1
|
Wang N, Ma C, Li R, Wang J, Yang X. Synergistic modification of ovalbumin by pH-driven and metal-phenolic networks: Development of dysphagia friendly high internal phase Pickering emulsions. Int J Biol Macromol 2025; 289:138842. [PMID: 39694383 DOI: 10.1016/j.ijbiomac.2024.138842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Dysphagia is a common functional disorder that limits the variety of available foods. This study explored the coordination assembly of tannic acid (TA) with Fe3+ to form a metal-phenolic network (MPN) and developed ovalbumin (OVA)/MPN via a pH-driven method as a novel emulsifier to stabilize high internal phase Pickering emulsions (HIPPEs). Results indicated that, following pH-driven treatment, the OVA/MPN composite particles exhibited smaller sizes, enhanced electrostatic repulsion, and improved stability. UV-visible spectroscopy confirmed the successful assembly of MPN with OVA, while pH-driven processes facilitated MPN formation. Multi-spectral technology showed that MPN altered the intermolecular interactions and structural properties of OVA. The cooperatively modified OVA demonstrated superior interfacial wettability and emulsifying properties. Rheological studies revealed that all HIPPEs exhibited gel-like behavior and shear-thinning characteristics. HIPPEs stabilized by OVA, modified synergistically through pH-driven and MPN introduction, showed a dense network structure with higher viscosity, modulus, yield stress, and elasticity. IDDSI testing showed that HIPPEs with TA below 8 mg/mL had low-risk swallowing characteristics, while those with 12 mg/mL exhibited reduced rheological performance and failed the Level 4 dysphagia test. These findings provide crucial insights for the future development of HIPPEs suitable for individuals with dysphagia.
Collapse
Affiliation(s)
- Ningzhe Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Wang
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
2
|
Pires F, Tzeli D, Jones NC, Hoffmann SV, Raposo M. Electronic States of Epigallocatechin-3-Gallate in Water and in 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (Sodium Salt) Liposomes. Int J Mol Sci 2025; 26:1084. [PMID: 39940852 PMCID: PMC11817416 DOI: 10.3390/ijms26031084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
In this work, the spectroscopy of epigallocatechin-3-gallate (EGCG) and EGCG bonded to 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG) lipid is studied both experimentally by combining high-resolution vacuum ultraviolet (VUV) photo-absorption measurements in the 4.0-9.0 eV energy range and by theoretical calculations using density functional theory (DFT) methodology. There is a good agreement between the experimental and theoretical data, and the inclusion of the solvent both implicitly and explicitly further improves this agreement. For all experimentally measured absorption bands observed in the VUV spectra of EGCG in water, assignments to the calculated electronic transitions are provided. The calculations reveal that the spectrum of DPPG-EGCG has an intense peak around 150 nm, which is in accordance with experimental data, and it is assigned to an electron transfer transition from resorcinol-pyrogallol groups to different smaller groups of the EGCG molecule. Finally, the increase in absorbance observed experimentally in the DPPG-EGCG spectrum can be associated with the interaction between the molecules.
Collapse
Affiliation(s)
- Filipa Pires
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 84 Athens, Greece
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
| | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Søren V. Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; (N.C.J.); (S.V.H.)
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
3
|
Huang ZJ, Zhou XH, Wen WQ, Huang ZT, Xuan J, Gui P, Peng W, Wang G. Enhanced skin benefits of EGCG loaded in nonapeptide-1-conjugated mesoporous silica nanoparticles to reverse skin photoaging. Int J Pharm 2024; 665:124690. [PMID: 39260749 DOI: 10.1016/j.ijpharm.2024.124690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Epigallocatechin-3-gallate (EGCG), a catechin present in green tea, has been studied extensively for its potential as a cosmetic ingredient due to its various biological properties. However, the low stability and bioavailability of EGCG have hindered its effective utilization in cosmetic applications. This study, to improve the stability and bioavailability of EGCG for reversing skin photo-aging, nonapeptide-1-conjugated mesoporous silica nanoparticles (EGCG@NP-MSN) were fabricated to load EGCG. MSNs can regulate the EGCG release and provide ultraviolet light (UV) protection to possess excellent photostability. Nonapeptide-1 exhibits melanin transfer interference properties and reduces the melanin content in treated skin areas. In vitro and in vivo results confirmed that the EGCG-loaded MSNs retained antioxidant properties, effectively scavenged the melanin and significantly reduced the deoxyribonucleic acid (DNA) damage in skin cells exposed to UV irradiation. The melanin inhibition rate is 5.22 times and the tyrosinase inhibition rate is 1.57 times that of free EGCG. The utilization of this innovative platform offers the potential for enhanced stability, controlled release, and targeted action of EGCG, thereby providing significant advantages for skin application.This delivery system combines the advantages of antioxidant, anti-aging, and anti-UV radiation properties, paving the way for the cosmetics development with improved efficacy and better performance in promoting skin health and appearance.
