1
|
Xiang H, Huang H, Shao Y, Hao S, Li L, Wei Y, Chen S, Zhao Y. Angiotensin-I-converting enzyme inhibitory peptides from eel ( Anguilla japonica) bone collagen: preparation, identification, molecular docking, and protective function on HUVECs. Front Nutr 2024; 11:1462656. [PMID: 39703330 PMCID: PMC11655196 DOI: 10.3389/fnut.2024.1462656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Hypertension is a chronic cardiovascular disease, which can trigger some disease such as heart failure, loss of vision or kidney. There were various peptides derived from food that are recognized for their ability to inhibit ACE activity, potentially leading to a reduction in blood pressure levels in vivo. The primary objective of this research is to discover ACE inhibitory peptides from protein hydrolysates of eel bone collagen (EBCHs). Methods To begin, EBCHs were created and then divided through the process of ultrafiltration. The second step involved screening of peptides capable of inhibiting ACE by combining peptidomics and molecular docking. And the mechanism by which ACE interacts with peptides has been studied. Finally, the hypotensive mechanism of identified peptide through cell experiments with HUVEC (Human Umbilical Vein Endothelial Cells). Results Eel (Anguilla japonica) bone collagen was hydrolyzed by alcalase and the hydrolysate was separated into three fractions, among which the F2 displayed a higher level of ACE inhibitory activity. According to molecular docking calculations, a total of 615 peptides were identified through nano-HPLC-MS/MS, with the prediction of seven newly discovered ACE inhibitory peptides (PMGPR, GPMGPR, GPAGPR, GPPGPPGL, GGPGPSGPR, GPIGPPGPR, GPSGAPGPR). Notably, GPPGPPGL had the lowest IC50 value of 535.84 μM among the identified peptides, indicating its potency as an ACE inhibitor. The ACE S2 pocket formed hydrogen and hydrophobic interactions with GPPGPPGL. Lineweaver-Burk plots revealed that GPPGPPGL competitively bound to ACE's active site residues. Treatment with GPPGPPGL significantly increased nitric oxide secretion (p < 0.01) and decreased endothelin-1 (ET-1) production in HUVECs. Discussion Our findings suggest that combining peptidomics with molecular docking is effective for rapidly screening ACE inhibitory peptides. Future studies should assess the bioavailability and in vivo activity of the identified peptide GPPGPPGL from EBCHs.
Collapse
Affiliation(s)
- Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yanqiu Shao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shuxian Hao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Zhang Z, Jiang S, Li Y, Xie D, Li JX. Residue profiles of peptides with cholesterol esterase and pancreatic lipase inhibitory activities through virtual screening and sequence analysis. Food Chem 2024; 460:140708. [PMID: 39096803 DOI: 10.1016/j.foodchem.2024.140708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
The detailed characterization of the structural features of peptides targeting cholesterol esterase (CEase) or pancreatic lipase (PPL) will benefit the management of hyperlipidemia and obesity. This study employed the Glide SP (standard precision)-peptide method to predict the binding modes of 202 dipeptides and 203 tripeptides to these targets, correlating residue composition and position with binding energy. Strong preferences for Trp, Phe, and Tyr were observed at all positions of potential inhibitory peptides, whereas negatively charged residues Glu and Asp were disfavored. Notably, Arg and aromatic rings significantly influenced the peptide conformation at the active site. Tripeptide IWR demonstrated the high efficacy, with IC50 values of 0.214 mg/mL for CEase and 0.230 mg/mL for PPL. Five novel IWR scaffold-tetrapeptides exhibited promising inhibitory activity. Non-covalent interactions and energy contributions dominated the formation of stable complexes. Our results provide insights for the development of new sequences or peptide-like molecules with enhanced inhibitory activity.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yinzhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Daming Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Centre of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Li J, Hu H, Chen X, Zhu H, Zhang W, Tai Z, Yu X, He Q. A novel ACE inhibitory peptide from Douchi hydrolysate: Stability, inhibition mechanism, and antihypertensive potential in spontaneously hypertensive rats. Food Chem 2024; 460:140734. [PMID: 39106751 DOI: 10.1016/j.foodchem.2024.140734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Angiotensin I-converting enzyme (ACE) regulates blood pressure through the renin-angiotensin system. Douchi, a traditional fermented soybean condiment, may have antihypertensive effects, but research on ACE inhibitory peptides from Douchi hydrolysates is limited. We hypothesized that enzymatic treatment could enhance ACE inhibitory peptide diversity and efficacy. We tested ten single enzymes and four combinations, finding pepsin-trypsin-chymotrypsin most effective. Hydrolysates were purified using Sephadex G-15 and reversed-phase HPLC, and peptides were identified via LC-MS/MS. Five peptides (LF, VVF, VGAW, GLFG, NGK) were identified, with VGAW as the most potent ACE inhibitor (IC50 46.6 ± 5.2 μM) showing excellent thermal and pH stability. Lineweaver-Burk plots confirmed competitive inhibition, and molecular docking revealed eight hydrogen bonds between VGAW and ACE. In hypertensive rats, VGAW significantly reduced blood pressure at 12.5, 25, and 50 mg/kg. These findings highlight Douchi as a source of ACE inhibitory peptides and suggest VGAW as a promising functional food ingredient.
