1
|
Souza HDS, Martins JSCC, Sousa TDC, Sardar S, Fintelman-Rodrigues N, Silva-Trujillo L, Souza TMLE, Siqueira MM, Fernandes JH, Matos ADR. Hypericin Suppresses SARS-CoV-2 Replication and Synergizes with Antivirals via Dual Targeting of RdRp and 3CLpro. Microorganisms 2025; 13:1004. [PMID: 40431177 PMCID: PMC12114490 DOI: 10.3390/microorganisms13051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
The continuous emergence of SARS-CoV-2 variants underscores the need for novel antiviral candidates. Hypericin (HY), a compound derived from Hypericum perforatum, exhibited potent in vitro activity against SARS-CoV-2 in Vero E6 cells, with low cytotoxicity (CC50 > 200 nM). HY showed no significant activity against Influenza A (H1N1) or dengue virus serotype 2, supporting its selective action. Antiviral effects were most evident when HY was administered post-infection, in a concentration-dependent manner, while cellular pretreatment or viral pre-incubation produced limited effects. Notably, HY also displayed virucidal activity, significantly reducing viral titers at 4 °C, 22 °C, and 37 °C. Combination treatments with remdesivir or nirmatrelvir enhanced antiviral efficacy by 50-70% relative to monotherapy, depending on compound concentration. Molecular simulations revealed stable interactions with conserved residues in RdRp and 3CLpro, suggesting a low risk of resistance. Together, these findings highlight the potential of HY as a selective antiviral and virucidal agent against SARS-CoV-2, particularly in combination regimens.
Collapse
Affiliation(s)
- Helena da Silva Souza
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Vital Emergencies, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (H.d.S.S.); (J.S.C.C.M.)
| | - Jéssica Santa Cruz Carvalho Martins
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Vital Emergencies, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (H.d.S.S.); (J.S.C.C.M.)
| | - Thiagos das Chagas Sousa
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Vital Emergencies, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (H.d.S.S.); (J.S.C.C.M.)
| | - Saiqa Sardar
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Vital Emergencies, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (H.d.S.S.); (J.S.C.C.M.)
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Oswaldo Cruz Institute, Rio de Janeiro 21040-361, Brazil; (N.F.-R.); (L.S.-T.); (T.M.L.e.S.)
- Center for Technological Development in Health, National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Lina Silva-Trujillo
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Oswaldo Cruz Institute, Rio de Janeiro 21040-361, Brazil; (N.F.-R.); (L.S.-T.); (T.M.L.e.S.)
- Center for Technological Development in Health, National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Thiago Moreno Lopes e Souza
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Oswaldo Cruz Institute, Rio de Janeiro 21040-361, Brazil; (N.F.-R.); (L.S.-T.); (T.M.L.e.S.)
- Center for Technological Development in Health, National Institute for Science and Technology on Innovation on Neglected Diseases Neglected Populations, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Vital Emergencies, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (H.d.S.S.); (J.S.C.C.M.)
| | - Jorge Hernandes Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Aline da Rocha Matos
- Laboratory of Respiratory Viruses, Exanthematics, Enteroviruses and Vital Emergencies, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-900, Brazil; (H.d.S.S.); (J.S.C.C.M.)
| |
Collapse
|
2
|
Dulay ANG, de Guzman JCC, Marquez ZYD, Santana ESD, Arce J, Orosco FL. The potential of Chlorella spp. as antiviral source against African swine fever virus through a virtual screening pipeline. J Mol Graph Model 2024; 132:108846. [PMID: 39151375 DOI: 10.1016/j.jmgm.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
African swine fever (ASF) causes high mortality in pigs and threatens global swine production. There is still a lack of therapeutics available, with two vaccines under scrutiny and no approved small-molecule drugs. Eleven (11) viral proteins were used to identify potential antivirals in in silico screening of secondary metabolites (127) from Chlorella spp. The metabolites were screened for affinity and binding selectivity. High-scoring compounds were assessed through in silico ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) predictions, compared to structurally similar drugs, and checked for off-target docking with prepared swine receptors. Molecular dynamics (MD) simulations determined binding stability while binding energy was measured in Molecular Mechanics - Generalized Born Surface Area (MMGBSA) or Poisson-Boltzmann Surface Area (MMPBSA). Only six (6) compounds passed until MD analyses, of which five (5) were stable after 100 ns of MD runs. Of these five compounds, only three had binding affinities that were comparable to or stronger than controls. Specifically, phytosterols 24,25-dihydrolanosterol and CID 4206521 that interact with the RNA capping enzyme (pNP868R), and ergosterol which bound to the Erv-like thioreductase (pB119L). The compounds identified in this study can be used as a theoretical basis for in vitro screening to develop potent antiviral drugs against ASFV.
Collapse
Affiliation(s)
- Albert Neil G Dulay
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - John Christian C de Guzman
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines
| | - Zyra Ysha D Marquez
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Elisha Sofia D Santana
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Jessamine Arce
- Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines
| | - Fredmoore L Orosco
- Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Taguig, 1632, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines - Manila, Manila, 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Taguig, 1632, Philippines.
| |
Collapse
|
3
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
4
|
Altomare A, Baron G, Cambiaghi G, Ferrario G, Zoanni B, Della Vedova L, Fumagalli GM, D’Alessandro S, Parapini S, Vittorio S, Vistoli G, Riso P, Carini M, Delbue S, Aldini G. Screening of M pro Protease (SARS-CoV-2) Covalent Inhibitors from an Anthocyanin-Rich Blueberry Extract Using an HRMS-Based Analytical Platform. Molecules 2024; 29:2702. [PMID: 38893578 PMCID: PMC11173886 DOI: 10.3390/molecules29112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giulia Cambiaghi
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Beatrice Zoanni
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Larissa Della Vedova
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | | | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Serena Vittorio
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli 25, 20133 Milan, Italy;
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy; (G.B.); (G.C.); (G.F.); (B.Z.); (L.D.V.); (S.V.); (G.V.); (M.C.); (G.A.)
| |
Collapse
|
5
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Pillai U J, Cherian L, Taunk K, Iype E, Dutta M. Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (M pro). Int J Biol Macromol 2024; 261:129655. [PMID: 38266830 DOI: 10.1016/j.ijbiomac.2024.129655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Cranberry phytochemicals are known to possess antiviral activities. In the current study, we explored the therapeutic potential of cranberry against SARS-CoV-2 by targeting its main protease (Mpro) enzyme. Firstly, phytochemicals of cranberry origin were identified from three independent databases. Subsequently, virtual screening, using molecular docking and molecular dynamics simulation approaches, led to the identification of three lead phytochemicals namely, cyanidin 3-O-galactoside, β-carotene and epicatechin. Furthermore, in vitro enzymatic assays revealed that cyanidin 3-O-galactoside had the highest inhibitory potential with IC50 of 9.98 μM compared to the other two phytochemicals. Cyanidin 3-O-galactoside belongs to the class of anthocyanins. Anthocyanins extracted from frozen cranberry also exhibited the highest inhibitory potential with IC50 of 23.58 μg/ml compared to the extracts of carotenoids and flavanols, the class for β-carotene and epicatechin, respectively. Finally, we confirm the presence of the phytochemicals in the cranberry extracts using targeted LC-MS/MS analysis. Our results, therefore, indicate that the identified cranberry-derived bioactive compounds as well as cranberry could be used for therapeutic interventions against SARS-CoV-2.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Lucy Cherian
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Khushman Taunk
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates.