Collapse
Affiliation(s)
- Zeng-Jin Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, China
| | - Xin-Hui Zhou
- Huangpu Institute of Materials, Guangzhou, China
| | - Wei-Qiu Wen
- Huangpu Institute of Materials, Guangzhou, China
| | - Ze-Ting Huang
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd. Guangzhou, China
| | - Jie Xuan
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd. Guangzhou, China
| | - Ping Gui
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, China
| | - Weihua Peng
- Guangzhou Zhongzhuang Meiye Cosmetics Co., Ltd. Guangzhou, China
| | - Guanhai Wang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, China.
| |
Collapse
|
4
|
Li JX, Lu N, Tian R. (-)-Epigallocatechin gallate as an inhibitor of hemoglobin-catalyzed lipid oxidation: molecular mechanism of action and nutritional application. Toxicol In Vitro 2024; 99:105871. [PMID: 38851603 DOI: 10.1016/j.tiv.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Hemoglobin (Hb) is effective inducer for lipid oxidation and protein-polyphenol interaction is a well-known phenomenon. The effects of the interaction of (-)-epigallocatechin gallate (EGCG) with Hb on lipid oxidation were rarely elucidated. The detailed interaction between bovine Hb and EGCG was systematically explored by experimental and theoretical approaches, to illustrate the molecular mechanisms by which EGCG influenced the redox states and stability of Hb. EGCG would bind to the central pocket of protein with one binding site to form Hb-EGCG complex. The binding constant for Hb-EGCG complex was 0.34 × 104 M-1 at 277 K, and thermodynamic parameters (ΔH > 0, ΔS > 0 and ΔG < 0) revealed the participation of hydrophobic forces in the binding process. The binding of EGCG would increase the compactness of protein molecule and diminish the crevice near the heme cavity, which was responsible for the reduction of met-Hb to oxy-Hb and inhibition of hemin release from met-Hb. Moreover, EGCG efficiently suppressed Hb-caused lipid oxidation in liposomes and cod muscles, which was possibly attributed to the reduction to oxy-Hb state and declined hemin dissociation from met-Hb. Altogether, our results provide significant insights into the binding of EGCG to redox-active Hb, which represents a novel mechanism for the anti-oxidant capacity of EGCG in human health and is favorable to the applications of natural EGCG in the good quality of Hb-containing products.
Collapse
Affiliation(s)
- Jia-Xin Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
5
|
Zhou Y, Zheng F, Zuo J, Xu Y, Li Y, Zhang K. Toward a Sustainable Approach for Durably Hydrophilic and UV Protective PET Fabric through Surface Activation and Immobilization Integrating Epigallocatechin Gallate and Citric Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38576-38585. [PMID: 38986140 DOI: 10.1021/acsami.4c07898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Enhancing the hydrophilicity and UV protective property of poly(ethylene terephthalate) (PET) fabric are two significant ways to upgrade its quality and enlarge the applicable area. Biobased finishes are greatly welcomed for the fabrication of sustainable textiles; however, their application on PET fabric is still challenging compared with the case of natural fabric. This study presents a strategy that immobilizes epigallocatechin gallate (EGCG) onto PET fabric using citric acid (CA) for durably hydrophilic and UV-proof properties with negligible color change. A controllable surface-activating method integrating alkaline and deep eutectic solvent (DES) is customized for the PET fabric to promote the reactions among PET, CA, and EGCG. The hydrophilic, antistatic, and UV protective properties of functionalized PET fabric were explored. Results show that the hydrophilicity of the PET fabric after direct EGCG treatment increases but drops sharply after first-round washing due to weak interactions. The combined alkaline/DES pretreatment increases the number of hydrophilic groups and the roughness of PET fibers. After EGCG modification, the moisture regain (MR) of PET fabric increases from 0.41 to 0.64%. The contact angle and electrostatic charge half-life (T1/2) decreases from >120 to 23°, and from >60 to 0.13 s, respectively. The MR and T1/2 are well retained after a 10-cycle washing. In addition, the UV protective factor of the PET fabric increases from 18 to 36. A very slight yellowing phenomenon occurs on the PET fabric after the treatment. In all, this research attempts to integrate a biobased finishing agent and an eco-friendly cross-linker on synthetic fiber for durable functions, which is transferrable to the sustainable fabrication of other polymeric materials such as fibers or films.
