1
|
Biswas M, Saba L, Kalra M, Singh R, Fernandes E Fernandes J, Viswanathan V, Laird JR, Mantella LE, Johri AM, Fouda MM, Suri JS. MultiNet 2.0: A lightweight attention-based deep learning network for stenosis measurement in carotid ultrasound scans and cardiovascular risk assessment. Comput Med Imaging Graph 2024; 117:102437. [PMID: 39378691 DOI: 10.1016/j.compmedimag.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) cause 19 million fatalities each year and cost nations billions of dollars. Surrogate biomarkers are established methods for CVD risk stratification; however, manual inspection is costly, cumbersome, and error-prone. The contemporary artificial intelligence (AI) tools for segmentation and risk prediction, including older deep learning (DL) networks employ simple merge connections which may result in semantic loss of information and hence low in accuracy. METHODOLOGY We hypothesize that DL networks enhanced with attention mechanisms can do better segmentation than older DL models. The attention mechanism can concentrate on relevant features aiding the model in better understanding and interpreting images. This study proposes MultiNet 2.0 (AtheroPoint, Roseville, CA, USA), two attention networks have been used to segment the lumen from common carotid artery (CCA) ultrasound images and predict CVD risks. RESULTS The database consisted of 407 ultrasound CCA images of both the left and right sides taken from 204 patients. Two experts were hired to delineate borders on the 407 images, generating two ground truths (GT1 and GT2). The results were far better than contemporary models. The lumen dimension (LD) error for GT1 and GT2 were 0.13±0.08 and 0.16±0.07 mm, respectively, the best in market. The AUC for low, moderate and high-risk patients' detection from stenosis data for GT1 were 0.88, 0.98, and 1.00 respectively. Similarly, for GT2, the AUC values for low, moderate, and high-risk patient detection were 0.93, 0.97, and 1.00, respectively. The system can be fully adopted for clinical practice in AtheroEdge™ model by AtheroPoint, Roseville, CA, USA.
Collapse
Affiliation(s)
- Mainak Biswas
- School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Monserrato, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - J Fernandes E Fernandes
- Cardiovascular Institute and the Lisbon University Medical School, Hospital de SantaMaria, Lisbon 1600 190, Portugal
| | | | - John R Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Jasjit S Suri
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA; Department of CS, Graphics Era University, Dehradun, India; University Center for Research & Development, Chandigarh University, Mohali, India; Symbiosis Institute of Technology, Nagpur Campus, Symbiosis International (Deemed University), Pune, India; Stroke Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.
| |
Collapse
|
2
|
Singh J, Khanna NN, Rout RK, Singh N, Laird JR, Singh IM, Kalra MK, Mantella LE, Johri AM, Isenovic ER, Fouda MM, Saba L, Fatemi M, Suri JS. GeneAI 3.0: powerful, novel, generalized hybrid and ensemble deep learning frameworks for miRNA species classification of stationary patterns from nucleotides. Sci Rep 2024; 14:7154. [PMID: 38531923 PMCID: PMC11344070 DOI: 10.1038/s41598-024-56786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Due to the intricate relationship between the small non-coding ribonucleic acid (miRNA) sequences, the classification of miRNA species, namely Human, Gorilla, Rat, and Mouse is challenging. Previous methods are not robust and accurate. In this study, we present AtheroPoint's GeneAI 3.0, a powerful, novel, and generalized method for extracting features from the fixed patterns of purines and pyrimidines in each miRNA sequence in ensemble paradigms in machine learning (EML) and convolutional neural network (CNN)-based deep learning (EDL) frameworks. GeneAI 3.0 utilized five conventional (Entropy, Dissimilarity, Energy, Homogeneity, and Contrast), and three contemporary (Shannon entropy, Hurst exponent, Fractal dimension) features, to generate a composite feature set from given miRNA sequences which were then passed into our ML and DL classification framework. A set of 11 new classifiers was designed consisting of 5 EML and 6 EDL for binary/multiclass classification. It was benchmarked against 9 solo ML (SML), 6 solo DL (SDL), 12 hybrid DL (HDL) models, resulting in a total of 11 + 27 = 38 models were designed. Four hypotheses were formulated and validated using explainable AI (XAI) as well as reliability/statistical tests. The order of the mean performance using accuracy (ACC)/area-under-the-curve (AUC) of the 24 DL classifiers was: EDL > HDL > SDL. The mean performance of EDL models with CNN layers was superior to that without CNN layers by 0.73%/0.92%. Mean performance of EML models was superior to SML models with improvements of ACC/AUC by 6.24%/6.46%. EDL models performed significantly better than EML models, with a mean increase in ACC/AUC of 7.09%/6.96%. The GeneAI 3.0 tool produced expected XAI feature plots, and the statistical tests showed significant p-values. Ensemble models with composite features are highly effective and generalized models for effectively classifying miRNA sequences.
Collapse
Affiliation(s)
- Jaskaran Singh
- Department of Computer Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Ranjeet K Rout
- Department of Computer Science and Engineering, NIT Srinagar, Hazratbal, Srinagar, India
| | - Narpinder Singh
- Department of Food Science, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - Inder M Singh
- Advanced Cardiac and Vascular Institute, Sacramento, CA, USA
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Laura E Mantella
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Esma R Isenovic
- Laboratory for Molecular Genetics and Radiobiology, University of Belgrade, Belgrade, Serbia
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Luca Saba
- Department of Neurology, University of Cagliari, Cagliari, Italy
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint LLC, Roseville, CA, 95661, USA.
| |
Collapse
|
3
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
4
|
Gu J, Qian X, Zhang Q, Zhang H, Wu F. Unsupervised domain adaptation for Covid-19 classification based on balanced slice Wasserstein distance. Comput Biol Med 2023; 164:107207. [PMID: 37480680 DOI: 10.1016/j.compbiomed.2023.107207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/24/2023]
Abstract
Covid-19 has swept the world since 2020, taking millions of lives. In order to seek a rapid diagnosis of Covid-19, deep learning-based Covid-19 classification methods have been extensively developed. However, deep learning relies on many samples with high-quality labels, which is expensive. To this end, we propose a novel unsupervised domain adaptation method to process many different but related Covid-19 X-ray images. Unlike existing unsupervised domain adaptation methods that cannot handle conditional class distributions, we adopt a balanced Slice Wasserstein distance as the metric for unsupervised domain adaptation to solve this problem. Multiple standard datasets for domain adaptation and X-ray datasets of different Covid-19 are adopted to verify the effectiveness of our proposed method. Experimented by cross-adopting multiple datasets as source and target domains, respectively, our proposed method can effectively capture discriminative and domain-invariant representations with better data distribution matching.
Collapse
Affiliation(s)
- Jiawei Gu
- Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xuan Qian
- Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Qian Zhang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325035, China.
| | - Hongliang Zhang
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Zaeri N. Artificial intelligence and machine learning responses to COVID-19 related inquiries. J Med Eng Technol 2023; 47:301-320. [PMID: 38625639 DOI: 10.1080/03091902.2024.2321846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/18/2024] [Indexed: 04/17/2024]
Abstract
Researchers and scientists can use computational-based models to turn linked data into useful information, aiding in disease diagnosis, examination, and viral containment due to recent artificial intelligence and machine learning breakthroughs. In this paper, we extensively study the role of artificial intelligence and machine learning in delivering efficient responses to the COVID-19 pandemic almost four years after its start. In this regard, we examine a large number of critical studies conducted by various academic and research communities from multiple disciplines, as well as practical implementations of artificial intelligence algorithms that suggest potential solutions in investigating different COVID-19 decision-making scenarios. We identify numerous areas where artificial intelligence and machine learning can impact this context, including diagnosis (using chest X-ray imaging and CT imaging), severity, tracking, treatment, and the drug industry. Furthermore, we analyse the dilemma's limits, restrictions, and hazards.