| |
Collapse
|
7
|
Liang JJ, Pitsillou E, Hung A, Karagiannis TC. A repository of COVID-19 related molecular dynamics simulations and utilisation in the context of nsp10-nsp16 antivirals. J Mol Graph Model 2024; 126:108666. [PMID: 37976980 DOI: 10.1016/j.jmgm.2023.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of establishing systems and infrastructure to develop vaccines, antiviral drugs, and therapeutic antibodies against emerging pathogens. Typical drug discovery processes involve targeting suitable proteins to effect pathogen replication or to attenuate host responses, by examining either large chemical databases or protein-protein interactions. Following initial screens, molecular dynamics (MD) simulations are critical for gaining further insight into molecular interactions. During the COVID-19 pandemic, many research groups made their simulations widely available, as highlighted by the comprehensive D.E. Shaw Research trajectory database. To investigate protein target sites and evaluate potential lead compounds, we performed over 300 MD simulations relating to COVID-19. We organised our simulations into a repository, which is publicly available at https://epimedlab.org/trajectories/. The trajectories cover a large part of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteome, and the majority of our MD simulations focused on the identification of potential antivirals. For example, we focused on the S-adenosyl-l-methionine binding site of the nsp10-nsp16 complex, a critical component of viral replication, revealing verbascoside as a potential lead. Moreover, we utilised MD trajectories to explore the interface between the spike protein receptor binding domain and human angiotensin-converting enzyme 2 receptor, with the ultimate aim being investigation of new variants in real-time. Overall, MD simulations are a critical component of the in silico drug discovery process and as highlighted throughout the pandemic, data sharing enables accelerated progress. We have organised our extensive collection of COVID-19 related MD trajectories into an easily accessible repository.
Collapse
Affiliation(s)
- Julia J Liang
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; Epigenomic Medicine Laboratory at prospED Training, Carlton, VIC, 3053, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular insights into the interaction of apo-lactoferrin with the receptor binding domain of the SARS-CoV-2 spike protein: a molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:7372-7385. [PMID: 36093960 DOI: 10.1080/07391102.2022.2121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
LF is a bioactive protein, derived from colostrum and milk that has been found to possess various immunomodulatory, iron chelating, and antimicrobial properties, especially in its apo-form. Recent studies have demonstrated the functionality of LF in attaching to the S proteins of SARS-CoV-2, thereby preventing it from interacting with the ACE-2 receptor. However, the molecular mechanism mediating the process is poorly understood. In this study, molecular docking and MD simulations coupled with free energy calculations were applied to elucidate the key interaction of apo-LF and its N-lobe and C-lobe derivative forms with the RBD of coronavirus S proteins. This has also been extended into evaluating the L452R mutant, which is associated with the delta variant of SARS-CoV-2. The results demonstrate the efficacy of the apo-LF C-lobe in binding to the RBD of both variants, primarily through electrostatic attractions between the acidic residues of the former and the basic residues of each RBD. Furthermore, due to the additional arginine in the L452R variant, the interaction between the C-lobe and the latter is stronger, resulting in a more favourable binding and tightly bound structure. The simulations highlight that the C-lobe, followed by full-length apo-LF can form a multimeric complex with the RBD of SARS-CoV-2, indicating their potential use as novel therapeutics, particularly the cleaved C-lobe of apo-LF to disrupt the S proteins from binding to the host ACE-2 receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Alfred Centre, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Karaoğlu Ö, Serhatlı M, Pelvan E, Karadeniz B, Demirtas I, Çakırca G, Sipahix H, Özhan Y, Karapınar G, Charehsaz M, Aydın A, Yesilada E, Alasalvar C. Chewable tablet with herbal extracts and propolis arrests Wuhan and Omicron variants of SARS-CoV-2 virus. J Funct Foods 2023; 105:105544. [PMID: 37155488 PMCID: PMC10113600 DOI: 10.1016/j.jff.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Prevention of COVID-19 is of paramount importance for public health. Some natural extracts might have the potential to suppress COVID-19 infection. Therefore, this study aimed to design a standardised, efficient, and safe chewable tablet formulation (with propolis and three herbal extracts) for possible prevention against two variants (Wuhan B.1.36 and Omicron BA.1.1) of SARS-CoV-2 virus and other viral infections. Green tea, bilberry, dried pomegranate peel, and propolis extracts were selected for this purpose. Cytotoxicity and antiviral activity of each component, as well as the developed chewable tablet, were examined against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus using Vero E6 cells with the xCELLigence real-time cell analyser-multiple plates system. Anti-inflammatory and analgesic activities, as well as mutagenicity and anti-mutagenicity of the chewable tablet were also analysed. Compared to the control, it was observed that the chewable tablet at concentrations of 110 and 55 µg/mL had antiviral activity rates of 101% and 81%, respectively, for the Wuhan variant and 112% and 35%, respectively, for the Omicron variant. The combination of herbal extracts with propolis extract were synergically more effective (∼7-fold higher) than that of individual extract. The present work suggests that a combination of herbal extracts with propolis at suitable concentrations can effectively be used as a food supplement for the prevention of both variants of the SARS-CoV-2 virus in the oral cavity (the first entry point of the SARS-CoV-2 virus).
