1
|
Nagase K, Kuramochi H, Grainger DW, Takahashi H. Functional aligned mesenchymal stem cell sheets fabricated using micropatterned thermo-responsive cell culture surfaces. Mater Today Bio 2025; 32:101657. [PMID: 40166377 PMCID: PMC11957804 DOI: 10.1016/j.mtbio.2025.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently applied for cell transplantation and regenerative therapy because they secrete diverse therapeutic cytokines that prompt immuno-stimulatory and tissue repair processes. Furthermore, cultured MSC sheets exhibit enhanced cytokine secretion compared to their MSC suspensions, and represent a durable, versatile format for tissue engineering as singular, multi-layered, or multi-cell type sandwiched, transplantable constructs. Tissue engineered implants with various cellular orientations have been reported. In this study, patterned, temperature-responsive culture surfaces were used to prepare oriented MSC sheets. Patterned culture surfaces were fabricated by grafting polyacrylamide (PAAm) onto commercial poly(N-isopropylacrylamide) (PNIPAAm)-modified plastic via photopolymerization using a stripe-patterned photomask. Patterned surfaces were characterized using x-ray photoelectron spectroscopy, fluorescently labelled fibronectin and albumin adsorption assays, wetting (contact angle) measurements, atomic force microscopy, and scanning electron microscopy. Striped grafted patterns of PAAm were fabricated on the PNIPAAm-coated culture substrates, and PAAm polymerized within the PNIPAAm overlayer. Cell-aligned MSC sheets were then produced from MSC culture on this patterned surface, secreting higher amounts of therapeutic cytokines (vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β) than non-aligned MSC control sheets. In addition, aligned MSC sheets maintained enhanced cell multi-potent differentiation capabilities. New, aligned MSC sheets might exhibit improved functional properties for cell sheet transplant therapies.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hasumi Kuramochi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - David W. Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
2
|
Kobayashi J, Nakayama M, Nagase K. Molecular design of dynamically thermoresponsive biomaterials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2025; 26:2475736. [PMID: 40134749 PMCID: PMC11934171 DOI: 10.1080/14686996.2025.2475736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Dynamically thermoresponsive biomaterials, particularly those utilizing poly(N-isopropylacrylamide) (PNIPAAm), have attracted much attention in biomedical applications due to their reversible phase transition near body temperature. These biomaterials provide innovations across drug delivery system, chromatography, and tissue engineering. Molecular designs, such as the incorporation of hydrophilic comonomers or graft copolymers in PNIPAAm hydrogels, enhance rapid kinetics of the gels when jumping the temperature across the phase transition temperature, because of avoiding 'skin layer' formation on the surface of the gels. Nanocarriers possessing PNIPAAm coronas facilitate spatial drug delivery and temporally on-demand drug release to targeted cancers in combination with hyperthermic therapy. Downsizing of PNIPAAm hydrogels accelerates the kinetics of shrinkage/swelling, leading to applications as thermoresponsive chromatographic matrices and cell cultureware. PNIPAAm-modified surfaces support thermoresponsive cell culture systems for the non-invasive recovery of intact cell sheets, enabling advanced regenerative therapies and layered 3D tissue formation. Recent developments also integrate growth factor delivery for sustained cell stimulation on culturewares. Newly developed biomaterials, including dynamically thermoresponsive PNIPAAm, are expected to expand the opportunity for novel treatment technologies such as targeted therapies and regenerative medicine.
Collapse
Affiliation(s)
- Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, Tokyo, Japan
| | - Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, Tokyo, Japan
| | - Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Hirotani T, Nagase K. Temperature-modulated separation of vascular cells using thermoresponsive-anionic block copolymer-modified glass. Regen Ther 2024; 27:259-267. [PMID: 38601885 PMCID: PMC11004074 DOI: 10.1016/j.reth.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Vascular tissue engineering is a key technology in the field of regenerative medicine. In tissue engineering, the separation of vascular cells without cell modification is required, as cell modifications affect the intrinsic properties of the cells. In this study, we have developed an effective method for separating vascular cells without cell modification, using a thermoresponsive anionic block copolymer. Methods A thermoresponsive anionic block copolymer, poly(acrylic acid)-b-poly(N-isopropylacryl-amide) (PAAc-b-PNIPAAm), with various PNIPAAm segment lengths, was prepared in two steps: atom transfer radical polymerization and subsequent deprotection. Normal human umbilical vein endothelial cells (HUVECs), normal human dermal fibroblasts, and human aortic smooth muscle cells (SMCs) were seeded onto the prepared thermoresponsive anionic block copolymer brush-modified glass. The adhesion behavior of cells on the copolymer brush was observed at 37 °C and 20 °C. Results A thermoresponsive anionic block copolymer, poly(acrylic acid)-b-poly(N-isopropylacrylamide) (PAAc-b-PNIPAAm), with various PNIPAAm segment lengths was prepared. The prepared copolymer-modified glass exhibited anionic properties attributed to the bottom PAAc segment of the copolymer brush. On the PAAc-b-PNIPAAm, which had a moderate PNIPAAm length, a high adhesion ratio of HUVECs and low adhesion ratio of SMCs were observed at 37 °C. By reducing temperature from 37 °C to 20 °C, the adhered HUVECs were detached, whereas the SMCs maintained adhesion, leading to the recovery of purified HUVECs by changing the temperature. Conclusions The prepared thermoresponsive anionic copolymer-modified glass could be used to separate HUVECs and SMCs by changing the temperature without modifying the cell surface. Therefore, the developed cell separation method will be useful for vascular tissue engineering.