Collapse
Affiliation(s)
- Naser Zaeri
- Faculty of Computer Studies, Arab Open University, Kuwait
| |
Collapse
|
6
|
Bhagawati M, Paul S, Agarwal S, Protogeron A, Sfikakis PP, Kitas GD, Khanna NN, Ruzsa Z, Sharma AM, Tomazu O, Turk M, Faa G, Tsoulfas G, Laird JR, Rathore V, Johri AM, Viskovic K, Kalra M, Balestrieri A, Nicolaides A, Singh IM, Chaturvedi S, Paraskevas KI, Fouda MM, Saba L, Suri JS. Cardiovascular disease/stroke risk stratification in deep learning framework: a review. Cardiovasc Diagn Ther 2023; 13:557-598. [PMID: 37405023 PMCID: PMC10315429 DOI: 10.21037/cdt-22-438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/17/2023] [Indexed: 07/06/2023]
Abstract
The global mortality rate is known to be the highest due to cardiovascular disease (CVD). Thus, preventive, and early CVD risk identification in a non-invasive manner is vital as healthcare cost is increasing day by day. Conventional methods for risk prediction of CVD lack robustness due to the non-linear relationship between risk factors and cardiovascular events in multi-ethnic cohorts. Few recently proposed machine learning-based risk stratification reviews without deep learning (DL) integration. The proposed study focuses on CVD risk stratification by the use of techniques mainly solo deep learning (SDL) and hybrid deep learning (HDL). Using a PRISMA model, 286 DL-based CVD studies were selected and analyzed. The databases included were Science Direct, IEEE Xplore, PubMed, and Google Scholar. This review is focused on different SDL and HDL architectures, their characteristics, applications, scientific and clinical validation, along with plaque tissue characterization for CVD/stroke risk stratification. Since signal processing methods are also crucial, the study further briefly presented Electrocardiogram (ECG)-based solutions. Finally, the study presented the risk due to bias in AI systems. The risk of bias tools used were (I) ranking method (RBS), (II) region-based map (RBM), (III) radial bias area (RBA), (IV) prediction model risk of bias assessment tool (PROBAST), and (V) risk of bias in non-randomized studies-of interventions (ROBINS-I). The surrogate carotid ultrasound image was mostly used in the UNet-based DL framework for arterial wall segmentation. Ground truth (GT) selection is vital for reducing the risk of bias (RoB) for CVD risk stratification. It was observed that the convolutional neural network (CNN) algorithms were widely used since the feature extraction process was automated. The ensemble-based DL techniques for risk stratification in CVD are likely to supersede the SDL and HDL paradigms. Due to the reliability, high accuracy, and faster execution on dedicated hardware, these DL methods for CVD risk assessment are powerful and promising. The risk of bias in DL methods can be best reduced by considering multicentre data collection and clinical evaluation.
Collapse
Affiliation(s)
- Mrinalini Bhagawati
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA, USA
- Department of Computer Science Engineering, PSIT, Kanpur, India
| | - Athanasios Protogeron
- Department of Cardiovascular Prevention & Research Unit Clinic & Laboratory of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Athens, Greece
| | - George D. Kitas
- Arthritis Research UK Centre for Epidemiology, Manchester University, Manchester, UK
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | | | - Aditya M. Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | - Omerzu Tomazu
- Department of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Gavino Faa
- Department of Pathology, A.O.U., di Cagliari -Polo di Monserrato s.s, Cagliari, Italy
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | - John R. Laird
- Cardiology Department, St. Helena Hospital, St. Helena, CA, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, Canada
| | | | - Manudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia, Cyprus
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, N. Iraklio, Athens, Greece
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA
| |
Collapse
|
7
|
Dubey AK, Chabert GL, Carriero A, Pasche A, Danna PSC, Agarwal S, Mohanty L, Nillmani, Sharma N, Yadav S, Jain A, Kumar A, Kalra MK, Sobel DW, Laird JR, Singh IM, Singh N, Tsoulfas G, Fouda MM, Alizad A, Kitas GD, Khanna NN, Viskovic K, Kukuljan M, Al-Maini M, El-Baz A, Saba L, Suri JS. Ensemble Deep Learning Derived from Transfer Learning for Classification of COVID-19 Patients on Hybrid Deep-Learning-Based Lung Segmentation: A Data Augmentation and Balancing Framework. Diagnostics (Basel) 2023; 13:1954. [PMID: 37296806 PMCID: PMC10252539 DOI: 10.3390/diagnostics13111954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND MOTIVATION Lung computed tomography (CT) techniques are high-resolution and are well adopted in the intensive care unit (ICU) for COVID-19 disease control classification. Most artificial intelligence (AI) systems do not undergo generalization and are typically overfitted. Such trained AI systems are not practical for clinical settings and therefore do not give accurate results when executed on unseen data sets. We hypothesize that ensemble deep learning (EDL) is superior to deep transfer learning (TL) in both non-augmented and augmented frameworks. METHODOLOGY The system consists of a cascade of quality control, ResNet-UNet-based hybrid deep learning for lung segmentation, and seven models using TL-based classification followed by five types of EDL's. To prove our hypothesis, five different kinds of data combinations (DC) were designed using a combination of two multicenter cohorts-Croatia (80 COVID) and Italy (72 COVID and 30 controls)-leading to 12,000 CT slices. As part of generalization, the system was tested on unseen data and statistically tested for reliability/stability. RESULTS Using the K5 (80:20) cross-validation protocol on the balanced and augmented dataset, the five DC datasets improved TL mean accuracy by 3.32%, 6.56%, 12.96%, 47.1%, and 2.78%, respectively. The five EDL systems showed improvements in accuracy of 2.12%, 5.78%, 6.72%, 32.05%, and 2.40%, thus validating our hypothesis. All statistical tests proved positive for reliability and stability. CONCLUSION EDL showed superior performance to TL systems for both (a) unbalanced and unaugmented and (b) balanced and augmented datasets for both (i) seen and (ii) unseen paradigms, validating both our hypotheses.
Collapse
Affiliation(s)
- Arun Kumar Dubey
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Alessio Pasche
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pietro S. C. Danna
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA
| | - Lopamudra Mohanty
- ABES Engineering College, Ghaziabad 201009, India
- Department of Computer Science Engineering, Bennett University, Greater Noida 201310, India
| | - Nillmani
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sarita Yadav
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Achin Jain
- Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India
| | - Ashish Kumar
- Department of Computer Science Engineering, Bennett University, Greater Noida 201310, India
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - David W. Sobel
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era, Deemed to be University, Dehradun 248002, India
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Azra Alizad
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Melita Kukuljan
- Department of Interventional and Diagnostic Radiology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology & Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Ayman El-Baz
- Biomedical Engineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
8
|
Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Li C, Ma Y. A meta-analysis of pregnancy outcomes in the diagnosis of isolated foetal renal parenchyma by prenatal ultrasonography. Technol Health Care 2023:THC220690. [PMID: 36872810 DOI: 10.3233/thc-220690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND To effectively circumvent foetal structural abnormalities and serious newborn sequelae, antenatal ultrasound evaluation can support making an early diagnosis for potential prenatal management or the termination of pregnancy. OBJECTIVE This study systematically evaluated a meta-analysis of different pregnancy outcomes in the diagnosis of isolated foetal renal parenchymal echogenicity (IHEK) by prenatal ultrasonography. METHODS Two researchers conducted a literature search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following databases were included in the search: China National Knowledge Infrastructure, Wanfang Medical Network, China Academic Journals Full-text Database, PubMed, Web Of Science and Springer Link; additional library websites were also included, and the search reviewed different pregnancies among patients with IHEK. The outcome indicators were the live birth rate, the incidence of polycystic renal dysplasia and the incidence of pregnancy termination/neonatal death. The meta-analysis was performed using the Stata/SE 12.0 software. RESULTS A total of 14 studies were included in the meta-analysis (total sample content, 1,115 cases). The combined effect size of prenatal ultrasound diagnosis of pregnancy termination/neonatal mortality in patients with IHEK was 0.289 (confidence interval (CI) 95%; range, 0.102-0.397). The combined effect size of the live birth rate of pregnancy outcomes was 0.742 (CI 95%; range, 0.634-0.850. The combined effect size of the polycystic kidney dysplasia rate was 0.066 (CI 95%; range, 0.030-0.102). The heterogeneity of all three results was > 50%; accordingly, a random-effects model was used. CONCLUSION The indications for eugenic labour should not be included in a prenatal ultrasound diagnosis of patients with IHEK. In the results of this meta-analysis, the live birth and polycystic dysplasia rates were optimistic in terms of pregnancy outcomes. Therefore, under the condition of excluding other unfavourable factors, it is necessary to A thorough technical inspection is required to make an accurate judgment.