Collapse
Affiliation(s)
- Öznur Karaoğlu
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Müge Serhatlı
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Ebru Pelvan
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Bülent Karadeniz
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Ilknur Demirtas
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
| | - Gamze Çakırca
- Life Sciences, TÜBİTAK Marmara Research Center, Gebze-Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Hande Sipahix
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Yağmur Özhan
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Gözdem Karapınar
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | - Erdem Yesilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Ataşehir-İstanbul, Turkey
| | | |
Collapse
|
10
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
11
|
Agarwal R, Smith JC. Speed vs Accuracy: Effect on Ligand Pose Accuracy of Varying Box Size and Exhaustiveness in AutoDock Vina. Mol Inform 2023; 42:e2200188. [PMID: 36262028 DOI: 10.1002/minf.202200188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Structure-based virtual high-throughput screening involves docking chemical libraries to targets of interest. A parameter pertinent to the accuracy of the resulting pose is the root mean square deviation (RMSD) from a known crystallographic structure, i. e., the 'docking power'. Here, using a popular algorithm, Autodock Vina, as a model program, we evaluate the effects of varying two common docking parameters: the box size (the size of docking search space) and the exhaustiveness of the global search (the number of independent runs starting from random ligand conformations) on the RMSD from the PDBbind v2017 refined dataset of experimental protein-ligand complexes. Although it is clear that exhaustiveness is an important parameter, there is wide variation in the values used, with variation between 1 and >100. We, therefore, evaluated a combination of cubic boxes of different sizes and five exhaustiveness values (1, 8, 25, 50, 75, 100) within the range of those commonly adopted. The results show that the default exhaustiveness value of 8 performs well overall for most box sizes. In contrast, for all box sizes, but particularly for large boxes, an exhaustiveness value of 1 led to significantly higher median RMSD (mRMSD) values. The docking power was slightly improved with an exhaustiveness of 25, but the mRMSD changes little with values higher than 25. Therefore, although low exhaustiveness is computationally faster, the results are more likely to be far from reality, and, conversely, values >25 led to little improvement at the expense of computational resources. Overall, we recommend users to use at least the default exhaustiveness value of 8 for virtual screening calculations.
Collapse
Affiliation(s)
- Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6309, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, 14311 Cumberland Avenue, Knoxville, TN 37996-1939, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6309, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, 14311 Cumberland Avenue, Knoxville, TN 37996-1939, USA
| |
Collapse
|
12
|
Boulaamane Y, Ibrahim MAA, Britel MR, Maurady A. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA 2AR antagonists for the treatment of Parkinson's disease. J Integr Bioinform 2022; 19:jib-2021-0027. [PMID: 36112816 PMCID: PMC9800045 DOI: 10.1515/jib-2021-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/24/2022] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease is considered the second most frequent neurodegenerative disease. It is described by the loss of dopaminergic neurons in the mid-brain. For many decades, L-DOPA has been considered as the gold standard for treating Parkinson's disease motor symptoms, however, due to the decrease of efficacy, in the long run, there is an urgent need for novel antiparkinsonian drugs. Caffeine derivatives have been reported several times for their neuroprotective properties and dual blockade of monoamine oxidase (MAO) and adenosine A2A receptors (AA2AR). Natural products are currently attracting more focus due to structural diversity and safety in contrast to synthetic drugs. In the present work, computational studies were conducted on natural product-like caffeine derivatives to search for novel potent candidates acting as dual MAO-B inhibitors/AA2AR antagonists for Parkinson's disease. Our findings revealed two natural products among the top hits: CNP0202316 and CNP0365210 fulfill the requirements of drugs acting on the brain. The selected lead compounds were further studied using molecular dynamics simulation to assess their stability with MAO-B. Current findings might shift the interest towards natural-based compounds and could be exploited to further optimize caffeine derivatives into a successful dual-target-directed drug for managing and halting the neuronal damage in Parkinson's disease patients.
Collapse
Affiliation(s)
- Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
13
|
Murali M, Gowtham HG, Shilpa N, Krishnappa HKN, Ledesma AE, Jain AS, Shati AA, Alfaifi MY, Elbehairi SEI, Achar RR, Silina E, Stupin V, Ortega-Castro J, Frau J, Flores-Holguín N, Amruthesh KN, Shivamallu C, Kollur SP, Glossman-Mitnik D. Exploration of Anti-HIV Phytocompounds against SARS-CoV-2 Main Protease: Structure-Based Screening, Molecular Simulation, ADME Analysis and Conceptual DFT Studies. Molecules 2022; 27:8288. [PMID: 36500380 PMCID: PMC9736867 DOI: 10.3390/molecules27238288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than -8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of -10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (-10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski's rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.
Collapse
Affiliation(s)
| | | | | | | | - Ana E. Ledesma
- Centro de InvestigaciónenBiofísicaAplicada y Alimentos, Facultad de Ciencias Exactas y Tecnologías (FCEyN), Universidad Nacional de Santiago del Estero (CIBAAL-UNSE-CONICET), Santiago del Estero 4206, Argentina
| | - Anisha S. Jain
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Giza 12511, Egypt
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Ekaterina Silina
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Joaquín Ortega-Castro
- Departament de Química, Facultat de Ciences, Universitat de les IllesBalears, E-07122 Palma de Malllorca, Spain
| | - Juan Frau
- Departament de Química, Facultat de Ciences, Universitat de les IllesBalears, E-07122 Palma de Malllorca, Spain
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigaciónen Materiales Avanzados, Chihuahua 31136, Mexico
| | | | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570026, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigaciónen Materiales Avanzados, Chihuahua 31136, Mexico
| |
Collapse
|
14
|
Shrestha A, Marahatha R, Basnet S, Regmi BP, Katuwal S, Dahal SR, Sharma KR, Adhikari A, Chandra Basnyat R, Parajuli N. Molecular Docking and Dynamics Simulation of Several Flavonoids Predict Cyanidin as an Effective Drug Candidate against SARS-CoV-2 Spike Protein. Adv Pharmacol Pharm Sci 2022; 2022:3742318. [PMID: 36407836 PMCID: PMC9668477 DOI: 10.1155/2022/3742318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/13/2022] [Accepted: 10/15/2022] [Indexed: 09/08/2024] Open
Abstract
The in silico method has provided a versatile process of developing lead compounds from a large database in a short duration. Therefore, it is imperative to look for vaccinations and medications that can stop the havoc caused by SARS-CoV-2. The spike protein of SARS-CoV-2 is required for the viral entry into the host cells, hence inhibiting the virus from fusing and infecting the host. This study determined the binding interactions of 36 flavonoids along with two FDA-approved drugs against the spike protein receptor-binding domain of SARS-CoV-2 through molecular docking and molecular dynamics (MD) simulations. In addition, the molecular mechanics generalized Born surface area (MM/GBSA) approach was used to calculate the binding-free energy (BFE). Flavonoids were selected based on their in vitro assays on SARS-CoV and SARS-CoV-2. Our pharmacokinetics study revealed that cyanidin showed good drug-likeness, fulfilled Lipinski's rule of five, and conferred favorable toxicity parameters. Furthermore, MD simulations showed that cyanidin interacts with spike protein and alters the conformation and binding-free energy suited. Finally, an in vitro assay indicated that about 50% reduction in the binding of hACE2 with S1-RBD in the presence of cyanidin-containing red grapes crude extract was achieved at approximately 1.25 mg/mL. Hence, cyanidin may be a promising adjuvant medication for the SARS-CoV-2 spike protein based on in silico and in vitro research.