Collapse
Affiliation(s)
- Tadashi Hirotani
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
4
|
Jiang S, Yang S, Lei W, Liu Z, Schönherr H. Boosting the Cell Harvesting Performance of Poly(di(ethylene glycol)methyl ether methacrylate) Cell Release Layers via Copolymerization of Photo- and Thermoresponsive Monomers. Macromol Biosci 2024; 24:e2400249. [PMID: 39052359 DOI: 10.1002/mabi.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The performance of the cell-selective thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) cell harvest system is shown to be drastically enhanced by exploiting the combination of photoresponsive spiropyran derivates and PDEGMA in copolymerized brushes. The analysis of copolymerized 1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitrospiro(2H-1-benzopyran-2,2'-indoline) (SPMA) (DEMGA) di(ethylene glycol)methyl ether methacrylate brushes revealed that a minor adjustment of the SPMA/DEGMA ratios results in a significant alternation of wettability as well as protein adsorption, when switching the temperature from 37 to 22 °C and alternately irradiating using different light wavelengths (from 530 to 365 nm). Thin P(SPMA-co-DEGMA) layers supported pancreatic tumor PaTu 8988t cells with high cell viability. Copolymer layers with 2.5% SPMA/DEGMA led to the highest efficiency of enzyme-free cell release with very good cell viability. The release is induced by cooling the cell culture medium to 22 °C and irradiating the surface with 365 nm light. Compared to neat PDEGMA, the P(SPMA-co-DEGMA) layers showed a threefold increase in the speed of the change of cell morphology of the attached cells and a >5 times increased fraction of detached cells, which underlines the potential of these dual responsive PDEGMA systems for optimized performance in the facile capture, culture, and release of different cell lines.
Collapse
Affiliation(s)
- Siyu Jiang
- Department of Bioengineering, School of Environmental and Chemical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
- Nano-biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, 066004, Qinhuangdao, China
| | - Sijia Yang
- Department of Bioengineering, School of Environmental and Chemical Engineering, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, China
| | - Wenwei Lei
- Nano-biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, 066004, Qinhuangdao, China
| | - Zhiwei Liu
- Nano-biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, 066004, Qinhuangdao, China
| | - Holger Schönherr
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Physical Chemistry I, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
5
|
Zhao Y, Cao Z, Zhang J, Tian J, Cai H. Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment. Biomed Mater 2024; 19:065023. [PMID: 39312938 DOI: 10.1088/1748-605x/ad7e6e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
The preparation of cells is a critical step in cell therapy. To ensure the effectiveness of cells used for clinical treatments, it is essential to harvest adherent cells from the culture media in a way that preserves their high viability and full functionality. In this study, we developed temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)-grafted polystyrene (PS) microspheres using reversible addition-fragmentation chain transfer polymerization. These microspheres allow for the non-destructive harvesting of cultured cells through temperature changes. The composition and physicochemical properties of the PNIPAM-grafted PS microspheres were confirmed using infrared spectroscopy, elemental analysis, dynamic light scattering, and thermogravimetric analysis.In vitroexperiments demonstrated that these microspheres exhibit excellent biocompatibility, supporting the adhesion and proliferation of various cells. Moreover, the microspheres showed good temperature responsiveness in thermosensitive detachment experiments with GFP-HepG2cells and umbilical cord mesenchymal stem cells (UC-MSCs). Additionally, through orthogonal experiments, we identified a cell detachment aid mixture that significantly improved the dispersibility of cells detached from the microspheres, enhancing the efficiency of thermosensitive cell detachment by approximately 40%. The harvested UC-MSCs retained their capacity for re-proliferation and trilineage differentiation. Consequently, the temperature-responsive microspheres developed in this study, combined with the cell detachment aid mixtures, hold great potential for large-scale culture and harvesting of therapeutic cells in clinical applications.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Zida Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
6
|
Nagase K, Suzuki S, Kanazawa H. Temperature-modulated interactions between thermoresponsive strong cationic copolymer-brush-grafted silica beads and biomolecules. Heliyon 2024; 10:e34668. [PMID: 39161811 PMCID: PMC11332852 DOI: 10.1016/j.heliyon.2024.e34668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Thermoresponsive polymer brushes have attracted considerable research attention owing to their unique properties. Herein, we developed silica beads grafted with poly(N-isopropylacrylamide (NIPAAm)-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butyl acrylamide (tBAAm) and P(NIPAAm-co-APTAC-co-n-butyl methacrylate(nBMA)) brushes. The carbon, hydrogen, and nitrogen elemental analysis of the copolymer-grated silica beads revealed the presence of a large amount of the grafted copolymer on the silica beads. The electrostatic and hydrophobic interactions between biomolecules and prepared copolymer brushes were analyzed by observing their elution behaviors via high-performance liquid chromatography using the copolymer-brush-modified beads as the stationary phase. Adenosine nucleotides were retained in the bead-packed columns, which was attributed to the electrostatic interaction between the copolymers and adenosine nucleotides. Insulin was adsorbed on the copolymer brushes at high temperatures, which was attributed to its electrostatic and hydrophobic interactions with the copolymer. Similar adsorption behavior was observed in case of albumin. Further, at a low concentration of the phosphate buffer solution, albumin was adsorbed onto the copolymer brushes even at relatively low temperatures owing to its enhanced electrostatic interaction with the copolymer. These results indicated that the developed thermoresponsive strong cationic copolymer brushes can interact with peptides and proteins through a combination of electrostatic and temperature-modulated hydrophobic interactions. Thus, the developed copolymer brushes exhibits substantial potential for application in chromatographic matrices for the analysis and purification of peptides and proteins.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Sayaka Suzuki