Collapse
|
10
|
Saxena S, Jena B, Mohapatra B, Gupta N, Kalra M, Scartozzi M, Saba L, Suri JS. Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation. Comput Biol Med 2023; 153:106492. [PMID: 36621191 DOI: 10.1016/j.compbiomed.2022.106492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The O6-methylguanine-DNA methyltransferase (MGMT) is a deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential clinical brain tumor biomarker for Glioblastoma Multiforme (GBM). Knowing the status of MGMT methylation biomarkers using multi-parametric MRI (mp-MRI) helps neuro-oncologists to analyze GBM and its treatment plan. METHOD The hand-crafted radiomics feature extraction of GBM's subregions, such as edema(ED), tumor core (TC), and enhancing tumor (ET) in the machine learning (ML) framework, was investigated using support vector machine(SVM), K-Nearest Neighbours (KNN), random forest (RF), LightGBM, and extreme gradient boosting (XGB). For tissue-level analysis of the promotor genes in GBM, we used the deep residual neural network (ResNet-18) with 3D architecture, followed by EfficientNet-based investigation for variants as B0 and B1. Lastly, we analyzed the fused deep learning (FDL) framework that combines ML and DL frameworks. RESULT Structural mp-MRI consisting of T1, T2, FLAIR, and T1GD having a size of 400 and 185 patients, respectively, for discovery and replication cohorts. Using the CV protocol in the ResNet-3D framework, MGMT methylation status prediction in mp-MRI gave the AUC of 0.753 (p < 0.0001) and 0.72 (p < 0.0001) for the discovery and replication cohort, respectively. We presented that the FDL is ∼7% superior to solo DL and ∼15% to solo ML. CONCLUSION The proposed study aims to provide solutions for building an efficient predictive model of MGMT for GBM patients using deep radiomics features obtained from mp-MRI with the end-to-end ResNet-18 3D and FDL imaging signatures.
Collapse
Affiliation(s)
- Sanjay Saxena
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Biswajit Jena
- Department of Computer Science & Engineering, Institute of Technical Education and Research, SOA Deemed to be University, Bhubaneswar, India
| | - Bibhabasu Mohapatra
- Department of Computer Science & Engineering, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Neha Gupta
- Bharati Vidyapeeth's College of Engineering, Paschim Vihar, New Delhi, India
| | - Manudeep Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mario Scartozzi
- Department of Radiology, A.O.U, di Cagliari-Polo di Monserrato s.s, 09124, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, A.O.U, di Cagliari-Polo di Monserrato s.s, 09124, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™ LLC, Roseville, CA, USA; Knowledge Engineering Centre, Global Biomedical Technologies, Inc, Roseville, CA, USA.
| |
Collapse
|
11
|
Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics (Basel) 2023; 13:diagnostics13030481. [PMID: 36766587 PMCID: PMC9914433 DOI: 10.3390/diagnostics13030481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The biopsy is a gold standard method for tumor grading. However, due to its invasive nature, it has sometimes proved fatal for brain tumor patients. As a result, a non-invasive computer-aided diagnosis (CAD) tool is required. Recently, many magnetic resonance imaging (MRI)-based CAD tools have been proposed for brain tumor grading. The MRI has several sequences, which can express tumor structure in different ways. However, a suitable MRI sequence for brain tumor classification is not yet known. The most common brain tumor is 'glioma', which is the most fatal form. Therefore, in the proposed study, to maximize the classification ability between low-grade versus high-grade glioma, three datasets were designed comprising three MRI sequences: T1-Weighted (T1W), T2-weighted (T2W), and fluid-attenuated inversion recovery (FLAIR). Further, five well-established convolutional neural networks, AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 were adopted for tumor classification. An ensemble algorithm was proposed using the majority vote of above five deep learning (DL) models to produce more consistent and improved results than any individual model. Five-fold cross validation (K5-CV) protocol was adopted for training and testing. For the proposed ensembled classifier with K5-CV, the highest test accuracies of 98.88 ± 0.63%, 97.98 ± 0.86%, and 94.75 ± 0.61% were achieved for FLAIR, T2W, and T1W-MRI data, respectively. FLAIR-MRI data was found to be most significant for brain tumor classification, where it showed a 4.17% and 0.91% improvement in accuracy against the T1W-MRI and T2W-MRI sequence data, respectively. The proposed ensembled algorithm (MajVot) showed significant improvements in the average accuracy of three datasets of 3.60%, 2.84%, 1.64%, 4.27%, and 1.14%, respectively, against AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50.
Collapse
|
12
|
Zaitseva E, Rabcan J, Levashenko V, Kvassay M. Importance analysis of decision making factors based on fuzzy decision trees. Appl Soft Comput 2023. [DOI: 10.1016/j.asoc.2023.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Dönmezler S, Uysal A, Kurt İ, Özmen D, Güçlü O, Altunkaynak Y. Common Biomarkers Associated with Delirium in Hospitalized Patients with COVID-19 at the Epicentre of Turkish Coronavirus Outbreak: A Case-Control Study. Noro Psikiyatr Ars 2023; 60:17-22. [PMID: 36911570 PMCID: PMC9999216 DOI: 10.29399/npa.28128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/22/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction To investigate the differences in biochemical characteristics between Coronavirus Disease 2019 (COVID-19) patients with and without delirium in non-intensive care (IC) COVID-19 units was aimed. Methods This study was designed as an observational, single-centered, and case-control study consisting of 43 delirious patients and matched 45 non-delirious patients admitted to non-IC COVID-19 units. Delirium was diagnosed by a consultant psychiatrist according to the DSM-5 delirium diagnostic criteria. Independent variables such as laboratory tests at the time of admission, clinical features, and patient characteristics were obtained from electronic medical records by researchers. In the primary analyses, binomial logistic regression models were used to investigate the factors associated with delirium, which was identified as the outcome variable. Multivariate logistic models were then adjusted for potential confounding factors, including age, gender, history of neurocognitive disorders and Charlson Comorbidity Index (CCI). Results We observed higher levels of urea, d-dimer, troponin-T, proB-type natriuretic peptide, and CCI in patients with delirium compared to patients without delirium. We also observed lower levels of estimated glomerular filtration rate (eGFR), serum albumin, and O2 saturation and a decrease in the length of stay at the hospital. After adjusting for confounding factors such as gender, age, and comorbidity, we found that urea (adjusted estimate=0.015; 95% Confidence Interval [CI]=0.058-0.032, P=0.039), urea/creatinine ratio (adjusted estimate=0.008; 95% CI=0.002-0.013, P=0.011), and troponin-T (adjusted estimate=0.066; 95% CI=0.014-0.118, P=0.014) were independent biomarkers associated with delirium. Conclusion Delirium is associated with higher urea levels and urea/creatinine ratios in COVID-19 patients. In addition, the relationship between troponin-T and delirium may help understand the potential link between the brain and the heart in COVID-19. Additional multi-centred studies with larger sample sizes are needed to generalise these results.