Collapse
Affiliation(s)
- Asmita Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Cancer Care and Research Center, Kathmandu, Nepal
| | - Bishnu P. Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Salik Ram Dahal
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Ram Chandra Basnyat
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
15
|
Praena B, Mascaraque M, Andreu S, Bello-Morales R, Abarca-Lachen E, Rapozzi V, Gilaberte Y, González S, López-Guerrero JA, Juarranz Á. Potent Virucidal Activity In Vitro of Photodynamic Therapy with Hypericum Extract as Photosensitizer and White Light against Human Coronavirus HCoV-229E. Pharmaceutics 2022; 14:pharmaceutics14112364. [PMID: 36365182 PMCID: PMC9693429 DOI: 10.3390/pharmaceutics14112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT) with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract (HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light, HE has long durability, being able to maintain the prevention of viral infection. Given its potent in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate to fight against SARS-CoV-2 as a virucidal compound.
Collapse
Affiliation(s)
- Beatriz Praena
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Edgar Abarca-Lachen
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain
| | | | - Yolanda Gilaberte
- Hospital Miguel Servet, Servicio de Dermatología, 50009 Zaragoza, Spain
| | - Salvador González
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, 28805 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.A.L.-G.); (Á.J.)
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
- Correspondence: (J.A.L.-G.); (Á.J.)
| |
Collapse
|
16
|
Plant Molecular Pharming and Plant-Derived Compounds towards Generation of Vaccines and Therapeutics against Coronaviruses. Vaccines (Basel) 2022; 10:vaccines10111805. [DOI: 10.3390/vaccines10111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The current century has witnessed infections of pandemic proportions caused by Coronaviruses (CoV) including severe acute respiratory syndrome-related CoV (SARS-CoV), Middle East respiratory syndrome-related CoV (MERS-CoV) and the recently identified SARS-CoV2. Significantly, the SARS-CoV2 outbreak, declared a pandemic in early 2020, has wreaked devastation and imposed intense pressure on medical establishments world-wide in a short time period by spreading at a rapid pace, resulting in high morbidity and mortality. Therefore, there is a compelling need to combat and contain the CoV infections. The current review addresses the unique features of the molecular virology of major Coronaviruses that may be tractable towards antiviral targeting and design of novel preventative and therapeutic intervention strategies. Plant-derived vaccines, in particular oral vaccines, afford safer, effectual and low-cost avenues to develop antivirals and fast response vaccines, requiring minimal infrastructure and trained personnel for vaccine administration in developing countries. This review article discusses recent developments in the generation of plant-based vaccines, therapeutic/drug molecules, monoclonal antibodies and phytochemicals to preclude and combat infections caused by SARS-CoV, MERS-CoV and SARS-CoV-2 viruses. Efficacious plant-derived antivirals could contribute significantly to combating emerging and re-emerging pathogenic CoV infections and help stem the tide of any future pandemics.
Collapse
|
17
|
Bhat S, Rishi P, Chadha VD. Understanding the epigenetic mechanisms in SARS CoV-2 infection and potential therapeutic approaches. Virus Res 2022; 318:198853. [PMID: 35777502 PMCID: PMC9236910 DOI: 10.1016/j.virusres.2022.198853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
COVID-19 pandemic caused by the Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) has inflicted a global health challenge. Although the overwhelming escalation of mortality seen during the initial phase of the pandemic has reduced, emerging variants of SARS-CoV-2 continue to impact communities worldwide. Several studies have highlighted the association of gene specific epigenetic modifications in host cells with the pathogenesis and severity of the disease. Therefore, alongside the investigations into the virology and pathogenesis of SARS-CoV-2 infection, understanding the epigenetic mechanisms related to the disease is crucial for the rational design of effective targeted therapies. Here, we discuss the interaction of SARS-CoV-2 with the various epigenetic regulators and their subsequent contribution to the risk of disease severity and dysfunctional immune responses. Finally, we also highlight the use of epigenetically targeted drugs for the potential therapeutic interventions capable of eliminating viral infection and/or build effective immunity against it.
Collapse
Affiliation(s)
- Swati Bhat
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Praveen Rishi
- Department of Microbiology, South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| | - Vijayta D Chadha
- Center for Nuclear Medicine (U.I.E.A.S.T), South Campus, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
18
|
Wang Z, Belecciu T, Eaves J, Reimers M, Bachmann MH, Woldring D. Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction. J Biomol Struct Dyn 2022:1-21. [PMID: 35993534 DOI: 10.1080/07391102.2022.2112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple vaccines are in use, but there are many underserved locations that do not have adequate access to them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be such therapeutics. Phytochemicals can be used in a polypharmacological approach, where multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can make this a more tractable problem. In this study, we screen a wide range of natural drug products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution computational workflow. This workflow consists of a structure-based virtual screening (SBVS), where an initial phytochemical library was docked against all selected protein structures. Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a larger phytochemical library via supervised learning. A computational docking validation of the 53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic properties in a computational ADME screening. Collectively, this study demonstrates the advantage of incorporating machine learning elements into a virtual screening workflow.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zirui Wang
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Theodore Belecciu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Joelle Eaves
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mark Reimers
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael H Bachmann
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Daniel Woldring
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Abdizadeh R, Hadizadeh F, Abdizadeh T. Evaluation of apigenin-based biflavonoid derivatives as potential therapeutic agents against viral protease (3CLpro) of SARS-CoV-2 via molecular docking, molecular dynamics and quantum mechanics studies. J Biomol Struct Dyn 2022:1-31. [PMID: 35848354 DOI: 10.1080/07391102.2022.2098821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic COVID-19 disease that affects human respiratory function. Despite the scientific progression made in the development of the vaccine, there is an urgent need for the discovery of antiviral drugs for better performance at different stages of SARS-CoV-2 reproduction. The main protease (Mpro or 3CLpro) plays a pivotal role in the life cycle of the virus, making it an attractive target for the development of antiviral agents effective against the new strains of coronaviruses (CoVs). In this study, a series of apigenin-based natural biflavonoid derivatives as potential inhibitors of coronaviruses 3CLpro was investigated by in silico approaches. For this purpose, the molecular docking was performed to analyze the interaction of the natural biflavonoids with SARS-Cov-2 main protease and for further investigation, docking to the 3CLpro of SARS-CoV and MERS-CoV. Based on docking scores and comparison with the reference inhibitors (ritonavir and lopinavir), more than half of the biflavonoids had strong interactions with the residues of the binding pocket of the coronaviruses 3CLpro and exhibited better binding affinities toward the main protease than ritonavir and lopinavir. The top biflavonoids were further explored through molecular dynamics simulation, binding free energy calculation and residual energy contributions estimated by the MM-PBSA. Also, drug likeness property investigation by Swiss ADME tools and density functional theory (DFT) calculations were performed. The results confirmed that the 3CLpro-amentoflavone, 3CLpro-bilobetin, 3CLpro-ginkgetin, and 3CLpro-sotetsuflavone complexes possess a large amount of dynamic properties such as high stability, significant binding energy and fewer conformation fluctuations. Also, the pharmacokinetics and drug-likeness studies and HOMO-LUMO and DFT descriptor values indicated a promising result of the selected natural biflavonoids. Overall findings indicate that the apigenin-based biflavonoids may inhibit COVID-19 by significant interactions in the binding pocket and those results can pave the way in drug discovery although the effectiveness of these bioactive compounds should be further validated by in-vitro and in-vivo investigations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