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
7
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
8
|
Nakao M, Nagase K. Harvesting methods of umbilical cord-derived mesenchymal stem cells from culture modulate cell properties and functions. Regen Ther 2024; 26:80-88. [PMID: 38841206 PMCID: PMC11152751 DOI: 10.1016/j.reth.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/11/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are promising candidates for stem cell therapy. Various methods such as enzymatic treatment, cell scraping, and temperature reduction using temperature-responsive cell culture dishes have been employed to culture and harvest UC-MSCs. However, the effects of different harvesting methods on cell properties and functions in vitro remain unclear. In this study, we investigated the properties and functions of UC-MSC using various cell-harvesting methods. Methods UC-MSC suspensions were prepared using treatments with various enzymes, cell scraping, and temperature reduction in temperature-responsive cell culture dishes. UC-MSC sheets were prepared in a temperature-responsive cell culture dish. The properties and functions of the UC-MSC suspensions and sheets were assessed according to Annexin V staining, lactate dehydrogenase (LDH) assay, re-adhesion behavior, and cytokine secretion analysis via enzyme-linked immunosorbent assay. Results Annexin V staining revealed that accutase induced elevated UC-MSC apoptosis. Physical scraping using a cell scraper induced a relatively high LDH release due to damaged cell membranes. Dispase exhibited relatively low adhesion from initial incubation until 3 h. UC-MSC sheets exhibited rapid re-adhesion at 15 min and cell migration at 6 h. UC-MSC sheets expressed higher levels of cytokines such as HGF, TGF-β1, IL-10, and IL-6 than did UC-MSCs in suspension. Conclusions The choice of enzyme and physical scraping methods for harvesting UC-MSCs significantly influenced their activity and function. Thus, selecting appropriate cell-harvesting methods is important for successful stem cell therapy.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
9
|
Nagase K. Bioanalytical technologies using temperature-responsive polymers. ANAL SCI 2024; 40:827-841. [PMID: 38584205 PMCID: PMC11035477 DOI: 10.1007/s44211-024-00545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
In recent decades, various bioanalytical technologies have been investigated for appropriate medical treatment and effective therapy. Temperature-responsive chromatography is a promising bioanalytical technology owing to its functional properties. Temperature-responsive chromatography uses a poly(N-isopropylacrylamide)(PNIPAAm) modified stationary phase as the column packing material. The hydrophobic interactions between PNIPAAm and the analyte could be modulated by changing the column temperature because of the temperature-responsive hydrophobicity of PNIPAAm. Thus, the chromatography system does not require organic solvents in the mobile phase, making it suitable for therapeutic drug monitoring in medical settings such as hospitals. This review summarizes recent developments in temperature-responsive chromatography systems for therapeutic drug monitoring applications. In addition, separation methods for antibody drugs using PNIPAAm are also summarized because these methods apply to the therapeutic drug monitoring of biopharmaceutics. The temperature-responsive chromatography systems can also be utilized for clinical diagnosis, as they can assess multiple medicines simultaneously. This highlights the significant potential of temperature-responsive chromatography in medicine and healthcare.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| |
Collapse
|
10
|
Hebel D, Schönherr H. Mild Quantitative One Step Removal of Macrophages from Cocultures with Human Umbilical Vein Endothelial Cells Using Thermoresponsive Poly(Di(Ethylene Glycol)Methyl Ether Methacrylate) Brushes. Macromol Biosci 2024; 24:e2300408. [PMID: 37916483 DOI: 10.1002/mabi.202300408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The authors report on a mild, label-free, and fast method for the separation of human umbilical vein endothelial cells (HUVEC), which are relevant cells, whose use is not limited to studies of endothelial dysfunction, from cocultures with macrophages to afford HUVEC in ≈100% purity. Poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes with a dry thickness of (5 ± 1) nm afford the highly effective one-step separation by selective HUVEC detachment, which is based on the brushes' thermoresponsive behavior. Below the thermal transition at 32 °C the brushes swells and desorbs attached proteins, resulting in markedly decreased cell adhesion. Specifically, HUVEC and macrophages, which are differentiated from THP-1 monocytes, are seeded and attached to PDEGMA brushes at 37°C. After decreasing the temperature to 22°C, HUVEC shows a decrease in their cell area, while the macrophages are not markedly affected by the temperature change. After mild flushing with a cell culture medium, the HUVEC can be released from the surface and reseeded again with ≈100% purity on a new surface. With this selective cell separation and removal method, it is possible to separate and thereby purify HUVEC from macrophages without the use of any releasing reagent or expensive labels, such as antibodies.