Collapse
Affiliation(s)
- Süleyman Dönmezler
- Başakşehir Çam ve Sakura City Hospital, Department of Psychiatry, İstanbul, Turkey
| | - Aybegüm Uysal
- Başakşehir Çam ve Sakura City Hospital, Department of Psychiatry, İstanbul, Turkey
| | - İmren Kurt
- Başakşehir Çam ve Sakura City Hospital, Department of Psychiatry, İstanbul, Turkey
| | - Damla Özmen
- University of Health Science, Bakırköy Dr. Sadi Konuk Experimental Medicine Practice and Research Center, İstanbul, Turkey
| | - Oya Güçlü
- Başakşehir Çam ve Sakura City Hospital, Department of Psychiatry, İstanbul, Turkey
| | - Yavuz Altunkaynak
- Başakşehir Çam ve Sakura City Hospital, Department of Neurology, İstanbul, Turkey
| |
Collapse
|
14
|
Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Singh IM, Laird JR, Fatemi M, Alizad A, Saba L, Agarwal V, Sharma A, Teji JS, Al-Maini M, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Mohanty L, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Kitas GD, Fouda MM, Chaturvedi S, Kalra MK, Suri JS. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare (Basel) 2022; 10:2493. [PMID: 36554017 PMCID: PMC9777836 DOI: 10.3390/healthcare10122493] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | | | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad 201009, India
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
15
|
Thaljaoui A, Khediri SE, Benmohamed E, Alabdulatif A, Alourani A. Integrated Bayesian and association-rules methods for autonomously orienting COVID-19 patients. Med Biol Eng Comput 2022; 60:3475-3496. [PMID: 36205834 PMCID: PMC9540074 DOI: 10.1007/s11517-022-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
Abstract
The coronavirus infection continues to spread rapidly worldwide, having a devastating impact on the health of the global population. To fight against COVID-19, we propose a novel autonomous decision-making process which combines two modules in order to support the decision-maker: (1) Bayesian Networks method-based data-analysis module, which is used to specify the severity of coronavirus symptoms and classify cases as mild, moderate, and severe, and (2) autonomous decision-making module-based association rules mining method. This method allows the autonomous generation of the adequate decision based on the FP-growth algorithm and the distance between objects. To build the Bayesian Network model, we propose a novel data-based method that enables to effectively learn the network's structure, namely, MIGT-SL algorithm. The experimentations are performed over pre-processed discrete dataset. The proposed algorithm allows to correctly generate 74%, 87.5%, and 100% of the original structure of ALARM, ASIA, and CANCER networks. The proposed Bayesian model performs well in terms of accuracy with 96.15% and 94.77%, respectively, for binary and multi-class classification. The developed decision-making model is evaluated according to its utility in solving the decisional problem, and its accuracy of proposing the adequate decision is about 97.80%.
Collapse
Affiliation(s)
- Adel Thaljaoui
- Department of Computer Science and Information, College of Science at Zulfi, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Salim El Khediri
- Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
- Department of Computer Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Emna Benmohamed
- Department of Computer Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
- Research Groups in Intelligent Machines, University of Sfax, National School of Engineers (ENIS), BP 1173, 3038 Sfax, Tunisia
| | - Abdulatif Alabdulatif
- Department of Computer Sciences, College of Computer, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah Alourani
- Department of Computer Science and Information, College of Science at Zulfi, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| |
Collapse
|
16
|
Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji JS, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022; 11:6844. [PMID: 36431321 PMCID: PMC9693632 DOI: 10.3390/jcm11226844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | | | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Egkomi 2408, Cyprus
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
17
|
Kuanr M, Mohapatra P, Mittal S, Maindarkar M, Fouda MM, Saba L, Saxena S, Suri JS. Recommender System for the Efficient Treatment of COVID-19 Using a Convolutional Neural Network Model and Image Similarity. Diagnostics (Basel) 2022; 12:2700. [PMID: 36359545 PMCID: PMC9689970 DOI: 10.3390/diagnostics12112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 09/09/2023] Open
Abstract
Background: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. Methodology: This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. Results: This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. Conclusions: Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings.
Collapse
Affiliation(s)
- Madhusree Kuanr
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | | | - Sanchi Mittal
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09123 Cagliari, Italy
| | - Sanjay Saxena
- Department of Computer Science and Engineering, IIIT, Bhubaneswar 751003, India
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95661, USA
- Knowledge Engineering Center, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| |
Collapse
|
18
|
Jain PK, Dubey A, Saba L, Khanna NN, Laird JR, Nicolaides A, Fouda MM, Suri JS, Sharma N. Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm. J Cardiovasc Dev Dis 2022; 9:326. [PMID: 36286278 PMCID: PMC9604424 DOI: 10.3390/jcdd9100326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
Collapse
Affiliation(s)
- Pankaj K. Jain
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishek Dubey
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09100 Cagliari, Italy
| | - Narender N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospital, New Delhi 110076, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Heath St. Helena, St. Helena, CA 94574, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2409, Cyprus
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Neeraj Sharma
- Department of Electronics and Communication, Shree Mata Vaishno Devi University, Jammu 182301, India
| |
Collapse
|
19
|
Segmentation-Based Classification Deep Learning Model Embedded with Explainable AI for COVID-19 Detection in Chest X-ray Scans. Diagnostics (Basel) 2022; 12:diagnostics12092132. [PMID: 36140533 PMCID: PMC9497601 DOI: 10.3390/diagnostics12092132] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022] Open
Abstract
Background and Motivation: COVID-19 has resulted in a massive loss of life during the last two years. The current imaging-based diagnostic methods for COVID-19 detection in multiclass pneumonia-type chest X-rays are not so successful in clinical practice due to high error rates. Our hypothesis states that if we can have a segmentation-based classification error rate <5%, typically adopted for 510 (K) regulatory purposes, the diagnostic system can be adapted in clinical settings. Method: This study proposes 16 types of segmentation-based classification deep learning-based systems for automatic, rapid, and precise detection of COVID-19. The two deep learning-based segmentation networks, namely UNet and UNet+, along with eight classification models, namely VGG16, VGG19, Xception, InceptionV3, Densenet201, NASNetMobile, Resnet50, and MobileNet, were applied to select the best-suited combination of networks. Using the cross-entropy loss function, the system performance was evaluated by Dice, Jaccard, area-under-the-curve (AUC), and receiver operating characteristics (ROC) and validated using Grad-CAM in explainable AI framework. Results: The best performing segmentation model was UNet, which exhibited the accuracy, loss, Dice, Jaccard, and AUC of 96.35%, 0.15%, 94.88%, 90.38%, and 0.99 (p-value <0.0001), respectively. The best performing segmentation-based classification model was UNet+Xception, which exhibited the accuracy, precision, recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value <0.0001), respectively. Our system outperformed existing methods for segmentation-based classification models. The mean improvement of the UNet+Xception system over all the remaining studies was 8.27%. Conclusion: The segmentation-based classification is a viable option as the hypothesis (error rate <5%) holds true and is thus adaptable in clinical practice.
