1
|
El-Shiekh RA, Mohamed AF, Mandour AA, Adel IM, Atwa AM, Elgindy AM, Esmail MM, Senna MM, Ebid N, Mustafa AM. Hesperidin in Chronic Fatigue Syndrome: An Integrated Analysis of Traditional Pharmacology and Machine Learning-Based Therapeutic Predictions. Chem Biodivers 2025:e202403506. [PMID: 40234200 DOI: 10.1002/cbdv.202403506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Hesperidin, a bioflavonoid abundantly found in citrus fruits, offers a myriad of health benefits. With the food industry extensively utilizing citrus fruits, particularly for juice production, substantial quantities of by-products such as peels, seeds, cells, and membrane residues accumulate. Remarkably, these by-products serve as a valuable source of hesperidin. Consequently, the extraction of hesperidin from these by-products has garnered significant scientific interest, aiming to harness its potential as a natural antioxidant. By shedding light on these aspects, this review provides a comprehensive review of hesperidin's role in enhancing human well-being, particularly in the context of chronic fatigue syndrome (CFS). By synthesizing current research, we elucidate the compound's antioxidant, anti-inflammatory, and neuroprotective effects, which may mitigate symptoms associated with CFS. Furthermore, we introduce machine learning methodologies to predict hesperidin's efficacy in clinical settings, offering a novel perspective on personalized nutrition strategies. Our findings underscore the need for further empirical studies to validate these predictions and explore hesperidin's mechanisms of action. This review not only bridges the gap between nutrition science and pharmacology but also highlights the promising future of hesperidin as a nutraceutical in combating chronic health conditions.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
2
|
Hermawan A, Pamungkas Putri DD, Fatimah N, Rhamandana Putra IM, Lestari IA. α-chaconine increases the sensitivity of HER2+ breast cancer cells to trastuzumab by targeting acetylcholinesterase. Comput Biol Med 2025; 188:109809. [PMID: 39955879 DOI: 10.1016/j.compbiomed.2025.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Trastuzumab (TRZ) is the first drug used to treat HER2-positive breast cancer, but some patients become resistant to it because of the PI3K/Akt pathway and other pathways that counteract it. TRZ, in conjunction with other therapeutic agents, is needed to overcome resistance. α-chaconine (CHA), a glycoalkaloid from the Solanaceae family, can suppress lung cancer cell proliferation in vitro by inhibiting PI3K/Akt signaling, one of the key regulatory pathways in TRZ resistance. METHODS This study used integrative bioinformatics analysis to screen for possible targets of CHA that can help fight breast cancer that is resistant to TRZ. In vitro experiments were used to confirm the target genes using TRZ-resistant HCC-1954 (HCC-TRZ) cells for cytotoxicity, gene expression studies, and enzymatic assay. RESULTS We identified several potential target genes of CHA, including EGFR, VEGF, ACHE, and ADORA. We generated HCC1954-TRZ cells, which showed an increase in cell viability after sequential treatment of the parental HCC1954 cells with TRZ. Further experiments showed the high sensitivity of HCC-TRZ toward TRZ when TRZ was combined with CHA. The combination of CHA and TRZ significantly increased the mRNA expression levels of various genes compared to a single TRZ treatment. Additionally, CHA alone and combined with CHA-TRZ inhibited acetylcholinesterase (AChE) activity in HCC-TRZ cells. CONCLUSION CHA increased the sensitivity of HCC-TRZ cells to TRZ by targeting several potential target genes and AChE activity. This study highlights the potential of using CHA in combination with TRZ to overcome TRZ resistance in HER2+ breast cancer cells.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia.
