1
|
Ren K, Cao X, Zheng L, Tian T, Zhang X, Dai J, Zhang H, Wang H, Jiang L. Pectin-modified 7S protein liposomes: Focus on structural properties, stability, and digestive properties loaded with Morin. Food Chem 2025; 474:143164. [PMID: 39919424 DOI: 10.1016/j.foodchem.2025.143164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
The structural changes, stability, digestion and release of Lip-7S-Pec during its formation were studied by adding different concentrations of pectin. The particle size of Lip-7S-Pec reached the peak value (282.96 ± 2.01 nm) when the pectin content was 0.4 %, and TEM showed that pectin had secondary modification on the surface of liposomes. Increased surface hydrophobicity, decreased micropolarity and increased viscosity indicated that the phospholipid membrane structure was more ordered and hydrophobic interactions and hydrogen bonds are the main forces. pH, ionic strength, and storage stability significantly improve, reducing precipitation and aggregation. The particle size of Lip-7S-Mr-Pec was increased to 295.2 ± 3.42 nm, and the encapsulation rate was 60.4 %. Pectin modification alleviated the degradation of liposomes in the stomach and delayed the early release of Morin. When the concentration of pectin was 0.4 %, the release of FFAs was at least 17.3 %, respectively. This double-layer modification provides a more stable liposome delivery system.
Collapse
Affiliation(s)
- Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinru Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lexi Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Tian
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xiaokun Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jingyi Dai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China..
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
2
|
Feng Q, Song Y, Liu X, Huang Y, Yang J, Li Y, Li Q, Sun T. Application of tea tree oil nanoemulsion pads in Lateolabrax japonicas fillets. Food Sci Biotechnol 2025; 34:1921-1933. [PMID: 40196340 PMCID: PMC11972239 DOI: 10.1007/s10068-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 04/09/2025] Open
Abstract
Abstract To improve the efficiency of biological preservatives, a novel slow-release system was constructed. The oil-in-water (O/W) nanoemulsions were prepared with tea tree essential oil (TTO) and its main components, 1,8-cineole (CN) and terpinen-4-oil (T4O) as core materials, and with tea saponin as surfactant. The preservation properties of the pad containing nanoemulsion slow-release system on Lateolabrax japonicus fillets were measured. The results showed that the nanoemulsion had good stability and can delay the release of essential oil, and the cumulative release percentage of TTO was as high as 81 % at 72 h. The establishment of nanoemulsions slow-release system effectively improved the preservation properties of the pad, and TTO nanoemulsion pad (TTO-NE-P) had the optimal preservation properties due to the synergistic effect of preservative ingredients and the sustained release system of the nanoemulsion. This study can provide technical support for the combined application of biological preservative agent and aquatic product pads. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01812-9.
Collapse
Affiliation(s)
- Qian Feng
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Ying Song
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
- SGS-CSTC Standards Technical Services Co., Ltd, Dalian, 116699 Liaoning China
| | - Xinyu Liu
- Department of Geriatrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning China
| | - Yanru Huang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Junyi Yang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Yingchang Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013 Liaoning China
| |
Collapse
|
3
|
Liu H, Yang C, Wu X, Peng S, Zhou L, McClements DJ, Liu W. Influence of the maturity on the characteristics of orange-derived extracellular vesicles and their delivery performance for curcumin. Food Chem 2025; 485:144518. [PMID: 40311575 DOI: 10.1016/j.foodchem.2025.144518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/11/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Plant-derived extracellular vesicles have considerable potential as natural pharmaceutical and nutraceutical delivery systems. However, the impact of plant maturity on the physicochemical and structural properties of isolated extracellular vesicles is currently unknown. In this work, extracellular vesicles isolated from oranges at different maturity stages were first characterized and compared. Afterwards, polyphenol-load orange juices were successfully prepared by incorporating polyphenols (mainly curcumin) into extracellular vesicles originated from orange juices. Encapsulation in vesicles was found to increase the solubility, stability, bioaccessibility, and antioxidant activity of curcumin, but the effects depended on the maturity of oranges. Specifically, the vesicles from unripe and ripe orange juices were more effective for curcumin delivery than those from overripe orange juice. Conclusively, this study has provided important new information about the optimum maturity for isolating fruit-derived extracellular vesicles. Moreover, the extracellular vesicle-based delivery systems developed in this study may facilitate the design of more effective functional foods and beverages.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China
| | - Chen Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaolin Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Shengfeng Peng
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Lei Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
4
|
Li W, Zhang H, Chen L, Huang C, Jiang Z, Zhou H, Zhu X, Liu X, Zheng Z, Yu Q, He Y, Gao Y, Ma J, Yang L. Cell membrane-derived nanovesicles as extracellular vesicle-mimetics in wound healing. Mater Today Bio 2025; 31:101595. [PMID: 40104636 PMCID: PMC11914519 DOI: 10.1016/j.mtbio.2025.101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Cell membrane-derived nanovesicles (NVs) have emerged as promising alternatives to extracellular vesicles (EVs) for wound healing applications, addressing the limitations of traditional EVs, which include insufficient targeting capability, low production yield, and limited drug-loading capacity. Through mechanical cell extrusion methods, NVs exhibit superior characteristics, demonstrating enhanced yield, stability, and purity compared to natural EVs. These NVs can be derived from various membrane sources, including single cell types (stem cells, blood cells, immune cells, and bacterial membranes), hybrid cell membranes and cell membranes mixed with liposomes, with each offering unique therapeutic properties. The integration of genetic engineering and surface modifications has further enhanced NV functionality, enabling precise targeting and improved drug delivery capabilities. Recent advances in NV-based therapies have demonstrated their potential across multiple biomedical applications. Although challenges persist in terms of standardization, storage stability, and clinical translation, the combination of natural cell-derived functions with artificial modification potential positions NVs as a promising platform for next-generation therapeutic delivery systems, thereby offering new possibilities in wound healing applications. Finally, we explore the challenges and future prospects of translating NV-based therapeutics into clinical practice, providing insights into the future development of this innovative approach in wound healing and tissue repair.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hai Zhou
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinxi Zhu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zesen Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyi Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufang He
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Ohshima K, Mizomichi K, Ohsaki S, Nakamura H, Watano S. Influence of Solvents on Drug Loading Capacity of Metal-Organic Frameworks Focusing on Solvent Dipole Moment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8117-8124. [PMID: 40100142 DOI: 10.1021/acs.langmuir.4c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The application of metal-organic frameworks (MOFs) as drug delivery systems with a high drug-loading capacity and targeted delivery is advancing rapidly. This study is the first to elucidate the mechanism of drug-loading in MOFs. It focused on the crucial role of solvents in drug-loading capacity. Ibuprofen, which is widely used as a nonsteroidal antiflammatory drug, was selected as a model drug. The drug-loading capacities of zeolitic imidazolate framework-8 (ZIF-8) and Universitetet i Oslo-66-NH2 (UiO-66-NH2) were investigated in various solvents. For ZIF-8, an increase in the solvent dipole moment corresponded to an increase in the drug-loading capacity. Intriguingly, the converse trend was observed for UiO-66-NH2. Therein, a decrease in the solvent dipole moment caused an increase in the drug-loading. These observations indicated that the solvent dipole moment plays a critical role in the drug-loading mechanism of the MOFs. Furthermore, Raman spectroscopy in the solvents with different polarities revealed significant variations in the molecular vibrations of ZIF-8 and UiO-66-NH2. It was indicated that in both the MOFs, the drug-loading amount increased in the solvents when the molecular vibrations of the MOF were constrained. This study revealed that the solvent plays a crucial role in the drug-loading in MOFs, and the polarity of the solvents contributes significantly to the molecular vibration of MOFs during drug-loading, thereby affecting the drug-loading capacity.