Collapse
Affiliation(s)
- Jianfei Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Haohan Hu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xiya Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Haiting Zhu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wenhao Zhang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Zhiyuan Tai
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
4
|
Rong Y, Feng B, Cai X, Song H, Wang L, Wang Y, Yan X, Sun Y, Zhao J, Li P, Yang H, Wang Y, Wang F. Predicting variable-length ACE inhibitory peptides based on graph convolutional network. Int J Biol Macromol 2024; 282:137060. [PMID: 39481706 DOI: 10.1016/j.ijbiomac.2024.137060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Traditional molecular descriptors have contributed to the prediction of angiotensin I-converting enzyme (ACE) inhibitory peptides, but they often fall short in capturing the complex structure of the molecule. To address these limitations, this study introduces molecular graphs as an advanced method for peptide characterization. Peptides containing 2-10 amino acids were represented using molecular graphs, and a graph convolutional network (GCN) model was constructed to predict variable-length peptides. This model was compared with machine learning (ML) models based on molecular descriptors, including Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbor (kNN), under the same benchmark. Notably, the GCN model outperformed the other models with an accuracy of 0.78, effectively identifying ACE inhibitory potential. Furthermore, the GCN model also demonstrated superior performance, exceeding existing methods with an accuracy rate of over 98 % on an independent test set. To validate our predictions, we synthesized peptides VAPE and AQQKEP with high predicted probabilities, and their IC50 values of 2.25 ± 0.11 and 3.75 ± 0.17 μM, respectively, indicating potent ACE inhibitory activity. The developed GCN model presents a powerful tool for the rapid screening and identification of ACE inhibitory peptides, offering promising opportunities for developing antihypertensive components in functional foods.
Collapse
Affiliation(s)
- Yating Rong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Baolong Feng
- Center for Education Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiaoshuang Cai
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Song
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lili Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yehui Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xinxu Yan
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yulin Sun
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Jinyong Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Ping Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Huihui Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China
| | - Yutang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
5
|
Hsiang CY, Lo HY, Lu GL, Liao PY, Ho TY. A novel heat-stable angiotensin-converting enzyme zinc-binding motif inhibitory peptide identified from corn silk. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117435. [PMID: 37979812 DOI: 10.1016/j.jep.2023.117435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypertension is the most common and chronic severe health problem globally. Corn silk (CS), the silky fibers of corn (Zea mays L.), has a long history of traditional usage as a remedy for edema and hypertension. AIM OF THE STUDY The aim of the study was to explore the underlying mechanism by which CS exerts its anti-hypertensive effects and investigate the presence of bioactive molecules in CS aqueous extract. MATERIALS AND METHODS We analyzed the effects of boiling water extract of CS on angiotensin-converting enzyme (ACE) activities, the critical enzyme involved in the regulation of blood pressure. ACE inhibitory peptides from CS extract were identified using proteomics and bioinformatics tools. The binding interfaces between these peptides and ACE were defined by hydrogen-deuterium exchange mass spectrometry (HDX-MS). Subsequently, the anti-hypertensive effects of peptides were further investigated in spontaneously hypertensive rats (SHR). RESULTS Our data showed that CS extract exhibited dose-dependent inhibition of ACE activity. Liquid chromatography-tandem mass spectrometry identified a heat-stable peptide bank with 1313 distinct peptide fragments within the CS boiling water extract. Among these, CS-1 (LVPGWTKPICIGR) was selected through PeptideRanker and BIOPEP-UWM analyses. In vitro ACE inhibitory assays confirmed that CS-1 exhibited dose-dependent ACE inhibition, with IC50 values of 10.32 ± 0.41 μmol/L (using HHL as the substrate) and 13.74 ± 1.87 μmol/L (using ZFHL as the substrate). Oral administration of CS-1 led to a significant dose-dependent reduction in blood pressure, with the maximal decrease (42.33 ± 13.08 mmHg) occurring 0.5 h after ingestion. HDX-MS analysis revealed that CS-1 interacted with the zinc-binding motif of ACE, and hydrogen bond interactions were predicted between CS-1 and specific residues, including His361 in the N-domain, as well as His382, Gly386, and His387 in the C-domain of ACE. These findings suggested that the interaction of CS-1 with the residues in the zinc-binding motif of ACE led to ACE activity inhibition and a subsequent decrease in blood pressure in rats. CONCLUSIONS A novel heat-stable ACE inhibitory peptide, which interacted with the zinc-binding motif of ACE and reduced blood pressure in SHR, was identified in the CS extract. The presence of ACE inhibitory peptides in the CS extract supports its traditional use in ethnopharmacology for hypertension.