Collapse
Affiliation(s)
- Yuyang Zhou
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Xujiaguan Road, Beiqiao Street, Xiangcheng, Suzhou 215144, China
| | - Feiyang Zheng
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
| | - Jiahong Zuo
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
| | - Yiming Xu
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Xujiaguan Road, Beiqiao Street, Xiangcheng, Suzhou 215144, China
| | - Yening Li
- PPM Institute of Functional Materials, Poly Plastic Masterbatch (Suzhou) Co., Ltd., Xujiaguan Road, Beiqiao Street, Xiangcheng, Suzhou 215144, China
| | - Keqin Zhang
- National Engineering Laboratory for Modern Silk, China National Textile and Apparel Council Key Laboratory of Natural Dyes, College of Textile and Clothing Engineering, Soochow University, Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
6
|
Grishaev NA, Moiseeva EO, Chernyshev VS, Komlev AS, Novoselov AM, Yashchenok AM. Studying the small extracellular vesicle capture efficiency of magnetic beads coated with tannic acid. J Mater Chem B 2024; 12:6678-6689. [PMID: 38894640 DOI: 10.1039/d4tb00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The isolation of small extracellular vesicles (sEVs), including those secreted by pathological cells, with high efficiency and purity is highly demanded for research studies and practical applications. Conventional sEV isolation methods suffer from low yield, presence of contaminants, long-term operation and high costs. Bead-assisted platforms are considered to be effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. In this study, magnetically responsive beads made of calcium carbonate (CaCO3) particles impregnated with iron oxide (Fe3O4) nanoparticles are fabricated using a freezing-induced loading (FIL) method. The developed magnetic beads demonstrate sufficient magnetization and can be collected by a permanent magnet, ensuring their rapid and gentle capture from an aqueous solution. The tannic acid on the surface of magnetic beads is formed by a layer-by-layer (LbL) method and is used to induce coupling of sEVs with the surface of magnetic beads. These tannic acid coated magnetic beads (TAMB) were applied to capture sEVs derived from MCF7 and HCT116 cell lines. Quantitative data derived from nanoparticle tracking analysis (NTA) and BCA methods revealed the capture efficiency and recovery yield of about 60%. High-resolution transmission electron microscopy (HRTEM) imaging of sEVs on the surface of TAMBs indicated their structural integrity. Compared with the size exclusion chromatography (SEC) method, the proposed approach demonstrated comparable efficiency in terms of recovery yield and purity, while offering a relatively short operation time. These results highlight the high potential of the TAMB approach for the enrichment of sEVs from biological fluids, such as cell culture media.
Collapse
Affiliation(s)
- Nikita A Grishaev
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| | - Ekaterina O Moiseeva
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| | - Vasiliy S Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, 117997 Moscow, Russia
| | - Aleksei S Komlev
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton M Novoselov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey M Yashchenok
- Skoltech Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology Skolkovo Innovation Center, 121205 Moscow, Russia.
| |
Collapse
|
7
|
Ma C, Xie Y, Huang X, Zhang L, Julian McClements D, Zou L, Liu W. Encapsulation of (-)-epigallocatechin gallate (EGCG) within phospholipid-based nanovesicles using W/O emulsion-transfer methods: Masking bitterness and delaying release of EGCG. Food Chem 2024; 437:137913. [PMID: 37939421 DOI: 10.1016/j.foodchem.2023.137913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
A novel phospholipid-based nanovesicle (PBN) was developed to encapsulate (-)-epigallocatechin gallate (EGCG), a major polyphenol in green tea, to mask its bitter taste and expand its application in food products. The PBN was formed using W/O emulsion-transfer methods and showed a multilayer membrane nanovesicle structure (around 200 nm) observed with TEM. The PBN possessed a high encapsulation efficiency (92.1%) for EGCG. The bitterness of EGCG was significantly reduced to 1/12 after encapsulation. Fourier transform infrared spectroscopy (FTIR) indicated the EGCG mainly interacted with the upper chain/glycerol/head group region of the lipid bilayerin PBN. Quartz crystal microbalance with dissipation (QCM-D) showed the addition of γ-cyclodextrin in PBN enhanced EGCG's adsorption with phospholipids and allowed for its good sustained release. Encapsulating EGCG in PBN inhibited its complexation with mucin, reducing bitterness and astringency. This provides a new method to improve EGCG's flavor, potentially expanding its application in the food industry.