Collapse
Affiliation(s)
- Kazuki Ohshima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Keisuke Mizomichi
- Analytical & Testing Technology Department, Horiba Techno Service, Co., Ltd., Miyanohigashi-cho, Kisshoin Minami-ku, Kyoto 601-8305, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
6
|
Guo X, Liu Z, Wu L, Guo P. Preparation and Evaluation of Hepatoma-Targeting Glycyrrhetinic Acid Composite Micelles Loaded with Curcumin. Pharmaceuticals (Basel) 2025; 18:448. [PMID: 40283886 PMCID: PMC12030034 DOI: 10.3390/ph18040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Liver cancer, especially hepatocellular carcinoma, a prevalent malignant tumor of the digestive system, poses significant therapeutic challenges. While traditional chemotherapy can inhibit tumor progression, its clinical application is limited by insufficient efficacy. Hydrophobic therapeutic agents further encounter challenges including low tumor specificity, poor bioavailability, and severe systemic toxicity. This study aimed to develop a liver-targeted, glutathione (GSH)-responsive micellar system to synergistically enhance drug delivery and antitumor efficacy. Methods: A GSH-responsive disulfide bond was chemically synthesized to conjugate glycyrrhetinic acid (GA) with curcumin (Cur) at a molar ratio of 1:1, forming a prodrug Cur-GA (CGA). This prodrug was co-assembled with glycyrrhizic acid (GL) at a 300% w/w loading ratio into micelles. The system was characterized for physicochemical properties, in vitro drug release in PBS (7.4) without GSH and in PBS (5.0) with 0, 5, or 10 mM GSH, cellular uptake in HepG2 cells, and in vivo efficacy in H22 hepatoma-bearing BALB/c mice. Results: The optimized micelles exhibited a hydrodynamic diameter of 157.67 ± 2.14 nm (PDI: 0.20 ± 0.02) and spherical morphology under TEM. The concentration of CUR in micelles can reach 1.04 mg/mL. In vitro release profiles confirmed GSH-dependent drug release, with 67.5% vs. <40% cumulative Cur release observed at 24 h with/without 10 mM GSH. Flow cytometry and high-content imaging revealed 1.8-fold higher cellular uptake of CGA-GL micelles compared to free drug (p < 0.001). In vivo, CGA-GL micelles achieving 3.6-fold higher tumor accumulation than non-targeted controls (p < 0.001), leading to 58.7% tumor volume reduction (p < 0.001). Conclusions: The GA/GL-based micellar system synergistically enhanced efficacy through active targeting and stimuli-responsive release, providing a promising approach to overcome current limitations in hydrophobic drug delivery for hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Xueli Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.G.); (Z.L.); (L.W.)
- Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhongyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.G.); (Z.L.); (L.W.)
- Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lina Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.G.); (Z.L.); (L.W.)
- Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pan Guo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.G.); (Z.L.); (L.W.)
- Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
7
|
Zafeer N, Mushtaq S, Shabbir S, Noor T, Imran M. Rhamnolipids functionalized intrinsically active liposomes loaded with cinnamaldehyde: Potent antimicrobial and antibiofilm activity against Salmonella Typhimurium and Salmonella Enteritidis. Food Sci Biotechnol 2025; 34:1063-1078. [PMID: 39974870 PMCID: PMC11832839 DOI: 10.1007/s10068-024-01735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 02/21/2025] Open
Abstract
Intrinsically active rhamnolipids functionalized liposomes (rhamnosomes) as a carrier for cinnamaldehyde were developed to enhance the antibacterial activity against foodborne Salmonella isolates. Stable rhamnosomes were optimized with an excellent encapsulation efficiency of 85 ± 1%. SEM revealed slightly rough surface morphology and the mean diameter was slightly increased after the incorporation of cinnamaldehyde in rhamnosomes from 77 to 137 ± 2 nm. However, negative zeta-potential values were reduced from -18.2 ± 4 mV to - 13.4 ± 2 mV for cinnamaldehyde-loaded rhamnosomes. FTIR analyses revealed chemical interactions between rhamnolipids and phospholipids, which facilitated the development of rhamnosomes. Cinnamaldehyde-loaded rhamnosomes exhibited higher anti-Salmonella activity as compared to free cinnamaldehyde and void-rhamnosomes, and 75-80% reduction in biomass was observed due to their enhanced binding with the bacterial membrane in the antibiofilm assays. Antimicrobial results revealed that cinnamaldehyde-loaded rhamnosomes inhibited bacterial growth, displayed adequate biocompatibility and stability while providing an innovative strategy to control foodborne-resistant pathogens.
Collapse
Affiliation(s)
- Noureen Zafeer
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550 Pakistan
| | - Sajida Mushtaq
- SB Lab, SB Group of Companies, Murree Road, Rawalpindi, 46000 Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, 44000 Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, 44000 Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, 45550 Pakistan
| |
Collapse
|
8
|
Wang X, Cao Z, Su J, Ma Y, Zhang S, Shao Z, Ge X, Cheng X, Zhou Z. Preparation of sodium alginate and chitosan modified curcumin liposomes and study on the formation of protein corona. Int J Biol Macromol 2025; 293:139392. [PMID: 39746413 DOI: 10.1016/j.ijbiomac.2024.139392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Curcumin (CUR) is a polyphenolic compound extracted from plants with a wide range of pharmacological activities. However, the low stability and bioavailability limits its practical application. This work utilized the chitosan (CH) and sodium alginate (SA) to modify the surface of the liposome to improve the stability of curcumin. Studies on the adsorption of pepsin to the surface of liposomes and the formation of protein coronas (PCs) were also carried out to investigate the in vivo behavior of the sodium alginate and chitosan modified curcumin liposomes (SA-CH-LPs). The result shown that the average particle size of SA-CH-LPs was around 220.7 ± 1.68 nm. X-ray Diffractometer (XRD) and differential scanning calorimeter (DSC) confirmed the successful preparation of SA-CH-LPs and illustrated their crystalline characteristics. The cytotoxicity of SA-CH-LPs was determined by CCK-8 assay and the results showed that the cell viability was above 80 % at different concentrations. In vitro results showed that the bioaccessibility of SA-CH-LPs (87.9 %) was better than curcumin liposomes (LPs) (66.4 %), and could better resist to catabolic degradation in the gastrointestinal environment. This work could provide the feasibility for improving the stability and bioaccessibility of the curcumin liposome, as well as given the preliminary evidence for investigation of the interaction with enzyme during the in vivo digestion process for the further application in food.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Ma
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Siyu Zhang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zihan Shao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Xiaoliang Cheng
- Xi'an Jiaotong University, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Dara PK, Mohan S, Mary S CH, Santhosh A, Muthyam S, Chenji V, Loganathan M, Subramanian S, Raja G, Moovendhan M, Anandan R. Reinforcement and characterization of biopolymer-rhamnolipid nanoparticles: Biocompatibility, in-vitro stability, physico-chemical, rheological and bioactive properties. Int J Biol Macromol 2025; 292:139249. [PMID: 39733870 DOI: 10.1016/j.ijbiomac.2024.139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/06/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.1 % and 90.2 %, whereas the loading capacities were in the range of 42-50 %. The estimated particle size of the reinforced nanoparticle suspensions was correlated well with predicted particle size as exhibited by partial least squares regression (PLSR) model. The second derivative of the absorbance (Log 1/R) of the nanoparticle suspensions showed that the reinforcement of rhamnolipid nanoparticles (RHLP-NPs) did not alter the molecular organization of the biopolymers. The synthesized ALG-RHLP-NPs and CHI-RHLP-NPs were found to have cracked and layered fractures as revealed by surface topography. In-vitro stability and rheological flow behavior revealed that the addition of RHLP-NPs to biopolymers has reduced aggregation and facilitated the production of uniform particles, and thereby improving the stability of synthesized nanoparticles via electrostatic interactions. Furthermore, the nanoparticle-reinforced membranes were found to be non-toxic and biocompatible as revealed by cytotoxicity study of L929 fibroblast cells. The results demonstrated that biopolymer-reinforced rhamnolipid nanoparticles have good potential for use in pharmaceutical, biomedical, and tissue engineering applications.