Collapse
Affiliation(s)
- Diana Hebel
- Department of Chemistry and Biology, University of Siegen, Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Department of Chemistry and Biology, University of Siegen, Physical Chemistry I & Research Center of Micro and Nanochemistry and (Bio)Technology (Cµ), Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
11
|
Nagase K, Nagaoka M, Nakano Y, Utoh R. bFGF-releasing biodegradable nanoparticles for effectively engrafting transplanted hepatocyte sheet. J Control Release 2024; 366:160-169. [PMID: 38154542 DOI: 10.1016/j.jconrel.2023.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Hepatic tissue engineering has been applied for the treatment of intractable liver diseases, and hepatocyte sheets are promising for this purpose. However, hepatocyte sheets have poor survival after transplantation because of their high metabolic activity. In this study, we aimed to develop basic fibroblast growth factor (bFGF)-releasing nanoparticles to prolong the survival of hepatocyte sheets after transplantation. The nanoparticles were prepared by electrospraying a bFGF-dispersed poly(D,l-lactide-co-glycolide) emulsion. bFGF-loaded PLGA nanoparticles can be developed by optimizing the applied electrospray voltage and the oil:water ratio of the emulsion. The prepared nanoparticles exhibited prompt release at the initial duration and continuous gradual release at the subsequent duration. Hepatocyte sheet engraftment was evaluated by transplanting hepatocyte sheets containing the prepared nanoparticles into rats. The hepatocyte sheets with the prepared nanoparticles exhibited longer survival than those without the bFGF nanoparticles or solution owing to the local and continuous release of bFGF from the nanoparticles and the subsequent enhanced angiogenesis at the transplantation site. These results indicated that the prepared bFGF-releasing nanoparticles can enhance the efficiency of hepatocyte sheet transplantation. The developed bFGF-releasing nanoparticles would be useful for the transplantation of cellular tissue with post-transplantation survival challenges.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Marin Nagaoka
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Yuto Nakano
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Nakao M, Matsui M, Kim K, Nishiyama N, Grainger DW, Okano T, Kanazawa H, Nagase K. Umbilical cord-derived mesenchymal stem cell sheets transplanted subcutaneously enhance cell retention and survival more than dissociated stem cell injections. Stem Cell Res Ther 2023; 14:352. [PMID: 38072920 PMCID: PMC10712142 DOI: 10.1186/s13287-023-03593-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) sheets have recently attracted attention as an alternative approach to injected cell suspensions for stem cell therapy. However, cell engraftment and cytokine expression levels between hUC-MSC sheets and their cell suspensions in vivo have not yet been compared. This study compares hUC-MSC in vivo engraftment efficacy and cytokine expression for both hUC-MSC sheets and cell suspensions. METHODS hUC-MSC sheets were prepared using temperature-responsive cell culture; two types of hUC-MSC suspensions were prepared, either by enzymatic treatment (trypsin) or by enzyme-free temperature reduction using temperature-responsive cell cultureware. hUC-MSC sheets and suspensions were transplanted subcutaneously into ICR mice through subcutaneous surgical placement and intravenous injection, respectively. hUC-MSC sheet engraftment after subcutaneous surgical transplantation was investigated by in vivo imaging while intravenously injected cell suspensions were analyzing using in vitro organ imaging. Cytokine levels in both transplant site tissues and blood were quantified by enzyme-linked immunosorbent assay. RESULTS After subcutaneous transplant, hUC-MSC sheets exhibited longer engraftment duration than hUC-MSC suspensions. This was attributed to extracellular matrix (ECM) and cell-cell junctions retained in sheets but enzymatically altered in suspensions. hUC-MSC suspensions harvested using enzyme-free temperature reduction exhibited relatively long engraftment duration after intravenous injection compared to suspensions prepared using trypsin, as enzyme-free harvest preserved cellular ECM. High HGF and TGF-β1 levels were observed in sheet-transplanted sites compared to hUC-MSC suspension sites. However, no differences in human cytokine levels in murine blood were detected, indicating that hUC-MSC sheets might exert local paracrine rather than endocrine effects. CONCLUSIONS hUC-MSC sheet transplantation could be a more effective cell therapeutic approach due to enhanced engraftment and secretion of therapeutic cytokines over injected hUC-MSC suspensions.
Collapse
Affiliation(s)
- Mitsuyoshi Nakao
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Kyungsook Kim
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - David W Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
13
|
Nagase K, Wakayama H, Matsuda J, Kojima N, Kanazawa H. Thermoresponsive mixed polymer brush to effectively control the adhesion and separation of stem cells by altering temperature. Mater Today Bio 2023; 20:100627. [PMID: 37122838 PMCID: PMC10130502 DOI: 10.1016/j.mtbio.2023.100627] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
During the last few decades, thermoresponsive materials for modulating cell adhesion have been investigated for the application of tissue engineering. In this study, we developed thermoresponsive mixed polymer brushes consisting of poly(N-isopropylacrylamide) (PNIPAAm) and poly(N,N-dimethylaminopropylacrylamide) (PDMAPAAm). The mixed polymer brushes were prepared on a glass substrate via the reversible addition-fragmentation chain transfer polymerization of DMAPAAm and subsequent atom transfer radical polymerization of NIPAAm. The mixed polymer brushes grafted to glass exhibited increased cationic properties by increasing the grafted PDMAPAAm length. The shrinking and extension of PNIPAAm exposed and concealed PDMAPAAm, respectively, indicating that the surface cationic properties can be controlled by changing the temperature. At 37 °C, the prepared mixed polymer brushes enhanced cell adhesion through their electrostatic interactions with cells. They also exhibited various thermoresponsive adhesion and detachment properties using various types of cells, such as mesenchymal stem cells. Temperature-controlled cell adhesion and detachment behavior differed between cell types. Using the prepared mixed polymer brush, we separated MSCs from adipocytes and HeLa cells by simply changing the temperature. Thus, the thermoresponsive mixed polymer brushes may be used to separate mesenchymal stem cells from their differentiated or contaminant cells by altering the temperature.
Collapse
|
14
|
Nagase K, Yamazaki K, Maekawa Y, Kanazawa H. Thermoresponsive bio-affinity interfaces for temperature-modulated selective capture and release of targeted exosomes. Mater Today Bio 2022; 18:100521. [PMID: 36590982 PMCID: PMC9800632 DOI: 10.1016/j.mtbio.2022.100521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The existing methods for exosome isolation, such as ultracentrifugation, size exclusion, and affinity separation, suffer from some limitations. Herein, we aimed to develop temperature-modulated exosome-capturing materials using thermoresponsive polymers and peptides with affinity for exosomes. Poly(2-hydroxyethyl methacrylate-co-propargyl acrylate)-b-poly(N-isopropylacrylamide) (P(HEMA-co-PgA)-b-PNIPAAm) was grafted on silica beads via a two-step process of activator regenerated by electron transfer atom transfer radical polymerization. Peptides with affinity for exosomes were conjugated to the propargyl group of the bottom P(HEMA-co-PgA) segment of the copolymer via a click reaction. The prepared copolymer-grafted beads were characterized by elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, gel permeation chromatography, and the turbidity of the polymer solution. Results indicated that the copolymer and peptide were successfully modified on the silica beads. Exosomes from SK-BR-3 cells, a human breast cancer cell line, were selectively captured on the prepared beads at 37 °C, as the upper PNIPAAm segment shrank and the affinity between the peptide and exosome was enhanced. Upon lowering the temperature to 4 °C, the captured exosomes were released from the copolymer brush because of the extension of the PNIPAAm segment that reduced the affinity between peptides and exosomes. These findings demonstrated that the prepared copolymer brush-grafted silica beads can capture and release targeted exosomes via temperature modulation. Taken together, the developed copolymer brush-grafted silica beads would be useful for the separation of exosomes using simple procedures such as temperature modulation.