Collapse
Affiliation(s)
- Chenlu Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China
| | - Youfa Xie
- Jiangzhong Pharmaceutical Co. LTD, Nanchang, 330041 Jiangxi, China
| | - Xin Huang
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang 330046 Jiangxi, China
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, 330200, Jiangxi, China.
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047 Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang, 330200, Jiangxi, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
8
|
Pereira L, Ferreira FC, Pires F, Portugal CAM. Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules-An Insight into the Release Kinetics. MEMBRANES 2023; 13:674. [PMID: 37505040 PMCID: PMC10385637 DOI: 10.3390/membranes13070674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e., DPPC:FA liposomes, into gelatin hydrogel membranes containing dispersed iron oxide nanoparticles (MNPs), i.e., magnetic-responsive gelatin. The FA release mechanisms and kinetics from magnetic-responsive liposomal gelatin were studied and compared with those obtained with conventional drug delivery systems, e.g., free liposomal suspensions and hydrogel matrices, to access the effect of liposome entrapment and magnetic field on FA delivery. FA release from liposomal gelatin membranes was well described by the Korsmeyer-Peppas model, indicating that FA release occurred under a controlled diffusional regime, with or without magnetic stimulation. DPPC:FA liposomal gelatin systems provided smoother controlled FA release, relative to that obtained with the liposome suspensions and with the hydrogel platforms, suggesting the promising application of liposomal hydrogel systems in longer-term therapeutics. The magnetic field, with low intensity (0.08 T), was found to stimulate the FA release from magnetic-responsive liposomal gelatin systems, increasing the release rates while shifting the FA release to a quasi-Fickian mechanism. The magnetic-responsive liposomal hydrogels developed in this work offer the possibility to magnetically activate drug release from these liposomal platforms based on a non-thermal related delivery strategy, paving the way for the development of novel and more efficient applications of MLVs and liposomal delivery systems in biomedicine.
Collapse
Affiliation(s)
- Luís Pereira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipa Pires
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carla A M Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101613. [PMID: 37242030 DOI: 10.3390/nano13101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1'-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film method. DPPG-encapsulating inhibitors presented the best fit in terms of encapsulation efficiency (>40%, translates into concentrations as high as 100 µM), zeta potential values (below -30 mV), and population distribution (single population profile). The particle size of the main population of interest was ~130 nm in diameter. Kinetic release studies showed that DPPG-encapsulating PARP1 inhibitors present slower drug release rates than liposome control samples, and complex drug release mechanisms were identified. DPPG + Veliparib/Niraparib presented a combination of diffusion-controlled and non-Fickian diffusion, while anomalous and super case II transport was verified for DPPG + Rucaparib. Spectroscopic analysis revealed that PARP1 inhibitors interact with the DPPG lipid membrane, promoting membrane water displacement from hydration centers. A preferential membrane interaction with lipid carbonyl groups was observed through hydrogen bonding, where the inhibitors' protonated amine groups may be the major players in the PARP1 inhibitor encapsulation mode.
Collapse
Affiliation(s)
- Carlota J F Conceição
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elin Moe
- Institute of Chemical and Biological Technology (ITQB NOVA), The New University of Lisbon, 2780-157 Oeiras, Portugal
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
10
|
Subbotin V, Fiksel G. Exploring the Lipid World Hypothesis: A Novel Scenario of Self-Sustained Darwinian Evolution of the Liposomes. ASTROBIOLOGY 2023; 23:344-357. [PMID: 36716277 PMCID: PMC9986030 DOI: 10.1089/ast.2021.0161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/03/2022] [Indexed: 06/18/2023]
Abstract
According to the Lipid World hypothesis, life on Earth originated with the emergence of amphiphilic assemblies in the form of lipid micelles and vesicles (liposomes). However, the mechanism of appearance of the information molecules (ribozymes/RNA) accompanying that process, considered obligatory for Darwinian evolution, is unclear. We propose a novel scenario of self-sustained Darwinian evolution of the liposomes driven by ever-present natural phenomena: solar UV radiation, day/night cycle, gravity, and the formation of liposomes in an aqueous media. The central tenet of this scenario is the liposomes' encapsulation of the heavy solutes, followed by their gravitational submerging in the water. The submerged liposomes, being protected from the damaging UV radiation, acquire the longevity necessary for autocatalytic replication of amphiphiles, their mutation, and the selection of those amphiphilic assemblies that provide the greatest membrane stability. These two sets of adaptive compositional information (heavy content and amphiphilic assemblies design) generate a population of liposomes with self-replication/reproduction properties, which are amendable to mutation, inheritance, and selection, thereby establishing Darwinian progression. Temporary and spatial expansion of this liposomal population will provide the basis for the next evolutionary step-a transition of accidentally entrapped RNA precursor molecules into complex functional molecules, such as ribozymes/RNA.