20
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
21
|
In-silico investigation of phenolic compounds from leaves of Phillyrea Angustifolia L. as a potential inhibitor against the SARS-CoV-2 main protease (Mpro PDB ID:5R83) using a virtual screening method. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [PMCID: PMC8983096 DOI: 10.1016/j.jscs.2022.101473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Shahhamzehei N, Abdelfatah S, Efferth T. In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Pharmaceuticals (Basel) 2022; 15:308. [PMID: 35337106 PMCID: PMC8952009 DOI: 10.3390/ph15030308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease (Mpro or 3CLpro) in coronaviruses represents a promising specific drug target as it is essential for the cleavage of the virus polypeptide and has a unique cleavage site that does not exist in human host proteases. In this study, we explored potential natural pan-coronavirus drugs using in vitro and in silico approaches and three coronavirus main proteases as treatment targets. The PyRx program was used to screen 39,442 natural-product-like compounds from the ZINC database and 121 preselected phytochemicals from medicinal plants with known antiviral activity. After assessment with Lipinski's rule of five, molecular docking was performed for the top 33 compounds of both libraries. Enzymatic assays were applied for the top candidates from both in silico approaches to test their ability to inhibit SARS-CoV-2 Mpro. The four compounds (hypericin, rosmarinic acid, isorhamnetin, and luteolin) that most efficiently inhibited SARS-CoV-2 Mpro in vitro were further tested for their efficacy in inhibiting Mpro of SARS-CoV-1 and MERS-CoV. Microscale thermophoresis was performed to determine dissociation constant (Kd) values to validate the binding of these active compounds to recombinant Mpro proteins of SARS-CoV-2, SARS-CoV-1, and MERS-CoV. The cytotoxicity of hypericin, rosmarinic acid, isorhamnetin, and luteolin was assessed in human diploid MRC-5 lung fibroblasts using the resazurin cell viability assay to determine their therapeutic indices. Sequence alignment of Mpro of SARS-CoV-2 demonstrated 96.08%, 50.83%, 49.17%, 48.51%, 44.04%, and 41.06% similarity to Mpro of other human-pathogenic coronaviruses (SARS-CoV-1, MERS-CoV, HCoV-NL63, HCoV-OC43, HCoV-HKU1, and HCoV-229E, respectively). Molecular docking showed that 12 out of 121 compounds were bound to SARS-CoV-2 Mpro at the same binding site as the control inhibitor, GC376. Enzyme inhibition assays revealed that hypericin, rosmarinic acid, isorhamnetin, and luteolin inhibited Mpro of SARS-CoV-2, while hypericin and isorhamnetin inhibited Mpro of SARS-CoV-1; hypericin showed inhibitory effects toward Mpro of MERS-CoV. Microscale thermophoresis confirmed the binding of these compounds to Mpro with high affinity. Resazurin assays showed that rosmarinic acid and luteolin were not cytotoxic toward MRC-5 cells, whereas hypericin and isorhamnetin were slightly cytotoxic. We demonstrated that hypericin represents a potential novel pan-anti-coronaviral agent by binding to and inhibiting Mpro of several human-pathogenic coronaviruses. Moreover, isorhamnetin showed inhibitory effects toward SARS-CoV-2 and SARS-CoV-1 Mpro, indicating that this compound may have some pan-coronaviral potential. Luteolin had inhibitory effects against SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg5, 55128 Mainz, Germany; (N.S.); (S.A.)
| |
Collapse
|
23
|
Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCDC, de Oliveira MGP, Sousa TDC, Horta MAP, Siqueira MM, Fernandez JH. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front Microbiol 2022; 13:828984. [PMID: 35222340 PMCID: PMC8866965 DOI: 10.3389/fmicb.2022.828984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had an unprecedented impact on the global economy and public health. Its etiologic agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic and has a rapid global spread. Currently, the increase in the number of new confirmed cases has been slowed down due to the increase of vaccination in some regions of the world. Still, the rise of new variants has influenced the detection of additional waves of rising cases that some countries have experienced. Since the virus replication cycle is composed of many distinct stages, some viral proteins related to them, as the main-protease (Mpro) and RNA dependent RNA polymerase (RdRp), constitute individual potential antiviral targets. In this study, we challenged the mentioned enzymes against compounds pre-approved by health regulatory agencies in a virtual screening and later in Molecular Mechanics/Poisson–Bolzmann Surface Area (MM/PBSA) analysis. Our results showed that, among the identified potential drugs with anti-SARS-CoV-2 properties, Hypericin, an important component of the Hypericum perforatum that presents antiviral and antitumoral properties, binds with high affinity to viral Mpro and RdRp. Furthermore, we evaluated the activity of Hypericin anti-SARS-CoV-2 replication in an in vitro model of Vero-E6 infected cells. Therefore, we show that Hypericin inhibited viral replication in a dose dependent manner. Moreover, the cytotoxicity of the compound, in cultured cells, was evaluated, but no significant activity was found. Thus, the results observed in this study indicate that Hypericin is an excellent candidate for repurposing for the treatment of COVID-19, with possible inhibition of two important phases of virus maturation.
Collapse
Affiliation(s)
- Aline da Rocha Matos
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Braulia Costa Caetano
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - João Luiz de Almeida Filho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (LQFPP-CBB-UENF), Campos dos Goytacazes, Brazil
| | | | | | - Thiago das Chagas Sousa
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Marco Aurélio Pereira Horta
- Plataforma de Laboratórios de Biossegurança Nível 3, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (NB3-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Jorge Hernandez Fernandez
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (LQFPP-CBB-UENF), Campos dos Goytacazes, Brazil
| |
Collapse
|
24
|
Haddad M, Gaudreault R, Sasseville G, Nguyen PT, Wiebe H, Van De Ven T, Bourgault S, Mousseau N, Ramassamy C. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. Int J Mol Sci 2022; 23:2643. [PMID: 35269785 PMCID: PMC8910432 DOI: 10.3390/ijms23052643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-β-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohamed Haddad
- Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada;
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Roger Gaudreault
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Gabriel Sasseville
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Phuong Trang Nguyen
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada; (P.T.N.); (S.B.)
| | - Hannah Wiebe
- Département de Chimie, Université McGill, 3420 Rue University, Montréal, QC H3A 2A7, Canada; (H.W.); (T.V.D.V.)
| | - Theo Van De Ven
- Département de Chimie, Université McGill, 3420 Rue University, Montréal, QC H3A 2A7, Canada; (H.W.); (T.V.D.V.)