Collapse
|
15
|
A thermoresponsive cationic block copolymer brush-grafted silica bead interface for temperature-modulated separation of adipose-derived stem cells. Colloids Surf B Biointerfaces 2022; 220:112928. [DOI: 10.1016/j.colsurfb.2022.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
16
|
Nagase K, Kojima N, Goto M, Akaike T, Kanazawa H. Thermoresponsive block copolymer brush for temperature-modulated hepatocyte separation. J Mater Chem B 2022; 10:8629-8641. [PMID: 35972447 DOI: 10.1039/d2tb01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic tissue engineering may be an effective approach for the treatment of liver disease; however, its practical application requires hepatic cell separation technologies that do not involve cell surface modification and maintain cell activity. In this study, we developed hepatocyte cell separation materials using a thermoresponsive polymer and a polymer with high affinity to hepatocytes. A block copolymer of poly(N-p-vinylbenzyl-O-β-D-galactopyranosyl-(1→4)-D-gluconamide) (PVLA) and poly(N-isopropylacrylamide) (PNIPAAm) [PVLA-b-PNIPAAm] was prepared through two steps of atom transfer radical polymerization. On the prepared PVLA-b-PNIPAAm brush, HepG2 cells (model hepatocytes) adhered at 37 °C and detached at 20 °C, attributed to the temperature-modulated affinity between PVLA and HepG2. Cells from the immortalized human hepatic stellate cell line (TWNT-1) did not adhere to the copolymer brush, and RAW264.7 cells (mouse macrophage; model Kupffer cells) adhered to the copolymer brush, regardless of temperature. Using the difference in cell adhesion properties on the copolymer brush, temperature-modulated cell separation was successfully demonstrated. A mixture of HepG2, RAW264.7, and TWNT-1 cells was seeded on the copolymer brush at 37 °C for adherence. By reducing the temperature to 20 °C, adhered HepG2 cells were selectively recovered with a purity of approximately 85% and normal activity. In addition, induced pluripotent stem (iPS) cell-derived hepatocytes adhered on the PVLA-b-PNIPAAm brush at 37 °C and detached from the copolymer brush at 20 °C, whereas the undifferentiated iPS cells did not adhere, indicating that the prepared PVLA-b-PNIPAAm brush could be utilized to separate hepatocyte differentiated and undifferentiated cells. These results indicated that the newly developed PVLA-b-PNIPAAm brush can separate hepatic cells from contaminant cells by temperature modulation, without affecting cell activity or modifying the cell surface. Thus, the copolymer brush is expected to be a useful separation tool for cell therapy and tissue engineering using hepatocytes.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Naoto Kojima
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Mitsuaki Goto
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki 305-0821, Japan
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16 Kasuga, 3-chome, Tsukuba, Ibaraki 305-0821, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
17
|
Nagase K, Ishii S, Takeuchi A, Kanazawa H. Temperature-modulated antibody drug separation using thermoresponsive mixed polymer brush-modified stationary phase. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Schutzeichel C, Kiriy N, Kiriy A, Voit B. Self‐Aligned Polymer Film Patterning on Microstructured Silicon Surfaces. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher Schutzeichel
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers Technische Universität Dresden 01062 Dresden Germany
| | - Nataliya Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| | - Anton Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6 01069 Dresden Germany
- Organic Chemistry of Polymers Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
19
|
Guerron A, Phan HT, Peñaloza-Arias C, Brambilla D, Roullin VG, Giasson S. Selectively triggered cell detachment from poly(N-isopropylacrylamide) microgel functionalized substrates. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Hiruta Y. Poly(N-isopropylacrylamide)-based temperature- and pH-responsive polymer materials for application in biomedical fields. Polym J 2022. [DOI: 10.1038/s41428-022-00687-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Nagase K, Takagi H, Nakada H, Ishikawa H, Nagata Y, Aomori T, Kanazawa H. Chromatography columns packed with thermoresponsive-cationic-polymer-modified beads for therapeutic drug monitoring. Sci Rep 2022; 12:12847. [PMID: 35896711 PMCID: PMC9329465 DOI: 10.1038/s41598-022-16928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic drug monitoring, which is used to determine appropriate drug doses, is critical in pharmacological therapy. In this study, we developed thermoresponsive chromatography columns with various cationic properties for effective therapeutic drug monitoring. Thermoresponsive cationic copolymer poly(N-isopropylacrylamide-co-n-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAAm-co-BMA-co-DMAPAAm))-modified silica beads, which were used as the chromatographic stationary phase, were prepared by modifying the radical initiator of the silica beads, followed by radical polymerization. Characterization of the prepared silica beads demonstrated that thermoresponsive polymers with various cationic properties successfully modified the beads. The elution behavior of several steroids in the prepared bead-packed columns at various temperatures indicated that the optimal column operating temperature was 30 °C. Appropriate measurement conditions for 13 drugs were investigated by varying the cationic properties of the columns and the pH of the mobile phase. Drug concentrations in serum samples were determined using the developed columns and mobile phases with a suitable pH. Voriconazole concentrations in human serum samples were determined using the developed columns with all-aqueous mobile phases. We anticipate that the developed chromatography columns can be used for therapeutic drug monitoring because drug concentrations can be measured using all-aqueous mobile phases that are suitable in clinical settings.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| | - Hikaru Takagi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideo Nakada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Haruki Ishikawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshiko Nagata
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Tohru Aomori
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
22
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
23
|