Collapse
Affiliation(s)
- Pavan Kumar Dara
- Department of Biotechnology, Faculty of Science and Humanities, SRMIST, Kattankulathur 603203, Tamil Nadu, India.
| | - Shivaranjani Mohan
- Department of Chemistry, PSG College of Arts & Science, Coimbatore 641014, Tamil Nadu, India
| | - Celine Hilda Mary S
- PG & Research Department of Biochemistry, St. Josephs College of Arts & Science, Cuddalore 607001, Tamil Nadu, India
| | - Anandhi Santhosh
- Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Kumulur 621715, Tamil Nadu, India
| | - Sowjanya Muthyam
- Department of Marine Biology, Vikrama Simhapuri University, Nellore 524324, Andhra Pradesh, India
| | - Venkatrayulu Chenji
- Department of Marine Biology, Vikrama Simhapuri University, Nellore 524324, Andhra Pradesh, India
| | - Murugan Loganathan
- Department of Crop Protection, ICAR-National Research Centre for Banana, Tiruchirappalli 620102, Tamil Nadu, India
| | - Senthilkumar Subramanian
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Ganesh Raja
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Rangasamy Anandan
- Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
10
|
Ersanli C, Skoufos I, Fotou K, Tzora A, Bayon Y, Mari D, Sarafi E, Nikolaou K, Zeugolis DI. Release Profile and Antibacterial Activity of Thymus sibthorpii Essential Oil-Incorporated, Optimally Stabilized Type I Collagen Hydrogels. Bioengineering (Basel) 2025; 12:89. [PMID: 39851363 PMCID: PMC11760836 DOI: 10.3390/bioengineering12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Antimicrobial resistance is one of the drastically increasing major global health threats due to the misuse and overuse of antibiotics as traditional antimicrobial agents, which render urgent the need for alternative and safer antimicrobial agents, such as essential oils (EOs). Although the strong antimicrobial activity of various EOs has already been studied and revealed, their characteristic high sensitivity and volatility drives the need towards a more efficient drug administration method via a biomaterial system. Herein, the potential of Thymus sibthorpii EO incorporated in functionalized antibacterial collagen hydrogels was investigated. At first, the optimally stabilized type I collagen hydrogels via six different multi-arm poly (ethylene glycol) succinimidyl glutarate (starPEG) crosslinkers were determined by assessing the free amine content and the resistance to enzymatic degradation. Subsequently, 0.5, 1, and 2% v/v of EO were incorporated into optimized collagen hydrogels, and the release profile, as well as release kinetics, were studied. Finally, biomaterial cytocompatibility tests were performed. Thymus sibthorpii EO was released from the hydrogel matrix via Fickian diffusion and showed sustained release and 0.5% v/v EO-loaded hydrogels showed adequate antibacterial activity against Staphylococcus aureus and did not show any statistically significant difference compared to penicillin (p < 0.05). Moreover, none of the fabricated composite antibacterial scaffolds displayed any cytotoxicity on NIH-3T3 fibroblasts. In conclusion, this work presents an innovative antibacterial biomaterial system for tissue engineering applications, which could serve as a promising alternative to antibiotics, contributing to coping with the issue of antimicrobial resistance.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
- Laboratory of Animal Health, Food Hygiene and Quality, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (K.N.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland;
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (I.S.)
| | - Konstantina Fotou
- Laboratory of Animal Health, Food Hygiene and Quality, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (K.N.)
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (K.N.)
| | - Yves Bayon
- Medtronic—Sofradim Production, 116 Avenue du Formans—BP132, F-01600 Trevoux, France;
| | - Despoina Mari
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (E.S.)
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Eleftheria Sarafi
- Department of Biological Applications & Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (D.M.); (E.S.)
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Konstantina Nikolaou
- Laboratory of Animal Health, Food Hygiene and Quality, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (K.N.)
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland;
| |
Collapse
|
11
|
Gu Y, Jin L, Wang L, Ma X, Tian M, Sohail A, Wang J, Wang D. Preparation of Baicalin Liposomes Using Microfluidic Technology and Evaluation of Their Antitumor Activity by a Zebrafish Model. ACS OMEGA 2024; 9:41289-41300. [PMID: 39398129 PMCID: PMC11465266 DOI: 10.1021/acsomega.4c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Baicalin (BCL), a well-known flavonoid molecule, has numerous therapeutic applications. However, its low water solubility and bioavailability limit its applicability. Microfluidics is a new method for liposome preparation that provides efficient and rapid control of the process, improving the stability and controllability. This study used microfluidic techniques to create baicalin liposomes (BCL-LPs), first screening for optimal total flow rates (TFR) and flow rate ratios (FRR), and then optimizing the phospholipid concentration, phospholipid-to-cholesterol ratio, and Tween-80 concentration using univariate and response surface methodology approaches. The study found that the ideal phospholipid content was 9.5%, the phospholipid-to-cholesterol ratio was 9:1 (w:w), and the Tween-80 concentration was 15%. BCL-LPs achieved 95.323% ± 0.481% encapsulation efficiency under the optimum circumstances. Characterization indicated that the BCL-LPs were spherical and uniform in size, with a mean diameter of 62.32 nm ± 0.42, a polydispersity index of 0.092 ± 0.009, and a zeta potential of -25.000 mV ± 0.216. In vitro experiments found that BCL-LPs had a better slow-release effect and stability than the BCL monomer. In zebrafish bioassays, BCL-LPs performed better than BCL monomer in terms of biological activity and bioavailability. The established method provided a feasible medicine delivery platform for BCL and could apply for the transport and encapsulation of more natural compounds, expanding the applications of drug delivery systems in healthcare and cancer therapies.
Collapse
Affiliation(s)
- Yuhao Gu
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Liqiang Jin
- School
of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Li Wang
- Jinan
Vocational College of Engineering Department: Youth League Committee, Jinan 250200, China
| | - Xianzheng Ma
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | - Mingfa Tian
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| | | | - Jianchun Wang
- Shandong
Giant E-Tech Co., Ltd., Jinan 250102, China
| | - Daijie Wang
- Heze
Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China
| |
Collapse
|
12
|
Ali SMA, Khan J, Shahid R, Shabbir S, Ayoob MF, Imran M. Chitosan-carrageenan microbeads containing nano-encapsulated curcumin: Nano-in-micro hydrogels as alternative-therapeutics for resistant pathogens associated with chronic wounds. Int J Biol Macromol 2024; 278:134841. [PMID: 39209593 DOI: 10.1016/j.ijbiomac.2024.134841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial resistance is an issue of global relevance for the treatment of chronic wound infections. In this study, nano-in-micro hydrogels (microbeads) of chitosan and κ-carrageenan (CCMBs) containing curcumin-loaded rhamnosomes (Cur-R) were developed. The potential of Cur-R-CCMBs for improving the antibacterial activity and sustained release of curcumin was evaluated. Curcumin-loaded rhamnosomes (rhamnolipids functionalized liposomes) had a mean particle size of 116 ± 7 nm and a surface-charge of -24.5 ± 9.4 mV. The encapsulation efficiency of curcumin increased from 42.83 % ± 0.69 % in Cur-R to 95.24 % ± 3.61 % respectively after their embedding in CCMBs. SEM revealed smooth surface morphology of Cur-R-CCMBs. FTIR spectroscopy confirmed the presence of weak electrostatic and hydrophobic interactions among curcumin, rhamnosomes, and microbeads. Cur-R-CCMBs had demonstrated significant antibacterial activity against multi-drug resistant chronic wound pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. Cur-R-CCMBs also exhibited significantly higher anti-oxidant (76.85 % ± 2.12 %) and anti-inflammatory activity (91.94 % ± 0.41 %) as well as hemocompatibility (4.024 % ± 0.59 %) as compared to pristine microbeads. In vivo infection model of mice revealed significant reduction in the viable bacterial count of S. aureus (∼2.5 log CFU/mL) and P. aeruginosa (∼2 log CFU/mL) for Cur-R-CCMBs after 5 days. Therefore, nano-in-micro hydrogels can improve the overall efficacy of hydrophobic antimicrobials to develop effective alternative-therapeutics against resistant-pathogens associated with chronic wound infections.