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC H2X 2J6, Canada; (P.T.N.); (S.B.)
| | - Normand Mousseau
- Succursale Centre-Ville, Départment de Physique, Université de Montréal, Case Postale 6128, Montréal, QC H3C 3J7, Canada; (R.G.); (G.S.); (N.M.)
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada;
- Institute on Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
25
|
Al-Shuhaib MBS, Hashim HO, Al-Shuhaib JMB, Obayes DH. Artecanin of Laurus nobilis is a novel inhibitor of SARS-CoV-2 main protease with highly desirable druglikeness. J Biomol Struct Dyn 2022; 41:2355-2367. [PMID: 35067202 DOI: 10.1080/07391102.2022.2030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Main protease (Mpro) is a critical enzyme in the life cycle of severe acute respiratory syndrome Coronavirus -2 (SARS-CoV-2). Due to its essential role in the maturation of the polyproteins, the necessity to inhibit Mpro is one of the essential means to prevent the outbreak of COVID-19. In this context, this study was conducted on the natural compounds of medicinal plants that are commonly available in the Middle East to find out the most potent one to inhibit Mpro with the best bioavailability and druglikeness properties. A total of 3392 compounds of sixty-six medicinal plants were retrieved from PubChem database and docked against Mpro. Thirty compounds with the highest docking scores with Mpro were chosen for further virtual screening. Variable druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened compounds, artecanin was predicted to exhibit the most favourable druglikeness potentials, accompanied by no predicted hepatoxicity, carcinogenicity, mutagenicity, and cytotoxicity. Molecular dynamics (MD) simulations showed that Mpro-artecanin complex exhibited comparable stability with that observed in the ligand-free Mpro. This study revealed for the first time that artecanin from Laurus nobilis provided a novel static and dynamic inhibition for Mpro with excellent safety, oral bioavailability, and pharmacokinetic profile. This study suggested the ability of artecanin to be used as a potential natural inhibitor that can be used to block or at least counteract the SARS-CoV-2 invasion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Hayder O. Hashim
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Babylon, Babil, Iraq
| | | | - Daniel H. Obayes
- Babylon Directorate of Education, Ministry of Education, Babil, Iraq
| |
Collapse
|
26
|
Virtual Combinatorial Library Screening of Quinadoline B Derivatives against SARS-CoV-2 RNA-Dependent RNA Polymerase. COMPUTATION 2022. [DOI: 10.3390/computation10010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The unprecedented global health threat of SARS-CoV-2 has sparked a continued interest in discovering novel anti-COVID-19 agents. To this end, we present here a computer-based protocol for identifying potential compounds targeting RNA-dependent RNA polymerase (RdRp). Starting from our previous study wherein, using a virtual screening campaign, we identified a fumiquinazolinone alkaloid quinadoline B (Q3), an antiviral fungal metabolite with significant activity against SARS-CoV-2 RdRp, we applied in silico combinatorial methodologies for generating and screening a library of anti-SARS-CoV-2 candidates with strong in silico affinity for RdRp. For this study, the quinadoline pharmacophore was subjected to structural iteration, obtaining a Q3-focused library of over 900,000 unique structures. This chemical library was explored to identify binders of RdRp with greater affinity with respect to the starting compound Q3. Coupling this approach with the evaluation of physchem profile, we found 26 compounds with significant affinities for the RdRp binding site. Moreover, top-ranked compounds were submitted to molecular dynamics to evaluate the stability of the systems during a selected time, and to deeply investigate the binding mode of the most promising derivatives. Among the generated structures, five compounds, obtained by inserting nucleotide-like scaffolds (1, 2, and 5), heterocyclic thiazolyl benzamide moiety (compound 3), and a peptide residue (compound 4), exhibited enhanced binding affinity for SARS-CoV-2 RdRp, deserving further investigation as possible antiviral agents. Remarkably, the presented in silico procedure provides a useful computational procedure for hit-to-lead optimization, having implications in anti-SARS-CoV-2 drug discovery and in general in the drug optimization process.
Collapse
|
27
|
Li M, Liu X, Zhang S, Liang S, Zhang Q, Chen J. Deciphering binding mechanism of inhibitors to SARS-COV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Phys Chem Chem Phys 2022; 24:22129-22143. [DOI: 10.1039/d2cp03446h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pneumonia outbreak caused by the SARS-CoV-2 virus poses a serious threat to human health and the world economy. Development of safe and highly effective antiviral drugs is of great...
Collapse
|
28
|
Molecular docking and molecular dynamic simulation approaches for drug development and repurposing of drugs for severe acute respiratory syndrome-Coronavirus-2. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300476 DOI: 10.1016/b978-0-323-91172-6.00007-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Kato Y, Higashiyama A, Takaoka E, Nishikawa M, Ikushiro S. Food phytochemicals, epigallocatechin gallate and myricetin, covalently bind to the active site of the coronavirus main protease in vitro. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2021; 3:100021. [PMID: 35425933 PMCID: PMC8498006 DOI: 10.1016/j.arres.2021.100021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/30/2022]
Abstract
SARS-CoV-2 main protease is a possible target for protection against viral infection. This study examined the inhibitory effect of food phytochemicals on the main protease of SARS-CoV-2 by determining a cleaved product after chromatographic separation. First, 37 phytochemicals, including glycosides and metabolites, were screened at 20 µM; epigallocatechin gallate, myricetin, theaflavin, herbacetin, piceatannol, myricitrin, and isothiocyanates inhibited the enzyme in varying degrees. The IC50 values were estimated from 0.4 to 33.3 µM against the 0.5-µM enzyme. The dose-dependent adduction of epigallocatechin gallate and myricetin was confirmed by quinone staining of protein blotted onto a membrane. The enzyme activity was decreased by increasing the concentration of the two phytochemicals, accompanied by increasing the respective adducted molecule estimated by intact mass spectrometry. Reduced glutathione canceled the formation of conjugate and the inhibitory effect of epigallocatechin gallate or myricetin on the enzyme, suggesting that the formation of the quinone moiety in the phytochemicals is critical for the inhibition. The covalent binding of epigallocatechin gallate or myricetin to the cysteine residue at the active site was confirmed by analyzing peptides from the chymotrypsin-digested main protease.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, 670-0092, Japan
| | | | | | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
30
|
Españo E, Kim J, Lee K, Kim JK. Phytochemicals for the treatment of COVID-19. J Microbiol 2021; 59:959-977. [PMID: 34724178 PMCID: PMC8559138 DOI: 10.1007/s12275-021-1467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has underscored the lack of approved drugs against acute viral diseases. Plants are considered inexhaustible sources of drugs for several diseases and clinical conditions, but plant-derived compounds have seen little success in the field of antivirals. Here, we present the case for the use of compounds from vascular plants, including alkaloids, flavonoids, polyphenols, and tannins, as antivirals, particularly for the treatment of COVID-19. We review current evidence for the use of these phytochemicals against SARS-CoV-2 infection and present their potential targets in the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jiyeon Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Kiho Lee
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong, 30019, Republic of Korea.
