1
|
Cardoso VMDO, Bistaffa MJ, Sterman RG, Lima LLPD, Toldo GS, Cancino-Bernardi J, Zucolotto V. Nanomedicine Innovations for Lung Cancer Diagnosis and Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13197-13220. [PMID: 40045524 DOI: 10.1021/acsami.4c16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Lung cancer remains a challenge within the realm of oncology. Characterized by late-stage diagnosis and resistance to conventional treatments, the currently available therapeutic strategies encompass surgery, radiotherapy, chemotherapy, immunotherapy, and biological therapy; however, overall patient survival remains suboptimal. Nanotechnology has ushered in a new era by offering innovative nanomaterials with the potential to precisely target cancer cells while sparing healthy tissues. It holds the potential to reshape the landscape of cancer management, offering hope for patients and clinicians. The assessment of these nanotechnologies follows a rigorous evaluation process similar to that applied to chemical drugs, which includes considerations of their pharmacokinetics, pharmacodynamics, toxicology, and clinical effectiveness. However, because of the characteristics of nanoparticles, standard toxicological tests require modifications to accommodate their unique characteristics. Effective therapeutic strategies demand a profound understanding of the disease and consideration of clinical outcomes, physicochemical attributes of nanomaterials, nanobiointeractions, nanotoxicity, and regulatory compliance to ensure patient safety. This review explores the promise of nanomedicine in lung cancer treatment by capitalizing on its unique physicochemical properties. We address the multifaceted challenges of lung cancer and its tumor microenvironment and provide an overview of recent developments in nanoplatforms for early diagnosis and treatment that can enhance patient outcomes and overall quality of life.
Collapse
Affiliation(s)
- Valéria Maria de Oliveira Cardoso
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Raquel González Sterman
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Lorena Leticia Peixoto de Lima
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Gustavo Silveira Toldo
- Chemistry Department, Laboratory in Bioanalytical of Nanosystems, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Chemistry Department, Laboratory in Bioanalytical of Nanosystems, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
- Comprehensive Center for Precision Oncology, C2PO, University of São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
2
|
Guo Y, Li Y, Li J, Cai H, Liu K, Duan D, Zhang W, Han G, Zhao Y. Controlled Inflammation Drives Neutrophil-Mediated Precision Drug Delivery in Heterogeneous Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411307. [PMID: 39799561 PMCID: PMC11923894 DOI: 10.1002/advs.202411307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/05/2024] [Indexed: 01/15/2025]
Abstract
Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers. This strategy not only enhances targeted drug delivery but also triggers the release of neutrophil extracellular traps, further potentiating the anti-tumor effect. Crucially, this study demonstrates that potential systemic inflammatory responses can be effectively mitigated through neutrophil transfusion, ensuring the safety and clinical viability of this approach. In a murine breast cancer model, the method significantly impedes tumor growth compared to conventional treatments. This work offers a versatile strategy for precise drug delivery across diverse tumor types. The findings pave the way for more effective and broadly applicable cancer treatments, potentially addressing the long-standing challenge of tumor heterogeneity.
Collapse
Affiliation(s)
- Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Haoran Cai
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Kangkang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
| | - Gang Han
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, P. R. China
- Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
3
|
Adebayo AS, Jankie S, Johnson J, Pereira LP, Agbaje K, Adesina SK. Pharmacokinetics of Levofloxacin Entrapped in Non-Ionic Surfactant Vesicles (Niosomes) in Sprague Dawley Rats. Pharmaceutics 2025; 17:275. [PMID: 40006642 PMCID: PMC11859819 DOI: 10.3390/pharmaceutics17020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Bacteria are becoming increasingly resistant to levofloxacin and other fluoroquinolones. Previously, drug loading in colloidal carriers has shown enhanced penetration into and retention in bacterial cells. However, the mechanism of levofloxacin niosomes' bio-disposition in rats has not been reported. This study investigated the pharmacokinetics (PK) of optimized levofloxacin niosomes following intraperitoneal injection into Sprague Dawley rats. Methods: Formulation and processing variables settings were determined using DoE Fusion One software. The resulting data input into the Optimizer module provided niosome formulation for in vivo study in Sprague Dawley rats. Each group of rats (n = 6) was injected intraperitoneally with either conventional levofloxacin or its niosomes at equivalent doses of 7.5 mg/kg/dose. Blood samples were collected via tail snip and analyzed using a validated HPLC method. The plasma-time data were fed into the Gastroplus software (Simulations Plus, CA) and used to model levofloxacin PK. Results: Niosomes for in vivo study had a mean hydrodynamic diameter of 329.16 nm (±18.0), encapsulation efficiency (EE) of 30.74%, Zeta potential of 21.72 (±0.54), and polydispersity index (PDI) of 0.286 (±0.014). Both the Akaike and Schwarz criteria showed levofloxacin niosomes and conventional drug formulation obeying one- and two-compartment PK models, respectively. Thus, formulation in niosomes altered levofloxacin biodistribution by concentrating the drug in the vascular compartment. Conclusions: Niosome encapsulation of levofloxacin altered its biodistribution and pharmacokinetic profile, possibly by protecting i.p. levofloxacin en route into plasma, and significantly enhanced its plasma concentration with enhanced potential for treating intravascular infections.
Collapse
Affiliation(s)
- Amusa S. Adebayo
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th Street NW, Rm 309, Washington, DC 20059, USA; (K.A.); (S.K.A.)
| | - Satish Jankie
- School of Pharmacy, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Jenelle Johnson
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Lexley Pinto Pereira
- Department of Paraclinical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Kafilat Agbaje
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th Street NW, Rm 309, Washington, DC 20059, USA; (K.A.); (S.K.A.)
| | - Simeon K. Adesina
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th Street NW, Rm 309, Washington, DC 20059, USA; (K.A.); (S.K.A.)
| |
Collapse
|
4
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
5
|
Niu R, Liu X, Yang X, Du X, Wang S, Ma X, Yin S, Shao L, Zhang J. Advances in Pure Drug Self-Assembled Nanosystems: A Novel Strategy for Combined Cancer Therapy. Pharmaceutics 2025; 17:68. [PMID: 39861716 PMCID: PMC11768559 DOI: 10.3390/pharmaceutics17010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production. This innovative approach presents new opportunities to enhance both the safety and therapeutic efficacy of cancer treatments. This review comprehensively explores recent progress in the application of PDANSs for cancer therapy. It begins by detailing the self-assembly mechanisms and fundamental principles underlying PDANS formation. The discussion then advances to strategies for assembling single pure drug nanoparticles, as well as the co-assembly of multiple drugs. Subsequently, the review addresses the therapeutic potential of PDANSs in combination treatment modalities, encompassing diagnostic and therapeutic applications. These include combinations of chemotherapeutic agents, phototherapeutic approaches, the integration of chemotherapy with phototherapy, and the synergistic use of immunotherapy with other treatment methods. Finally, the review highlights the potential of PDANSs in advancing tumor therapy and their prospects for clinical application, providing key insights for future research aimed at optimizing this technology and broadening its utility in cancer treatment.