Collapse
Affiliation(s)
- Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Guan-Ling Lu
- Department of Microbiology and Immunology, China Medical University, Taichung, 404333, Taiwan
| | - Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500209, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413305, Taiwan.
| |
Collapse
|
6
|
Vincenzi M, Mercurio FA, Leone M. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. Int J Mol Sci 2024; 25:1798. [PMID: 38339078 PMCID: PMC10855943 DOI: 10.3390/ijms25031798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Over the last few decades, we have witnessed growing interest from both academic and industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential to treat various diseases with specificity and biological safety. Compared to small molecules, peptides represent better candidates as inhibitors (or general modulators) of key protein-protein interactions. In fact, undruggable proteins containing large and smooth surfaces can be more easily targeted with the conformational plasticity of peptides. The discovery of bioactive peptides, working against disease-relevant protein targets, generally requires the high-throughput screening of large libraries, and in silico approaches are highly exploited for their low-cost incidence and efficiency. The present review reports on the potential challenges linked to the employment of peptides as therapeutics and describes computational approaches, mainly structure-based virtual screening (SBVS), to support the identification of novel peptides for therapeutic implementations. Cutting-edge SBVS strategies are reviewed along with examples of applications focused on diverse classes of bioactive peptides (i.e., anticancer, antimicrobial/antiviral peptides, peptides blocking amyloid fiber formation).
Collapse
Affiliation(s)
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.)
| |
Collapse
|
7
|
Flachsenberg F, Ehrt C, Gutermuth T, Rarey M. Redocking the PDB. J Chem Inf Model 2024; 64:219-237. [PMID: 38108627 DOI: 10.1021/acs.jcim.3c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Molecular docking is a standard technique in structure-based drug design (SBDD). It aims to predict the 3D structure of a small molecule in the binding site of a receptor (often a protein). Despite being a common technique, it often necessitates multiple tools and involves manual steps. Here, we present the JAMDA preprocessing and docking workflow that is easy to use and allows fully automated docking. We evaluate the JAMDA docking workflow on binding sites extracted from the complete PDB and derive key factors determining JAMDA's docking performance. With that, we try to remove most of the bias due to manual intervention and provide a realistic estimate of the redocking performance of our JAMDA preprocessing and docking workflow for any PDB structure. On this large PDBScan22 data set, our JAMDA workflow finds a pose with an RMSD of at most 2 Å to the crystal ligand on the top rank for 30.1% of the structures. When applying objective structure quality filters to the PDBScan22 data set, the success rate increases to 61.8%. Given the prepared structures from the JAMDA preprocessing pipeline, both JAMDA and the widely used AutoDock Vina perform comparably on this filtered data set (the PDBScan22-HQ data set).
Collapse
Affiliation(s)
- Florian Flachsenberg
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Christiane Ehrt
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Torben Gutermuth
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH - Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| |
Collapse
|
8
|
Zou L, Zhou Y, Yu X, Chen C, Xiao G. Angiotensin I-Converting Enzyme Inhibitory Activity of Two Peptides Derived from In Vitro Digestion Products of Pork Sausage with Partial Substitution of NaCl by KCl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406188 DOI: 10.1021/acs.jafc.3c01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 μM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.
