid bilayers using undulation and orientation analysis. Phys Rev E 2018; 97:032421. [PMID: 29776171 DOI: 10.1103/physreve.97.032421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 06/08/2023]
Abstract
In the current paper, phospholipid bilayers are modeled using coarse-grained molecular dynamics simulations with the MARTINI force field. The extracted molecular trajectories are analyzed using Fourier analysis of the undulations and orientation vectors to establish the differences between the two approaches for evaluating the bending modulus. The current work evaluates and extends the implementation of the Fourier analysis for molecular trajectories using a weighted horizon-based averaging approach. The effect of numerical parameters in the analysis of these trajectories is explored by conducting parametric studies. Computational modeling results are validated against experimentally characterized bending modulus of lipid membranes using a shape fluctuation analysis. The computational framework is then used to estimate the bending moduli for different types of lipids (phosphocholine, phosphoethanolamine, and phosphoglycerol). This work provides greater insight into the numerical aspects of evaluating the bilayer bending modulus, provides validation for the orientation analysis technique, and explores differences in bending moduli based on differences in the lipid nanostructures.
Collapse
|
32
|
Binfield JG, Brendel JC, Cameron NR, Eissa AM, Perrier S. Imaging Proton Transport in Giant Vesicles through Cyclic Peptide-Polymer Conjugate Nanotube Transmembrane Ion Channels. Macromol Rapid Commun 2018; 39:e1700831. [DOI: 10.1002/marc.201700831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/20/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jason G. Binfield
- Department of Chemistry; The University of Warwick; Coventry CV4 7AL UK
| | | | - Neil R. Cameron
- School of Engineering; The University of Warwick; Coventry CV4 7AL UK
- Department of Materials Science and Engineering; Monash University; 22 Alliance Lane Clayton 3800 Victoria Australia
| | - Ahmed M. Eissa
- School of Engineering; The University of Warwick; Coventry CV4 7AL UK
- Department of Materials Science and Engineering; Monash University; 22 Alliance Lane Clayton 3800 Victoria Australia
- Department of Polymers; Chemical Industries Research Division; National Research Centre (NRC); 33 El-Bohouth Street Dokki, Giza 12622 Cairo Egypt
| | - Sébastien Perrier
- Department of Chemistry; The University of Warwick; Coventry CV4 7AL UK
- Warwick Medical School; The University of Warwick; Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences; Monash University; Parkville 3052 Victoria Australia
| |
Collapse
|
33
|
Rideau E, Wurm FR, Landfester K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00992a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polybutadiene-block-poly(ethyl ethylene phosphate) can reproducibly self-assemble in large number into giant unilamellar vesicles (GUVs) by non-assisted film hydration, representing a stepping stone for better liposomes – substitutes towards the generation of artificial cells.
Collapse
Affiliation(s)
- Emeline Rideau
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
34
|
Lefrançois P, Goudeau B, Arbault S. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer. Integr Biol (Camb) 2018; 10:429-434. [DOI: 10.1039/c8ib00074c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a protocol to prepare phospholipid Giant Unilamellar Vesicles (GUVs) by electroformation in PBS physiological buffer.
Collapse
|
35
|
Wang Q, Li W, Hu N, Chen X, Fan T, Wang Z, Yang Z, Cheney MA, Yang J. Ion concentration effect (Na + and Cl -) on lipid vesicle formation. Colloids Surf B Biointerfaces 2017; 155:287-293. [PMID: 28437754 DOI: 10.1016/j.colsurfb.2017.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023]
Abstract
Lipid vesicle formation is known to be suppressed in salt solutions, but the mechanism of this phenomenon remains unclear. In order to better understand this issue, the effect of salt concentrations (0-800mM) of sodium chloride on the behavior of L-α-phosphatidylcholine (PC) in aqueous solution was investigated in this work. The results showed that fusion among vesicles, micelles and bilayers may be essential for vesicle formation. With addition of ions and an increase in ion concentration, the lipids became constrained in lateral movement and packed increasingly tightly. The resulted hard supported phospholipid bilayers (SPBs) were thus more difficult to detach from the substrate to form vesicles. These phenomena were tried to be explained at molecular level. Hydrophobic effect is the original cause of lipid vesicle formation, which in fact is absence of attraction between the involved substances. That is to say, the stronger the 3D network was bounded in the medium, the stronger the hydrophobic repulsion on the lipids would be. This might be one reason for the suppression of vesicle formation in salt solution.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Wenman Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Bioengineering College, Chongqing University, Chongqing, 400030, China.
| | - Xi Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Ting Fan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Zhenyu Wang
- Department of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhong Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Marcos A Cheney
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Bioengineering College, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
36
|
Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations. Front Physiol 2017; 8:63. [PMID: 28243205 PMCID: PMC5303729 DOI: 10.3389/fphys.2017.00063] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH.