Collapse
Affiliation(s)
- Vladimir Subbotin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gennady Fiksel
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
12
|
Sabzevari AG, Sabahi H, Nikbakht M, McInnes SJ. Development and characteristics of layered EGCG/Montmorillonite hybrid: An oral controlled-release formulation of EGCG. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Šturm L, Prislan I, González-Ortega R, Mrak P, Snoj T, Anderluh G, Poklar Ulrih N. Interactions of (-)-epigallocatechin-3-gallate with model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183999. [PMID: 35820494 DOI: 10.1016/j.bbamem.2022.183999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.
Collapse
Affiliation(s)
- Luka Šturm
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Iztok Prislan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rodrigo González-Ortega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy
| | - Polona Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tina Snoj
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Gregor Anderluh
- National Institute of Chemistry, Hajdrihova 19, POBox 660, 1001 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Wang Y, Wu S, Li Q, Lang W, Li W, Jiang X, Wan Z, Chen J, Wang H. Epigallocatechin-3-gallate: A phytochemical as a promising drug candidate for the treatment of Parkinson’s disease. Front Pharmacol 2022; 13:977521. [PMID: 36172194 PMCID: PMC9511047 DOI: 10.3389/fphar.2022.977521] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epigallocatechin 3-gallate (EGCG), an abundant polyphenolic component derived from green tea extract, possesses versatile bioactivities that can combat many diseases. During the last decade, EGCG was shown to be effective in experimental models of Parkinson’s disease (PD). Several experimental studies have suggested that it has pleiotropic neuroprotective effects, which has enhanced the appeal of EGCG as a therapeutic strategy in PD. In this review, we compiled recent updates and knowledge of the molecular mechanisms underlying the neuroprotective effects of EGCG in PD. We focused on the effects of EGCG on apoptosis, oxidative stress, inflammation, ferroptosis, modulation of dopamine production, and the aggregation of α-synuclein. The review highlights the pharmacological features of EGCG and its therapeutic implications in PD. Taken together, the accumulated data indicate that EGCG is a promising neuroprotective compound for the treatment of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Weihong Lang
- Department of Psychological Medicine, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiaodong Jiang
- Department of Anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng, China
| | - Zhirong Wan
- Department of Neurology,Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
- *Correspondence: Jichao Chen, ; Hongquan Wang,
| | - Hongquan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- *Correspondence: Jichao Chen, ; Hongquan Wang,
| |
Collapse
|
15
|
Han M, Wang X, Wang J, Lang D, Xia X, Jia Y, Chen Y. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: A potential mechanism of inflammation-related necroptosis. Front Nutr 2022; 9:953646. [PMID: 36017227 PMCID: PMC9395728 DOI: 10.3389/fnut.2022.953646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common autoimmune and chronic inflammatory cutaneous disease with a relapsing-remitting course. Necroptosis is a regulated necrotic cell death mediated by receptor-interacting protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and mixed lineage kinase domain-like pseudokinase (MLKL), which is activated by tumor necrosis factor-α (TNF-α). However, the mechanism and the role of necroptosis have not been delineated in AD progression. (-)-Epigallocatechin-3-gallate (EGCG), the main biological activity of tea catechin, is well known for its beneficial effects in the treatment of skin diseases. Here, PEG-PLGA-EGCG nanoparticles (EGCG-NPs) were formulated to investigate the bioavailability of EGCG to rescue cellular injury following the inhibition of necroptosis after AD. 2,4-dinitrochlorobenzene (DNCB) was used to establish AD mouse models. As expected, topically applied EGCG-NPs elicited a significant amelioration of AD symptoms in skin lesions, including reductions in the ear and skin thickness, dermatitis score, and scratching behavior, which was accompanied by redox homeostasis restored early in the experiment. In addition, EGCG-NPs significantly decreased the expression of inflammatory cytokines like TNF-α, interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-6 (IL-6), and interleukin-17A (IL-17A) in a time-dependent manner than those of in AD group. As a result, the overexpression of RIP1, RIP3, and MLKL in the entire epidermis layers was dramatically blocked by EGCG-NPs, as well as the expression ofphosphorylated p38 (p-p38), extracellular signal-regulated kinase 1 (ERK1), and extracellular signal-regulated kinase 2 (ERK2). These findings promote that EGCG-NPs formulation represents a promising drug-delivery strategy for the treatment of AD by maintaining the balance of Th1/Th2 inflammation response and targeting necroptosis.