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia; Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - I Made Rhamandana Putra
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Intan Ayu Lestari
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Khosronejad A, Arabion H, Iraji A, Mokhtarzadegan M, Daneshi SS, Asadi-Yousefabad SL, Zare S, Nowzari F, Abbaspour S, Akbarizadeh F, Aliabadi E, Amiri MA, Zarei M, Ebrahimi R, Mussin NM, Kurmanalina MA, Tanideh N, Tamadon A. Mandibular bone defect healing using polylactic acid-nano-hydroxyapatite-gelatin scaffold loaded with hesperidin and dental pulp stem cells in rat. Tissue Cell 2025; 93:102700. [PMID: 39724839 DOI: 10.1016/j.tice.2024.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Addressing mandibular defects poses a significant challenge in maxillofacial surgery. Recent advancements have led to the development of various biomimetic composite scaffolds aimed at facilitating mandibular defect reconstruction. This study aimed to assess the regenerative potential of a novel composite scaffold consisting of polylactic acid (PLA), hydroxyapatite nanoparticles (n-HA), gelatin, hesperidin, and human dental pulp stem cells (DPSCs) in a rat model of mandibular bone defect. The PLA-HA-GLA composite was synthesized using solvent casting-leaching and freeze-drying methods and subsequently treated with 11 mg of hesperidin. The physicochemical properties of the PLA-HA-GLA and PLA-HA-GLA-HIS composites were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). Additionally, the mechanical properties and cytotoxicity of DPSCs were assessed. Subsequently, PLA-HA-GLA and PLA-HA-GLA-HIS scaffolds with or without DPSCs were implanted into mandibular bone defects in rats, followed by histopathological, histomorphometric, and cone-beam computed tomography (CBCT) evaluations after eight weeks. SEM analysis revealed the porous structure of the fabricated PLA-HA-GLA and PLA-HA-GLA-HIS composites without aggregation. FTIR and XRD analyses confirmed the presence of functional groups and elements associated with PLA, HA, GLA, and hesperidin in the composites. Although the PLA-HA-GLA-HIS composite exhibited good thermal stability, its mechanical properties decreased after the addition of hesperidin. The cell viability of DPSCs on the surface of the PLA-HA-GLA-HIS scaffolds was statistically significant compared to that of the control group. Furthermore, histopathological, histomorphometric, and radiological evaluations demonstrated that the implantation of the DPSC-loaded PLA-HA-GLA-HIS scaffold had a beneficial effect on bone tissue reconstruction in rats with mandibular defects. These findings highlight the potential of DPSC-loaded PLA-HA-GLA-HIS composite scaffolds for spongy bone tissue engineering and mandibular defect repair.
Collapse
Affiliation(s)
- Arya Khosronejad
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Hamidreza Arabion
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran.
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Mokhtarzadegan
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Seyyed Sajad Daneshi
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariborz Nowzari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shekofeh Abbaspour
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Akbarizadeh
- Department of Oral & Maxillofacial Radiology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ehsan Aliabadi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran.
| | | | - Moein Zarei
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Al. Piastow 45, Szczecin 71-311, Poland.
| | - Reyhaneh Ebrahimi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiar M Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan.
| | - Madina A Kurmanalina
- Department of Therapeutic and Prosthetic Dentistry, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Tamadon
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
4
|
Hermawan A, Hanif N, Putri DDP, Fatimah N, Prasetio HH. Citrus flavonoids for overcoming breast cancer resistance to methotrexate: identification of potential targets of nobiletin and sinensetin. Discov Oncol 2025; 16:365. [PMID: 40111633 PMCID: PMC11926326 DOI: 10.1007/s12672-025-02116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Breast cancer is a potentially fatal illness that affects millions of women worldwide. Methotrexate (MTX) may be beneficial for treating breast cancer; however, high doses and prolonged use can cause drug resistance. Although certain citrus flavonoids-nobiletin, sinensetin, tangeretin, hesperidin, hesperetin, and naringenin-may overcome resistance to chemotherapy, no study has investigated MTX resistance. This study investigated the potential of natural chemicals, specifically nobiletin and sinensetin, to overcome MTX resistance in breast cancer cells using MTX-resistant MCF-7 (MCF-7/MTX) and MCF-7 cells. Protein targets of citrus flavonoids were identified from multiple databases and were collected using Venny 2.1. Microarray data of MCF-7 and MCF-7/MTX cells were acquired from the Gene Expression Omnibus. Subsequently, we constructed a protein-protein interaction network and selected the hub proteins. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, drug- and disease-gene enrichment analyses, genetic alteration examination, receiver operating characteristic curve analysis, mRNA levels analysis, prognostic value analysis, and molecular docking analysis were performed along with in vitro experiments. Cytotoxicity of citrus flavonoids (individually and combined) was assessed in MCF-7/MTX cells. Nobiletin and sinensetin significantly enhanced the cytotoxicity of MTX in MCF-7/MTX cells. BCL2L1, CDK1, EGFR, PTGS2, PLK1, MMP2, ACHE, ABCG2, and KIT genes were enriched in cholinesterase activity, cell cycle regulation, and the PI3K/Akt signaling pathway. Nobiletin and sinensetin impeded PLK1, CDK1, and ACHE activities based on molecular docking. Nobiletin and sinensetin in combination with MTX may overcome breast cancer cell resistance to MTX.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Naufa Hanif
- Doctoral Student, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
6
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
7
|
Zhang H, Jiang W, Jiang Y, Xu N, Nong L, Li T, Liu R. Investigating the therapeutic potential of hesperidin targeting CRISP2 in intervertebral disc degeneration and cancer risk mitigation. Front Pharmacol 2024; 15:1447152. [PMID: 39268471 PMCID: PMC11390660 DOI: 10.3389/fphar.2024.1447152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) can lead to disc herniation and spinal instability, sometimes requiring surgical intervention. Currently, estrogen has a potential protective effect on IDD, and estrogen is associated with an increased risk of some cancers, such as breast and endometrial cancer. Therefore, it is important to identify natural compounds that estrogen analogues treat IDD while reducing the risk of tumor development. Objective This study aims to explore a natural metabolic treatment strategy by targeting CRISP2 with the natural compound Hesperidin to mimic the protective effects of estrogen on IDD and reduce the risk of tumor development. Methods Microarray data from healthy volunteers and IDD patients were extracted from the Gene Expression Omnibus (GEO) database, and RNA sequencing and clinical data from various cancer types were analyzed. Differentially expressed genes (DEGs) were identified using the Bioconductor Limma package, followed by principal component analysis, volcano plot, and heatmap visualization. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, CIBERSORT and ssGSEA immune cell infiltration assessments, survival analysis, metabolite enrichment analysis, and molecular docking were performed. Hesperidin's interaction with CRISP2 was further validated through molecular docking and experimental studies. Results Hesperidin significantly reduced the expression of CRISP2, iNOS, and COX2 in IDD models, decreased reactive oxygen species (ROS) and apoptosis, and diminished inflammatory markers. CIBERSORT and ssGSEA analyses revealed a correlation between CRISP2 and immune cell infiltration. Survival analysis demonstrated that CRISP2 expression levels were associated with patient survival across various cancer types. Hesperidin was found to mimic estrogen's effects on IDD and reduce tumor progression. Cell culture and experimental validation confirmed Hesperidin's protective effects on nucleus pulposus cells (NPCs). Conclusion Hesperidin, as a potential natural metabolic regulator, not only has therapeutic effects on IDD but may also synergize with estrogen therapy to promote spinal health without increasing cancer risk. This study presents a new clinical approach for IDD treatment and lays the foundation for further drug development and experimental research.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan, Qinghai, China
| | - Wei Jiang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Nanwei Xu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Luming Nong
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tengfei Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruiping Liu