Collapse
Affiliation(s)
- Hannah Stein
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Susann Spindler
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Navid Bonakdar
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Chun Wang
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Vahid Sandoghdar
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| |
Collapse
|
37
|
Stein H, Spindler S, Bonakdar N, Wang C, Sandoghdar V. Production of Isolated Giant Unilamellar Vesicles under High Salt Concentrations. Front Physiol 2017; 8:63. [PMID: 28243205 DOI: 10.3389/fphys.2017.00063/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/23/2017] [Indexed: 05/27/2023] Open
Abstract
The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its in vivo studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions. Giant unilamellar vesicles (GUVs) offer a powerful model system for the cell membrane, but many previous studies have been performed in unphysiologically low ionic strength solutions which might lead to altered membrane properties, protein stability and lipid-protein interaction. In the present work, we give an overview of the existing methods for GUV production and present our efforts on forming single, free floating vesicles up to several tens of μm in diameter and at high yield in various buffer solutions with physiological ionic strength and pH.
Collapse
Affiliation(s)
- Hannah Stein
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Susann Spindler
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| | - Navid Bonakdar
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Chun Wang
- Max Planck Institute for the Science of Light Erlangen, Germany
| | - Vahid Sandoghdar
- Friedrich-Alexander University Erlangen-NurembergErlangen, Germany; Max Planck Institute for the Science of LightErlangen, Germany
| |
Collapse
|
38
|
Frequency-Dependent Electroformation of Giant Unilamellar Vesicles in 3D and 2D Microelectrode Systems. MICROMACHINES 2017. [PMCID: PMC6190065 DOI: 10.3390/mi8010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A giant unilamellar vesicle (GUV), with similar properties to cellular membrane, has been widely studied. Electroformation with its simplicity and accessibility has become the most common method for GUV production. In this work, GUV electroformation in devices with traditional 3D and new 2D electrode structures were studied with respect to the applied electric field. An optimal frequency (10 kHz in the 3D and 1 kHz in the 2D systems) was found in each system. A positive correlation was found between GUV formation and applied voltage in the 3D electrode system from 1 to 10 V. In the 2D electrode system, the yield of the generated GUV increased first but decreased later as voltage increased. These phenomena were further confirmed by numerically calculating the load that the lipid film experienced from the generated electroosmotic flow (EOF). The discrepancy between the experimental and numerical results of the 3D electrode system may be because the parameters that were adopted in the simulations are quite different from those of the lipid film in experiments. The lipid film was not involved in the simulation of the 2D system, and the numerical results matched well with the experiments.
Collapse
|
39
|
Jiang YW, Gao G, Chen Z, Wu FG. Fluorescence studies on the interaction between chlorpromazine and model cell membranes. NEW J CHEM 2017. [DOI: 10.1039/c7nj00037e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence quenching of membrane fluorophores and the fluorescence enhancement of chlorpromazine were simultaneously observed during chlorpromazine–lipid membrane interaction.
Collapse
Affiliation(s)
- Yao-Wen Jiang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Ge Gao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| |
Collapse
|
40
|
Li Q, Wang X, Ma S, Zhang Y, Han X. Electroformation of giant unilamellar vesicles in saline solution. Colloids Surf B Biointerfaces 2016; 147:368-375. [DOI: 10.1016/j.colsurfb.2016.08.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022]
|
41
|
Jiang YW, Guo HY, Chen Z, Yu ZW, Wang Z, Wu FG. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6739-6745. [PMID: 27276053 DOI: 10.1021/acs.langmuir.6b00193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also sheds new light on the interaction between biomacromolecules and lipid membranes.