Collapse
Affiliation(s)
- Runyan Niu
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210008, China
| | - Xuexue Liu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China;
| | - Xian Yang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Xiao Du
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Siliang Wang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| | - Xiaolong Ma
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Shaoping Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210008, China;
| | - Lihua Shao
- Department of Colorectal Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China;
| | - Jinping Zhang
- Nanjing Medical Center for Clinical Pharmacy, Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (R.N.); (X.Y.); (X.D.); (S.W.)
| |
Collapse
|
6
|
Aundhia C, Shah N, Talele C, Zanwar A, Kumari M, Patil S. Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery. Pharm Nanotechnol 2025; 13:55-69. [PMID: 38284710 DOI: 10.2174/0122117385271654231215064542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Nirmal Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Aarti Zanwar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Mamta Kumari
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Sapana Patil
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
7
|
Zhang Y, Zhu Y, Deng T, Du Y. Exploring and Anticipating the Applications of Organic Room-Temperature Phosphorescent Materials in Biomedicine and Dentistry. Int J Nanomedicine 2024; 19:13201-13216. [PMID: 39670197 PMCID: PMC11636246 DOI: 10.2147/ijn.s492759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
As popular materials, organic room-temperature phosphorescent (RTP) materials have been studied and developed in many fields. RTP materials have the characteristics of a high signal-to-noise ratio (SNR) and high reactive oxygen species (ROS) quantum yield, which can achieve clear bioimaging and efficient ability of anti-tumor and antibacterial, and have received extensive attention from researchers for imaging, tumor therapy, and antibacterial treatment. Moreover, owing to their flexible molecular structures and various synthesis systems and methods, it may be possible to design and synthesize materials according to individual physiologic environments of patients in medical applications, making bioimaging more accurate and greatly improving tumor and bacterial killing rates. So they have great development potential in the medical field. On the basis of introducing the mechanism of RTP materials that emit phosphorescence and generate ROS, this review summarizes the medical applications of RTP materials from three aspects-bioimaging, tumor treatment and antibacterial treatment-to provide a basis for their application in the field of stomatology.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yeyuhan Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Tian Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People’s Republic of China
| |
Collapse
|
8
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Asl AM, Abdouss M, Kalaee MR, Homami SS, Pourmadadi M. Targeted delivery of quercetin using gelatin/starch/Fe 3O 4 nanocarrier to suppress the growth of liver cancer HepG2 cells. Int J Biol Macromol 2024; 281:136535. [PMID: 39401620 DOI: 10.1016/j.ijbiomac.2024.136535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
To suppress HepG2 liver cancer cells, a nanocarrier (NC) consisting of Fe3O4, Gelatin (G), and Starch (S) was synthesized and characterized for targeted delivery of Quercetin (QC) drug. The spectra obtained from X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated that the nanoparticles (NP) in the NC are well-interconnected to each other and have formed a regular structure. Also, field emission scanning electron microscopy (FE-SEM) indicates a smooth and homogeneous surface of the synthesized NC. The results of the vibrating sample magnetometer (VSM) also corroborated the correctness of the synthesis of Fe3O4 NPs and Gelatin/Starch/Fe3O4@Quercetin NC (G/S/Fe3O4@QC) because the magnetic properties of Fe3O4 decreased with the addition of G/S@QC. Stability and particle size were determined by zeta potential and Dynamic light scattering (DLS). The percentage of drug loading and encapsulation efficiency of QC in the NC was 46.25 % and 87 %, respectively. QC profile release in acidic and natural environments showed controlled release and pH sensitivity of the NC. Cytotoxicity of L929 and HepG2 treated cells with the G/S/Fe3O4@QC was investigated by MTT staining, which agreed with the flow cytometry result. The results of Flowcytometry and MTT showed 43.5 % apoptosis and 42 % cytotoxicity in treated HepG2 cells by G/S/Fe3O4@QC, while it was not toxic to L929 normal cells. According to the results, G/S/Fe3O4@QC is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.
Collapse
Affiliation(s)
- Afsaneh Mojtahedzadeh Asl
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, P.O. Box 15875-4413, Tehran, Iran.
| | - Mohammad Reza Kalaee
- Department of Polymer and Chemical Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran; Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran.
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, South Tehran Branch, Islamic Azad University, Tehran, Iran; Research Center of Modeling and Optimization in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran
| |
Collapse
|
10
|
Jadhav V, Bhagare A, Palake A, Kodam K, Dhaygude A, Kardel A, Lokhande D, Aher J. In vitro cytotoxicity assessment of biosynthesized Apis mellifera bee venom nanoparticles (BVNPs) against MCF-7 breast cancer cell lines. DISCOVER NANO 2024; 19:170. [PMID: 39402248 PMCID: PMC11473470 DOI: 10.1186/s11671-024-04123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
In this work, we reported the synthesis of honey bee (Apis mellifera) venom-derived nanoparticles via a hydrothermal method. This method not only ensures the preservation of the bee venom's bioactive components but also enhances their potential stability, thus broadening the scope for their applications in the biomedicinal field. The synthesis method started with the homogenization suspension of bee venom, followed by its hydrothermal process to synthesize bee venom nanoparticles (BVNPs). The successful synthesis of BVNPs was characterized using various characteristic techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Fourier Transforms Infrared (FTIR) Spectroscopy, Zeta Potential (ZP), Liquid Chromatography-Mass Spectrometry (LCMS), and Transmission Electron Microscopy (TEM). The synthesis of BVNPs through biosynthesis is shown by the visible violet-brown color development at 347 nm by UV-Vis spectroscopy. FTIR analysis revealed the presence of several functional groups in the BVNPs, including alcohols (-OH), phenols (C6H5-), carboxylic acids (-COOH), amines (-NH2, -NH-), aldehydes (-CHO), ketones (-CO-), nitriles (-CN), amides (-CO-N-), imines (-CNH-), esters (-COO-), and polysaccharides. These functional groups, as confirmed by their specific stretching and bending vibrational modes, contribute to the diverse biological activities of BVNPs, including cytotoxicity against MCF-7 breast cancer cells. The ZP of the BVNPs indicated good colloidal stability at - 45 mV. LCMS analysis confirmed the presence of major bioactive molecules, including melittin & apamin and TEM analysis shows the BVNPs exhibited a quasi-spherical shape with good dispersion, the average size was approximately 25 nm, with some being smaller (quantum dots) and interplanar spacing of 0.236 nm indicated a highly ordered crystalline structure. Moreover, the anticancer efficacy of the BVNPs was ascertained through in vitro assays against MCF-7 breast cancer cells, showing a dose-dependent cytotoxic effect. The findings of this study underscore the viability of hydrothermal synthesis in producing biologically active and structurally stable BVNPs, with a significant potential for anticancer activities.
Collapse
Affiliation(s)
- Vikram Jadhav
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India.
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Arun Bhagare
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Ashwini Palake
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Kisan Kodam
- Biochemistry Division, Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Dhaygude
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Anant Kardel
- Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India
| | - Dnyaneshwar Lokhande
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| | - Jayraj Aher
- Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
| |
Collapse
|
11
|
Guo L, Zhao Q, Wang M. Core-Shell Microspheres with Encapsulated Gold Nanoparticle Carriers for Controlled Release of Anti-Cancer Drugs. J Funct Biomater 2024; 15:277. [PMID: 39452576 PMCID: PMC11509066 DOI: 10.3390/jfb15100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer is one of the major threats to human health and lives. However, effective cancer treatments remain a great challenge in clinical medicine. As a common approach for cancer treatment, chemotherapy has saved the life of millions of people; however, patients who have gone through chemotherapy often suffer from severe side effects owing to the inherent cytotoxicity of anti-cancer drugs. Stabilizing the blood concentration of an anti-cancer drug will reduce the occurrence or severity of side effects, and relies on using an appropriate drug delivery system (DDS) for achieving sustained or even on-demand drug delivery. However, this is still an unmet clinical challenge since the mainstay of anti-cancer drugs is small molecules, which tend to be diffused rapidly in the body, and conventional DDSs exhibit the burst release phenomenon. Here, we establish a class of DDSs based on biodegradable core-shell microspheres with encapsulated doxorubicin hydrochloride-loaded gold nanoparticles (DOX@Au@MSs), with the core-shell microspheres being made of poly(lactic-co-glycolic acid) in the current study. By harnessing the physical barrier of the biodegradable shell of core-shell microspheres, DOX@Au@MSs can provide a sustained release of the anti-cancer drug in the test duration (which is 21 days in the current study). Thanks to the photothermal properties of the encapsulated gold nanoparticle carriers, the core-shell biodegradable microspheres can be ruptured through remotely controlled near-infrared (NIR) light, thereby achieving an NIR-controlled triggered release of the anti-cancer drug. Furthermore, the route of the DOX-Au@MS-enabled controlled release of the anti-cancer drug can provide durable cancer cell ablation for the long period of 72 h.