Collapse
Affiliation(s)
| | - Javeria Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biochemistry, Faculty of Biomedical & Life Sciences, Kohsar University Murree (KUM), Murree 47150, Pakistan
| | - Saima Shabbir
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
| | - Muhammad Faisal Ayoob
- National Veterinary Laboratories, Ministry of National Food Security and Research, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
13
|
Atila D, Dalgic AD, Krzemińska A, Pietrasik J, Gendaszewska-Darmach E, Bociaga D, Lipinska M, Laoutid F, Passion J, Kumaravel V. Injectable Liposome-Loaded Hydrogel Formulations with Controlled Release of Curcumin and α-Tocopherol for Dental Tissue Engineering. Adv Healthc Mater 2024; 13:e2400966. [PMID: 38847504 DOI: 10.1002/adhm.202400966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Indexed: 06/19/2024]
Abstract
An injectable hydrogel formulation is developed utilizing low- and high-molecular-weight chitosan (LCH and HCH) incorporated with curcumin and α-tocopherol-loaded liposomes (Lip/Cur+Toc). Cur and Toc releases are delayed within the hydrogels. The injectability of hydrogels is proved via rheological analyses. In vitro studies are conducted using human dental pulp stem cells (hDPSCs) and human gingival fibroblasts (hGFs) to examine the biological performance of the hydrogels toward endodontics and periodontics, respectively. The viability of hDPSCs treated with the hydrogels with Lip/Cur+Toc is the highest till day 14, compared to the neat hydrogels. During odontogenic differentiation tests, alkaline phosphatase (ALP) enzyme activity of hDPSCs is induced in the Cur-containing groups. Biomineralization is enhanced mostly with Lip/Cur+Toc incorporation. The viability of hGFs is the highest in HCH combined with Lip/Cur+Toc while wound healing occurs almost 100% in both (Lip/Cur+Toc@LCH and Lip/Cur+Toc@HCH) after 2 days. Antioxidant activity of Lip/Cur+Toc@LCH on hGFs is significantly the highest among the groups. Antimicrobial tests demonstrate that Lip/Cur+Toc@LCH is more effective against Escherichia coli whereas so is Lip/Cur+Toc@HCH against Staphylococcus aureus. The antimicrobial mechanism of the hydrogels is investigated for the first time through various computational models. LCH and HCH loaded with Lip/Cur+Toc are promising candidates with multi-functional features for endodontics and periodontics.
Collapse
Affiliation(s)
- Deniz Atila
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Ali Deniz Dalgic
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul, 34060, Turkey
| | - Agnieszka Krzemińska
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, 90-924, Poland
| | - Dorota Bociaga
- Division of Biomedical Engineering and Functional Materials, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, 90-924, Poland
| | - Magdalena Lipinska
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, 90-924, Poland
| | - Fouad Laoutid
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Julie Passion
- Polymeric and Composite Materials Unit, Materia Nova Research Center, University of Mons Innovation Center, Mons, B-7000, Belgium
| | - Vignesh Kumaravel
- International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, 90-924, Poland
| |
Collapse
|
14
|
Heikal LA, El-Habashy SE, El-Kamel AH, Mehanna RA, Ashour AA. Bioactive baicalin rhamno-nanocapsules as phytotherapeutic platform for treatment of acute myeloid leukemia. Int J Pharm 2024; 661:124458. [PMID: 38996823 DOI: 10.1016/j.ijpharm.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
16
|
Yao Y, Ma L, Yu C, Cheng C, Gao H, Wei T, Li L, Wang Z, Liu W, Deng Z, Zou L, Luo T. The improvement of tyrosol bioavailability by encapsulation into liposomes using pH-driven method. Food Chem 2024; 445:138661. [PMID: 38350195 DOI: 10.1016/j.foodchem.2024.138661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
To improve the poor water solubility and oral bioavailability of tyrosol, novel tyrosol liposomes (Tyr-LPs) were prepared by pH-driven method. Fourier transform infrared (FTIR) absorption spectra and X-ray diffraction (XRD) analysis indicated that Tyr-LPs were successfully encapsulated and tyrosol was in an amorphous state in liposomes. When tyrosol content in Tyr-LP was 1.33 mg/ml and the Tyr:LP (mass ratio) = 1:2, favorable dispersibility of Tyr-LP was exhibited, with an instability index of 0.049 ± 0.004, PDI of 0.274 ± 0.003, and the EE of 94.8 ± 2.5 %. In vivo pharmacokinetic studies showed that after oral administration of tyrosol or Tyr-LP (Tyr:LP = 1:2), concentration-versus-time curve (AUC0-720mins) and maximum concentration (Cmax) values of Tyr-LP was respectively 1.5-fold (P < 0.01) and 2.25-fold (P < 0.01) higher than tyrosol, which indicated that the oral bioavailability of tyrosol was effectively improved in Tyr-LPs. Our study thereby provides theoretical support for the application of Tyr-LP for optimal delivery of tryosol.
Collapse
Affiliation(s)
- Yexuan Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Li Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Chengwei Yu
- School of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Ce Cheng
- Shiling Town People's Government, No. 83, Middle Dongsheng Road, Shiling Town, Huadu District, Guangzhou City, China
| | - Hongxia Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Litong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Zhiyue Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, Jiangxi, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, Jiangxi, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Luozhu Road, Xiaolan Economic and Technological Development Zone, Nanchang 330200, Jiangxi, China.
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
17
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Kar S, Das SS, Kundu S, Sahu BD, Kumar KJ, Kesari KK, Singh SK. Intranasal Delivery of Carvedilol- and Quercetin-Encapsulated Cationic Nanoliposomes for Cardiovascular Targeting: Formulation and In Vitro and Ex Vivo Studies. ACS APPLIED BIO MATERIALS 2024; 7:3061-3085. [PMID: 38581388 PMCID: PMC11530090 DOI: 10.1021/acsabm.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Carvedilol (CVD), an adrenoreceptor blocker, is a hydrophobic Biopharmaceutics Classification System class II drug with poor oral bioavailability due to which frequent dosing is essential to attain pharmacological effects. Quercetin (QC), a polyphenolic compound, is a potent natural antioxidant, but its oral dosing is restricted due to poor aqueous solubility and low oral bioavailability. To overcome the common limitations of both drugs and to attain synergistic cardioprotective effects, we formulated CVD- and QC-encapsulated cationic nanoliposomes (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. We designed CVD- and QC-loaded cationic nanoliposomal (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. In vitro drug release studies of CVD/QC-L.O.F. (16.25%) exhibited 18.78 ± 0.57% of QC release and 91.38 ± 0.93% of CVD release for 120 h. Ex vivo nasal permeation studies of CVD/QC-L.O.F. demonstrated better permeation of QC (within 96 h), i.e., 75.09% compared to in vitro drug release, whereas CVD permeates within 48 h, indicating the better interaction between cationic NLPs and the negatively charged biological membrane. The developed nasal gel showed a sufficient mucoadhesive property, good spreadability, higher firmness, consistency, and cohesiveness, indicating suitability for membrane application and intranasal administration. CVD-NLPs, QC-NLPs, and CVD/QC-NLPs were evaluated for in vitro cytotoxicity, in vitro ROS-induced cell viability assessment, and a cellular uptake study using H9c2 rat cardiomyocytes. The highest in vitro cellular uptake of CVD/QC-cationic NLPs by H9c2 cells implies the benefit of QC loading within the CVD nanoliposomal carrier system and gives evidence for better interaction of NLPs carrying positive charges with the negatively charged biological cells. The in vitro H2O2-induced oxidative stress cell viability assessment of H9c2 cells established the intracellular antioxidant activity and cardioprotective effect of CVD/QC-cationic NLPs with low cytotoxicity. These findings suggest the potential of cationic NLPs as a suitable drug delivery carrier for CVD and QC combination for the intranasal route in the treatment of various cardiovascular diseases like hypertension, angina pectoris, etc. and for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sweta Kar
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sourav Kundu
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, Assam, India
| | - K. Jayaram Kumar
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
19
|
Huang H, Xv Z, Yang J, Wu J, Li Y, Li Q, Sun T. Preparation, characterization of basil essential oil liposomes unidirectional single-conducting water sustained-release pads and their preservation properties to Lateolabrax japonicus fillets. Food Chem 2024; 440:137825. [PMID: 38159321 DOI: 10.1016/j.foodchem.2023.137825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
The juice exudation of aquatic products oozes out during storage can influence storage quality. Herein, a novel basil essential oil liposome unidirectional water-conducting sustained-release preservation pads (BEOL/UCSP) were prepared with nylon mesh as water-conducting layer, basil essential oil liposome (BEOL) as sustained-release preservation layer, and diatomite and absorbent-cotton as water-absorbing layer. EL/UCSP, β-CL/UCSP, and BEO/UCSP were prepared after BEOL was replaced by eugenol liposome, β-caryophyllene liposome, and BEO. BEOL are microspheres with bilayer structure, had good storage stability, centrifugal stability, thermal stability, embedding capacity, sustained-release, and oxidation resistance, and the main components of preservatives had a synergistic effect on antibacterial properties. The pads without preservative can initially slow down quality deterioration. BEOL/UCSP can directionally absorb exudate and realize long-term sustained-release of preservative, has excellent antibacterial and antioxidant effect, and extended shelf life of Lateolabrax japonicus fillets from 6.0 days to 12.8 days. The BEOL/UCSP can provide technical theoretical support for preservation materials.