Collapse
Affiliation(s)
- Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Hao-Yue Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| |
Collapse
|
42
|
Zhu C, Zhang Y, Wang Y, Li Q, Mu W, Han X. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Chemistry 2016; 22:2906-9. [PMID: 26756162 DOI: 10.1002/chem.201504389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Ying Zhang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Yinan Wang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| |
Collapse
|
43
|
Hermann E, Ries J, García-Sáez AJ. Scanning fluorescence correlation spectroscopy on biomembranes. Methods Mol Biol 2015; 1232:181-197. [PMID: 25331137 DOI: 10.1007/978-1-4939-1752-5_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful quantitative method to study dynamical properties of biophysical systems. It exploits the temporal autocorrelation of fluorescence intensity fluctuations originating from a tiny volume (~fL). A theoretical model function can be then fitted to the measured auto-correlation curve to obtain physical parameters such as local concentration and diffusion time. However, the application of FCS on membranes is coupled to several difficulties like accurate positioning and stability of the set-up. In this book chapter, we explain the theoretical framework of point FCS and Scanning FCS (SFCS), which is a variation especially suitable for membrane studies. We present a list of materials necessary for SFCS studies on Giant Unilamellar Vesicles (GUVs). Finally, we provide simple protocols for the preparation of GUVs, calibration of the microscope setup, and acquisition and analysis of SFCS data to determine diffusion coefficients and concentrations of fluorescent particles embedded in lipid membranes.
Collapse
Affiliation(s)
- Eduard Hermann
- Max Planck Institute for Intelligent Systems, Heisenbergstr 3, 70569, Stuttgart, Germany,
| | | | | |
Collapse
|
44
|
Cao J, Seekell R, Li Y, Wang X, Zhan S, Li Y. High Yield of Supergiant Vesicles on Glyoxylic Acid Modified Aluminum Electrode. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.825568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Li Y, Seekell R, Zhan S, Cao J, Jing J, Li Y. Electroformed Giant Vesicles from a Binary Mixture of Phospholipids and Quaternary Ammonium Salts. J DISPER SCI TECHNOL 2014. [DOI: 10.1080/01932691.2013.803930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Zheng H, Jiménez-Flores R, Gragson D, Everett DW. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3236-3243. [PMID: 24641452 DOI: 10.1021/jf500093p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Giant unilamellar vesicles (GUVs) were constructed using an electroformation technique to mimic the morphology of the native milk fat globule membrane (MFGM) for the purpose of structural investigation. Bovine milk derived phospholipids were selected to manufacture GUVs which were characterized by confocal laser scanning microscopy after fluorescent staining. Circular nonfluorescent dark regions were observed in a 3/7 (mol/mol) surface mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3 phosphoethanolamine. Linear shaped dark lipid domains were found in GUVs containing sphingomyelin (SM) in the absence of cholesterol. The dark regions were interpreted as a gel phase formed by a high gel-liquid phase transition temperature (Tm) of DPPC and SM. This study provides a strategy for investigating the lipid structural organization within the native MFGM using a model lipid bilayer system and reveals that a SM and cholesterol association network is not the only requirement for nonfluorescent lipid domain formation and that PE is preferably located in the inner leaflet of the phospholipid bilayer.
Collapse
Affiliation(s)
- Haotian Zheng
- Riddet Institute , Palmerston North, 4442 Manawatu, New Zealand
- Department of Food Science, University of Otago , Dunedin, 9054 Otago, New Zealand
- Dairy Products Technology Center, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - Rafael Jiménez-Flores
- Dairy Products Technology Center, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - Derek Gragson
- Department of Chemistry and Biochemistry, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - David W Everett
- Riddet Institute , Palmerston North, 4442 Manawatu, New Zealand
- Department of Food Science, University of Otago , Dunedin, 9054 Otago, New Zealand
| |
Collapse
|
47
|
Collins MD, Gordon SE. Giant liposome preparation for imaging and patch-clamp electrophysiology. J Vis Exp 2013. [PMID: 23851612 DOI: 10.3791/50227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The reconstitution of ion channels into chemically defined lipid membranes for electrophysiological recording has been a powerful technique to identify and explore the function of these important proteins. However, classical preparations, such as planar bilayers, limit the manipulations and experiments that can be performed on the reconstituted channel and its membrane environment. The more cell-like structure of giant liposomes permits traditional patch-clamp experiments without sacrificing control of the lipid environment. Electroformation is an efficient mean to produce giant liposomes >10 μm in diameter which relies on the application of alternating voltage to a thin, ordered lipid film deposited on an electrode surface. However, since the classical protocol calls for the lipids to be deposited from organic solvents, it is not compatible with less robust membrane proteins like ion channels and must be modified. Recently, protocols have been developed to electroform giant liposomes from partially dehydrated small liposomes, which we have adapted to protein-containing liposomes in our laboratory. We present here the background, equipment, techniques, and pitfalls of electroformation of giant liposomes from small liposome dispersions. We begin with the classic protocol, which should be mastered first before attempting the more challenging protocols that follow. We demonstrate the process of controlled partial dehydration of small liposomes using vapor equilibrium with saturated salt solutions. Finally, we demonstrate the process of electroformation itself. We will describe simple, inexpensive equipment that can be made in-house to produce high-quality liposomes, and describe visual inspection of the preparation at each stage to ensure the best results.