Collapse
Affiliation(s)
- Lin Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| | - Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| |
Collapse
|
12
|
Si Q, Bai M, Wang X, Wang T, Qin Y. Photonanozyme-Kras-ribosome combination treatment of non-small cell lung cancer after COVID-19. Front Immunol 2024; 15:1420463. [PMID: 39308869 PMCID: PMC11412844 DOI: 10.3389/fimmu.2024.1420463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.
Collapse
Affiliation(s)
- Qiaoyan Si
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingjian Bai
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Qin
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Altuwaijri N, Atef E. Transferrin-Conjugated Nanostructured Lipid Carriers for Targeting Artemisone to Melanoma Cells. Int J Mol Sci 2024; 25:9119. [PMID: 39201805 PMCID: PMC11354828 DOI: 10.3390/ijms25169119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
We report a successful formulation of Artemisone (ATM) in transferrin (Tf)-conjugated nanostructured lipid carriers (NLCs), achieving nearly a five-times increase in cell toxicity. The escalating cost of new drug discoveries led to the repurposing of approved drugs for new indications. This study incorporated Artemisone, an antimalarial drug, into a nanostructured lipid carrier (NLC) and tested for possible anticancer effects. The aim was to develop NLCs, and transferrin-conjugated NLCs (NLC-Tf) encapsulating Artemisone to enhance its delivery and anticancer activity. NLC formulations were prepared using high-pressure homogenization followed by ultrasonication and were characterized by particle size, zeta potential, and PDI. The conjugation of (Tf) to (NLC) was confirmed using IR, and the anticancer activity was tested using MTS assay. All formulations were in the nanometer size range (140-167 nm) with different zeta potential values. IR spectroscopy confirmed the successful conjugation of transferrin to NLC. Upon testing the formulations on melanoma cell lines using MTS assay, there was a significant decrease in viability and an increase in the encapsulated ATM-Tf toxicity compared to positive control ATM. The NLCs presented a promising potential carrier for delivering ATM to melanoma cells, and further conjugation with Tf significantly improved the ATM cytotoxicity.
Collapse
Affiliation(s)
- Njoud Altuwaijri
- Pharmaceutical Sciences Department, MCPHS University, 179 Longwood Ave, Boston, MA 02115, USA
| | - Eman Atef
- Pharmacy College, West Coast University, 590 N Vermont Ave, Los Angeles, CA 90005, USA
| |
Collapse
|
14
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
15
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
16
|
Badivi S, Kazemi S, Eskandarisani M, Moghaddam NA, Mesbahian G, Karimifard S, Afzali E. Targeted delivery of bee venom to A549 lung cancer cells by PEGylate liposomal formulation: an apoptotic investigation. Sci Rep 2024; 14:17302. [PMID: 39068207 PMCID: PMC11283506 DOI: 10.1038/s41598-024-68156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
This study focused on developing an optimal formulation of liposomes loaded with bee venom (BV) and coated with PEG (BV-Lipo-PEG). The liposomes were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transform infrared spectroscopy. Among the liposomal formulations, F3 exhibited the narrowest size distribution with a low PDI value of 193.72 ± 7.35, indicating minimal agglomeration-related issues and a more uniform size distribution. BV-Lipo-PEG demonstrated remarkable stability over 3 months when stored at 4 °C. Furthermore, the release of the drug from the liposomal formulations was found to be pH-dependent. Moreover, BV-Lipo-PEG exhibited favorable entrapment efficiencies, with values reaching 96.74 ± 1.49. The anticancer potential of the liposomal nanocarriers was evaluated through MTT assay, flow cytometry, cell cycle analysis, and real-time experiments. The functionalization of the liposomal system enhanced endocytosis. The IC50 value of BV-Lipo-PEG showed a notable decrease compared to both the free drug and BV-Lipo alone, signifying that BV-Lipo-PEG is more effective in inducing cell death in A549 cell lines. BV-Lipo-PEG exhibited a higher apoptotic rate in A549 cell lines compared to other samples. In A549 cell lines treated with BV-Lipo-PEG, the expression levels of MMP-2, MMP-9, and Cyclin E genes decreased, whereas the expression levels of Caspase3 and Caspase9 increased. These findings suggest that delivering BV via PEGylated liposomes holds significant promise for the treatment of lung cancer.
Collapse
Affiliation(s)
- Samireh Badivi
- Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Kazemi
- Bogomolets National Medical University, Kyiv, Ukraine
| | - Mohammadmahdi Eskandarisani
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | | | - Ghazal Mesbahian
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Karimifard
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Elham Afzali
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
17
|
Aragoneses-Cazorla G, Alvarez-Fernandez Garcia R, Martinez-Lopez A, Gomez Gomez M, Vallet-Regí M, Castillo-Lluva S, González B, Luque-Garcia JL. Mechanistic insights into the antitumoral potential and in vivo antiproliferative efficacy of a silver-based core@shell nanosystem. Int J Pharm 2024; 655:124023. [PMID: 38513815 DOI: 10.1016/j.ijpharm.2024.124023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
This study delves into the biomolecular mechanisms underlying the antitumoral efficacy of a hybrid nanosystem, comprised of a silver core@shell (Ag@MSNs) functionalized with transferrin (Tf). Employing a SILAC proteomics strategy, we identified over 150 de-regulated proteins following exposure to the nanosystem. These proteins play pivotal roles in diverse cellular processes, including mitochondrial fission, calcium homeostasis, endoplasmic reticulum (ER) stress, oxidative stress response, migration, invasion, protein synthesis, RNA maturation, chemoresistance, and cellular proliferation. Rigorous validation of key findings substantiates that the nanosystem elicits its antitumoral effects by activating mitochondrial fission, leading to disruptions in calcium homeostasis, as corroborated by RT-qPCR and flow cytometry analyses. Additionally, induction of ER stress was validated through western blotting of ER stress markers. The cytotoxic action of the nanosystem was further affirmed through the generation of cytosolic and mitochondrial reactive oxygen species (ROS). Finally, in vivo experiments using a chicken embryo model not only confirmed the antitumoral capacity of the nanosystem, but also demonstrated its efficacy in reducing cellular proliferation. These comprehensive findings endorse the potential of the designed Ag@MSNs-Tf nanosystem as a groundbreaking chemotherapeutic agent, shedding light on its multifaceted mechanisms and in vivo applicability.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Angelica Martinez-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Milagros Gomez Gomez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Maria Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Ali K, Nabeel M, Mohsin F, Iqtedar M, Islam M, Rasool MF, Hashmi FK, Hussain SA, Saeed H. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 2024; 41:112. [PMID: 38592510 DOI: 10.1007/s12032-024-02347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.