Collapse
Affiliation(s)
- Haitao Huang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Zhaomeng Xv
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China; Wuxi Pharmatech (Cayman) Inc., Shanghai 200131, China
| | - Junyi Yang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Jiaqing Wu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Yingchang Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China.
| | - Tong Sun
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Key Laboratory of Food Safety of Liaoning Province, Jinzhou 121013, China.
| |
Collapse
|
20
|
Aanniz T, El Omari N, Elouafy Y, Benali T, Zengin G, Khalid A, Abdalla AN, Sakran AM, Bouyahya A. Innovative Encapsulation Strategies for Food, Industrial, and Pharmaceutical Applications. Chem Biodivers 2024; 21:e202400116. [PMID: 38462536 DOI: 10.1002/cbdv.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 03/12/2024]
Abstract
Bioactive metabolites obtained from fruits and vegetables as well as many drugs have various capacities to prevent or treat various ailments. Nevertheless, their efficiency, in vivo, encounter many challenges resulting in lower efficacy as well as different side effects when high doses are used resulting in many challenges for their application. Indeed, demand for effective treatments with no or less unfavorable side effects is rising. Delivering active molecules to a particular site of action within the human body is an example of targeted therapy which remains a challenging field. Developments of nanotechnology and polymer science have great promise for meeting the growing demands of efficient options. Encapsulation of active ingredients in nano-delivery systems has become as a vitally tool for protecting the integrity of critical biochemicals, improving their delivery, enabling their controlled release and maintaining their biological features. Here, we examine a wide range of nano-delivery techniques, such as niosomes, polymeric/solid lipid nanoparticles, nanostructured lipid carriers, and nano-emulsions. The advantages of encapsulation in targeted, synergistic, and supportive therapies are emphasized, along with current progress in its application. Additionally, a revised collection of studies was given, focusing on improving the effectiveness of anticancer medications and addressing the problem of antimicrobial resistance. To sum up, this paper conducted a thorough analysis to determine the efficacy of encapsulation technology in the field of drug discovery and development.
Collapse
Affiliation(s)
- Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, 10100, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP, 1014, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, 46030, Morocco
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Ashraf M Sakran
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah, 21955, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
21
|
Hudiyanti D, Al Khafiz MF, Anam K, Siahaan P, Suyati L, Sunarsih S, Christa SM. Prospect of Gum Arabic-Cocoliposome Matrix to Encapsulate Curcumin for Oral Administration. Polymers (Basel) 2024; 16:944. [PMID: 38611202 PMCID: PMC11013629 DOI: 10.3390/polym16070944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin is an antioxidant that can effectively eliminate free radicals. However, as its oral bioavailability is low, an effective delivery method is required. Phospholipid-based liposomes can encapsulate lipophilic drugs, such as curcumin, while liposome, cholesterol, and gum Arabic (GA) can enhance the internal and external stability of drug membranes. This present study used concentrations of cholesterol (Cchol) and GA (CGA), ranging from 0 to 10, 20, 30, and 40% as well as 0 to 5, 10, 15, 20, 30, and 40%, respectively, to encapsulate curcumin in a GA-cocoliposome (CCL/GA) matrix and test its efficacy in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). The absence of new characteristic peaks in the Fourier transform infrared (FTIR) spectra results indicate the presence of non-covalent interactions in the CCL/GA encapsulation. Furthermore, increasing the Cchol decreased the encapsulation efficiency (EE), loading capacity (LC), and antioxidant activity (IR) of the CCL/GA encapsulation but increased its release rate (RR). Conversely, increasing CGA increased its EE and IR but decreased its LC and RR. The two conditions applied confirmed this. Liposomal curcumin had the highest IR in SIF (84.081%) and the highest RR in SGF (0.657 ppm/day). Furthermore, liposomes loaded with 10% Cchol and 20% CGA performed best in SIF, while those loaded with 10% Cchol and 30% CGA performed best in SGF. Lastly, the CCL/GA performed better in SIF than SGF.
Collapse
Affiliation(s)
- Dwi Hudiyanti
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Muhammad Fuad Al Khafiz
- Postgraduate Chemistry Program, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia;
| | - Khairul Anam
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Parsaoran Siahaan
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Linda Suyati
- Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia; (K.A.); (P.S.); (L.S.)
| | - Sunarsih Sunarsih
- Department of Mathematics, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia;
| | - Sherllyn Meida Christa
- Chemistry Program, Faculty of Science and Mathematics, Diponegoro University, Prof. Jacob Rais Street, Semarang 50275, Central Java, Indonesia;
| |
Collapse
|
22
|
Azevedo MA, Teixeira JA, Pastrana L, Cerqueira MA. Rhamnolipids: A biosurfactant for the development of lipid-based nanosystems for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13252. [PMID: 38284602 DOI: 10.1111/1541-4337.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/28/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024]
Abstract
Biosurfactants (surfactants synthesized by microorganisms) are produced by microorganisms and are suitable for use in different areas. Among biosurfactants, rhamnolipids are the most studied and popular, attracting scientists, and industries' interest. Due to their unique characteristics, the rhamnolipids have been used as synthetic surfactants' alternatives and explored in food applications. Besides the production challenges that need to be tackled to guarantee efficient production and low cost, their properties need to be adjusted to the final application, where the pH instability needs to be considered. Moreover, regulatory approval is needed to start being used in commercial applications. One characteristic of interest is their capacity to form oil-in-water nanosystems. Some of the most explored have been nanoemulsions, solid-lipid nanoparticles and nanostructured lipid carriers. This review presents an overview of the main properties of rhamnolipids, asserts the potential and efficiency of rhamnolipids to replace the synthetic surfactants in the development of nanosystems, and describes the rhamnolipids-based nanosystems used in food applications. It also discusses the main characteristics and methodologies used for their characterization and in the end, some of the main challenges are highlighted.
Collapse
Affiliation(s)
- Maria A Azevedo
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
23
|
Jiang G, Guo J, Yan C, He Y, Chen J, Zhang M, Xiang K, Xiang X, Zhang C, Wang Y, Liu S, Nie P, Jiang T, Kang Y, Wang C, Xu X, Yang X, Chen Z. Biomimetic hybrid nanovesicles improve infected diabetic wound via enhanced targeted delivery. J Control Release 2024; 365:193-207. [PMID: 37956924 DOI: 10.1016/j.jconrel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Infected diabetic wounds have been raising the global medical burden because of its high occurrence and resulting risk of amputation. Impaired endothelium has been well-documented as one of the most critical reasons for unhealed wounds. Recently, endothelial cell-derived nanovesicles (NVs) were reported to facilitate angiogenesis, whereas their efficacy is limited in infected diabetic wounds because of the complex niche. In this study, extrusion-derived endothelial NVs were manufactured and then hybridized with rhamnolipid liposomes to obtain biomimetic hybrid nanovesicles (HNVs). The HNVs were biocompatible and achieved endothelium-targeted delivery through membrane CXCR4-mediated homologous homing. More importantly, the HNVs exhibited better penetration and antibacterial activity compared with NVs, which further promote the intrinsic endothelium targeting in infected diabetic wounds. Therefore, the present research has established a novel bioactive delivery system-HNV with enhanced targeting, penetration, and antibacterial activity-which might be an encouraging strategy for infected diabetic wound treatment.
Collapse
Affiliation(s)
- Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie He
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials and Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengjuan Nie
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
24
|
Zhou D, Li M, Li Q, Geng F, Li S, Wu D. Enhancement of liposomal properties of thyme essential oil using lysozyme modification: Physicochemical, storage, and antibacterial properties. Food Chem X 2023; 20:101057. [PMID: 38144765 PMCID: PMC10740034 DOI: 10.1016/j.fochx.2023.101057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Thyme essential oil (TEO) is a natural food antimicrobial agent derived of spice, but suffers from volatility and poor water solubility, which problem can be effectively solved by the encapsulation of liposomes. On this basis, a safe and common natural antibacterial protein, LYZ was used to modify the TEO liposomes (TEO-lips) for gaining better properties. 2.5 mg/mL TEO and 0.05 % LYZ/S100 mass ratio were the best formula for the preparation of LYZ-TEO-lips. After LYZ modification, the particle size and PDI increased, and the zeta potential decreased slightly. The modification of LYZ not only improves the thermal stability of TEO-Lips, weakens the influence of acid and salt ions on liposomes, but also improves the antibacterial properties of TEO-Lips. In brief, LYZ has the potential to improve the overall properties of liposomes and can provide a reference for the development of antimicrobial liposomes.