Collapse
Affiliation(s)
- Mengguo Han
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xue Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Jian Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Dongcen Lang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yongfang Jia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Ying Chen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
16
|
Cai S, Xie LW, Xu JY, Zhou H, Yang C, Tang LF, Tian Y, Li M. (-)-Epigallocatechin-3-Gallate (EGCG) Modulates the Composition of the Gut Microbiota to Protect Against Radiation-Induced Intestinal Injury in Mice. Front Oncol 2022; 12:848107. [PMID: 35480105 PMCID: PMC9036363 DOI: 10.3389/fonc.2022.848107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The high radiosensitivity of the intestinal epithelium limits the outcomes of radiotherapy against abdominal malignancies, which results in poor prognosis. Currently, no effective prophylactic or therapeutic strategy is available to mitigate radiation toxicity in the intestine. Our previous study revealed that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) attenuates radiation-induced intestinal injury (RIII). The aim of the present study was to determine the effect of EGCG on the intestinal flora of irradiated mice. EGCG administration reduced radiation-induced intestinal mucosal injury, and significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and Ki67+ crypt cells. In addition, EGCG reversed radiation-induced gut dysbiosis, restored the Firmicutes/Bacteroidetes ratio, and increased the abundance of beneficial bacteria. Our findings provide novel insight into EGCG-mediated remission of RIII, revealing that EGCG could be a potential modulator of gut microbiota to prevent and treat RIII.
Collapse
Affiliation(s)
- Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Li-Wei Xie
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Jia-Yu Xu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Hao Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Chao Yang
- Department of Nucleus Radiation-related Injury Treatment, Chinese People's Liberation Army Rocket Force Characteristic Medical Center, Beijing, China
| | - Lin-Feng Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
- *Correspondence: Ye Tian, ; Ming Li,
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- *Correspondence: Ye Tian, ; Ming Li,
| |
Collapse
|
17
|
Bhat BB, Kamath PP, Chatterjee S, Bhattacherjee R, Nayak UY. Recent Updates on Nanocosmeceutical Skin Care and Anti-Aging Products. Curr Pharm Des 2022; 28:1258-1271. [PMID: 35319358 DOI: 10.2174/1381612828666220321142140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
Nanotechnology is an innovative area of science that deals with things smaller than 100 nanometers. The influence of nanotechnology in the cosmetic industry is overwhelming since it can enhance the properties attained by the particles at the nano level which includes color, solubility, etc, and also promotes the bioavailability of API. A plethora of nanomaterials can be employed in cosmetics including organic and inorganic nanoparticles. Unlike orthodox carriers, they facilitate easy penetration of the product into the skin and thereby increasing the stability and allowing a controlled drug release so that they can permeate deeper into the skin and start revitalizing it. Nanomaterials rejuvenate the skin by forming an occlusive barrier to inhibit the loss of water from the skin's surface and thereby moisturize the skin. Nano-cosmeceuticals are used to provide better protection against UV radiation, facilitate deeper skin penetration, and give long-lasting effects. Although they still have some safety concerns, hence detailed characterization or risk assessments are required to fulfill the standard safety requirements. In this review, an attempt is made to make a brief overview of various nanocosmeceutical skincare and anti-aging products.