Collapse
Affiliation(s)
- Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Yu Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Xia Yu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- Engineering Research Center of Bio-process from Ministry of Education, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, People's Republic of China
| |
Collapse
|
9
|
Ahmad S, Mirza MU, Trant JF. Dock-able linear and homodetic di, tri, tetra and pentapeptide library from canonical amino acids: SARS-CoV-2 Mpro as a case study. J Pharm Anal 2023; 13:523-534. [PMID: 37275125 PMCID: PMC10104786 DOI: 10.1016/j.jpha.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Peptide-based therapeutics are increasingly pushing to the forefront of biomedicine with their promise of high specificity and low toxicity. Although noncanonical residues can always be used, employing only the natural 20 residues restricts the chemical space to a finite dimension allowing for comprehensive in silico screening. Towards this goal, the dataset comprising all possible di-, tri-, and tetra-peptide combinations of the canonical residues has been previously reported. However, with increasing computational power, the comprehensive set of pentapeptides is now also feasible for screening as the comprehensive set of cyclic peptides comprising four or five residues. Here, we provide both the complete and prefiltered libraries of all di-, tri-, tetra-, and penta-peptide sequences from 20 canonical amino acids and their homodetic (N-to-C-terminal) cyclic homologues. The FASTA, simplified molecular-input line-entry system (SMILES), and structure-data file (SDF)-three dimension (3D) libraries can be readily used for screening against protein targets. We also provide a simple method and tool for conducting identity-based filtering. Access to this dataset will accelerate small peptide screening workflows and encourage their use in drug discovery campaigns. As a case study, the developed library was screened against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease to identify potential small peptide inhibitors.
Collapse
Affiliation(s)
- Sarfraz Ahmad
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, Ontario, Canada
- Binary Star Research Services, LaSalle N9J 3X8, Ontario, Canada
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, Ontario, Canada
- Binary Star Research Services, LaSalle N9J 3X8, Ontario, Canada
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, Ontario, Canada
- Binary Star Research Services, LaSalle N9J 3X8, Ontario, Canada
| |
Collapse
|
10
|
Ma M, Feng Y, Miao Y, Shen Q, Tang S, Dong J, Zhang JZH, Zhang L. Revealing the Sequence Characteristics and Molecular Mechanisms of ACE Inhibitory Peptides by Comprehensive Characterization of 160,000 Tetrapeptides. Foods 2023; 12:foods12081573. [PMID: 37107368 PMCID: PMC10137938 DOI: 10.3390/foods12081573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic diseases, such as hypertension, cause great harm to human health. Conventional drugs have promising therapeutic effects, but also cause significant side effects. Food-sourced angiotensin-converting enzyme (ACE) inhibitory peptides are an excellent therapeutic alternative to pharmaceuticals, as they have fewer side effects. However, there is no systematic and effective screening method for ACE inhibitory peptides, and the lack of understanding of the sequence characteristics and molecular mechanism of these inhibitory peptides poses a major obstacle to the development of ACE inhibitory peptides. Through systematically calculating the binding effects of 160,000 tetrapeptides with ACE by molecular docking, we found that peptides with Tyr, Phe, His, Arg, and especially Trp were the characteristic amino acids of ACE inhibitory peptides. The tetrapeptides of WWNW, WRQF, WFRV, YYWK, WWDW, and WWTY rank in the top 10 peptides exhibiting significantly high ACE inhibiting behaviors, with IC50 values between 19.98 ± 8.19 μM and 36.76 ± 1.32 μM. Salt bridges, π-π stacking, π-cations, and hydrogen bonds contributed to the high binding characteristics of the inhibitors and ACE. Introducing eight Trp into rabbit skeletal muscle protein (no Trp in wide sequence) endowed the protein with a more than 90% ACE inhibition rate, further suggesting that meat with a high content of Trp could have potential utility in hypertension regulation. This study provides a clear direction for the development and screening of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Mingzhe Ma
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yulu Miao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Qiang Shen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuting Tang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
11
|
Kumar SA, Kim HJ, Jayasena DD, Jo C. On-Farm and Processing Factors Affecting Rabbit Carcass and Meat Quality Attributes. Food Sci Anim Resour 2023; 43:197-219. [PMID: 36909860 PMCID: PMC9998196 DOI: 10.5851/kosfa.2023.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Rabbit meat has high nutritional and dietetic characteristics, but its consumption rate is comparatively lower than other meat types. The nutritional profile of rabbit meat, by comparison with beef, pork, and poultry, is attributed to relatively higher proportions of n-3 fatty acids and low amounts of intramuscular fat, cholesterol, and sodium, indicating its consumption may provide health benefits to consumers. But, the quality attributes of rabbit meat can be originated from different factors such as genetics, environment, diet, rearing system, pre-, peri-, and post-slaughter conditions, and others. Different rabbit breeds and the anatomical location of muscles may also affect the nutritional profile and physicochemical properties of rabbit meat. However, adequate information about the effect of those two factors on rabbit meat is limited. Therefore, cumulative information on nutritional composition and carcass and meat quality attributes of rabbit meat in terms of different breeds and muscle types and associated factors is more important for the production and processing of rabbits. Moreover, some studies reported that rabbit meat proteins exhibited angiotensin-converting enzyme inhibitory characteristics and antioxidant properties. The aim of this review is to elucidate the determinants of rabbit meat quality of different breeds and its influencing factors. In addition, the proven biological activities of rabbit meat are introduced to ensure consumer satisfaction.