Collapse
|
20
|
Jena B, Saxena S, Nayak GK, Balestrieri A, Gupta N, Khanna NN, Laird JR, Kalra MK, Fouda MM, Saba L, Suri JS. Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework. Cancers (Basel) 2022; 14:4052. [PMID: 36011048 PMCID: PMC9406706 DOI: 10.3390/cancers14164052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of "radiomics and genomics" has been considered under the umbrella of "radiogenomics". Furthermore, AI in a radiogenomics' environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor's characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them.
Collapse
Affiliation(s)
- Biswajit Jena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India
| | - Gopal Krishna Nayak
- Department of CSE, International Institute of Information Technology, Bhubaneswar 751003, India
| | | | - Neha Gupta
- Department of IT, Bharati Vidyapeeth’s College of Engineering, New Delhi 110056, India
| | - Narinder N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Manudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Luca Saba
- Department of Radiology, AOU, University of Cagliari, 09124 Cagliari, Italy
| | - Jasjit S. Suri
- Stroke Diagnosis and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
21
|
Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166312. [PMID: 36016071 PMCID: PMC9414394 DOI: 10.3390/s22166312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence (AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of the implications of the disease. Recent studies have shown that AI has been successfully applied in the healthcare sector. The objective of this paper is to perform a systematic review to summarize the electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between lung disease and brain damage, and lung damage. Available search tools containing scientific publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched with open databases and tools used in AI algorithms. This work aimed to collect papers from the period of January 2019-May 2022 including in their resources the database from which data necessary for further development of algorithms supporting the diagnosis of the respiratory system can be downloaded and the correlation between lung disease and brain damage can be evaluated. The 10 articles which show the most interesting AI algorithms, trained by using open databases and associated with lung diseases, were included for review with 12 articles related to EEGs, which have/or may be related with lung diseases.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence:
| | - Ana Starcevic
- Laboratory for Multimodal Neuroimaging, Institute of Anatomy, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirella Urzeniczok
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
| |
Collapse
|
22
|
Suri JS, Agarwal S, Saba L, Chabert GL, Carriero A, Paschè A, Danna P, Mehmedović A, Faa G, Jujaray T, Singh IM, Khanna NN, Laird JR, Sfikakis PP, Agarwal V, Teji JS, R Yadav R, Nagy F, Kincses ZT, Ruzsa Z, Viskovic K, Kalra MK. Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation. J Med Syst 2022; 46:62. [PMID: 35988110 PMCID: PMC9392994 DOI: 10.1007/s10916-022-01850-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, “COVLIAS 1.0-Unseen” proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations—two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.
Collapse
|
23
|
Khanna NN, Maindarkar M, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Munjral S, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji J, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Pareek G, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report. J Cardiovasc Dev Dis 2022; 9:268. [PMID: 36005433 PMCID: PMC9409845 DOI: 10.3390/jcdd9080268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, 2408 Nicosia, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Manudeep K. Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
24
|
Fang L, Wang X. COVID-RDNet: A novel coronavirus pneumonia classification model using the mixed dataset by CT and X-rays images. Biocybern Biomed Eng 2022; 42:977-994. [PMID: 35945982 PMCID: PMC9353669 DOI: 10.1016/j.bbe.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/10/2022] [Accepted: 07/31/2022] [Indexed: 12/23/2022]
Abstract
Corona virus disease 2019 (COVID-19) testing relies on traditional screening methods, which require a lot of manpower and material resources. Recently, to effectively reduce the damage caused by radiation and enhance effectiveness, deep learning of classifying COVID-19 negative and positive using the mixed dataset by CT and X-rays images have achieved remarkable research results. However, the details presented on CT and X-ray images have pathological diversity and similarity features, thus increasing the difficulty for physicians to judge specific cases. On this basis, this paper proposes a novel coronavirus pneumonia classification model using the mixed dataset by CT and X-rays images. To solve the problem of feature similarity between lung diseases and COVID-19, the extracted features are enhanced by an adaptive region enhancement algorithm. Besides, the depth network based on the residual blocks and the dense blocks is trained and tested. On the one hand, the residual blocks effectively improve the accuracy of the model and the non-linear COVID-19 features are obtained by cross-layer link. On the other hand, the dense blocks effectively improve the robustness of the model by connecting local and abstract information. On mixed X-ray and CT datasets, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under curve (AUC), and accuracy can all reach 0.99. On the basis of respecting patient privacy and ethics, the proposed algorithm using the mixed dataset from real cases can effectively assist doctors in performing the accurate COVID-19 negative and positive classification to determine the infection status of patients.
Collapse
Affiliation(s)
- Lingling Fang
- Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China
| | - Xin Wang
- Department of Computing and Information Technology, Liaoning Normal University, Dalian City, Liaoning Province, China
| |
Collapse
|
25
|
Agarwal M, Agarwal S, Saba L, Chabert GL, Gupta S, Carriero A, Pasche A, Danna P, Mehmedovic A, Faa G, Shrivastava S, Jain K, Jain H, Jujaray T, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Sobel DW, Miner M, Balestrieri A, Sfikakis PP, Tsoulfas G, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Yadav RR, Nagy F, Kincses ZT, Ruzsa Z, Naidu S, Viskovic K, Kalra MK, Suri JS. Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0. Comput Biol Med 2022; 146:105571. [PMID: 35751196 PMCID: PMC9123805 DOI: 10.1016/j.compbiomed.2022.105571] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. METHOD ology: The proposed study uses multicenter ∼9,000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. RESULTS Pruning algorithms (i) FCN-DE, (ii) FCN-GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet-PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. CONCLUSIONS Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Computer Science Engineering, Bennett University, India
| | - Sushant Agarwal
- Department of Computer Science Engineering, PSIT, Kanpur, India; Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Suneet Gupta
- Department of Computer Science Engineering, Bennett University, India
| | - Alessandro Carriero
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Alessio Pasche
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Pietro Danna
- Depart of Radiology, "Maggiore della Carità" Hospital, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | | | - Gavino Faa
- Department of Pathology - AOU of Cagliari, Italy
| | - Saurabh Shrivastava
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Kanishka Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Harsh Jain
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India
| | - Tanay Jujaray
- Dept of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | | | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | | | - Amer M Johri
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, Rhode Island, USA
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, Thessaloniki, Greece
| | | | | | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK; Arthritis Research UK Epidemiology Unit, Manchester University, Manchester, UK
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, Canada
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and Univ. of Nicosia Medical School, Cyprus
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Mostafa Fatemi
- Dept. of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN, USA
| | - Azra Alizad
- Dept. of Radiology, Mayo Clinic College of Medicine and Science, MN, USA
| | | | | | - Frence Nagy
- Department of Radiology, University of Szeged, 6725, Hungary
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Budapest, Hungary
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN, USA
| | | | - Manudeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jasjit S Suri
- College of Computing Sciences and IT, Teerthanker Mahaveer University, Moradabad, 244001, India; Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA.