Collapse
Affiliation(s)
- Dian Zhou
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qinhong Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shugang Li
- Engineering Research Center of Bio-process (Ministry of Education), Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
25
|
Mittal A, Singh A, Hong H, Benjakul S. Chitooligosaccharide-catechin conjugate loaded liposome using different stabilising agents: characteristics, stability, and bioactivities. J Microencapsul 2023; 40:385-401. [PMID: 37130079 DOI: 10.1080/02652048.2023.2209658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
AIM To determine the optimum condition for preparing chitooligosaccharide-catechin conjugate (COS-CAT) liposomes using different stabilising agents. METHODS COS-CAT liposomes (0.1-1%, w/v) were prepared using soy phosphatidylcholine (SPC) (50-200 mM) and glycerol or cholesterol (25-100 mg). Encapsulation efficiency (EE), loading capacity (LC), physicochemical characteristics, FTIR spectra, thermal stability, and structure of COS-CAT liposomes were assessed. RESULTS COS-CAT loaded liposome stabilised by cholesterol (COS-CAT-CHO) showed higher stability as shown by the highest EE (76.81%) and LC (4.57%) and the lowest zeta potential (ZP) (-76.51 mV), polydispersity index (PDI) (0.2674) and releasing efficiency (RE) (53.54%) (p < 0.05). COS-CAT-CHO showed the highest retention and relative remaining bioactivities of COS-CAT under various conditions (p < 0.05). FTIR spectra revealed the interaction between the choline group of SPC and -OH groups of COS-CAT. Phase transition temperature of COS-CAT-CHO was shifted to 184 °C, which was higher than others (p < 0.05). CONCLUSION SPC and cholesterol-based liposome could be used as a promising vesicle for maintaining bioactivities of COS-CAT.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Hat Yai, Thailand
| |
Collapse
|
26
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
27
|
Yang C, Gong L, Li X, Li W, Meng X, Liu B. Carboxymethyl chitosan coated alpha-linolenic acid nanoliposomes: Preparation, stability and release in vitro and in vivo. Food Chem 2023; 404:134526. [PMID: 36265276 DOI: 10.1016/j.foodchem.2022.134526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Nanoliposome encapsulation combined with carboxymethyl chitosan (CMCS) surface decoration was employed to improve physicochemical stability and oral bioavailability of alpha-linolenic acid (ALA). Different nanoliposome systems including ALA-loaded nanoliposomes (ALA-NLs) and CMCS-coated ALA-NLs (CMCS-ALA-NLs) were characterized through dynamic light scattering, transmission electron microscope, Fourier transform infrared spectroscopy and differential scanning calorimetry. The results showed that CMCS-ALA-NLs had good encapsulation efficiency of 79% and layer formation with nanosized spherical carrier. The physicochemical stability of CMCS-ALA-NLs was better than that of ALA-NLs. CMCS-ALA-NLs were able to regulate the release of ALA in a simulated gastrointestinal environment. In vivo testing found that ALA concentration of CMCS-ALA-NLs had an area under the curve of 1.32, which was 1.28 times higher than that of ALA-NLs and 2 times higher than that of ALA-emulsion. The absorption of ALA was improved by CMCS-ALA-NLs. It suggested that CMCS-coated nanoliposomes should be an available delivery strategy for transporting ALA.
Collapse
Affiliation(s)
- Chen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lei Gong
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Weiwei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
28
|
Gong J, Shi T, Liu J, Pei Z, Liu J, Ren X, Li F, Qiu F. Dual-drug codelivery nanosystems: An emerging approach for overcoming cancer multidrug resistance. Biomed Pharmacother 2023; 161:114505. [PMID: 36921532 DOI: 10.1016/j.biopha.2023.114505] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Multidrug resistance (MDR) promotes tumor recurrence and metastasis and heavily reduces anticancer efficiency, which has become a primary reason for the failure of clinical chemotherapy. The mechanisms of MDR are so complex that conventional chemotherapy usually fails to achieve an ideal therapeutic effect and even accelerates the occurrence of MDR. In contrast, the combination of chemotherapy with dual-drug has significant advantages in tumor therapy. A novel dual-drug codelivery nanosystem, which combines dual-drug administration with nanotechnology, can overcome the application limitation of free drugs. Both the characteristics of nanoparticles and the synergistic effect of dual drugs contribute to circumventing various drug-resistant mechanisms in tumor cells. Therefore, developing dual-drug codelivery nanosystems with different multidrug-resistant mechanisms has an important reference value for reversing MDR and enhancing the clinical antitumor effect. In this review, the advantages, principles, and common codelivery nanocarriers in the application of dual-drug codelivery systems are summarized. The molecular mechanisms of MDR and the dual-drug codelivery nanosystems designed based on different mechanisms are mainly introduced. Meanwhile, the development prospects and challenges of codelivery nanosystems are also discussed, which provide guidelines to exploit optimized combined chemotherapy strategies in the future.
Collapse
Affiliation(s)
- Jianing Gong
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Taoran Shi
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinfeng Liu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zerong Pei
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
29
|
Development of Liposomal Formulation for Controlled Delivery of Valacyclovir: an In Vitro Study. J Pharm Innov 2023. [DOI: 10.1007/s12247-022-09706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Chen M, Li R, Lu X, Dai Y, Chen T, Xing Y, Xue L, Duan Z, Zhou W, Li J. Fabrication and characterization of l-ascorbyl palmitate and phospholipid-based hybrid liposomes and their impacts on the stability of loaded hydrophobic polyphenols. Food Chem 2023; 398:133953. [DOI: 10.1016/j.foodchem.2022.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
|
31
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Physicochemical and Antioxidant Properties of Nanoliposomes Loaded with Rosemary Oleoresin and Their Oxidative Stability Application in Dried Oysters. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120818. [PMID: 36551024 PMCID: PMC9774588 DOI: 10.3390/bioengineering9120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lipid and protein oxidation is a main problem related to the preservation of dried aquatic products. Rosemary oleoresin is widely used as an antioxidant, but its application is limited due to its instability and easy degradation. Nanoliposome encapsulation is a promising and rapidly emerging technology in which antioxidants are incorporated into the liposomes to provide the food high quality, safety and long shelf life. The objectives of this study were to prepare nanoliposome coatings of rosemary oleoresin to enhance the antioxidant stability, and to evaluate their potential application in inhibiting protein and lipid oxidation in dried oysters during storage. The nanoliposomes encapsulating rosemary oleoresin were applied with a thin-film evaporation method, and the optimal amount of encapsulated rosemary oleoresin was chosen based on changes in the dynamic light scattering, Zeta potential, and encapsulation efficiency of the nanoliposomes. The Fourier transform-infrared spectroscopy of rosemary oleoresin nanoliposomes showed no new characteristic peaks formed after rosemary oleoresin encapsulation, and the particle size of rosemary oleoresin nanoliposomes was 100-200 nm in transmission electron microscopy. The differential scanning calorimetry indicated that the nanoliposomes coated with rosemary oleoresin had better thermal stability. Rosemary oleoresin nanoliposomes presented good antioxidant stability, and still maintained 48% DPPH radical-scavenging activity and 45% ABTS radical-scavenging activity after 28 d of storage, which was 3.7 times and 2.8 times higher than that of empty nanoliposomes, respectively. Compared with the control, the dried oysters coated with rosemary oleoresin nanoliposomes showed significantly lower values of carbonyl, sulfhydryl content, thiobarbituric acid reactive substances, Peroxide value, and 4-Hydroxynonenal contents during 28 d of storage. The results provide a theoretical basis for developing an efficient and long-term antioxidant approach.