Collapse
Affiliation(s)
- Bhavana B Bhat
- Department of Pharmaceutical Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prateeksha Prakash Kamath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swarnab Chatterjee
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rishav Bhattacherjee
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
18
|
Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Feng M, Zheng X, Wan J, Pan W, Xie X, Hu B, Wang Y, Wen H, Cai S. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct 2021; 12:2814-2828. [PMID: 33666618 DOI: 10.1039/d0fo02921a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin aging is characterized by the gradual loss of elasticity, the formation of wrinkles and various color spots, the degradation of extracellular matrix proteins, and the structural changes of the dermis. With the increasingly prominent problems of environmental pollution, social pressure, ozone layer thinning and food safety, skin problems have become more and more complex. The skin can reflect the overall health of the body. Skincare products for external use alone cannot fundamentally solve skin problems; it needs to improve the overall health of the body. Based on the literature review in recent 20 years, this paper systematically reviewed the potential delaying effect of tea and its active ingredients on skin aging by oral and external use. Tea is the second-largest health drink after water. It is rich in tea polyphenols, l-theanine, tea pigments, caffeine, tea saponins, tea polysaccharides and other secondary metabolites. Tea and its active substances have whitening, nourishing, anti-wrinkle, removing spots and other skincare effects. Its mechanism of action is ultraviolet absorption, antioxidant, anti-inflammatory, inhibition of extracellular matrix aging, inhibiting the accumulation of melanin and toxic oxidation products, balancing intestinal and skin microorganisms, and improving mood and sleep, among other effects. At present, tea elements skincare products are deeply loved by consumers. This paper provides a scientific theoretical basis for tea-assisted beauty and the high-end application of tea in skincare products.
Collapse
Affiliation(s)
- Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Recent Advances in Nanomaterials for Dermal and Transdermal Applications. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010018] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.
Collapse
|
21
|
Rinaldi DE, Ontiveros MQ, Saffioti NA, Vigil MA, Mangialavori IC, Rossi RC, Rossi JP, Espelt MV, Ferreira-Gomes MS. Epigallocatechin 3-gallate inhibits the plasma membrane Ca 2+-ATPase: effects on calcium homeostasis. Heliyon 2021; 7:e06337. [PMID: 33681501 PMCID: PMC7930289 DOI: 10.1016/j.heliyon.2021.e06337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/16/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
Flavonoids are natural compounds responsible for the health benefits of green tea. Some of the flavonoids present in green tea are catechins, among which are: epigallocatechin, epicatechin-3-gallate, epicatechin, catechin and epigallocatechin-3-gallate (EGCG). The latter was found to induce apoptosis, reduce reactive oxygen species, in some conditions though in others it acts as an oxidizing agent, induce cell cycle arrest, and inhibit carcinogenesis. EGCG also was found to be involved in calcium (Ca2+) homeostasis in excitable and in non-excitable cells. In this study, we investigate the effect of catechins on plasma membrane Ca2+-ATPase (PMCA), which is one of the main mechanisms that extrude Ca2+ out of the cell. Our studies comprised experiments on the isolated PMCA and on cells overexpressing the pump. Among catechins that inhibited PMCA activity, the most potent inhibitor was EGCG. EGCG inhibited PMCA activity in a reversible way favoring E1P conformation. EGCG inhibition also occurred in the presence of calmodulin, the main pump activator. Finally, the effect of EGCG on PMCA activity was studied in human embryonic kidney cells (HEK293T) that transiently overexpress hPMCA4. Results show that EGCG inhibited PMCA activity in HEK293T cells, suggesting that the effects observed on isolated PMCA occur in living cells.
Collapse
Affiliation(s)
| | | | - Nicolas A. Saffioti
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Maximiliano A. Vigil
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Irene C. Mangialavori
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Rolando C. Rossi
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Juan P. Rossi
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - María V. Espelt
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Mariela S. Ferreira-Gomes
- IQUIFIB – Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
22
|
|
23
|
Wu L, Zhang G, Lin J. The Physiochemical Properties and Adsorption Characteristics of Processed Pomelo Peel as a Carrier for Epigallocatechin-3-Gallate. Molecules 2020; 25:molecules25184249. [PMID: 32947902 PMCID: PMC7571172 DOI: 10.3390/molecules25184249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
The NaOH-HCl- and ethanol-pretreated pomelo peel samples were prepared to apply to the batch adsorption for epigallocatechin-3-gallate (EGCG). The characteristics of peel samples were determined by Fourier transform infrared spectroscopy, scanning electron microscopy and a laser particle analyzer. The results of the physiochemical properties of the peel samples demonstrate that these peel samples have a promising adsorption capacity for EGCG, because of the increased potential binding sites on the surface compared with those of untreated peel samples. These two peel samples showed enhanced adsorption capacities of EGCG compared with that of unmodified peel in terms of the isothermal adsorption process, which could be described by both Langmuir and Freundlich models, with the theoretical maximum adsorption capacity of 77.52 and 94.34 mg g−1 for the NaOH-HCl and ethanol-treated peel samples, respectively. The adsorption kinetics demonstrated an excellent fitness to pseudo-second-order, showing that chemisorption was the rate-limiting step. The thermodynamics analysis revealed that the adsorption reaction was a spontaneous and endothermic process. This work highlights that the processed pomelo peels have outstanding adsorption capacities for EGCG, which could be promising candidates for EGCG delivering in functional food application.