Nagase K, Kitazawa S, Kogure T, Yamada S, Katayama K, Kanazawa H. Viral vector purification with thermoresponsive-anionic mixed polymer brush modified beads-packed column. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Application of the water-insoluble, temperature-responsive block polymer poly(butyl methacrylate-block-N-isopropylacrylamide) for pluripotent stem cell culture and cell-selective detachment. J Biosci Bioeng 2022; 133:502-508. [PMID: 35246394 DOI: 10.1016/j.jbiosc.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Induced pluripotent stem (iPS) cells have been widely studied in regenerative medicine, pathology modeling, and drug screening. Stable mass culture of iPS cells is essential for these applications. iPS cells can spontaneously differentiate into other cells during culture, and removal of these differentiated cells is necessary. Herein, a cost-effective culture method suitable for mass culture and a detailed analysis of the selective detachment of iPS cells are presented. A simple method for coating the water-insoluble thermoresponsive polymer poly (butyl methacrylate-block-N-isopropylacrylamide) on commercially available polystyrene dishes was employed. Analysis of the effects of the polymer composition, coating thickness, and surface structure on iPS cell culture/detachment showed that a coating thickness of approximately 10-40 nm using a polymer with a high poly (N-isopropylacrylamide) content was suitable for iPS cell detachment. Moreover, an interesting change in surface morphology was observed following temperature variation, thereby affecting laminin adsorption. Second, selective detachment in cocultures of iPS cells and differentiated cells enabled collection of iPS cells with more than 98% purity. Finally, long-term iPS cell culture was conducted using temperature-responsive cell detachment. Overall, long-term maintenance-free culture of iPS cells was possible without manual removal of differentiated cells.
Collapse
|
25
|
Zhang BY, Luo HN, Zhang W, Liu Y. Research progress in self-oscillating polymer brushes. RSC Adv 2022; 12:1366-1374. [PMID: 35425176 PMCID: PMC8979042 DOI: 10.1039/d1ra07374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications. Self-oscillating polymers are anchored on surfaces of certain materials and are coupled with some self-oscillating reactions (with the Belousov–Zhabotinsky (BZ) reaction as an example) to form self-oscillating polymer brushes. As an independent field of stimulus response functional surface research, the development of new intelligent bionic materials has good potential. This article reviews the oscillation mechanisms of self-oscillating polymer brushes and their classifications. First, the oscillation mechanisms of self-oscillating polymer brushes are introduced. Second, the research progress in self-oscillating polymers is discussed in terms of the type of self-oscillation reactions. Finally, possible future developments of self-oscillating polymer brushes are prospected. Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications.![]()
Collapse
Affiliation(s)
- Bao-Ying Zhang
- School of Chemical Engineering, China University of Mining and Technology Xuzhou Jiangsu 221116 China .,School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Hai-Nan Luo
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Wei Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Yang Liu
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| |
Collapse
|
26
|
Nagase K, Edatsune G, Nagata Y, Matsuda J, Ichikawa D, Yamada S, Hattori Y, Kanazawa H. Thermally-modulated cell separation columns using a thermoresponsive block copolymer brush as a packing material for the purification of mesenchymal stem cells. Biomater Sci 2021; 9:7054-7064. [PMID: 34296234 DOI: 10.1039/d1bm00708d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell therapy using mesenchymal stem cells (MSCs) is used as effective regenerative treatment. Cell therapy requires effective cell separation without cell modification and cellular activity reduction. In this study, we developed a temperature-modulated mesenchymal stem cell separation column. A temperature-responsive cationic block copolymer, poly(N,N-dimethylaminopropylacrylamide)-b-poly(N-isopropylacrylamide)(PDMAPAAm-b-PNIPAAm) brush with various cationic copolymer compositions, was grafted onto silica beads via two-step atom transfer radical polymerization. Using the packed beads, the elution behavior of the MSCs was observed. At 37 °C, the MSCs were adsorbed onto the column via both hydrophobic and electrostatic interactions with the PNIPAAm and PDMAPAAm segments of the copolymer brush, respectively. By reducing the temperature to 4 °C, the adsorbed MSCs were eluted from the column by reducing the hydrophobic and electrostatic interactions attributed to the hydration and extension of the PNIPAAm segment of the block copolymer brush. From the temperature-modulated adsorption and elution behavior of MSCs, a suitable DMAPAAm composition of the block copolymer brush was determined. Using the column, a mixture of MSC and BM-CD34+ cells was separated by simply changing the column temperature. The column was used to purify the MSCs, with purities of 78.2%, via a temperature change from 37 °C to 4 °C. Additionally, the cellular activity of the MSCs was retained throughout the column separation step. Overall, the obtained results show that the developed column is useful for MSC separation without cell modification and cellular activity reduction.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Goro Edatsune
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Yuki Nagata
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Junnosuke Matsuda
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Daiju Ichikawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Sota Yamada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Yutaka Hattori
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
27
|
Yin L, Liu L, Zhang N. Brush-like polymers: design, synthesis and applications. Chem Commun (Camb) 2021; 57:10484-10499. [PMID: 34550120 DOI: 10.1039/d1cc03940g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the development of controlled polymerisation, almost all polymerisation strategies have been successfully transplanted to surface-initiated polymerisation. The resulting polymer brushes have emerged as an effective tool for surface functionalization and modulation of the surface properties of materials. To meet various demands it is possible to tailor a material surface with polymer brushes that have diverse dimensionalities, morphologies and compositions. The crowded environment within polymer brushes as well as the stretched conformation of polymer chains sometimes provide unique physicochemical properties, which lead to the delicate creation of inorganic-organic hybridised nanostructures, anti-fouling coatings, biomedical carriers, and materials for use in lubrication, photonics and energy storage. So far, challenges remain in the high-precision synthesis and topological control needed to realize extended applications of polymer brushes. In this Feature Article, we highlight the topology, potential application prospects and various synthetic protocols, particularly for recently established methods, for the efficient synthesis of polymer brushes, as well as their benefits and limitations.