Collapse
Affiliation(s)
- Sethukali Anand Kumar
- Department of Animal Science, Faculty of Agriculture, University of Jaffna, Kilinochchi 41000, Sri Lanka.,Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Dinesh Darshaka Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University of Sri Lanka, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.,Department of Animal Product Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, West Java 45363, Indonesia
| |
Collapse
|
12
|
Song W, Fu J, Zeng Q, Lu H, Wang J, Fang L, Liu X, Min W, Liu C. Improving ACE inhibitory activity of hazelnut peptide modified by plastein: Physicochemical properties and action mechanism. Food Chem 2023; 402:134498. [DOI: 10.1016/j.foodchem.2022.134498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 01/30/2023]
|
13
|
Chen M, Wang L, Zheng C, Ma A, Hu K, Xiang A, Sun Z, Xie B, Xiong G, Shi L, Chen S, Wu W. Novel ACE inhibitory peptides derived from bighead carp (Aristichthys nobilis) hydrolysates: Screening, inhibition mechanisms and the Bioconjugation effect with graphene oxide. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Luo H, Qian Y, Qi J, Liu X. A novel strategy for screening angiotensin-converting enzyme inhibitors from natural products based on enzyme-immobilized ligand fishing combined with active-site blocking and directional enrichment. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123203. [PMID: 35248900 DOI: 10.1016/j.jchromb.2022.123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
Some natural products are important sources of treatments for hypertension based on their potential inhibitory effects on angiotensin-converting enzyme (ACE); however, it is difficult to identify natural ACE inhibitors (ACEIs) due to the complex secondary metabolite environment of natural products. Enzyme immobilization is an important method for screening active constituents in natural products, but this method can sometimes return false-positive and false-negative results. To improve the accuracy and reliability of ligand-fishing methods, we established a novel strategy based on enzyme-immobilized ligand fishing combined with active-site blocking and directional enrichment technologies. We first synthesized ACE-immobilized mesoporous magnetic beads and then verified the screened compounds by molecular docking and in vitro activity detection. We then used active-site blocking to exclude non-specific binding constituents and applied directional enrichment to enrich the low-content constituents for ligand fishing. The screening identified six potential ACEIs from Scutellariae Radix and eight potential ACEIs from Lonicerae japonicae flos, and their inhibitory activity was confirmed by molecular docking simulations and in vitro activity detection. This process screened six additional compounds and excluded two false-positive results as compared with results exclusively using enzyme immobilization. This strategy provides a feasible method for screening active compounds in natural products.
Collapse
Affiliation(s)
- Hui Luo
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yin Qian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jin Qi
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xinyu Liu
- Department of Medical Information and Biostatistics, School of Science, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
15
|
Chen J, Yu X, Huang W, Wang C, He Q. A novel angiotensin-converting enzyme inhibitory peptide from rabbit meat protein hydrolysate: identification, molecular mechanism, and antihypertensive effect in vivo. Food Funct 2021; 12:12077-12086. [PMID: 34783331 DOI: 10.1039/d1fo02830h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive peptides exhibiting angiotensin-converting enzyme (ACE) inhibitory effects and extracted from natural foods have potential as healthy and safe therapeutics for high blood pressure. The aim of this study was to isolate and purify ACE inhibitory peptides from rabbit meat protein hydrolysate, to explore the underlying mechanisms by molecular docking, and to evaluate the antihypertensive effects in vivo. A novel ACE inhibitory tetrapeptide Trp-Gly-Ala-Pro (WGAP) was identified and purified from a bromelain hydrolysate. WGAP acted against ACE in a non-competitive manner with an IC50 of 140.70 ± 4.51 μM. It was resistant to enzymatic degradation by pepsin and trypsin in vitro. Molecular docking analysis indicated that WGAP formed stable hydrogen bonds with ACE residues His353, Ala354 and ALA356. In vivo, 100 mg kg-1 WGAP significantly reduced systolic and diastolic blood pressure in hypertensive rats by up to 42.66 ± 2.87 and 28.56 ± 2.71 mmHg, respectively, 4 h after oral administration. ACE inhibitory peptides derived from rabbit meat have potential antihypertensive effects and provide a new route for the exploration of novel hypertension inhibitors and the utilization of rabbit meat.