| |
Collapse
|
31
|
Small molecule interactions with the SARS-CoV-2 main protease: In silico all-atom microsecond MD simulations, PELE Monte Carlo simulations, and determination of in vitro activity inhibition. J Mol Graph Model 2021; 110:108050. [PMID: 34655918 PMCID: PMC8504156 DOI: 10.1016/j.jmgm.2021.108050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing COVID-19 pandemic. With some notable exceptions, safe and effective vaccines, which are now being widely distributed globally, have largely begun to stabilise the situation. However, emerging variants of concern and vaccine hesitancy are apparent obstacles to eradication. Therefore, the need for the development of potent antivirals is still of importance. In this context, the SARS-CoV-2 main protease (Mpro) is a critical target and numerous clinical trials, predominantly in the private domain, are currently in progress. Here, our aim was to extend our previous studies, with hypericin and cyanidin-3-O-glucoside, as potential inhibitors of the SARS-CoV-2 Mpro. Firstly, we performed all-atom microsecond molecular dynamics simulations, which highlight the stability of the ligands in the Mpro active site over the duration of the trajectories. We also invoked PELE Monte Carlo simulations which indicate that both hypericin and cyanidin-3-O-glucoside preferentially interact with the Mpro active site and known allosteric sites. For further validation, we performed an in vitro enzymatic activity assay that demonstrated that hypericin and cyanidin-3-O-glucoside inhibit Mpro activity in a dose-dependent manner at biologically relevant (μM) concentrations. However, both ligands are much less potent than the well-known covalent antiviral GC376, which was used as a positive control in our experiments. Nevertheless, the biologically relevant activity of hypericin and cyanidin-3-O-glucoside is encouraging. In particular, a synthetic version of hypericin has FDA orphan drug designation, which could simplify potential clinical evaluation in the context of COVID-19.
Collapse
|
32
|
Flores-Félix JD, Gonçalves AC, Alves G, Silva LR. Consumption of Phenolic-Rich Food and Dietary Supplements as a Key Tool in SARS-CoV-19 Infection. Foods 2021; 10:2084. [PMID: 34574194 PMCID: PMC8469666 DOI: 10.3390/foods10092084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
The first cases of COVID-19, which is caused by the SARS-CoV-2, were reported in December 2019. The vertiginous worldwide expansion of SARS-CoV-2 caused the collapse of health systems in several countries due to the high severity of the COVID-19. In addition to the vaccines, the search for active compounds capable of preventing and/or fighting the infection has been the main direction of research. Since the beginning of this pandemic, some evidence has highlighted the importance of a phenolic-rich diet as a strategy to reduce the progression of this disease, including the severity of the symptoms. Some of these compounds (e.g., curcumin, gallic acid or quercetin) already showed capacity to limit the infection of viruses by inhibiting entry into the cell through its binding to protein Spike, regulating the expression of angiotensin-converting enzyme 2, disrupting the replication in cells by inhibition of viral proteases, and/or suppressing and modulating the host's immune response. Therefore, this review intends to discuss the most recent findings on the potential of phenolics to prevent SARS-CoV-2.
Collapse
Affiliation(s)
- José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Ana C. Gonçalves
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Gilberto Alves
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
| | - Luís R. Silva
- CICS-UBI–Health Sciences Research Centre, Faculty of Health Science, University of Beira Interior, 6200-506 Covilhã, Portugal; (J.D.F.-F.); (A.C.G.); (G.A.)
- Unidade de Investigação para o Desenvolvimento do Interior (UDI/IPG), Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
33
|
Tejera E, Pérez-Castillo Y, Toscano G, Noboa AL, Ochoa-Herrera V, Giampieri F, Álvarez-Suarez JM. Computational modeling predicts potential effects of the herbal infusion "horchata" against COVID-19. Food Chem 2021; 366:130589. [PMID: 34311241 PMCID: PMC8314115 DOI: 10.1016/j.foodchem.2021.130589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023]
Abstract
Bioactive plant-derived molecules have emerged as therapeutic alternatives in the fight against the COVID-19 pandemic. In this investigation, principal bioactive compounds of the herbal infusion “horchata” from Ecuador were studied as potential novel inhibitors of the SARS-CoV-2 virus. The chemical composition of horchata was determined through a HPLC-DAD/ESI-MSn and GC–MS analysis while the inhibitory potential of the compounds on SARS-CoV-2 was determined by a computational prediction using various strategies, such as molecular docking and molecular dynamics simulations. Up to 51 different compounds were identified. The computational analysis of predicted targets reveals the compounds’ possible anti-inflammatory (no steroidal) and antioxidant effects. Three compounds were identified as candidates for Mpro inhibition: benzoic acid, 2-(ethylthio)-ethyl ester, l-Leucine-N-isobutoxycarbonyl-N-methyl-heptyl and isorhamnetin and for PLpro: isorhamnetin-3-O-(6-Orhamnosyl-galactoside), dihydroxy-methoxyflavanone and dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid. Our results suggest the potential of Ecuadorian horchata infusion as a starting scaffold for the development of new inhibitors of the SARS-CoV-2 Mpro and PLpro enzymes.
Collapse
Affiliation(s)
- Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador.
| | - Yunierkis Pérez-Castillo
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador; Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador
| | - Gisselle Toscano
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Ana Lucía Noboa
- Colegio de Ciencias e Ingenierías, Instituto Biósfera, Universidad San Francisco de Quito, Quito, Ecuador
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingenierías, Instituto Biósfera, Universidad San Francisco de Quito, Quito, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, United States
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - José M Álvarez-Suarez
- Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
34
|
Inhibition of interferon-stimulated gene 15 and lysine 48-linked ubiquitin binding to the SARS-CoV-2 papain-like protease by small molecules: In silico studies. Chem Phys Lett 2021; 771:138468. [PMID: 33716308 PMCID: PMC7938750 DOI: 10.1016/j.cplett.2021.138468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 papain-like protease (PLpro) is a suitable target for drug development, and its deubiquitinating and deISGylating activities have also been reported. In this study, molecular docking was used to investigate the binding properties of a selection of dietary compounds and naphthalene-based inhibitors to the previously characterised binding site of GRL-0617. The structures of the SARS-CoV-2 and SARS-CoV PLpro in complex with interferon-stimulated gene 15 (ISG15) and lysine 48 (K48)-linked diubiquitin were utilised. To predict whether compounds could potentially interfere with the binding of these cellular modifiers, docking was conducted in the absence and presence of ISG15 and K48-linked diubiquitin.