Collapse
Affiliation(s)
- Liying Yin
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Lin Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
28
|
Nagase K, Ishizawa Y, Inoue M, Kokubun M, Yamada S, Kanazawa H. Temperature-responsive spin column for sample preparation using an all-aqueous eluent. Anal Chim Acta 2021; 1179:338806. [PMID: 34535268 DOI: 10.1016/j.aca.2021.338806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
We present a temperature-responsive spin column using an all-aqueous eluent. The method is intended as a simple sample preparation method for protein removal from serum, which is required for serum drug analysis. As packing materials for the spin column, we prepared two types of silica beads via surface-initiated radical polymerization. The large beads (diameter, 40-63 μm) were grafted with a temperature-responsive cationic copolymer, poly(N-isopropylacrylamide-co-N,N-dimethylaminopropyl acrylamide-co-n-butyl methacrylate) (P(NIPAAm-co-DMAPAAm-co-BMA)), and the small beads (diameter, 5 μm) were grafted with a temperature-responsive hydrophobic copolymer, P(NIPAAm-co-BMA). The beads were packed into the spin column as a double layer: P(NIPAAm-co-BMA) silica beads on the bottom and P(NIPAAm-co-DMAPAAm-co-BMA) silica beads on the top. The sample purification efficacy of the prepared spin column was evaluated on a model sample analyte (the antifungal drug voriconazole mixed with blood serum proteins). At 40 °C, the serum proteins and voriconazole were adsorbed on the prepared spin column via hydrophobic and electrostatic interactions. When the temperature was decreased to 4 °C, the adsorbed voriconazole was eluted from the column with the pure water eluent, while the serum proteins remained in the column. This temperature-responsive spin column realizes sample preparation simply by changing the temperature.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| | - Yuta Ishizawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Masakazu Inoue
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Matsurika Kokubun
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Sota Yamada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
29
|
Homma K, Chang AC, Yamamoto S, Tamate R, Ueki T, Nakanishi J. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling. Acta Biomater 2021; 132:103-113. [PMID: 33744500 DOI: 10.1016/j.actbio.2021.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022]
Abstract
Mechanics of the extracellular matrix (ECM) exhibit changes during many biological events. During disease progression, such as cancer, matrix stiffening or softening occurs due to crosslinking of the collagen matrix or matrix degradation through cell-secreted enzymes. Engineered hydrogels have emerged as a prime in vitro model to mimic such dynamic mechanics during disease progression. Although there have been a variety of engineered hydrogels, few can offer both stiffening and softening properties under the same working principle. In addition, to model individual disease progression, it is desirable to control the kinetics of mechanical changes. To this end, we describe a photoresponsive hydrogel that undergoes stiffness changes by the photo-induced phase transition. The hydrogel was composed of a copolymer of azobenzene acrylate monomer (AzoAA) and N,N-dimethyl acrylamide (DMA). By tuning the amount of azobenzene, the phase transition behavior of this polymer occurs solely by light irradiation, because of the photoisomerization of azobenzene. This phase behavior was confirmed at 37 °C by turbidity measurements. In addition, the crosslinked poly(AzoAA-r-DMA) gel undergoes reversible swelling-deswelling upon photoisomerization by ultraviolet or visible light. Furthermore, the poly(AzoAA-r-DMA) sheet gels exhibited modulus changes at different isomerization states of azobenzene. When MCF-7 cells were cultured on the gels, stiffening at different timepoints induced varied responses in the gene expression levels of E-cadherin. Not only did this suggest an adaptive behavior of the cells against changes in mechanics during disease progression, this also demonstrated our material's potential towards in vitro disease modeling. STATEMENT OF SIGNIFICANCE: During disease progression such as cancer, cellular microenvironment called extracellular matrix (ECM) undergoes stiffness changes. Hydrogels, which are swollen network of crosslinked polymers, have been used to model such dynamic mechanical environment of the ECM. However, few could offer both stiffening and softening properties under the same working principle. Herein, we fabricated a novel photoresponsive hydrogel with switchable mechanics, activated by photo-induced structural change of the polymer chains within the hydrogel. When breast cancer cells were cultured on our dynamic hydrogels, gene expression and morphological observation suggested that cells react to changes in stiffness by a transient response, as opposed to a sustained one. The photoresponsive hydrogel offers possibility for use as a patient-specific model of diseases.