Collapse
|
33
|
Stability of rutin using pectin-chitosan dual coating nanoliposomes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Prathyusha E, A P, Ahmed H, Dethe MR, Agrawal M, Gangipangi V, Sudhagar S, Krishna KV, Dubey SK, Pemmaraju DB, Alexander A. Investigation of ROS generating capacity of curcumin-loaded liposomes and its in vitro cytotoxicity on MCF-7 cell lines using photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 40:103091. [PMID: 36031144 DOI: 10.1016/j.pdpdt.2022.103091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) is highly efficient in eradicating targetlesions by using photosensitizers (PS) triggered by external light energy. Nanotechnology may help increase the solubility and effective delivery of PS towards improving its efficacy. Curcumin (Cur) was used as a natural PS for PDT in the present work. Briefly, curcumin was encapsulated in liposomes (LPs) using the thin film hydration method and optimized using the QbD approach through the Box-Behnken Design (BBD) to optimize the responses like entrapment efficiency and drug loading with a smaller vesicle size. The in vitro release studies performed using a dialysis bag (MWCO 12 KDa) suggested a sustained release of the Cur over 72 h in pH 7.4 PBS following the Weibull drug release kinetics. In addition, the ROS generating capabilities upon application of blue light (460 nm) and resulting cytotoxicity were evaluated in MCF-7 cell lines. The Cur-loaded liposome exhibited significant ROS generation and cytotoxicity to the cancer cells than free curcumin. Thus, the Cur-loaded liposomes could be used to treat breast cancer with photodynamic therapy.
Collapse
Affiliation(s)
- Eluri Prathyusha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Polepally SEZ, Jadcherla, Telangana, India
| | - Vijayakumar Gangipangi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Deepak B Pemmaraju
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India.
| |
Collapse
|
35
|
Preparation of myricetin nanoliposomes using film-ultrasonic dispersion method and characterization. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Ye X, Chen X, He R, Meng W, Chen W, Wang F, Meng X. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin. Front Pharmacol 2022; 13:969611. [PMID: 36324685 PMCID: PMC9618653 DOI: 10.3389/fphar.2022.969611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 08/28/2023] Open
Abstract
The successful treatment of breast cancer is hampered by toxicity to normal cells, impaired drug accumulation at the tumor site, and multidrug resistance. We designed a novel multifunctional liposome, CUR-DTX-L, to co-deliver curcumin (CUR) and the chemotherapeutic drug docetaxel (DTX) for the treatment of breast cancer in order to address multidrug resistance (MDR) and the low efficacy of chemotherapy. The mean particle size, polydispersity index, zeta potential, and encapsulation efficiency of CUR-DTX-L were 208.53 ± 6.82 nm, 0.055 ± 0.001, -23.1 ± 2.1 mV, and 98.32 ± 2.37%, respectively. An in vitro release study and CCK-8 assays showed that CUR-DTX-L has better sustained release effects and antitumor efficacy than free drugs, the antitumor efficacy was verified by MCF-7 tumor-bearing mice, the CUR-DTX-L showed better antitumor efficacy than other groups, and the in vivo pharmacokinetic study indicated that the plasma concentration-time curve, mean residence time, and biological half-life time of CUR-DTX-L were significantly increased compared with free drugs, suggesting that it is a promising drug delivery system for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Xi Ye
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xin Chen
- Department of Pharmacy, Anhui Provincial Crops Hospital, Hefei, China
| | - Ruixi He
- Anhui University of Chinese Medicine, Hefei, China
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Wangyang Meng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Chen
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| |
Collapse
|
37
|
Surface Functionalization of Piperine-Loaded Liposomes with Sophorolipids Improves Drug Loading and Stability. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
38
|
Li R, Pu C, Sun Y, Sun Q, Tang W. Interaction between soybean oleosome-associated proteins and phospholipid bilayer and its influence on environmental stability of luteolin-loaded liposomes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Sainaga Jyothi VGS, Bulusu R, Venkata Krishna Rao B, Pranothi M, Banda S, Kumar Bolla P, Kommineni N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: An update. Int J Pharm 2022; 624:122022. [PMID: 35843364 DOI: 10.1016/j.ijpharm.2022.122022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022]
Abstract
Liposomes have several advantages, such as the ability to be employed as a carrier/vehicle for a variety of drug molecules and at the same time they are safe and biodegradable. In the recent times, compared to other delivery systems, liposomes have been one of the most well-established and commercializing drug products of new drug delivery methods for majority of therapeutic applications. On the other hand, it has several limitations, particularly in terms of stability, which impedes product development and performance. In this review, we reviewed all the potential instabilities (physical, chemical, and biological) that a formulation development scientist confronts throughout the development of liposomal formulations as along with the ways to overcome these challenges. We have also discussed the effect of microbiological contamination on liposomal formulations with a focus on the use of sterilization methods used to improve the stability. Finally, we have reviewed quality control techniques and regulatory considerations recommended by the agencies (USFDA and MHLW) for liposome drug product development.
Collapse
Affiliation(s)
- Vaskuri G S Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Raviteja Bulusu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Balaga Venkata Krishna Rao
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Mulinti Pranothi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58105, ND, USA
| | - Srikanth Banda
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA.
| | | |
Collapse
|
40
|
Yang P, Bi D, Lu K, Yao L, Wu Y, Xu H, Hu Z, Xu X. Preparation, characterization and macrophage-stimulating activity of polyguluronate nanoliposomes. Int J Biol Macromol 2022; 213:478-485. [PMID: 35643158 DOI: 10.1016/j.ijbiomac.2022.05.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
Polyguluronate (PG) consists entirely of α-L-guluronic acid derived from alginate, which is an acidic polysaccharide extracted from brown algae. PG has a short half-life and is easily degraded by microorganisms, resulting in decreased activity and thus its application in the medical field. In this study, polyguluronate liposomes (PGLs) were prepared to improve the macrophage-stimulating activity of PG. The morphology, encapsulation efficiency, particle size distribution, zeta potential and stability of the PGLs were characterized. Results showed that PGLs were uniformly round with an encapsulation efficiency of 77.76 ± 0.89%, a particle size of 63.96 ± 3.98 nm and a zeta potential of -53.4 ± 1.75 mV. The stability studies showed that PGLs should be stored in a neutral environment at 4 °C. The macrophage-stimulating activity of PGLs was better than that of PG. This study provides a promising carrier for the further application of PG in food or medicine.
Collapse
Affiliation(s)
- Peng Yang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China; Collage of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Keshi Lu
- Shenzhen University General Hospital, Shenzhen 518055, PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518055, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
41
|
Xu R, Tomeh MA, Ye S, Zhang P, Lv S, You R, Wang N, Zhao X. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy. Int J Pharm 2022; 622:121857. [PMID: 35623489 DOI: 10.1016/j.ijpharm.2022.121857] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
Liposomes have been widely used in nanomedicine for the delivery of hydrophobic and hydrophilic anticancer agents. The most common applications of these formulations are vaccines and anticancer formulations (e.g., mRNA, small molecule drugs). However, large-scale production with precise control of size and size distribution of the lipid-based drug delivery systems (DDSs) is one of the major challenges in the pharmaceutical industry. In this study, we used newly designed microfluidic swirl mixers with simple 3D mixing chamber structures to prepare liposomes at a larger scale (up to 320 mL/min or 20 L/h) than the commercially available devices. This design demonstrated high productivity and better control of liposome size and polydispersity index (PDI) than conventional liposome preparation methods. The microfluidic swirl mixer devices were used to produce curcumin-loaded liposomes under different processing conditions which were later characterized and studied in vitro to evaluate their efficiency as DDSs. The obtained results demonstrated that the liposomes can effectively deliver curcumin into cancer cells. Therefore, the microfluidic swirl mixers are promising devices for reproducible and scalable manufacturing of DDSs.
Collapse
Affiliation(s)
- Ruicheng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mhd Anas Tomeh
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Siyuan Ye
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Rongrong You
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Nan Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
42
|
Inulin-Modified Liposomes as a Novel Delivery System for Cinnamaldehyde. Foods 2022; 11:foods11101467. [PMID: 35627037 PMCID: PMC9140198 DOI: 10.3390/foods11101467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
Cinnamaldehyde as an antioxidant was encapsulated in inulin-modified nanoliposomes in order to improve its physical and antioxidant stability. The microstructure, particle size and volume distribution of cinnamaldehyde liposomes were characterized by atomic force microscopy (AFM) and dynamic light scattering (DLS). The particle size and polydispersion index (PDI) values of the inulin modified liposomes were 72.52 ± 0.71 nm and 0.223 ± 0.031, respectively. The results showed that the liposomes after surface modification with inulin remained spherical. Raman and Fourier transform infrared (FTIR) spectra analysis showed that hydrogen bonds were formed between the inulin and the liposome membrane. Inulin binding also restricted the freedom of movement of lipid molecules and enhanced the order of the hydrophobic core of the membrane and the polar headgroup region in lipid molecules. Therefore, the addition of different concentrations of inulin influenced the permeability of the liposome bilayer membrane. However, when inulin was excessive, the capacity of the bilayer membrane to load the cinnamaldehyde was reduced, and the stability of the system was reduced. Additionally, the encapsulation efficiency (EE) and retention rate (RR) of cinnamaldehyde from inulin-modified liposomes during storage were determined. The EE value of the inulin modified liposomes was 70.71 ± 0.53%. The liposomes with 1.5% inulin concentration had the highest retention rate (RR) and the smallest particle size during storage at 4 °C. The addition of inulin also enhanced the thermal stability of the liposomes. Based on the results, the surface modification improved the oxidation stability of liposomes, especially the DPPH scavenging ability. In conclusion, these results might help to develop inulin as a potential candidate for the effective modification of the surface of liposomes and provide data and conclusions for it.