Collapse
Affiliation(s)
- Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (G.Z.)
| | - Guoying Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.W.); (G.Z.)
| | - Jinke Lin
- College of Anxi Tea, Fujian Agriculture and Forestry University, Quanzhou 362406, China
- Correspondence:
| |
Collapse
|
24
|
Pires F, Magalhães-Mota G, Geraldo VPN, Ribeiro PA, Oliveira ON, Raposo M. The impact of blue light in monolayers representing tumorigenic and nontumorigenic cell membranes containing epigallocatechin-3-gallate. Colloids Surf B Biointerfaces 2020; 193:111129. [PMID: 32502833 DOI: 10.1016/j.colsurfb.2020.111129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/21/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Natural products such as epigallocatechin-3-gallate (EGCG) have been suggested for complementary treatments of cancer, since they lower toxic side effects of anticancer drugs, and possess anti-inflammatory and antioxidant properties that inhibit carcinogenesis. Their effects on cancer cells depend on interactions with the membrane, which is the motivation to investigate Langmuir monolayers as simplified membrane models. In this study, EGCG was incorporated in zwitterionic dipalmitoyl phosphatidyl choline (DPPC) and anionic dipalmitoyl phosphatidyl serine (DPPS) Langmuir monolayers to simulate healthy and cancer cells membranes, respectively. EGCG induces condensation in surface pressure isotherms for both DPPC and DPPS monolayers, interacting mainly via electrostatic forces and hydrogen bonding with the choline and phosphate groups of the phospholipids, according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Both monolayers become more compressible upon interaction with EGCG, which may be correlated to the synergy between EGCG and anticancer drugs reported in the literature. The interaction with EGCG is stronger for DPPC, leading to stronger morphological changes in Brewster angle microscopy (BAM) images and higher degree of condensation in the surface pressure isotherms. The changes induced by blue irradiation on DPPC and DPPS monolayers were largely precluded when EGCG was incorporated, thus confirming its antioxidant capacity for both types of membrane.
Collapse
Affiliation(s)
- Filipa Pires
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gonçalo Magalhães-Mota
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Paulo A Ribeiro
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Maria Raposo
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
25
|
Reiterer M, Milton SL. Induction of foxo3a protects turtle neurons against oxidative stress. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110671. [DOI: 10.1016/j.cbpa.2020.110671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
|
26
|
Pires F, Santos JF, Bitoque D, Silva GA, Marletta A, Nunes VA, Ribeiro PA, Silva JC, Raposo M. Polycaprolactone/Gelatin Nanofiber Membranes Containing EGCG-Loaded Liposomes and Their Potential Use for Skin Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4790-4800. [DOI: 10.1021/acsabm.9b00524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Filipa Pires
- CEFITEC, Physics Department, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Jeniffer Farias Santos
- EACH, School of Arts, Sciences and Humanities, Biotechnology Laboratory, Universidade de São Paulo, 03828-000, São Paulo, Brazil
| | - Diogo Bitoque
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Gabriela Araújo Silva
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Alexandre Marletta
- Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Viviane Abreu Nunes
- EACH, School of Arts, Sciences and Humanities, Biotechnology Laboratory, Universidade de São Paulo, 03828-000, São Paulo, Brazil
| | - Paulo A. Ribeiro
- CEFITEC, Physics Department, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/I3N, Physics Department, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Maria Raposo
- CEFITEC, Physics Department, Faculty of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
27
|
Pires F, Geraldo VP, Antunes A, Marletta A, Oliveira ON, Raposo M. Effect of blue light irradiation on the stability of phospholipid molecules in the presence of epigallocatechin-3-gallate. Colloids Surf B Biointerfaces 2019; 177:50-57. [DOI: 10.1016/j.colsurfb.2019.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
|