| |
Collapse
|
26
|
Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson's Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel) 2022; 12:1543. [PMID: 35885449 PMCID: PMC9324237 DOI: 10.3390/diagnostics12071543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Motivation: Parkinson's disease (PD) is one of the most serious, non-curable, and expensive to treat. Recently, machine learning (ML) has shown to be able to predict cardiovascular/stroke risk in PD patients. The presence of COVID-19 causes the ML systems to become severely non-linear and poses challenges in cardiovascular/stroke risk stratification. Further, due to comorbidity, sample size constraints, and poor scientific and clinical validation techniques, there have been no well-explained ML paradigms. Deep neural networks are powerful learning machines that generalize non-linear conditions. This study presents a novel investigation of deep learning (DL) solutions for CVD/stroke risk prediction in PD patients affected by the COVID-19 framework. Method: The PRISMA search strategy was used for the selection of 292 studies closely associated with the effect of PD on CVD risk in the COVID-19 framework. We study the hypothesis that PD in the presence of COVID-19 can cause more harm to the heart and brain than in non-COVID-19 conditions. COVID-19 lung damage severity can be used as a covariate during DL training model designs. We, therefore, propose a DL model for the estimation of, (i) COVID-19 lesions in computed tomography (CT) scans and (ii) combining the covariates of PD, COVID-19 lesions, office and laboratory arterial atherosclerotic image-based biomarkers, and medicine usage for the PD patients for the design of DL point-based models for CVD/stroke risk stratification. Results: We validated the feasibility of CVD/stroke risk stratification in PD patients in the presence of a COVID-19 environment and this was also verified. DL architectures like long short-term memory (LSTM), and recurrent neural network (RNN) were studied for CVD/stroke risk stratification showing powerful designs. Lastly, we examined the artificial intelligence bias and provided recommendations for early detection of CVD/stroke in PD patients in the presence of COVID-19. Conclusion: The DL is a very powerful tool for predicting CVD/stroke risk in PD patients affected by COVID-19.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.B.)
| | - Luca Saba
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Gavino Faa
- Department of Radiology, and Pathology, Azienda Ospedaliero Universitaria, 09123 Cagliari, Italy; (L.S.); (G.F.)
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751029, India;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sofia Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | | | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Athanase D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Durga Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Mansfield, OH 44905, USA;
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology, and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (M.A.M.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia; (M.T.); (T.O.)
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Zoltán Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| |
Collapse
|
27
|
Suri JS, Agarwal S, Chabert GL, Carriero A, Paschè A, Danna PSC, Saba L, Mehmedović A, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Fouda MM, Naidu S, Viskovic K, Kalra MK. COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans. Diagnostics (Basel) 2022; 12:1482. [PMID: 35741292 PMCID: PMC9221733 DOI: 10.3390/diagnostics12061482] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet-UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient-weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Gian Luca Chabert
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), Via Solaroli 17, 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Armin Mehmedović
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02912, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09123 Cagliari, Italy; (G.L.C.); (A.P.); (P.S.C.D.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 17674 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | | | - Vikas Agarwal
- Department of Immunology, SGPIMS, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Engomi 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22902, USA;
| | - Vijay Rathore
- AtheroPoint LLC., Roseville, CA 95661, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 1122 Budapest, Hungary;
| | - Mostafa M. Fouda
- Department of ECE, Idaho State University, Pocatello, ID 83209, USA;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Klaudija Viskovic
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia; (A.M.); (K.V.)
| | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
28
|
Munjral S, Maindarkar M, Ahluwalia P, Puvvula A, Jamthikar A, Jujaray T, Suri N, Paul S, Pathak R, Saba L, Chalakkal RJ, Gupta S, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Fouda MM, Suri JS. Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:1234. [PMID: 35626389 PMCID: PMC9140106 DOI: 10.3390/diagnostics12051234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Ankush Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Tanay Jujaray
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95616, USA
| | - Neha Suri
- Mira Loma High School, Sacramento, CA 95821, USA;
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | | | - Suneet Gupta
- CSE Department, Bennett University, Greater Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Columbus, OH 43214, USA;
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, Chennai 600013, India;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| |
Collapse
|
29
|
Onnis C, Muscogiuri G, Paolo Bassareo P, Cau R, Mannelli L, Cadeddu C, Suri JS, Cerrone G, Gerosa C, Sironi S, Faa G, Carriero A, Pontone G, Saba L. Non-invasive coronary imaging in patients with COVID-19: A narrative review. Eur J Radiol 2022; 149:110188. [PMID: 35180580 PMCID: PMC8805958 DOI: 10.1016/j.ejrad.2022.110188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 infection, responsible for COVID-19 outbreak, can cause cardiac complications, worsening outcome and prognosis. In particular, it can exacerbate any underlying cardiovascular condition, leading to atherosclerosis and increased plaque vulnerability, which may cause acute coronary syndrome. We review current knowledge on the mechanisms by which SARS-CoV-2 can trigger endothelial/myocardial damage and cause plaque formation, instability and deterioration. The aim of this review is to evaluate current non-invasive diagnostic techniques for coronary arteries evaluation in COVID-19 patients, such as coronary CT angiography and atherosclerotic plaque imaging, and their clinical implications. We also discuss the role of artificial intelligence, deep learning and radiomics in the context of coronary imaging in COVID-19 patients.
Collapse
Affiliation(s)
- Carlotta Onnis
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, University Milano Bicocca, Milan, Italy
| | - Pier Paolo Bassareo
- Mater Misericordiae University Hospital and Our Lady's Children's Hospital, University College of Dublin, Crumlin, Dublin, Ireland
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy
| | | | - Christian Cadeddu
- Department of Cardiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Giulia Cerrone
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Ospedale San Giovanni di, Dio (Cagliari) 09100, Italy
| | - Clara Gerosa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Ospedale San Giovanni di, Dio (Cagliari) 09100, Italy
| | - Sandro Sironi
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, University Milano Bicocca, Milan, Italy
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Ospedale San Giovanni di, Dio (Cagliari) 09100, Italy
| | | | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy.
| |
Collapse
|
30
|
Das S, Nayak GK, Saba L, Kalra M, Suri JS, Saxena S. An artificial intelligence framework and its bias for brain tumor segmentation: A narrative review. Comput Biol Med 2022; 143:105273. [PMID: 35228172 DOI: 10.1016/j.compbiomed.2022.105273] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Artificial intelligence (AI) has become a prominent technique for medical diagnosis and represents an essential role in detecting brain tumors. Although AI-based models are widely used in brain lesion segmentation (BLS), understanding their effectiveness is challenging due to their complexity and diversity. Several reviews on brain tumor segmentation are available, but none of them describe a link between the threats due to risk-of-bias (RoB) in AI and its architectures. In our review, we focused on linking RoB and different AI-based architectural Cluster in popular DL framework. Further, due to variance in these designs and input data types in medical imaging, it is necessary to present a narrative review considering all facets of BLS. APPROACH The proposed study uses a PRISMA strategy based on 75 relevant studies found by searching PubMed, Scopus, and Google Scholar. Based on the architectural evolution, DL studies were subsequently categorized into four classes: convolutional neural network (CNN)-based, encoder-decoder (ED)-based, transfer learning (TL)-based, and hybrid DL (HDL)-based architectures. These studies were then analyzed considering 32 AI attributes, with clusters including AI architecture, imaging modalities, hyper-parameters, performance evaluation metrics, and clinical evaluation. Then, after these studies were scored for all attributes, a composite score was computed, normalized, and ranked. Thereafter, a bias cutoff (AP(ai)Bias 1.0, AtheroPoint, Roseville, CA, USA) was established to detect low-, moderate- and high-bias studies. CONCLUSION The four classes of architectures, from best-to worst-performing, are TL > ED > CNN > HDL. ED-based models had the lowest AI bias for BLS. This study presents a set of three primary and six secondary recommendations for lowering the RoB.