Collapse
Affiliation(s)
- Khubaib Ali
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Nabeel
- Department of Clinical Pharmacy, Akhtar Saeed College of Pharmaceutical Sciences, Bahria Town, Lahore, Pakistan
- Department Clinical Oncology Pharmacy, Cancer Care Hospital & Research Centre, Lahore, Pakistan
| | - Fatima Mohsin
- Department of Biological Sciences, KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Mehwish Iqtedar
- Department of Bio-Technology, Lahore College for Women University, Jail Road, Lahore, Pakistan
| | - Muhammad Islam
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Furqan K Hashmi
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | | | - Hamid Saeed
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan.
| |
Collapse
|
19
|
Carvalho SG, Haddad FF, Dos Santos AM, Scarim CB, Ferreira LMB, Meneguin AB, Chorilli M, Gremião MPD. Chitosan surface modification modulates the mucoadhesive, permeation and anti-angiogenic properties of gellan gum/bevacizumab nanoparticles. Int J Biol Macromol 2024; 263:130272. [PMID: 38373560 DOI: 10.1016/j.ijbiomac.2024.130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Bevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.0 ± 2.75 nm and 314.0 ± 0.01 nm, polydispersity index of 0.182 ± 0.01 e 0.288 ± 0.01, and encapsulation efficiency of 29.36 ± 0.67 e 60.35 ± 0.27 mV, for NPs without (NP_BVZ) and with surface modification (NP_BVZ + CS). The results showed a good ability of nanoparticles with surface modification to modulate the NPs biological properties.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Felipe Falcão Haddad
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Leonardo Miziara Barboza Ferreira
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
20
|
Pashizeh F, Mansouri A, Bazzazan S, Abdihaji M, Khaleghian M, Bazzazan S, Rezei N, Eskandari A, Mashayekhi F, Heydari M, Tavakkoli Yaraki M. Bioresponsive gingerol-loaded alginate-coated niosomal nanoparticles for targeting intracellular bacteria and cancer cells. Int J Biol Macromol 2024; 258:128957. [PMID: 38154726 DOI: 10.1016/j.ijbiomac.2023.128957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Targeting and treating intracellular pathogen infections has been long-standing challenge, particularly in light of the escalating prevalence of antimicrobial resistance. Herein, an optimum formulation of alginate (AL)-coated niosome-based carriers for delivery of herbal extract Gingerol (Gin) was developed to treat intracellular pathogen infections and cancer cells. We used Gin-Nio@AL as a model drug to assess its efficacy against Gram-negative/positive bacteria and breast cancer cell lines. Our investigation affirmed its heightened antibacterial and anticancer properties. The antibacterial activity of Gin-Nio@AL against intracellular Staphylococcus aureus (S. aureus) and pseudomonas aeruginosa (P. aeruginosa) was also tested. In the current study, the niosome nanoparticles containing herbal extract Gingerol were optimized regarding lipid content and Surfactant per Cholesterol molar ratio. The developed formulation provided potential advantages, such as smooth globular surface morphology, small diameter (240.68 nm), pH-sensitive sustained release, and high entrapment efficiency (94.85 %). The release rate of Gin from AL-coated niosomes (Gin-Nio@AL) in physiological and acidic pH is lower than uncoated nanoparticles (Gin-Nio). Besides, the release rate of Gin from niosomal formulations increased in acidic pH. The Gin-Nio@AL demonstrated good antimicrobial activity against S. aureus and P. aeruginosa, and compared to Gin-Nio, the MIC values decreased to 7.82 ± 0.00 and 1.95 ± 0.00 μg/mL, respectively. In addition, the time-kill assay results showed that the developed formulation significantly reduced the number of bacteria in both strains compared to other tested groups. The microtiter data and scanning electron microscope micrography showed that Gin-Nio@AL has a more significant inhibitory effect on biofilm formation than Gin-Nio and Gin. The cell cytotoxicity evaluation showed that Gin-Nio@AL reduced the survival rate of MDA-MB-231 cancer cells to 52.4 % and 45.2 % after 48 h and 72 h, respectively. The elimination of intracellular pathogens was investigated through a breast cancer cell infection in an in vitro model. Gin-Nio@AL exhibited an enhanced and sustained intracellular antibacterial activity against pathogens-infected breast cancer cells compared to other tested formulations. Overall, Gin-Nio@AL enables the triggered release and targeting of intra-extra cellular bacteria and cancer cells and provides a novel and promising candidate for treating intracellular pathogen infections and cancer cells.
Collapse
Affiliation(s)
- Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science Yazd, Iran
| | - Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saina Bazzazan
- Department of Community Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammadreza Abdihaji
- Department of Biology, The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Saba Bazzazan
- Department of Community Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Rezei
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Eskandari
- CTERC, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Mashayekhi
- Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
21
|
Zeb F, Mehreen A, Naqeeb H, Ullah M, Waleed A, Awan UA, Haider A, Naeem M. Nutrition and Dietary Intervention in Cancer: Gaps, Challenges, and Future Perspectives. Cancer Treat Res 2024; 191:281-307. [PMID: 39133412 DOI: 10.1007/978-3-031-55622-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The term "cancer" refers to the state in which cells in the body develop mutations and lose control over their replication. Malignant cancerous cells invade in various other tissue sites of the body. Chemotherapy, radiation, and surgery are the first-line modalities for the majority of solid cancers. These treatments work by mitigating the DNA damage of cancerous cells, but they can also cause harm to healthy cells. These side effects might be immediate or delayed, and they can cause a high rate of morbidity and mortality. Dietary interventions have a profound impact on whole-body metabolism, including immunometabolism and oncometabolism which have been shown to reduce cancer growth, progression, and metastasis in many different solid tumor models with promising outcomes in early phase clinical studies. Dietary interventions can improve oncologic or quality-of-life outcomes for patients that are undergoing chemotherapy or radiotherapy. In this chapter, we will focus on the impact of nutritional deficiencies, several dietary interventions and their proposed mechanisms which are used as a novel therapy in controlling and managing cancers.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanum Memorial Cancer Hospital, and Research Center, Peshawar, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Afraa Waleed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
22
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem 2023; 259:115676. [PMID: 37499287 DOI: 10.1016/j.ejmech.2023.115676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Aghdas Ramezani
- Faculty of Medical Science, Tarbiat Modares, University, Tehran, Iran
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
23
|
Wan Q, Zhang X, Zhou D, Xie R, Cai Y, Zhang K, Sun X. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnology 2023; 21:215. [PMID: 37422665 DOI: 10.1186/s12951-023-01971-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.
Collapse
Affiliation(s)
- Qianyu Wan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongfang Zhou
- Zhejiang China Resources Sanjiu Zhongyi Pharmaceutical Co., Ltd, Lishui, 323000, China
| | - Rui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kehao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
24
|
Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide–Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther 2023; 29:53. [DOI: 10.1007/s10989-023-10523-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/06/2025]
Abstract
AbstractThere have been great advancements in targeted nanodrug delivery systems for tumor therapy. Liposomes, polymeric nanoparticles, and inorganic nanoparticles are commonly employed as nanocarriers for drug delivery, and it has been found that arginine glycine aspartic acid (RGD) peptides and their derivatives can be used as ligands of integrin receptors to enhance the direct targeting ability. In this paper, we review the recent applications of RGD-modified liposomes, polymeric nanoparticles, and inorganic nanocarriers in cancer diagnosis and treatment, discuss the current challenges and prospects, and examine the progress made by the latest research on RGD peptide–modified nano delivery systems in cancer therapy. In recent years, RGD peptide–modified nanodrug delivery systems have been proven to have great potential in tumor therapy. Finally, we provide an overview of the current limitations and future directions of RGD peptide–modified nano-drug delivery systems for cancer therapy. This review aims to elucidate the contribution of RGD peptide–modified nanodrug delivery systems in the field of tumor therapy.