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Hermawan A, Ikawati M, Putri DDP, Fatimah N, Prasetio HH. Nobiletin Inhibits Breast Cancer Stem Cell by Regulating the Cell Cycle: A Comprehensive Bioinformatics Analysis and In Vitro Experiments. Nutr Cancer 2024; 76:638-655. [PMID: 38721626 DOI: 10.1080/01635581.2024.2348217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024]
Abstract
Inhibiting breast cancer stem cell (BCSC) signaling pathways is a strategic method for successfully treating breast cancer. Nobiletin (NOB) is a compound widely found in orange peel that exhibits a toxic effect on various types of cancer cells, and inhibits the signaling pathways that regulate the properties of BCSCs; however, the effects of NOB on BCSCs remain elusive. The purpose of this study was to determine the target genes of NOB for inhibiting BCSCs using in vitro three-dimensional breast cancer cell culture (mammospheres) and in silico approaches. We combined in vitro experiments to develop mammospheres and conducted cytotoxicity, next-generation sequencing, and bioinformatics analyses, such as gene ontology, the Reactome pathway enrichment, network topology, gene set enrichment analysis, hub genes selection, genetic alterations, prognostic value related to the mRNA expression, and mRNA and protein expression of potential NOB target genes that inhibit BCSCs. Here, we show that NOB inhibited BCSCs in mammospheres from MCF-7 cells. We also identified CDC6, CHEK1, BRCA1, UCHL5, TOP2A, MTMR4, and EXO1 as potential NOB targets inhibiting BCSCs. NOB decreased G0/G1, but increased the G2/M cell population. These findings showed that NOB is a potential therapeutic candidate for BCSCs treatment by regulating cell cycle.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Dyaningtyas Dewi Pamungkas Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
| |
Collapse
|
9
|
Hermawan A, Putri H, Fatimah N, Prasetio HH. Transcriptomics analysis reveals distinct mechanism of breast cancer stem cells regulation in mammospheres from MCF-7 and T47D cells. Heliyon 2024; 10:e24356. [PMID: 38304813 PMCID: PMC10831612 DOI: 10.1016/j.heliyon.2024.e24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Luminal A breast cancer, constituting 70 % of breast cancer cases, presents a challenge due to the development of resistance and recurrence caused by breast cancer stem cells (BCSC). Luminal breast tumors are characterized by TP53 expression, a tumor suppressor gene involved in maintaining stem cell attributes in cancer. Although a previous study successfully developed mammospheres (MS) from MCF-7 (with wild-type TP53) and T47D (with mutant TP53) luminal breast cancer cells for BCSC enrichment, their transcriptomic profiles remain unclear. We aimed to elucidate the transcriptomic disparities between MS of MCF-7 and T47D cells using bioinformatics analyses of differentially expressed genes (DEGs), including the KEGG pathway, Gene Ontology (GO), drug-gene association, disease-gene association, Gene Set Enrichment Analysis (GSEA), DNA methylation analysis, correlation analysis of DEGs with immune cell infiltration, and association analysis of genes and small-molecule compounds via the Connectivity Map (CMap). Upregulated DEGs were enriched in metabolism-related KEGG pathways, whereas downregulated DEGs were enriched in the MAPK signaling pathway. Drug-gene association analysis revealed that both upregulated and downregulated DEGs were associated with fostamatinib. The KEGG pathway GSEA results indicated that the DEGs were enriched for oxidative phosphorylation, whereas the downregulated DEGs were negatively enriched for the p53 signaling pathway. Examination of DNA methylation revealed a noticeable disparity in the expression patterns of the PKM2, ERO1L, SLC6A6, EPAS1, APLP2, RPL10L, and NEDD4 genes when comparing cohorts with low- and high-risk breast cancer. Furthermore, a significant positive correlation was identified between SLC6A6 expression and macrophage presence, as well as MSN, and AKR1B1 expression and neutrophil and dentritic cell infiltration. CMap analysis unveiled SA-83851 as a potential candidate to counteract the effects of DEGs, specifically in cells harbouring mutant TP53. Further research, including in vitro and in vivo validations, is warranted to develop drugs targeting BCSCs.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Nurul Fatimah
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Heri Himawan Prasetio