Collapse
Affiliation(s)
- Junbo Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education. School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education. School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Wangxiang Huang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education. School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Chen Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education. School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education. School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
16
|
Chen J, Yu X, Chen Q, Wu Q, He Q. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chem 2021; 370:131070. [PMID: 34537424 DOI: 10.1016/j.foodchem.2021.131070] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive peptides derived from food proteins have various physiological roles and have attracted increasing attention in recent years. In this study, two novel ACE inhibitory peptides (EACF and CDF), screened from rabbit meat proteins using in silico methods, exhibited strong inhibitory effects in vitro. EACF and CDF were competitive and non-competitive inhibitors with half-maximal inhibitory concentrations of 41.06 ± 0.82 µM and 192.17 ± 2.46 µM, respectively. Molecular docking experiments revealed that EACF established eight H-bond interactions in the S1 and S2 pockets, and a metal-acceptor interaction with Zn 701. CDF shared four H-bond interactions in the S1 pocket of ACE. The results suggested that rabbit meat proteins could be a suitable material for the preparation of ACE inhibitory peptides, and that virtual screening is an effective, accurate and promising method for the discovery of novel active peptides.
Collapse
Affiliation(s)
- Junbo Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyun Wu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
17
|
Chen R, Miao Y, Hao X, Gao B, Ma M, Zhang JZ, Wang R, Li S, He X, Zhang L. Investigation on the characteristics and mechanisms of ACE inhibitory peptides by a thorough analysis of all 8000 tripeptides via binding free energy calculation. Food Sci Nutr 2021; 9:2943-2953. [PMID: 34136162 PMCID: PMC8194939 DOI: 10.1002/fsn3.2253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Food-derived angiotensin I-converting enzyme (ACE) inhibitory peptides represent a potential source of new antihypertensive. However, their characteristics and binding mechanisms were not well understood. In this study, novel energy calculation and experimentation were combined to elucidate the characteristics and mechanisms of ACE inhibitory tripeptides. ACE inhibitory activity of all 8,000 tripeptides was investigated by in silico experiments. IC50 values of the five top-rated tripeptides ranged from 5.86 to 21.84 μM. Five hundred top-ranked tripeptides were chosen for detailed structure-activity analysis, and a significant preference for aromatic amino acids at both C- and N-terminus was found. By binding free energy analysis of nine representative tripeptides via MM/GBSA, electrostatic energy was found to be the leading energy that contributed to the binding of ACE with its high affinity tripeptides. Besides, S355, V380, and V518, three residues positioned around the classical binding pockets of ACE, also played a key role in ACE's binding. Therefore, for tripeptides, their binding pockets in ACE were redefined. In conclusion, the characteristics of ACE inhibitory peptides were more deeply illustrated by the thorough analysis of all tripeptides. The energy analysis allows a better understanding of the binding mechanisms of ACE inhibitory peptides, which could be used to redesign the ACE inhibitors for stronger inhibitory activity.
Collapse
Affiliation(s)
- Ruiyao Chen
- State Key Laboratory of Bioreactor EngineeringSchool of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yulu Miao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Xuan Hao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Bei Gao
- State Key Laboratory of Bioreactor EngineeringSchool of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Mingzhe Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - John Z.H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
- NYU‐ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
- Department of ChemistryNew York UniversityNew YorkNYUSA
| | - Rui Wang
- College of Food Science and Light IndustryNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Sha Li
- College of Food Science and Light IndustryNanjing Tech UniversityNanjingChina
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingChina
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
- NYU‐ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentSchool of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
- NYU‐ECNU Center for Computational Chemistry at NYU ShanghaiShanghaiChina
| |
Collapse
|
18
|
Aiemratchanee P, Panyawechamontri K, Phaophu P, Reamtong O, Panbangred W. In vitro
antihypertensive activity of bioactive peptides derived from porcine blood corpuscle and plasma proteins. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Panida Aiemratchanee
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Department of Research and Development Betagro Science Center Co., Ltd. Pathumthani12120Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| | - Kulachatr Panyawechamontri
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| | - Phutthaphorn Phaophu
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics Faculty of Tropical Medicine Mahidol University Bangkok10400Thailand
| | - Watanalai Panbangred
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| |
Collapse
|
19