Collapse
|
43
|
Liu H, Zhang J, Xiong Y, Peng S, McClements DJ, Zou L, Liang R, Liu W. Improving norbixin dispersibility and stability by liposomal encapsulation using the pH-driven method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2070-2079. [PMID: 34569077 DOI: 10.1002/jsfa.11546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Norbixin, a carotenoid extracted from annatto seeds, is widely utilized as a natural pigment in foods, cosmetics and medicines. Its water solubility is relatively high under neutral or alkaline conditions but low under acidic conditions, which limits its application in some food products. RESULTS This problem was overcome by utilizing liposomes to encapsulate the carotenoids so that they could be easily dispersed within acidic solutions. The norbixin was loaded into the liposomes using the pH-driven method. Liposomes were produced by passing aqueous phospholipid dispersions through a microfluidizer under high pressure. Norbixin was then added to the liposome dispersions at pH 7.0 and then driven into the hydrophobic domains of the phospholipid bilayers by acidifying the system. Measurements of the encapsulation efficiency showed that the norbixin was successfully loaded into the liposomes using the pH-driven method. X-ray diffraction analysis showed that the norbixin was in an amorphous state after incorporation into the liposomes. Encapsulation of norbixin within the liposomes was also shown to increase its water dispersibility and chemical stability under acidic pH conditions. CONCLUSION The pH-driven method therefore provides a useful means of increasing the application of this bioactive carotenoid within functional foods and other products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Junbing Zhang
- Jiangxi Danxia Biological Technology Co. Ltd, Yingtan, PR China
| | - Yong Xiong
- Jiangxi Danxia Biological Technology Co. Ltd, Yingtan, PR China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
- School of Life Sciences, Nanchang University, Nanchang, PR China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| |
Collapse
|
44
|
Formulation Design and Cell Cytotoxicity of Curcumin-Loaded Liposomal Solid Gels for Anti-Hepatitis C Virus. Adv Pharmacol Pharm Sci 2022; 2022:3336837. [PMID: 35295681 PMCID: PMC8920649 DOI: 10.1155/2022/3336837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Backgrounds. Curcumin (CUR) is a low-molecular-weight polyphenolic substance obtained from the tuber part of Curcuma species. Anti-inflammatory and anti-hepatitis C virus (HCV) activities have been associated with CUR. However, its poor aqueous solubility and low systemic bioavailability have been the challenges in improving the therapeutic efficacy of curcumin. Aim. The study aimed to produce CUR-loaded liposomal solid gels as anti-HCV delivery systems. Parameters including the physical characteristics and the cell cytotoxicity properties were evaluated. Methods. The freeze-drying technique was applied to manufacture the CUR-loaded liposomal solid gels. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and differential thermal analysis (DTA) were involved to reveal the characteristics of the solid gels. Such characteristics were as follows: the morphology and the microscopic structure of the solid gels, the crystallinity structure of the curcumin, and the thermal properties of the mixtures. Furthermore, their cell cytotoxicity was investigated using a Huh7it cell line. Results. The SEM images confirmed that curcumin liposomes were intact and trapped in the solid gel matrix. The XRD data showed flat patterns diffractograms of the formulations, confirming the transformation of CUR from crystalline to amorphous form. The DTA thermograms showed a single melting endothermic peak at a higher temperature around 200°C, indicating a single-phase transition of the mixtures. The XRD and DTA data revealed the molecular dispersion of CUR in the developed formulations. The cytotoxicity data provided as cell cytotoxicity 50 (CC50) for all formulations were ≥25 mg. These data confirmed that the developed liposomal solid gels were not cytotoxic to Huh7it cell line, indicating that the anti-HCV activity would be through a specific pathway and not by its toxicity. Conclusion. The CUR-loaded liposomal solid gels exhibited the potential and offered an alternative dosage form to improve the therapeutic efficacy of curcumin as an anti-HCV.
Collapse
|
45
|
Chaves MA, Baldino L, Pinho SC, Reverchon E. Co-encapsulation of curcumin and vitamin D3 in mixed phospholipid nanoliposomes using a continuous supercritical CO2 assisted process. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Saffarionpour S, Diosady LL. Delivery of curcumin through colloidal systems and its applications in functional foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Han C, Yang C, Li X, Liu E, Meng X, Liu B. DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food Chem 2022; 368:130859. [PMID: 34425339 DOI: 10.1016/j.foodchem.2021.130859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
DHA loaded nanoliposomes, stabilized by β-sitosterol, were prepared by thin film hydration-sonication method. The characteristics and membranes properties of DHA-NLs with different β-sitosterol content were measured. The samples with the same formulation were used to measure the resistance of environment stress and controlled release & absorption of DHA in vitro and in vivo. The results showed that the maximal encapsulation efficiency of DHA-NLs was (86.95 ± 0.95)%, when the ratio of soybean lecithin to β-sitosterol was 5:1. The particle size of all samples was within 200 nm and relative retention rate was more than 60% after 3 weeks storage. The area under the curve of DHA concentration of DHA-NLs and DHA-emulsion groups was 1.32 and 1.08, respectively. In summary, the nanoliposomes were promising to improve the absorption of DHA in form of ethyl ester.
Collapse
Affiliation(s)
- Chenlu Han
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chen Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Enchao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Bingjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
48
|
From plants to phospholipid vesicles: A comprehensive review on the incorporation of phytochemicals into phospholipid vesicles designed for skin applications with special focus on scalability and in vitro and in vivo efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
ZHOU M, LI F, CHEN J, WU Q, ZOU Z. Research progress on natural bio-based encapsulation system of curcumin and its stabilization mechanism. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.78422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Man ZHOU
- Sichuan Agricultural University, China
| | - Fuli LI
- Sichuan Agricultural University, China
| | - Jie CHEN
- Sichuan Agricultural University, China
| | | | | |
Collapse
|
50
|
Vellido-Perez JA, Ochando-Pulido JM, Brito-de la Fuente E, Martinez-Ferez A. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6395-6406. [PMID: 33969886 DOI: 10.1002/jsfa.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Curcumin is a natural antioxidant with important beneficial properties for health, although its low bioavailability and sensitivity to many environmental agents limits its use in the food industry. Furthermore, some studies mention a potential synergistic effect with omega-3 polyunsaturated fatty acids, comprising other bioactive compounds extremely unstable and susceptible to oxidation. A relatively novel strategy to avoid oxidation processes is to transform liquid oils into three-dimensional structures by adding a gelling agent and forming a self-assembled network that can later be vectorized by incorporating it into other systems. The present study aimed to design and optimize an oil gelled-in-water curcumin-loaded emulsion to maximize curcumin stability and minimize lipid oxidation in terms of some critical operating parameters, such as dispersed phase, emulsifier and stabilizer concentrations, and homogenization rate. RESULTS The operating conditions that had a significant effect on the formulation were the dispersed phase weight fraction affecting droplet size and total lipid oxidation, homogenization conditions affecting droplet size and primary lipid oxidation, and emulsifier concentration affecting droplet size (significance level = 95%). The optimal formulation for maximizing curcumin load and minimizing lipid oxidation in the oleogelified matrix was 140.4 g kg-1 dispersed phase, 50.0 g kg-1 emulsifier, 4.9 g kg-1 stabilizer and homogenization speed 1016 × g. CONCLUSION The results obtained in the present study provide a valuable tool for the rational design and development of oil gelled-in-water emulsions that stabilize and transport bioactive compounds such as curcumin. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Edmundo Brito-de la Fuente
- Innovation & Development Centers China & Germany Business Unit Parenteral Nutrition, Ketoanalogues & IV Fluids Pharmaceuticals & Devices Division, Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - Antonio Martinez-Ferez
- Department of Chemical Engineering, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|