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Shakiba E, Bazi A, Ghasemi H, Eshaghi‐Gorji R, Mehdipour SA, Nikfar B, Rashidi M, Mirzaei S. Hesperidin suppressed metastasis, angiogenesis and tumour growth in Balb/c mice model of breast cancer. J Cell Mol Med 2023; 27:2756-2769. [PMID: 37581480 PMCID: PMC10494297 DOI: 10.1111/jcmm.17902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Considering the unfavourable response of breast cancer (BC) to treatment, we assessed the therapeutic potential hesperidin in mice bearing 4T1 BC tumours. Anti-tumour effects were assessed by measuring pathologic complete response (pCR), survival analysis, immunohistochemistry for E-cadherin, VEGF, MMP9, MMP2 and Ki-67, serum measurement of IFNγ and IL-4, and gene expression analysis of CD105, VEGFa, VEGFR2 and COX2. Survival of tumour-bearing mice was the highest in mice receiving a combination of hesperidin and doxorubicin (Dox) (80%) compared to the normal saline (43%), hesperidin 5 (54%), 10 (55.5%), 10 (60.5%) and 40 (66%) mg/kg, and 10 mg/kg Dox-treated (73%) groups (p < 0.0001 for all). Compared to the normal saline group, there was a significant elevation in IFNγ level in the animals receiving 20 (p = 0.0026) and 40 (p < 0.001) mg/kg hesperidin, 10 mg/kg Dox (p < 0.001), and combined hesperidin (20 mg/kg) and Dox (10 mg/kg) (p < 0.001). A significant reduction in the gene expression of CD 105 (p = 0.0106), VEGFa (p < 0.0001), VEGFR2 (p < 0.0001), and Cox2 (p = 0.034) and a significant higher pCR score (p = 0.006) were noticed in mice treated with 10 mg/kg Dox + 20 mg/kg hesperidin compared to those treated with 10 mg/kg Dox alone. Immunohistochemical staining showed significant reductions in Ki-67 (p < 0.001) and VEGF (p < 0.001) and a significant elevation in E-cadherin (p = 0.005) in the 10 mg/kg Dox + 20 mg/kg treatment group than in 10 mg/kg Dox alone group. Hesperidin can be considered as a potentially suitable anti-cancer agent for BC that can synergize with other chemotherapeutics.
Collapse
Affiliation(s)
- Elham Shakiba
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran BranchIslamic Azad UniversityTehranIran
| | - Ali Bazi
- Department of HematologyKerman University of Medical SciencesKermanIran
- Faculty of Allied Medical SciencesZabol University of Medical SciencesZabolIran
| | - Hamed Ghasemi
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
| | - Reza Eshaghi‐Gorji
- Student Research CommitteeMazandaran University of Medical SciencesSariIran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars HospitalIran University of Medical SciencesTehranIran
| | - Mohsen Rashidi
- Department of PharmacologyMazandaran University of Medical SciencesSariIran
- The Health of Plant and Livestock Products Research CenterMazandaran University of Medical SciencesSariIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
11
|
Chen SJ, Lu JH, Lin CC, Zeng SW, Chang JF, Chung YC, Chang H, Hsu CP. Synergistic Chemopreventive Effects of a Novel Combined Plant Extract Comprising Gallic Acid and Hesperidin on Colorectal Cancer. Curr Issues Mol Biol 2023; 45:4908-4922. [PMID: 37367061 DOI: 10.3390/cimb45060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND/AIM Colorectal cancer (CRC) is the third most common cancer with a high mortality rate worldwide. Although gallic acid and hesperidin exert anticancer activity, synergistic effects of gallic acid and hesperidin against CRC remain elusive. This study aims to investigate the therapeutic mechanism of a novel combination of gallic acid and hesperidin against CRC cell growth, including cell viability, cell-cycle-associated proteins, spheroid formation, and stemness. METHODS Gallic acid and hesperidin derived from Hakka pomelo tea (HPT) were detected by colorimetric methods and high-performance liquid chromatography using ethyl acetate as an extraction medium. CRC cell lines (HT-29 and HCT-116) treated with the combined extract were investigated in our study for cell viability (trypan blue or soft agar colony formation assay), cell cycle (propidium iodide staining), cell-cycle-associated proteins (immunoblotting), and stem cell markers (immunohistochemistry staining). RESULTS Compared with other extraction methods, HPT extraction using an ethyl acetate medium exerts the most potent effect on inhibiting HT-29 cell growth in a dose-dependent manner. Furthermore, the treatment with combined extract had a higher inhibitory effect on CRC cell viability than gallic acid or hesperidin alone. The underlying mechanism was involved in G1-phase arrest and Cip1/p21 upregulation that could attenuate HCT-116 cell proliferation (Ki-67), stemness (CD-133), and spheroid growth in a 3D formation assay mimicking in vivo tumorigenesis. CONCLUSION Gallic acid and hesperidin exert synergistic effects on cell growth, spheroids, and stemness of CRC and may serve as a potential chemopreventive agent. Further testing for the safety and effectiveness of the combined extract in large-scale randomized trials is required.