Collapse
Affiliation(s)
- Suchismita Das
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India; CSE Department, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - G K Nayak
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India
| | - Luca Saba
- Department of Radiology, AOU, University of Cagliari, Cagliari, Italy
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Jasjit S Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.
| | - Sanjay Saxena
- CSE Department, International Institute of Information Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
31
|
Wang B, Ding Y, Zhao P, Li W, Li M, Zhu J, Ye S. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput Biol Med 2022; 143:105241. [PMID: 35114443 PMCID: PMC8789666 DOI: 10.1016/j.compbiomed.2022.105241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recently, the value of natural products has been extensively considered because these resources can potentially be applied to prevent and treat coronavirus pneumonia 2019 (COVID-19). However, the discovery of nature drugs is problematic because of their complex composition and active mechanisms. METHODS This comprehensive study was performed on flavonoids, which are compounds with anti-inflammatory and antiviral effects, to show drug discovery and active mechanism from natural products in the treatment of COVID-19 via a systems pharmacological model. First, a chemical library of 255 potential flavonoids was constructed. Second, the pharmacodynamic basis and mechanism of action between flavonoids and COVID-19 were explored by constructing a compound-target and target-disease network, targets protein-protein interaction (PPI), MCODE analysis, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RESULTS In total, 105 active flavonoid components were identified, of which 6 were major candidate compounds (quercetin, epigallocatechin-3-gallate (EGCG), luteolin, fisetin, wogonin, and licochalcone A). 152 associated targets were yielded based on network construction, and 7 family proteins (PTGS, GSK3β, ABC, NOS, EGFR, and IL) were included as central hub targets. Moreover, 528 GO items and 178 KEGG pathways were selected through enrichment of target functions. Lastly, molecular docking demonstrated good stability of the combination of selected flavonoids with 3CL Pro and ACEⅡ. CONCLUSION Natural flavonoids could enable resistance against COVID-19 by regulating inflammatory, antiviral, and immune responses, and repairing tissue injury. This study has scientific significance for the selective utilization of natural products, medicinal value enhancement of flavonoids, and drug screening for the treatment of COVID-19 induced by SARS-COV-2.
Collapse
Affiliation(s)
- Bin Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Yan Ding
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| | - Penghui Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, South Korea
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Jingbo Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China; Institute of Chemistry and Applications of Plant Resources, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Shuhong Ye
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
32
|
Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022; 12:metabo12040312. [PMID: 35448500 PMCID: PMC9033076 DOI: 10.3390/metabo12040312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Maheshrao A. Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Annu’s Hospitals for Skin & Diabetes, Gudur 524101, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India;
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy;
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India;
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| |
Collapse
|
33
|
Laudanski K. Quo Vadis Anesthesiologist? The Value Proposition of Future Anesthesiologists Lies in Preserving or Restoring Presurgical Health after Surgical Insult. J Clin Med 2022; 11:1135. [PMID: 35207406 PMCID: PMC8879076 DOI: 10.3390/jcm11041135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 12/26/2022] Open
Abstract
This Special Issue of the Journal of Clinical Medicine is devoted to anesthesia and perioperative care [...].
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8000
- Leonard Davis Institute for Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, Krishnan PR, Suri JS. Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson's Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:166. [PMID: 35054333 PMCID: PMC8774851 DOI: 10.3390/diagnostics12010166] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background and Motivation: Diagnosis of Parkinson's disease (PD) is often based on medical attention and clinical signs. It is subjective and does not have a good prognosis. Artificial Intelligence (AI) has played a promising role in the diagnosis of PD. However, it introduces bias due to lack of sample size, poor validation, clinical evaluation, and lack of big data configuration. The purpose of this study is to compute the risk of bias (RoB) automatically. METHOD The PRISMA search strategy was adopted to select the best 39 AI studies out of 85 PD studies closely associated with early diagnosis PD. The studies were used to compute 30 AI attributes (based on 6 AI clusters), using AP(ai)Bias 1.0 (AtheroPointTM, Roseville, CA, USA), and the mean aggregate score was computed. The studies were ranked and two cutoffs (Moderate-Low (ML) and High-Moderate (MH)) were determined to segregate the studies into three bins: low-, moderate-, and high-bias. RESULT The ML and HM cutoffs were 3.50 and 2.33, respectively, which constituted 7, 13, and 6 for low-, moderate-, and high-bias studies. The best and worst architectures were "deep learning with sketches as outcomes" and "machine learning with Electroencephalography," respectively. We recommend (i) the usage of power analysis in big data framework, (ii) that it must undergo scientific validation using unseen AI models, and (iii) that it should be taken towards clinical evaluation for reliability and stability tests. CONCLUSION The AI is a vital component for the diagnosis of early PD and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Maheshrao Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy
| | - Monika Turk
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia
| | - Manudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
35
|
Schoene D, Schnekenberg LG, Pallesen LP, Barlinn J, Puetz V, Barlinn K, Siepmann T. Pathophysiology of Cardiac Injury in COVID-19 Patients with Acute Ischaemic Stroke: What Do We Know So Far?-A Review of the Current Literature. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010075. [PMID: 35054468 PMCID: PMC8778241 DOI: 10.3390/life12010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
With the onset of the COVID-19 pandemic, it became apparent that, in addition to pulmonary infection, extrapulmonary manifestations such as cardiac injury and acute cerebrovascular events are frequent in patients infected with SARS-CoV-2, worsening clinical outcome. We reviewed the current literature on the pathophysiology of cardiac injury and its association with acute ischaemic stroke. Several hypotheses on heart and brain axis pathology in the context of stroke related to COVID-19 were identified. Taken together, a combination of disease-related coagulopathy and systemic inflammation might cause endothelial damage and microvascular thrombosis, which in turn leads to structural myocardial damage. Cardiac complications of this damage such as tachyarrhythmia, myocardial infarction or cardiomyopathy, together with changes in hemodynamics and the coagulation system, may play a causal role in the increased stroke risk observed in COVID-19 patients. These hypotheses are supported by a growing body of evidence, but further research is necessary to fully understand the underlying pathophysiology and allow for the design of cardioprotective and neuroprotective strategies in this at risk population.
Collapse
|
36
|
Biswas B, Roy R, Roy T, Chowdhury S, Dhara A, Mistry K. Geographical Appraisal of COVID-19 in West Bengal, India. GEOJOURNAL 2022; 87:2641-2662. [PMID: 33642665 PMCID: PMC7899073 DOI: 10.1007/s10708-021-10388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 05/17/2023]
Abstract
Study shows that COVID-19 cases, deaths and recoveries vary in macro level. Geographical phenomena may act as potential controlling factor. The present paper investigates spatial pattern of COVID-19 cases and deaths in West Bengal (WB), India and assumes Kolkata is the source region of this disease in WB. Thematic maps on COVID related issues are prepared with the help of QGIS 3.10 software. As on 15th January 2021, WB has 564032 number of COVID-19 cases which is 0.618% to the total population of the state. However, the COVID-19 case for India is 0.843% and for world is 1.341% to its total population. Lorenz Curve shows skewed distribution of the COVID-19 cases in WB. 17 (90%) districts hold 84.11% of the total population and carry 56.30% of the total COVID-19 cases. However, the remaining two districts-Kolkata and North 24 Parganas-hold remaining 43.70% COVID-19 cases. Correlation coefficient with COVID-19 cases and Population Density, Urban Population and Concrete Roof of their house are significant at 1% level of significance.