Collapse
|
30
|
Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021; 295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is the most well-known and widely used stimuli-responsive polymer in the biomedical field owing to its ability to undergo temperature-dependent hydration and dehydration with temperature variations, causing hydrophilic and hydrophobic alterations. This temperature-dependent property of PNIPAAm provides functionality to interfaces containing PNIPAAm. Notably, the hydrophilic and hydrophobic alterations caused by the change in the temperature-responsive property of PNIPAAm-modified interfaces induce temperature-modulated interactions with biomolecules, proteins, and cells. This intrinsic property of PNIPAAm can be effectively used in various biomedical applications, particularly in bioseparation and tissue engineering applications, owing to the functionality of PNIPAAm-modified interfaces based on the temperature modulation of the interaction between PNIPAAm-modified interfaces and biomolecules and cells. This review focuses on PNIPAAm-modified interfaces in terms of preparation method, properties, and their applications. Advances in PNIPAAm-modified interfaces for existing and developing applications are also summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
31
|
Maekawa Y, Ayano E, Nagase K, Kanazawa H. Effective Separation for New Therapeutic Modalities Utilizing Temperature-responsive Chromatography. ANAL SCI 2021; 37:651-660. [PMID: 33518586 DOI: 10.2116/analsci.20scr09] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/22/2021] [Indexed: 08/09/2023]
Abstract
In recent years, drug discovery and therapeutics trends have shifted from a focus on small-molecule compounds to biopharmaceuticals, genes, cell therapy, and regenerative medicine. Therefore, new approaches and technologies must be developed to respond to these changes in medical care. To achieve this, we applied a temperature-responsive separation system to purify a variety of proteins and cells. We developed a temperature-responsive chromatography technique based on a poly(N-isopropylacrylamide) (PNIPAAm)-grafted stationary phase. This method may be applied to various types of protein and cell separation applications by optimizing the properties of the modified polymers used in this system. Therefore, the developed temperature-responsive HPLC columns and temperature-responsive solid-phase extraction (TR-SPE) columns can be an effective separation tool for new therapeutic modalities such as monoclonal antibodies, nucleic acid drugs, and cells.
Collapse
Affiliation(s)
- Yutaro Maekawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Eri Ayano
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| |
Collapse
|
32
|
Homma K, Ohta Y, Minami K, Yoshikawa G, Nagase K, Akimoto AM, Yoshida R. Autonomous Nanoscale Chemomechanical Oscillation on the Self-Oscillating Polymer Brush Surface by Precise Control of Graft Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4380-4386. [PMID: 33793253 DOI: 10.1021/acs.langmuir.1c00459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a novel functional surface, a self-oscillating polymer brush that undergoes autonomous, periodic swelling/deswelling during the Belousov-Zhabotinsky (BZ) reaction has been developed. Although extensive research has revealed how the fundamental aspects of the BZ reaction can be regulated based on the surface design of the self-oscillating polymer brush, design strategies for the induction of mechanical oscillation remain unexplored. Herein, we investigated the graft density effects on the phase transition behavior, which is an important design parameter for the mechanical oscillation of the modified polymer. The self-oscillating polymer-modified substrates with controlled graft densities were prepared by immobilizing various compositions of an initiator and a noninitiator followed by surface-initiated atom transfer radical polymerization of the self-oscillating polymer chains. In addition to the characterization of each prepared substrate, atomic force microscopy (AFM) and digital holographic microscopy (DHM) were employed to evaluate the density effects on the static and dynamic surface structures. AFM revealed that equilibrium swelling as well as thermoresponsive behavior is profoundly affected by the graft density. Moreover, using DHM, autonomous mechanical oscillation was captured only on the self-oscillating polymer brush with adequate graft density. Notably, the oscillation amplitude (150 nm) and the period (20 s) in this study were superior to those in a previous report on the self-oscillating polymer modified through the grafting-to method by 10- and 3-fold, respectively. This study presents design guidelines for future applications, such as autonomous transport devices.
Collapse
Affiliation(s)
- Kenta Homma
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Ohta
- School of Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kosuke Minami
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Genki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba 305-8571, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Aya M Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
33
|
Nagase K, Shimura M, Shimane R, Hanaya K, Yamada S, Akimoto AM, Sugai T, Kanazawa H. Selective capture and non-invasive release of cells using a thermoresponsive polymer brush with affinity peptides. Biomater Sci 2021; 9:663-674. [DOI: 10.1039/d0bm01453b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thermoresponsive block copolymer brush with cell affinity peptides was prepared via two steps of ATRP and subsequent click reaction. The prepared polymer brush can purify cells with high selectivity by simply changing temperature.
Collapse
Affiliation(s)
| | | | | | | | - Sota Yamada
- Faculty of Pharmacy
- Keio University
- Minato
- Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering
- School of Engineering
- The University of Tokyo
- Bunkyo
- Japan
| | | | | |
Collapse
|
34
|
Nagase K, Kanazawa H. Temperature-responsive chromatography for bioseparations: A review. Anal Chim Acta 2020; 1138:191-212. [DOI: 10.1016/j.aca.2020.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
|
35
|
Nagase K, Ota A, Hirotani T, Yamada S, Akimoto AM, Kanazawa H. Thermoresponsive Cationic Block Copolymer Brushes for Temperature‐Modulated Stem Cell Separation. Macromol Rapid Commun 2020; 41:e2000308. [DOI: 10.1002/marc.202000308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Ayumu Ota
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Tadashi Hirotani
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Sota Yamada
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering Schools of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo Tokyo 113‐8656 Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy Keio University 1‐5‐30 Shibakoen, Minato Tokyo 105‐8512 Japan
| |
Collapse
|
36
|
Nagase K, Shukuwa R, Takahashi H, Takeda N, Okano T. Enhanced mechanical properties and cell separation with thermal control of PIPAAm-brushed polymer-blend microfibers. J Mater Chem B 2020; 8:6017-6026. [DOI: 10.1039/d0tb00972e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thermoresponsive microfibers with enhanced mechanical properties for temperature-modulated cell separation were developed by electrospinning of blending PVBC and PBMA, and by subsequently modifying the microfibers with PIPAAm via ATRP.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy
- Keio University
- Tokyo 105-8512
- Japan
- Institute of Advanced Biomedical Engineering and Science
| | - Risa Shukuwa
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University (TWIns)
- Tokyo 162-8666
- Japan
- Department of Life Science and Medical Bioscience
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University (TWIns)
- Tokyo 162-8666
- Japan
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience
- Graduate School of Advanced Science and Engineering
- Waseda University (TWIns)
- Tokyo 162-8480
- Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University (TWIns)
- Tokyo 162-8666
- Japan
- Cell Sheet Tissue Engineering Center (CSTEC)
| |
Collapse
|