Collapse
Affiliation(s)
- Szu-Jung Chen
- Department of Radiation Oncology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Shao-Wei Zeng
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Branch of Taipei Veterans General Hospital, Taoyuan City 330, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Yuan-Chiang Chung
- Department of Surgery, Kuang Tien General Hospital, Taichung City 437, Taiwan
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| | - Chih-Ping Hsu
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 300, Taiwan
| |
Collapse
|
12
|
Liu S, Liang H, Lv L, Hu F, Liu Q, Wang Y, Zhu J, Chen Z, Li J, Wang Z, Chang YN, Li J, Ma X, Chen K, Xing G. 3D culture boosting fullerenol nanoparticles to induce calreticulin exposure on MCF-7 cells for enhanced macrophage-mediated cell removal. Colloids Surf B Biointerfaces 2023; 224:113204. [PMID: 36801743 DOI: 10.1016/j.colsurfb.2023.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Calreticulin (CRT) on the cell surface that acts as an "eat me" signal is vital for macrophage-mediated programmed cell removal. The polyhydroxylated fullerenol nanoparticle (FNP) has appeared as an effective inducer to cause CRT exposure on cancer cell surface, but it failed in treating some cancer cells such as MCF-7 cells based on previous findings. Here, we carried out the 3D culture of MCF-7 cells, and interestingly found that the FNP induced CRT exposure on cells in 3D spheres via re-distributing CRT from endoplasmic reticulum (ER) to cell surface. Phagocytosis experiments in vitro and in vivo illustrated the combination of FNP and anti-CD47 monoclonal antibody (mAb) further enhanced macrophage-mediated phagocytosis to cancer cells. The maximal phagocytic index in vivo was about three times higher than that of the control group. Moreover, in vivo tumorigenesis experiments in mice proved that FNP could regulate the progress of MCF-7 cancer stem-like cells (CSCs). These findings expand the application of FNP in tumor therapy of anti-CD47 mAb and 3D culture can be used as a screening tool for nanomedicine.
Collapse
Affiliation(s)
- Sen Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China; College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China
| | - Haojun Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Linwen Lv
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Fan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Qiuyang Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Junyu Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Ziteng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Jiacheng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China
| | - Xiancai Ma
- Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China.
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing 100049, China.
| |
Collapse
|
13
|
Amalina ND, Salsabila IA, Zulfin UM, Jenie RI, Meiyanto E. In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells. J Egypt Natl Canc Inst 2023; 35:6. [PMID: 36967442 DOI: 10.1186/s43046-023-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1.
Methods
Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay’s method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO).
Results
Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies.
Conclusion
These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.
Collapse
|
14
|
Naringenin and Hesperidin as Promising Alternatives for Prevention and Co-Adjuvant Therapy for Breast Cancer. Antioxidants (Basel) 2023; 12:antiox12030586. [PMID: 36978836 PMCID: PMC10045673 DOI: 10.3390/antiox12030586] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Citrus (genus Citrus L.) fruits are essential sources of bioactive compounds with antioxidant properties, such as flavonoids. These polyphenolic compounds are divided into subclasses, in which flavanones are the most prominent. Among them, naringenin and hesperidin are emerging compounds with anticancer potential, especially for breast cancer (BC). Several mechanisms have been proposed, including the modulation of epigenetics, estrogen signaling, induction of cell death via regulation of apoptotic signaling pathways, and inhibition of tumor invasion and metastasis. However, this information is sparse in the literature and needs to be brought together to provide an overview of how naringenin and hesperidin can serve as therapeutic tools for drug development and as a successful co-adjuvant strategy against BC. This review detailed such mechanisms in this context and highlighted how naringenin and hesperidin could interfere in BC carcinogenesis and be helpful as potential alternative therapeutic sources for breast cancer treatment.