Collapse
Affiliation(s)
- Marcus D Collins
- Department of Physiology and Biophysics, University of Washington
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington;
| |
Collapse
|
48
|
Unsay JD, García-Sáez AJ. Scanning fluorescence correlation spectroscopy in model membrane systems. Methods Mol Biol 2013; 1033:185-205. [PMID: 23996179 DOI: 10.1007/978-1-62703-487-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is an emerging technique employed in biophysical studies that exploits the temporal autocorrelation of fluorescence intensity fluctuations measured in a tiny volume (in the order of fL). The autocorrelation curve derived from the fluctuations can then be fitted with diffusion models to obtain parameters such as diffusion time and number of particles in the diffusion volume/area. Application of FCS to membranes allows studying membrane component dynamics, which includes mobility and interactions between the components. However, FCS encounters several difficulties like accurate positioning and stability of the setup when applied to membranes. Here, we describe the theoretical basis of point FCS as well as the scanning FCS (SFCS) approach, which is a practical way to address the challenges of FCS with membranes. We also list materials necessary for FCS experiments on two model membrane systems: (1) supported lipid bilayers and (2) giant unilamellar vesicles. Finally, we present simple protocols for the preparation of these model membrane systems, calibration of the microscope setup for FCS, and acquisition and analysis of point FCS and SFCS data so that diffusion coefficients and concentrations of fluorescent probes within lipid membranes can be calculated.
Collapse
|
49
|
Zhu T, Xu F, Yuan B, Ren C, Jiang Z, Ma Y. Effect of calcium cation on lipid vesicle deposition on silicon dioxide surface under various thermal conditions. Colloids Surf B Biointerfaces 2012; 89:228-33. [DOI: 10.1016/j.colsurfb.2011.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/06/2011] [Accepted: 09/11/2011] [Indexed: 11/28/2022]
|
50
|
Okumura Y, Oana S. Effect of counter electrode in electroformation of giant vesicles. MEMBRANES 2011; 1:345-53. [PMID: 24957873 PMCID: PMC4021877 DOI: 10.3390/membranes1040345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/10/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs), from egg yolk phosphatidylcholine, was examined varying the shape of the counter electrode. Instead of a planar ITO (indium tin oxide) electrode commonly used, platinum wire mesh was employed as a counter electrode facing lipid deposit on a planar formation electrode. The modification did not significantly alter GV formation, and many GVs of 30–50 μm, some as large as 100 μm, formed as with the standard setup, indicating that a counter electrode does not have to be a complete plane. When the counter electrode was reduced to a set of two parallel platinum wires, GV formation deteriorated. Some GVs formed, but only in close proximity to the counter electrode. Lower electric voltage with this setup no longer yielded GVs. Instead, a large onion-like multilamellar structure was observed. The deteriorated GV formation and the formation of a multilamellar structure seemed to indicate the weakened effect of the electric field on lipid deposit due to insufficient coverage with a small counter electrode. Irregular membranous objects formed by spontaneous swelling of lipid without electric voltage gradually turned into multilamellar structure upon following application of voltage. No particular enhancement of GV formation was observed when lipid deposit on a wire formation electrode was used in combination with a large planar counter electrode.
Collapse
Affiliation(s)
- Yukihisa Okumura
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Shuuhei Oana
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|