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Citrullyl-Hydroxyprolyl-Proline (ChPP): An Artificially Synthesized Tripeptide as Potent ACE Inhibitor. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Alfaro S, Navarro-Retamal C, Caballero J. Transforming Non-Selective Angiotensin-Converting Enzyme Inhibitors in C- and N-domain Selective Inhibitors by Using Computational Tools. Mini Rev Med Chem 2020; 20:1436-1446. [DOI: 10.2174/1389557520666191224113830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
The two-domain dipeptidylcarboxypeptidase Angiotensin-I-converting enzyme (EC
3.4.15.1; ACE) plays an important physiological role in blood pressure regulation via the reninangiotensin
and kallikrein-kinin systems by converting angiotensin I to the potent vasoconstrictor angiotensin
II, and by cleaving a number of other substrates including the vasodilator bradykinin and the
anti-inflammatory peptide N-acetyl-SDKP. Therefore, the design of ACE inhibitors is within the priorities
of modern medical sciences for treating hypertension, heart failures, myocardial infarction, and
other related diseases. Despite the success of ACE inhibitors for the treatment of hypertension and
congestive heart failure, they have some adverse effects, which could be attenuated by selective domain
inhibition. Crystal structures of both ACE domains (nACE and cACE) reported over the last decades
could facilitate the rational drug design of selective inhibitors. In this review, we refer to the history
of the discovery of ACE inhibitors, which has been strongly related to the development of molecular
modeling methods. We stated that the design of novel selective ACE inhibitors is a challenge
for current researchers which requires a thorough understanding of the structure of both ACE domains
and the help of molecular modeling methodologies. Finally, we performed a theoretical design of potential
selective derivatives of trandolaprilat, a drug approved to treat critical conditions of hypertension,
to illustrate how to use molecular modeling methods such as de novo design, docking, Molecular
Dynamics (MD) simulations, and free energy calculations for creating novel potential drugs with specific
interactions inside nACE and cACE binding sites.
Collapse
Affiliation(s)
- Sergio Alfaro
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Carlos Navarro-Retamal
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| | - Julio Caballero
- Centro de Bioinformatica y Simulacion Molecular, Facultad de Ingenieria, Universidad de Talca, 1 Poniente No. 1141, Casilla 721, Talca, Chile
| |
Collapse
|
22
|
Targeting Tumors Using Peptides. Molecules 2020; 25:molecules25040808. [PMID: 32069856 PMCID: PMC7070747 DOI: 10.3390/molecules25040808] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
To penetrate solid tumors, low molecular weight (Mw < 10 KDa) compounds have an edge over antibodies: their higher penetration because of their small size. Because of the dense stroma and high interstitial fluid pressure of solid tumors, the penetration of higher Mw compounds is unfavored and being small thus becomes an advantage. This review covers a wide range of peptidic ligands—linear, cyclic, macrocyclic and cyclotidic peptides—to target tumors: We describe the main tools to identify peptides experimentally, such as phage display, and the possible chemical modifications to enhance the properties of the identified peptides. We also review in silico identification of peptides and the most salient non-peptidic ligands in clinical stages. We later focus the attention on the current validated ligands available to target different tumor compartments: blood vessels, extracelullar matrix, and tumor associated macrophages. The clinical advances and failures of these ligands and their therapeutic conjugates will be discussed. We aim to present the reader with the state-of-the-art in targeting tumors, by using low Mw molecules, and the tools to identify new ligands.
Collapse
|
23
|
Application of in silico approaches for the generation of milk protein-derived bioactive peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103636] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
24
|
Improving Health-Promoting Effects of Food-Derived Bioactive Peptides through Rational Design and Oral Delivery Strategies. Nutrients 2019; 11:nu11102545. [PMID: 31652543 PMCID: PMC6836114 DOI: 10.3390/nu11102545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, scientific interest in food-derived bioactive peptides has grown as an alternative to pharmacological treatments in the control of lifestyle-associated diseases, which represent a serious health problem worldwide. Interest has been directed towards the control of hypertension, the management of type 2 diabetes and oxidative stress. Many food-derived antihypertensive peptides act primarily by inhibiting angiotensin I-converting enzyme (ACE), and to a lesser extent, renin enzyme activities. Antidiabetic peptides mainly inhibit dipeptidyl peptidase-IV (DPP-IV) activity, whereas antioxidant peptides act through inactivation of reactive oxygen species, free radicals scavenging, chelation of pro-oxidative transition metals and promoting the activities of intracellular antioxidant enzymes. However, food-derived bioactive peptides have intrinsic weaknesses, including poor chemical and physical stability and a short circulating plasma half-life that must be addressed for their application as nutraceuticals or in functional foods. This review summarizes the application of common pharmaceutical approaches such as rational design and oral delivery strategies to improve the health-promoting effects of food-derived bioactive peptides. We review the structural requirements of antihypertensive, antidiabetic and antioxidant peptides established by integrated computational methods and provide relevant examples of effective oral delivery systems to enhance solubility, stability and permeability of bioactive peptides.