Collapse
|
15
|
Messiad H, Hamamdia FZ, Belguidoum K, Lemouari N, Amira-Guebailia H. Synthesis and spectroscopic characterization of charge transfer complexes of the donor hesperidin and π-acceptors; 2,3-dichloro-5,6-dicyano-1,4- benzoquinone and tetracyanoethylene. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Prajapati KS, Gupta S, Kumar S. Targeting Breast Cancer-Derived Stem Cells by Dietary Phytochemicals: A Strategy for Cancer Prevention and Treatment. Cancers (Basel) 2022; 14:2864. [PMID: 35740529 PMCID: PMC9221436 DOI: 10.3390/cancers14122864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is heterogeneous disease with variable prognosis and therapeutic response. Approximately, 70% of diagnosed breast cancer represents the luminal A subtype. This subpopulation has a fair prognosis with a lower rate of relapse than the other clinical subtypes. Acquisition of stemness in luminal A subtype modifies the phenotype plasticity to accomplish increased aggressiveness and therapeutic resistance. Therefore, targeting luminal A-derived breast cancer stem cells (BCSCs) could be a promising strategy for its prevention and treatment. Extensive studies reveal that dietary phytochemicals have the potential to target BCSCs by modulating the molecular and signal transduction pathways. Dietary phytochemicals alone or in combination with standard therapeutic modalities exert higher efficacy in targeting BCSCs through changes in stemness, self-renewal properties and hypoxia-related factors. These combinations offer achieving higher radio- and chemo- sensitization through alteration in the key signaling pathways such as AMPK, STAT3, NF-ĸB, Hedgehog, PI3K/Akt/mTOR, Notch, GSK3β, and Wnt related to cancer stemness and drug resistance. In this review, we highlight the concept of targeting luminal A-derived BCSCs with dietary phytochemicals by summarizing the pathways and underlying mechanism(s) involved during therapeutic resistance.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, India;
| | - Sanjay Gupta
- Department of Urology, Nutrition, Pharmacology and Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, India;
| |
Collapse
|
17
|
Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, Subramaniyan V, Fuloria NK, Fuloria S, Lum PT. Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi J Biol Sci 2021; 28:6730-6747. [PMID: 34866972 PMCID: PMC8626310 DOI: 10.1016/j.sjbs.2021.07.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) has high incidence and mortality rates, making it a major global health issue. BC treatment has been challenging due to the presence of drug resistance and the limited availability of therapeutic options for triple-negative and metastatic BC, thereby urging the exploration of more effective anti-cancer agents. Hesperidin and its aglycone hesperetin, two flavonoids from citrus species, have been extensively evaluated for their anti-cancer potentials. In this review, available literatures on the chemotherapeutic and chemosensitising activities of hesperidin and hesperetin in preclinical BC models are reported. The safety and bioavailability of hesperidin and hesperetin as well as the strategies to enhance their bioavailability are also discussed. Overall, hesperidin and hesperetin can inhibit cell proliferation, migration and BC stem cells as well as induce apoptosis and cell cycle arrest in vitro. They can also inhibit tumour growth, metastasis and neoplastic changes in tissue architecture in vivo. Moreover, the co-administration of hesperidin or hesperetin with doxorubicin, letrozole or tamoxifen can enhance the efficacies of these clinically available agents. These chemotherapeutic and chemosensitising activities of hesperidin and hesperetin have been linked to several mechanisms, including the modulation of signalling pathways, glucose uptake, enzymes, miRNA expression, oxidative status, cell cycle regulatory proteins, tumour suppressor p53, plasma and liver lipid profiles as well as DNA repair mechanisms. However, poor water solubility, extensive phase II metabolism and apical efflux have posed limitations to the bioavailability of hesperidin and hesperetin. Various strategies for bioavailability enhancement have been studied, including the utilisation of nano-based drug delivery systems and the co-administration of hesperetin with other flavonoids. In particular, nanoformulated hesperidin and hesperetin possess greater chemotherapeutic and chemosensitising activities than free compounds. Despite promising preclinical results, further safety and efficacy evaluation of hesperidin and hesperetin as well as their nanoformulations in clinical trials is required to ascertain their potentials to be developed as clinically useful agents for BC treatment.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor - 42610, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway - 47500, Selangor Darul Ehsan, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| | | | | | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh – 30450, Perak, Malaysia
| |
Collapse
|