Collapse
|
35
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
36
|
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 M pro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021; 11:607. [PMID: 33921886 PMCID: PMC8073203 DOI: 10.3390/biom11040607] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.
Collapse
Affiliation(s)
| | | | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (A.S.); (A.P.)
| |
Collapse
|
37
|
Manne M, Goudar G, Varikasuvu SR, Khetagoudar MC, Kanipakam H, Natarajan P, Ummiti MD, Yenagi VA, Chinthakindi S, Dharani P, Thota DSS, Patil S, Patil V. Cordifolioside: potent inhibitor against M pro of SARS-CoV-2 and immunomodulatory through human TGF-β and TNF-α. 3 Biotech 2021; 11:136. [PMID: 33643762 PMCID: PMC7898013 DOI: 10.1007/s13205-021-02685-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Therapeutic options for SARS-CoV-2 are limited merely to the symptoms or repurposed drugs and non-specific interventions to promote the human immune system. In the present study, chromatographic and in silico approaches were implemented to identify bioactive compounds which might play pivotal role as inhibitor for SARS-CoV-2 and human immunomodulator (TGF-β and TNF-α). Tinospora cordifolia (Willd.) Miers was evaluated for phenolic composition and explored for bioactive compounds by high-performance thin layer chromatography (HPTLC). Furthermore, the bioactive compounds such as cordifolioside, berberine, and magnoflorine were appraised as human immunomodulatory and potent inhibitor against Main Protease (Mpro) of SARS-CoV-2 through multiple docking strategies. Cordifolioside formed six stable H-bonds with His41, Ser144, Cys145, His163, His164, and Glu166 of Mpro of SARS-CoV-2, which displayed a significant role in the viral replication/transcription during infection acting towards the common conserved binding cleft among all strains of coronavirus. Overall, the study emphasized that the proposed cordifolioside might use for future investigations, which hold as a promising scaffold for developing anti-COVID-19 drug and reduce human cytokine storm.
Collapse
|
38
|
Chiang C, Liu G, Gack MU. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021; 13:182. [PMID: 33530371 PMCID: PMC7910861 DOI: 10.3390/v13020182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
Collapse
Affiliation(s)
| | | | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; (C.C.); (G.L.)
| |
Collapse
|
39
|
Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021; 104:107851. [PMID: 33556646 PMCID: PMC7837617 DOI: 10.1016/j.jmgm.2021.107851] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 virus is causing COVID-19, an ongoing pandemic, with extraordinary global health, social, and political implications. Currently, extensive research and development efforts are aimed at producing a safe and effective vaccine. In the interim, small molecules are being widely investigated for antiviral effects. With respect to viral replication, the papain-like (PLpro) and main proteases (Mpro), are critical for processing viral replicase polypeptides. Further, the PLpro possesses deubiquitinating activity affecting key signalling pathways, including inhibition of interferon and innate immune antagonism. Therefore, inhibition of PLpro activity with small molecules is an important research direction. Our aim was to focus on identification of potential inhibitors of the protease activity of SARS-CoV-2 PLpro. We investigated 300 small compounds derived predominantly from our OliveNet™ library (222 phenolics) and supplemented with synthetic and dietary compounds with reported antiviral activities. An initial docking screen, using the potent and selective noncovalent PLpro inhibitor, GRL-0617 as a control, enabled a selection of 30 compounds for further analyses. From further in silico analyses, including docking to scenes derived from a publicly available molecular dynamics simulation trajectory (100 μs PDB 6WX4; DESRES-ANTON-11441075), we identified lead compounds for further in vitro evaluation using an enzymatic inhibition assay measuring SARS-CoV-2 PLpro protease activity. Our findings indicate that hypericin possessed inhibition activity, and both rutin and cyanidin-3-O-glucoside resulted in a concentration-dependent inhibition of the PLpro, with activity in the micromolar range. Overall, hypericin, rutin, and cyanidin-3-O-glucoside can be considered lead compounds requiring further characterisation for potential antiviral effects in appropriate model systems.
Collapse
|
40
|
Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of Small Molecule Inhibitors of the Deubiquitinating Activity of the SARS-CoV-2 Papain-Like Protease: in silico Molecular Docking Studies and in vitro Enzymatic Activity Assay. Front Chem 2020; 8:623971. [PMID: 33364229 PMCID: PMC7753156 DOI: 10.3389/fchem.2020.623971] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
COVID-19 is an ongoing pandemic caused by the SARS-CoV-2 virus with important political, socio-economic, and public health consequences. Inhibiting replication represents an important antiviral approach, and in this context two viral proteases, the SARS-CoV-2 main and papain-like proteases (PLpro), which cleave pp1a and pp1ab polypeptides, are critical. Along with protease activity, the PLpro possesses deubiquitinating activity, which is important in immune regulation. Naphthalene-based inhibitors, such as the well-investigated GRL-0617 compound, have been shown to possess dual effects, inhibiting both protease and deubiquitinating activity of the PLpro. Rather than binding to the canonical catalytic triad, these type of non-covalent inhibitors target an adjacent pocket, the naphthalene-inhibitor binding site. Using a high-throughput screen, we have previously identified the dietary hypericin, rutin, and cyanidin-3-O-glucoside compounds as potential protease inhibitors targeting the naphthalene-inhibitor binding site. Here, our aim was to investigate the binding characteristics of these compounds to the PLpro, and to evaluate deubiquitinating activity, by analyzing seven different PLpro crystal structures. Molecular docking highlighted the relatively high affinity of GRL-0617 and dietary compounds. In contrast binding of the small molecules was abolished in the presence of ubiquitin in the palm subdomain of the PLpro. Further, docking the small molecules in the naphthalene-inhibitor binding site, followed by protein-protein docking revealed displacement of ubiquitin in a conformation inconsistent with functional activity. Finally, the deubiquitinating activity was validated in vitro using an enzymatic activity assay. The findings indicated that the dietary compounds inhibited deubiquitinase activity in the micromolar range with an order of activity of GRL-0167, hypericin >> rutin, cyanidin-3-O-glucoside > epigallocatechin gallate, epicatechin gallate, and cefotaxime. Our findings are in accordance with mechanisms and potential antiviral effects of the naphthalene-based, GRL-0617 inhibitor, which is currently progressing in preclinical trials. Further, our findings indicate that in particular hypericin, rutin, and cyanidin-3-O-glucoside, represent suitable candidates for subsequent evaluation as PLpro inhibitors.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Katherine Ververis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kah Wai Lim
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew Hung
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Tom C. Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|