Collapse
|
25
|
Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, Che Z, Chen X. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Tao
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Yukun Huang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| | - Chong Wang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Fang Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Lingling Yang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Li Ling
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhenming Che
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Xianggui Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| |
Collapse
|
26
|
Panyayai T, Ngamphiw C, Tongsima S, Mhuantong W, Limsripraphan W, Choowongkomon K, Sawatdichaikul O. FeptideDB: A web application for new bioactive peptides from food protein. Heliyon 2019; 5:e02076. [PMID: 31372542 PMCID: PMC6656964 DOI: 10.1016/j.heliyon.2019.e02076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bioactive peptides derived from food are important sources for alternative medicine and possess therapeutic activity. Several biochemical methods have been achieved to isolate bioactive peptides from food, which are tedious and time consuming. In silico methods are an alternative process to reduce cost and time with respect to bioactive peptide production. In this paper, FeptideDB was used to collect bioactive peptide (BP) data from both published research articles and available bioactive peptide databases. FeptideDB was developed to assist in forecasting bioactive peptides from food by combining peptide cleavage tools and database matching. Furthermore, this application was able to predict the potential of cleaved peptides from 'enzyme digestion module' to identify new ACE (angiotensin converting enzyme) inhibitors using an automatic molecular docking approach. RESULTS The FeptideDB web application contains tools for generating all possible peptides cleaved from input protein by various available enzymes. This database was also used for analysis and visualization to assist in bioactive peptide discovery. One module of FeptideDB has the ability to create 3-dimensional peptide structures to further predict inhibitors for the target protein, ACE (angiotensin converting enzyme). CONCLUSIONS FeptideDB is freely available to researchers who are interested in exploring bioactive peptides. The FeptideDB interface is easy to use, allowing users to rapidly retrieve data based on desired search criteria. FeptideDB is freely available at http://www4g.biotec.or.th/FeptideDB/. Ultimately, FeptideDB is a computational aid for assessing peptide bioactivities.
Collapse
Affiliation(s)
- Thitima Panyayai
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, 50 Ngam Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Department of Research and Development, Betagro Science Center Co. Ltd., Klong Luang, Pathumthani, 12120, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wachira Limsripraphan
- Department of Computer Engineering, Faculty of Industrial Technology, Pibulsongkram Rajabhat University, 156 Mu 5 Plaichumpol Sub-district, Muang District, Phitsanulok, 65000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam, Wong Wan Rd, Bangkok, Chatuchak, 10900, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
27
|
Preparation and Identification of Novel Antihypertensive Peptides from the In Vitro Gastrointestinal Digestion of Marine Cobia Skin Hydrolysates. Nutrients 2019; 11:nu11061351. [PMID: 31208053 PMCID: PMC6628374 DOI: 10.3390/nu11061351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/10/2023] Open
Abstract
This research focuses on cobia skin hydrolysates and their antihypertensive effects via the inhibitory activities of angiotensin I-converting enzyme (ACE). Marine fish Cobia (Rachycentron canadum) skin was hydrolysed for 5 h using Protamex and Protease N to obtain the cobia skin protein hydrolysates PX-5 and PN-5, respectively. The soluble protein and peptide contents of the PX-5 were 612 and 270 mg/g, respectively, and for the PN-5, 531 and 400 mg/g, respectively. The IC50 of PX-5 and PN-5 on ACE was 0.221 and 0.291 mg/mL, respectively. Increasing the IC50 from 0.221 to 0.044 mg/mL by simulated gastrointestinal digestion (PX-5G) reduced the ACE-inhibitory capacity of PX-5. Using gel filtration chromatography, the PX-5G was fractioned into eight fractions. The molecular weight of the fifth fraction from PX-5G was between 630 and 450 Da, and the highest inhibitory efficiency ratio on ACE was 1552.4%/mg/mL. We identified four peptide sequences: Trp-Ala-Ala, Ala-Trp-Trp, Ile-Trp-Trp, and Trp-Leu, with IC50 values for ACE of 118.50, 9.40, 0.51, and 26.80 μM, respectively. At a dose of 600 mg PX-5 powder/kg body weight, in spontaneously hypertensive rats PX-5's antihypertensive effect significantly reduced systolic and diastolic blood pressure by 21.9 and 15.5 mm Hg, respectively, after 4 h of oral gavage.
Collapse
|