Collapse
|
25
|
Verma R, Rani V, Kumar M. In-vivo anticancer efficacy of self-targeted methotrexate-loaded polymeric nanoparticles in solid tumor-bearing rat. Int Immunopharmacol 2023; 119:110147. [PMID: 37044039 DOI: 10.1016/j.intimp.2023.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Here, cytotoxicity and antitumor efficacy against a chemically (N-methyl-N-nitrosourea) generated mammary tumor in rats were assessed using methotrexate-loaded chitosan nanoparticles (Meth-Cs-NPs). Meth-Cs-NPs intravenous administrated resulted in noticeably decreased tumor incidence, multiplicity, and weight. Further, kidney function tests for the treated groups resulted in noticeably decreased ALP (Meth-Cs-NPs; 244 ± 15, diseases control; 403 ± 14 U/L), Creatinine (Meth-Cs-NPs; 0.81 ± 0.05, diseases control; 2 ± 0.05 mg/dl), and Urea (Meth-Cs-NPs; 56.62 ± 5, diseases control; 113 ± 6 mg/dl) levels, close to a normal control group. Similarly, liver function tests showed significantly decreased serum biomarkers, SGPT (Meth-Cs-NPs; 40 ± 1.8, diseases control; 84 ± 1.9 U/L) and SGOT (Meth-Cs-NPs; 15 ± 2, diseases control; 55 ± 4 U/L) levels in treated groups as compared to the untreated group (diseases control). From the results, pro-inflammatory cytokines were also markedly reduced in the treated group such as, TNF-α (Meth-Cs-NPs; 17.31 ± 1.15, diseases control; 36.9 ± 5 pg/mL), IL-1β (Meth-Cs-NPs; 433.3 ± 66.5, diseases control; 1540 ± 131.1 pg/mL), and IL-6 (Meth-Cs-NPs; 1515 ± 53, diseases control; 2200.6 ± 69 pg/mL) levels. Whereas Meth-Cs-NPs not only helped in lowering tumor multiplicity rates but also decrease inflammation. The studies could be successfully performed in chemically induced mammary tumors due to their easy, quick tumor growth and low mortality rates in rat models. According to the current study, Meth-Cs-NPs have high treatment potency and represent a possible therapeutic alternative for breast cancer treatment.
Collapse
Affiliation(s)
- Rinki Verma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India
| | - Varsha Rani
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India
| | - Manoj Kumar
- Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
26
|
Multilayered polymer coating modulates mucoadhesive and biological properties of camptothecin-loaded lipid nanocapsules. Int J Pharm 2023; 635:122792. [PMID: 36863543 DOI: 10.1016/j.ijpharm.2023.122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Lipid core nanocapsules (NCs) coated with multiple polymer layers were rationally designed as a potential approach for the colonic delivery of camptothecin (CPT). Chitosan (CS), hyaluronic acid (HA) and hypromellose phthalate (HP) were selected as coating materials, to modulate the mucoadhesive and permeability properties of CPT regarding the improvement of local and targeted action in the colon cancer cells. NCs were prepared by emulsification/solvent evaporation method and coated with multiple polymer layers by polyelectrolyte complexation technique. NCs exhibited spherical shape, negative zeta potential, and size ranged from 184 to 252 nm. The high efficiency of CPT incorporation (>94%) was evidenced. The ex vivo permeation assay showed that nanoencapsulation reduced the permeation rate of CPT through the intestinal mucosa by up to 3.5 times, and coating with HA and HP reduced the permeation percentage by 2 times when compared to NCs coated only with CS. The mucoadhesive capacity of NCs was demonstrated in gastric and enteric pH. Nanoencapsulation did not reduce the antiangiogenic activity of CPT and, additionally, it was observed that nanoencapsulation resulted in localized antiangiogenic action of CPT.
Collapse
|
27
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
28
|
Tulbah AS. In vitro bio-characterization of solid lipid nanoparticles of favipiravir in A549 human lung epithelial cancer cells. J Taibah Univ Med Sci 2023; 18:1076-1086. [PMID: 36994222 PMCID: PMC10040896 DOI: 10.1016/j.jtumed.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Objectives Lung cancer is a leading cause of mortality worldwide. In lung cancer treatment, nebulized solid lipid nanoparticles may be a viable drug delivery method, helping the drug reach sites of action, and improving its inhalation efficiency and pulmonary deposition. This research focused on evaluating the effectiveness of solid lipid nanoparticles of favipiravir (Fav-SLNps) in facilitating drug delivery to sites of action in lung cancer treatment. Methods The hot-evaporation method was used to formulate Fav-SLNps. The in vitro cell viability, anti-cancer effects, and cellular uptake activity were evaluated in A549 human lung adenocarcinoma cells treated with the Fav-SLNp formulation. Results The Fav-SLNps were formulated successfully. Importantly, Fav-SLNps at a concentration of 322.6 μg/ml were found to be safe and non-toxic toward A549 cells in vitro. The formulation had potential anti-proliferative properties via increasing the proportions of cells in G2/M and G0/G1 phases to 1.20 and 1.13 times those in untreated cells. Additionally, Fav-SLNp treatment significantly induced necrosis in A549 cells. Furthermore, the use of SLNps in the Fav formulation resulted in a macrophage drug uptake 1.23 times that of the free drug. Conclusion Our results confirmed the internalization and anti-cancer activity of the Fav-SLNp formulation in the A549 lung cancer cell line. Our findings suggest that Fav-SLNps could potentially be used as lung cancer treatment to facilitate drug delivery to sites of action in the lungs.
Collapse
|
29
|
Safari Sharafshadeh M, Tafvizi F, Khodarahmi P, Ehtesham S. Preparation and physicochemical properties of cisplatin and doxorubicin encapsulated by niosome alginate nanocarrier for cancer therapy. Int J Biol Macromol 2023; 235:123686. [PMID: 36801304 DOI: 10.1016/j.ijbiomac.2023.123686] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Alginate (AL), in the form of a hydrogel, is extensively used in drug delivery. In the current study, an optimum formulation of alginate-coated niosome-based nanocarriers for co-delivery of doxorubicin (Dox) and cisplatin (Cis) was obtained for the treatment of breast and ovarian cancers in an attempt to decrease drug doses and overcome multidrug resistance. The physiochemical characteristics of uncoated niosomes containing Cis and Dox (Nio-Cis-Dox) compared to alginate-coated niosomes formulation (Nio-Cis-Dox-AL). The three-level Box-Behnken method was examined to optimize the particle size, polydispersity index, entrapment efficacy (%), and percent drug release of nanocarriers. Nio-Cis-Dox-AL showed appropriate encapsulation efficiencies of 65.54 ± 1.25 % and 80.65 ± 1.80 % for Cis and Dox, respectively. Maximum drug release decreased from niosomes in case coated by alginate. Also, the zeta potential value of Nio-Cis-Dox nanocarriers decreased after coating with alginate. In vitro cellular and molecular experiments were performed to investigate the anticancer activity of Nio-Cis-Dox and Nio-Cis-Dox-AL. MTT assay showed the IC50 of Nio-Cis-Dox-AL was much lower than the Nio-Cis-Dox formulations and free drugs. Cellular and molecular assays demonstrated that Nio-Cis-Dox-AL caused significant increase in apoptosis induction rate and cell cycle arrest in MCF-7 and A2780 cancer cells, as compared to Nio-Cis-Dox and free drugs. Also, the Caspase 3/7 activity increased after treatment with coated niosomes compared to uncoated nisomes and the drug-free case. Synergetic cell proliferation inhibitory impacts of Cis and Dox were demonstrated against MCF-7 and A2780 cancer cells. All anticancer experimental data demonstrated that the co-delivery of Cis and Dox through alginate-coated niosomal nanocarriers was effective for ovarian and breast cancer treatment.
Collapse
Affiliation(s)
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Parvin Khodarahmi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Somayeh Ehtesham
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
30
|
Wang Y, Iqbal H, Ur-Rehman U, Zhai L, Yuan Z, Razzaq A, Lv M, Wei H, Ning X, Xin J, Xiao R. Albumin-based nanodevices for breast cancer diagnosis and therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Assali M, Jaradat N, Maqboul L. The Formation of Self-Assembled Nanoparticles Loaded with Doxorubicin and d-Limonene for Cancer Therapy. ACS OMEGA 2022; 7:42096-42104. [PMID: 36440142 PMCID: PMC9686194 DOI: 10.1021/acsomega.2c04238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/18/2022] [Indexed: 05/23/2023]
Abstract
Self-assembled nanoparticles present unique properties that have potential applications in the development of a successful drug delivery system. Doxorubicin (DOX) is an important anti-neoplastic anthracycline chemotherapeutic drug widely described. However, it suffers from serious dose-dependent cardiotoxicity. d-Limonene is a major constituent of numerous citrus oils that is considered a specific monoterpene against free radicals producing antioxidant activity. Herein, we aimed to design three types of self-assembled nanodelivery systems (nanoemulsion, niosomes, and polylactide nanoparticles) for loading both DOX and d-limonene to enhance the solubilization of d-limonene and provide antioxidant activity with excellent anticancer activity. As confirmed by dynamic light scattering and transmission electron microscopy, the nanoparticles were prepared successfully with diameter sizes of 52, 180, and 257 nm for the DOX-loaded nanoemulsion, niosomes, and polylactide nanoparticles, respectively. The zeta potential values were above -30 mV in all cases, which confirms the formation of stable nanoparticles. The loading efficiency of DOX was the highest in the case of the DOX-loaded nanoemulsion (75.8%), followed by niosomes (62.8%), and the least was in the case of polylactide nanoparticles with a percentage of 50.2%. The in vitro release study of the DOX-loaded nanoparticles showed a sustained release profile of doxorubicin with the highest release in the case of DOX-loaded PDLLA nanoparticles. The kinetic release model for all developed nanoparticles was the Peppas-Sahlin model, demonstrating DOX release through Fickian diffusion phenomena. Moreover, all developed nanoparticles maintain the antioxidant activity of d-limonene. The cytotoxicity study of the DOX-loaded nanoparticles showed concentration-dependent anticancer activity with excellent anticancer activity in the case of the DOX-loaded nanoemulsion and polylactide nanoparticles. These nanoparticles will be further studied in vivo to prove the cardioprotective effect of d-limonene in combination with DOX.
Collapse
|
32
|
Park KS, Bergqvist M, Lässer C, Lötvall J. Targeting Myd88 using peptide-loaded mesenchymal stem cell membrane-derived synthetic vesicles to treat systemic inflammation. J Nanobiotechnology 2022; 20:451. [PMID: 36243859 PMCID: PMC9571445 DOI: 10.1186/s12951-022-01660-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Mesenchymal stem cells (MSC) secrete extracellular vesicles (EV) with a regenerative profile, and an increasing number of studies have focused on the utilization of MSC-EV for therapeutic drug delivery. However, EV are usually produced by cells in low quantities and are packed with numerous cytoplasmic components, which may be unfavorable for further drug loading. In this study, we developed a simple process for generating membrane vesicles directly from the cells, which we refer to as synthetic eukaryotic vesicles (SyEV). We hypothesized that MSC-derived SyEV can be efficiently loaded with an anti-inflammatory drug and the loaded vesicles can strongly suppress the systemic inflammation induced by bacterial outer membrane vesicles (OMV). SyEV were generated from MSC membranes through serial extrusion of the cells, ionic stress, and subsequent vesiculation of the membrane sheets, leading to high yield and purity of the SyEV with few cytosolic components remaining. When these SyEV were given to macrophages or mice exposed to OMV, the release of pro-inflammatory cytokines was similarly attenuated comparable to treatment with natural EV. We then loaded the SyEV with large numbers of peptides targeting Myd88 and observed enhanced therapeutic potential of the loaded vesicles in OMV-induced macrophages. Further, in vivo experiments showed that the peptide-encapsulated MSC-SyEV suppressed cytokine production synergistically. Taken together, these findings suggest that SyEV-based therapeutics is a highly interesting platform for delivering an advanced therapeutic drug for the treatment of systemic inflammation without severe side effects.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Markus Bergqvist
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Mohanta YK, Nayak D, Mishra AK, Chakrabartty I, Ray MK, Mohanta TK, Tayung K, Rajaganesh R, Vasanthakumaran M, Muthupandian S, Murugan K, Sharma G, Dahms HU, Hwang JS. Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities. Int J Mol Sci 2022; 23:ijms231810626. [PMID: 36142546 PMCID: PMC9502095 DOI: 10.3390/ijms231810626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus–AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus–AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH−, O−, H2O2, and O2−) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Debasis Nayak
- Department of Wildlife and Biodiversity Conservation, Maharaja Sriram Chandra Bhanj Deo University, Baripada 757003, Odisha, India
| | | | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Manjit Kumar Ray
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Kumananda Tayung
- Department of Botany, Gauhati University, Jalukbari, Guwahati 781014, Assam, India
| | | | | | - Saravanan Muthupandian
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Chennai, India
| | - Kadarkarai Murugan
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gouridutta Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, Meghalaya, India
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung 80708, Taiwan
- Correspondence: (H.-U.D.); (J.-S.H.)
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (H.-U.D.); (J.-S.H.)
| |
Collapse
|
34
|
Ges Naranjo A, Viltres Cobas H, Kumar Gupta N, Rodríguez López K, Martínez Peña A, Sacasas D, Álvarez Brito R. 5-Fluorouracil uptake and release from pH-responsive nanogels: An experimental and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
36
|
Fabrication and application of copper metal–organic frameworks as nanocarriers for pH-responsive anticancer drug delivery. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Alotaibi NH, Munir MU, Alruwaili NK, Alharbi KS, Ihsan A, Almurshedi AS, Khan IU, Bukhari SNA, Rehman M, Ahmad N. Synthesis and Characterization of Antibiotic–Loaded Biodegradable Citrate Functionalized Mesoporous Hydroxyapatite Nanocarriers as an Alternative Treatment for Bone Infections. Pharmaceutics 2022; 14:pharmaceutics14050975. [PMID: 35631561 PMCID: PMC9146533 DOI: 10.3390/pharmaceutics14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The continuing growth of bacterial resistance makes the top challenge for the healthcare system especially in bone-infections treatment. Current estimates reveal that in 2050 the death ratio caused by bacterial infections can be higher than cancer. The aim of this study is to provide an alternative to currently available bone-infection treatments. Here we designed mesoporous hydroxyapatite nanocarriers functionalized with citrate (Ctr–mpHANCs). Amoxicillin (AMX) is used as a model drug to load in Ctr–mpHANCs, and the drug loading was more than 90% due to the porous nature of nanocarriers. Scanning electron microscopy shows the roughly spherical morphology of nanocarriers, and the DLS study showed the approximate size of 92 nm. The Brunauer–Emmett–Teller (BET) specific surface area and pore diameter was found to be about 182.35 m2/g and 4.2 nm, respectively. We noticed that almost 100% of the drug is released from the AMX loaded Ctr–mpHANCs (AMX@Ctr–mpHANCs) in a pH-dependent manner within 3 d and 5 d at pH 2.0 and 4.5, respectively. The sustained drug release behaviour was observed for 15 d at pH 7.4 and no RBCs hemolysis by AMX@Ctr–mpHANCs. The broth dilution and colony forming unit (CFU) assays were used to determine the antimicrobial potential of AMX@Ctr–mpHANCs. It was observed in both studies that AMX@Ctr–mpHANCs showed a significant reduction in the bacterial growth of S. aureus, E. coli, and P. aeruginosa as compared to Ctr–mpHANCs with no bacteria-killing. Thus, we proposed that Ctr–mpHANCs can be used as a drug carrier and a treatment option for bone infections caused by bacteria.
Collapse
Affiliation(s)
- Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
- Correspondence: (M.U.M.); (N.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan;
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
- Correspondence: (M.U.M.); (N.A.)
| |
Collapse
|
38
|
Mokhtar S, Khattab SN, Elkhodairy KA, Teleb M, Bekhit AA, Elzoghby AO, Sallam MA. Methotrexate-Lactoferrin Targeted Exemestane Cubosomes for Synergistic Breast Cancer Therapy. Front Chem 2022; 10:847573. [PMID: 35392419 PMCID: PMC8980280 DOI: 10.3389/fchem.2022.847573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
While the treatment regimen of certain types of breast cancer involves a combination of hormonal therapy and chemotherapy, the outcomes are limited due to the difference in the pharmacokinetics of both treatment agents that hinders their simultaneous and selective delivery to the cancer cells. Herein, we report a hybrid carrier system for the simultaneous targeted delivery of aromatase inhibitor exemestane (EXE) and methotrexate (MTX). EXE was physically loaded within liquid crystalline nanoparticles (LCNPs), while MTX was chemically conjugated to lactoferrin (Lf) by carbodiimide reaction. The anionic EXE-loaded LCNPs were then coated by the cationic MTX–Lf conjugate via electrostatic interactions. The Lf-targeted dual drug-loaded LCNPs exhibited a particle size of 143.6 ± 3.24 nm with a polydispersity index of 0.180. It showed excellent drug loading with an EXE encapsulation efficiency of 95% and an MTX conjugation efficiency of 33.33%. EXE and MTX showed synergistic effect against the MCF-7 breast cancer cell line with a combination index (CI) of 0.342. Furthermore, the Lf-targeted dual drug-loaded LCNPs demonstrated superior synergistic cytotoxic activity with a combination index (CI) of 0.242 and a dose reduction index (DRI) of 34.14 and 4.7 for EXE and MTX, respectively. Cellular uptake studies demonstrated higher cellular uptake of Lf-targeted LCNPs into MCF-7 cancer cells than non-targeted LCNPs after 4 and 24 h. Collectively, the targeted dual drug-loaded LCNPs are a promising candidate offering combinational hormonal therapy/chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- *Correspondence: Sherine N. Khattab, , ; Ahmed O. Elzoghby,
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Adnan A. Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Al-Manamah, Bahrain
| | - Ahmed O. Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- *Correspondence: Sherine N. Khattab, , ; Ahmed O. Elzoghby,
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
39
|
Villela Zumaya AL, Mincheva R, Raquez JM, Hassouna F. Nanocluster-Based Drug Delivery and Theranostic Systems: Towards Cancer Therapy. Polymers (Basel) 2022; 14:1188. [PMID: 35335518 PMCID: PMC8955999 DOI: 10.3390/polym14061188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g., drug delivery systems (DDS) and theranostics), in many cases recurrence continues to be a challenging issue. In this matter, the development of nanotechnology has led to an array of possibilities for cancer treatment. One of the most promising therapies focuses on the assembly of hierarchical structures in the form of nanoclusters, as this approach involves preparing individual building blocks while avoiding handling toxic chemicals in the presence of biomolecules. This review aims at presenting an overview of the major advances made in developing nanoclusters based on polymeric nanoparticles (PNPs) and/or inorganic NPs. The preparation methods and the features of the NPs used in the construction of the nanoclusters were described. Afterwards, the design, fabrication and properties of the two main classes of nanoclusters, namely noble-metal nanoclusters and hybrid (i.e., hetero) nanoclusters and their mode of action in cancer therapy, were summarized.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium; (R.M.); (J.-M.R.)
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| |
Collapse
|
40
|
Longoria-García S, Sánchez-Domínguez CN, Gallardo-Blanco H. Recent applications of cell-penetrating peptide guidance of nanosystems in breast and prostate cancer (Review). Oncol Lett 2022; 23:103. [PMID: 35154434 PMCID: PMC8822396 DOI: 10.3892/ol.2022.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are small peptides from natural sources or designed from other protein sequences that can penetrate cell membranes. This property has been used in biomedicine to add them to biomolecules to improve their capacity for cell internalization and as a guidance tool for specific cell types. CPPs have been shown to enhance cellular uptake in vitro and in vivo, improving the efficacy of anticancer drugs such as doxorubicin and paclitaxel, while also limiting their cytotoxic effects on healthy cells and tissues. The current study reviews the internalization and major therapeutic results achieved from the functionalization of nanosystems with CPPs for guidance into breast and prostate cancer cells in vitro and in vivo. In addition, the practical results obtained are specifically discussed for use as a starting point for scientists looking to begin research in this field.
Collapse
Affiliation(s)
- Samuel Longoria-García
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Celia Nohemi Sánchez-Domínguez
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Hugo Gallardo-Blanco
- Department of Genetics, University Hospital ‘José Eleuterio González’, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
41
|
Sheikh A, Alhakamy NA, Md S, Kesharwani P. Recent Progress of RGD Modified Liposomes as Multistage Rocket Against Cancer. Front Pharmacol 2022; 12:803304. [PMID: 35145405 PMCID: PMC8822168 DOI: 10.3389/fphar.2021.803304] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease, contributing approximately 9.4 million deaths worldwide. To address this challenge, scientific researchers have investigated molecules that could act as speed-breakers for cancer. As an abiotic drug delivery system, liposomes can hold both hydrophilic and lipophilic drugs, which promote a controlled release, accumulate in the tumor microenvironment, and achieve elongated half-life with an enhanced safety profile. To further improve the safety and impair the off-target effect, the surface of liposomes could be modified in a way that is easily identified by cancer cells, promotes uptake, and facilitates angiogenesis. Integrins are overexpressed on cancer cells, which upon activation promote downstream cell signaling and eventually activate specific pathways, promoting cell growth, proliferation, and migration. RGD peptides are easily recognized by integrin over expressed cells. Just like a multistage rocket, ligand anchored liposomes can be selectively recognized by target cells, accumulate at the specific site, and finally, release the drug in a specific and desired way. This review highlights the role of integrin in cancer development, so gain more insights into the phenomenon of tumor initiation and survival. Since RGD is recognized by the integrin family, the fate of RGD has been demonstrated after its binding with the acceptor’s family. The role of RGD based liposomes in targeting various cancer cells is also highlighted in the paper.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| |
Collapse
|
42
|
Sadat SMA, Wuest M, Paiva IM, Munira S, Sarrami N, Sanaee F, Yang X, Paladino M, Binkhathlan Z, Karimi-Busheri F, Martin GR, Jirik FR, Murray D, Gamper AM, Hall DG, Weinfeld M, Lavasanifar A. Nano-Delivery of a Novel Inhibitor of Polynucleotide Kinase/Phosphatase (PNKP) for Targeted Sensitization of Colorectal Cancer to Radiation-Induced DNA Damage. Front Oncol 2022; 11:772920. [PMID: 35004293 PMCID: PMC8733593 DOI: 10.3389/fonc.2021.772920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3’-deoxy-3’-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.
Collapse
Affiliation(s)
- Sams M A Sadat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Melinda Wuest
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Igor M Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sirazum Munira
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nasim Sarrami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Forughalsadat Sanaee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyan Yang
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Ziyad Binkhathlan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gary R Martin
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Armin M Gamper
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
43
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
44
|
Aboras SI, Korany MA, Abdine HH, Ragab MAA, El Diwany A, Agwa MM. HPLC with fluorescence detection for the bioanalysis and pharmacokinetic study of Doxorubicin and Prodigiosin loaded on eco-friendly casein nanomicelles in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1187:123043. [PMID: 34837816 DOI: 10.1016/j.jchromb.2021.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
A rapid, efficient, and sensitive liquid chromatographic assay hyphenated to fluorometric detector (HPLC-FLD) was developed and validated for the determination of doxorubicin (DXR) and prodigiosin (PDG) in rat plasma. The sample pre-treatment involves a protein precipitation with acetonitrile with satisfying extraction efficiency (98% and 85% for DXR and PDG, respectively). The chromatographic separation was accomplished using stationary phase: Agilent Zorbax Eclipse plus-C18 analytical column (250 × 4.6 mm, 5 μm) and gradient eluting mobile phase of ammonium acetate (pH = 3), acetonitrile and methanol with programmed fluorescence detection. As the proposed method has been validated, it was subsequently implemented to evaluate DXR and PDG loaded on novel eco-friendly Casein nano drug delivery system after intravenous injection in healthy rats. A comparative pharmacokinetics' study was carried out in rats for DXR in free form, DXR alone entrapped in the nanomicelle and DXR with PDG entrapped in the nano micelle. After testing the differences in pharmacokinetic parameters of the different formulations using ANOVA, the results showed insignificant differences among the tested parameters. This indicates that the presented nanomicelle delivery system has succeeded to incorporate PDG and DXR in a hydrophilic, safe, and potent formulation. This novel nanomicelle has negligible effect on the distribution and elimination of DXR.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Ahmed El Diwany
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
45
|
Tsakiri M, Peraki A, Chountoulesi M, Demetzos C. Chimeric liposomes decorated with P407: an alternative biomaterial for producing stealth nano-therapeutics. J Liposome Res 2021; 32:83-91. [PMID: 34839768 DOI: 10.1080/08982104.2021.1978486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of the present study is the development and evaluation of the physicochemical properties of chimeric hydrogenated soya phosphatidylcholine (HSPC) and egg phosphatidylcholine (EggPC) liposomes with incorporated triblock copolymer Poloxamer P407 (P407). The physicochemical assay was held in water HPLC-grade and Foetal Bovine Serum (FBS), in order to determine whether these systems can be used as drug or antigen delivery nanosystems. Dynamic and electrophoretic light scattering (DLS/ELS) techniques were used for the measurement of the hydrodynamic diameter, the polydispersity index, and the ζ-potential of the prepared nanosystems. The incorporation of the P407 resulted in a size reduction of all systems. A decrease in the hydrodynamic diameter and polydispersity index were also found as a result of increasing the storage temperature from 4 °C to 25 °C, attributed to P407. The experiments that were carried out in FBS, showed that the addition of P407 improved systems stealth properties. Concluding, we propose P407 as a promising alternative to PEG in the development of lipid nanoparticles with optimized bio- and shelf-stability.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Peraki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules 2021; 26:molecules26226929. [PMID: 34834022 PMCID: PMC8619566 DOI: 10.3390/molecules26226929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Ideally, antineoplastic treatment aims to selectively eradicate cancer cells without causing systemic toxicity. A great number of antineoplastic agents (AAs) are available nowadays, with well-defined therapeutic protocols. The poor bioavailability, non-selective action, high systemic toxicity, and lack of effectiveness of most AAs have stimulated the search for novel chemotherapy protocols, including technological approaches that provide drug delivery systems (DDS) for gold standard medicines. Nanostructured lipid carriers (NLC) are DDS that contain a core of solid and lipid liquids stabilised by surfactants. NLC have high upload capacity for lipophilic drugs, such as the majority of AAs. These nanoparticles can be prepared with a diversity of biocompatible (synthetic or natural) lipid blends, administered by different routes and functionalised for targeting purposes. This review focused on the research carried out from 2000 to now, regarding NLC formulations for AAs (antimetabolites, antimitotics, alkylating agents, and antibiotics) encapsulation, with special emphasis on studies carried out in vivo. NLC systems for codelivery of AAs were also considered, as well as those for non-classical drugs and therapies (natural products and photosensitisers). NLC have emerged as powerful DDS to improve the bioavailability, targeting and efficacy of antineoplastics, while decreasing their toxic effect in the treatment of different types of cancer.
Collapse
|
47
|
De K. Decapeptide Modified Doxorubicin Loaded Solid Lipid Nanoparticles as Targeted Drug Delivery System against Prostate Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13194-13207. [PMID: 34723562 DOI: 10.1021/acs.langmuir.1c01370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Growing instances of prostate cancer with poor prognosis have become a challenging task in cancer therapy. Luteinizing-hormone-releasing-hormone (LHRH) receptors are overexpressed in prostate cancer cells. Polyethylene glycol (PEG) conjugated lipids exhibit superiority in terms of retention/circulation in biological systems. PEGylated dipalmitoylphosphatedylethanolamine (DPPE-PEG), covalently linked with 6-hydrazinopyridine-3-carboxylic-acid, was conjugated with new LHRH-receptor positive peptide analog (DPPE-PEG-HYNIC-d-Glu-His-Trp-Ser-Tyr-d-Asn-Leu-d-Gln-Pro-Gly-NH2). Surface modified doxorubicin (DOX) loaded solid lipid nanoparticle (SLN) was prepared using soylecithin, stearic acid and Poloxamer-188 by solvent emulsification/evaporation method for targeted delivery of DOX into prostate cancer cells. SLN, DOX loaded SLN (DSLN) and surface modified DSLN (M-DSLN) were characterized by means of their size, zeta potential, morphology, storage time, drug payload, and subsequent release kinetics studies. Homogeneity of surface morphology, upon modification of SLN, was revealed from the dynamic light scattering, atomic force microscopy, and scanning electron microscopic studies. Homogeneous adsolubilization of DOX throughout the hydrophobic moiety of SLN was established by the differential scanning calorimetric studies. Release of DOX were sustained in DSLN and M-DSLN. Cellular uptake and in vitro activities of formulations against LHRH positive PC3/SKBR3 cancer cell lines revealed higher cellular internalization, cytotoxicity that followed the sequence DOX < DSLN < M-DSLN. Dye staining and flow cytometry studies revealed higher apoptosis in cancer cells. Such receptor specific drug delivery systems are considered to have substantial potential in prostate cancer therapy.
Collapse
Affiliation(s)
- Kakali De
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal India
| |
Collapse
|
48
|
Investigation of morphology, micelle properties, drug encapsulation and release behavior of self-assembled PEG-PLA-PEG block copolymers: A coarse-grained molecular simulations study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Sabzichi M, Oladpour O, Mohammadian J, Rashidi M, Hosseinzadeh M, Mardomi A, Ramezani B, Ghorbani M, Ramezani F. Zoledronic acid-loaded lipidic nanoparticles enhance apoptosis and attenuate invasiveness by inhibiting epithelial to mesenchymal transition (EMT) in HepG 2 cancer cells. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2429-2439. [PMID: 34590187 DOI: 10.1007/s00210-021-02164-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the potential of zoledronic acid (ZOL)-loaded lipidic nanoparticles (ZOL-NLCs) in enhancing the efficiency of paclitaxel (Pac) in the context of cytotoxicity, apoptosis, and invasiveness of HepG2 hepatocellular carcinoma cells. ZOL-NLCs were characterized in terms of zeta potential, particle size, and scanning electron microscope (SEM) as well as cell internalization. To measure the anti-proliferative effects of ZOL-NLCs, annexin-V/PI and MTT assays were employed. Real-time PCR and western blot analysis were performed to identify the molecular mechanisms underlying the apoptosis in response to the studied conditions. Furthermore, the transwell migration assay was applied to clarify the role of applied formulations on the invasiveness of HepG2 cells. Our results demonstrated that the optimized ZOL had an average particle size of 105 ± 6 nm with a nearly narrow size distribution. The IC50 values for ZOL and ZOL-NLCs were 90 ± 3.1 and 54.6 ± 2.4 µM, respectively. The population of apoptotic cells was increased from 17 ± 2% to 27 ± 4% (p < 0.05) in response to treatment with ZOL-NLCs. ZOL-loaded nanoparticles triggered the mRNA expression of Bax as pro-apoptotic marker and E-cadherin as epithelial one along with a decrease in mesenchymal marker, N-cadherin, and Bcl-xl as an anti-apoptotic marker in HepG2 cells. These outcomes were consistent with western blot analysis of protein expressions. Besides, ZOL-incorporated lipidic nanoparticles reduced the migration of HepG2 cells significantly. Our data suggest that the formulation of ZOL into lipidic nanoparticles can be considered a potential therapeutic approach that can enhance the efficacy of Pac chemotherapy.
Collapse
Affiliation(s)
- Mehdi Sabzichi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omolbanin Oladpour
- Department of Immunology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jamal Mohammadian
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahla Hosseinzadeh
- Faculty of Veterinary Medicine, Tabriz Branch Islamic Azad University, Tabriz, Iran
| | - Alireza Mardomi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Ramezani
- Department of Chemistry, Tabriz Branch Islamic Azad University, Tabriz, Iran
| | - Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|