Collapse
Affiliation(s)
- Biplab Biswas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 703104 India
| | - Rabindranath Roy
- Department of Community Medicine, Burdwan Medical College and Hospital, Burdwan, 713104 India
| | - Tanusri Roy
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 703104 India
| | - Sumanta Chowdhury
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 703104 India
| | - Asish Dhara
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 703104 India
| | - Kamonasish Mistry
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 703104 India
| |
Collapse
|
37
|
Rabcan J, Zaitseva E, Levashenko V, Kvassay M, Surda P, Macekova D. Fuzzy Decision Tree Based Method in Decision-Making of COVID-19 Patients’ Treatment. MATHEMATICS 2021; 9:3282. [DOI: 10.3390/math9243282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A new method in decision-making of timing of tracheostomy in COVID-19 patients is developed and discussed in this paper. Tracheostomy is performed in critically ill coronavirus disease (COVID-19) patients. The timing of tracheostomy is important for anticipated prolonged ventilatory wean when levels of respiratory support were favorable. The analysis of this timing has been implemented based on classification method. One of principal conditions for the developed classifiers in decision-making of timing of tracheostomy in COVID-19 patients was a good interpretation of result. Therefore, the proposed classifiers have been developed as decision tree based because these classifiers have very good interpretability of result. The possible uncertainty of initial data has been considered by the application of fuzzy classifiers. Two fuzzy classifiers as Fuzzy Decision Tree (FDT) and Fuzzy Random Forest (FRF) have been developed for the decision-making in tracheostomy timing. The evaluation of proposed classifiers and their comparison with other show the efficiency of the proposed classifiers. FDT has best characteristics in comparison with other classifiers.
Collapse
Affiliation(s)
- Jan Rabcan
- Department of Informatics, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
| | - Elena Zaitseva
- Department of Informatics, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
| | - Vitaly Levashenko
- Department of Informatics, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
| | - Miroslav Kvassay
- Department of Informatics, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
| | - Pavol Surda
- Department of Otolaryngology and Head and Neck Surgery, Guy’s & St, Thomas’ NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Denisa Macekova
- Department of Informatics, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia
| |
Collapse
|
38
|
Suri JS, Agarwal S, Carriero A, Paschè A, Danna PSC, Columbu M, Saba L, Viskovic K, Mehmedović A, Agarwal S, Gupta L, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Nagy F, Ruzsa Z, Gupta A, Naidu S, Paraskevas KI, Kalra MK. COVLIAS 1.0 vs. MedSeg: Artificial Intelligence-Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts. Diagnostics (Basel) 2021; 11:2367. [PMID: 34943603 PMCID: PMC8699928 DOI: 10.3390/diagnostics11122367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
(1) Background: COVID-19 computed tomography (CT) lung segmentation is critical for COVID lung severity diagnosis. Earlier proposed approaches during 2020-2021 were semiautomated or automated but not accurate, user-friendly, and industry-standard benchmarked. The proposed study compared the COVID Lung Image Analysis System, COVLIAS 1.0 (GBTI, Inc., and AtheroPointTM, Roseville, CA, USA, referred to as COVLIAS), against MedSeg, a web-based Artificial Intelligence (AI) segmentation tool, where COVLIAS uses hybrid deep learning (HDL) models for CT lung segmentation. (2) Materials and Methods: The proposed study used 5000 ITALIAN COVID-19 positive CT lung images collected from 72 patients (experimental data) that confirmed the reverse transcription-polymerase chain reaction (RT-PCR) test. Two hybrid AI models from the COVLIAS system, namely, VGG-SegNet (HDL 1) and ResNet-SegNet (HDL 2), were used to segment the CT lungs. As part of the results, we compared both COVLIAS and MedSeg against two manual delineations (MD 1 and MD 2) using (i) Bland-Altman plots, (ii) Correlation coefficient (CC) plots, (iii) Receiver operating characteristic curve, and (iv) Figure of Merit and (v) visual overlays. A cohort of 500 CROATIA COVID-19 positive CT lung images (validation data) was used. A previously trained COVLIAS model was directly applied to the validation data (as part of Unseen-AI) to segment the CT lungs and compare them against MedSeg. (3) Result: For the experimental data, the four CCs between COVLIAS (HDL 1) vs. MD 1, COVLIAS (HDL 1) vs. MD 2, COVLIAS (HDL 2) vs. MD 1, and COVLIAS (HDL 2) vs. MD 2 were 0.96, 0.96, 0.96, and 0.96, respectively. The mean value of the COVLIAS system for the above four readings was 0.96. CC between MedSeg vs. MD 1 and MedSeg vs. MD 2 was 0.98 and 0.98, respectively. Both had a mean value of 0.98. On the validation data, the CC between COVLIAS (HDL 1) vs. MedSeg and COVLIAS (HDL 2) vs. MedSeg was 0.98 and 0.99, respectively. For the experimental data, the difference between the mean values for COVLIAS and MedSeg showed a difference of <2.5%, meeting the standard of equivalence. The average running times for COVLIAS and MedSeg on a single lung CT slice were ~4 s and ~10 s, respectively. (4) Conclusions: The performances of COVLIAS and MedSeg were similar. However, COVLIAS showed improved computing time over MedSeg.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Alessandro Carriero
- Department of Radiology, “Maggiore della Carità” Hospital, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Alessio Paschè
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Pietro S. C. Danna
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Armin Mehmedović
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia; (K.V.); (A.M.)
| | - Samriddhi Agarwal
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
- Department of Computer Science Engineering, Pranveer Singh Institute of Technology, Kanpur 209305, India
| | - Lakshya Gupta
- Advanced Knowledge Engineering Centre, Global Biomedical Technologies, Inc., Roseville, CA 95661, USA; (S.A.); (S.A.); (L.G.)
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110076, India;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (A.P.); (P.S.C.D.); (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- AtheroPoint LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Ferenc Nagy
- Internal Medicine Department, University of Szeged, 6725 Szeged, Hungary;
| | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, 6725 Szeged, Hungary;
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | | | - Mannudeep K. Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA;
| |
Collapse
|
39
|
Munjral S, Ahluwalia P, Jamthikar AD, Puvvula A, Saba L, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra P, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PK, Omerzu T, Naidu S, Nicolaides A, Suri JS. Nutrition, atherosclerosis, arterial imaging, cardiovascular risk stratification, and manifestations in COVID-19 framework: a narrative review. FRONT BIOSCI-LANDMRK 2021; 26:1312-1339. [PMID: 34856770 DOI: 10.52586/5026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Background: Atherosclerosis is the primary cause of the cardiovascular disease (CVD). Several risk factors lead to atherosclerosis, and altered nutrition is one among those. Nutrition has been ignored quite often in the process of CVD risk assessment. Altered nutrition along with carotid ultrasound imaging-driven atherosclerotic plaque features can help in understanding and banishing the problems associated with the late diagnosis of CVD. Artificial intelligence (AI) is another promisingly adopted technology for CVD risk assessment and management. Therefore, we hypothesize that the risk of atherosclerotic CVD can be accurately monitored using carotid ultrasound imaging, predicted using AI-based algorithms, and reduced with the help of proper nutrition. Layout: The review presents a pathophysiological link between nutrition and atherosclerosis by gaining a deep insight into the processes involved at each stage of plaque development. After targeting the causes and finding out results by low-cost, user-friendly, ultrasound-based arterial imaging, it is important to (i) stratify the risks and (ii) monitor them by measuring plaque burden and computing risk score as part of the preventive framework. Artificial intelligence (AI)-based strategies are used to provide efficient CVD risk assessments. Finally, the review presents the role of AI for CVD risk assessment during COVID-19. Conclusions: By studying the mechanism of low-density lipoprotein formation, saturated and trans fat, and other dietary components that lead to plaque formation, we demonstrate the use of CVD risk assessment due to nutrition and atherosclerosis disease formation during normal and COVID times. Further, nutrition if included, as a part of the associated risk factors can benefit from atherosclerotic disease progression and its management using AI-based CVD risk assessment.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Superspeciality Hospital, 110058 New Delhi, India
| | - Ankush D Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Visvesvaraya National Institute of Technology, 440001 Nagpur, India
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
- Annu's Hospitals for Skin and Diabetes, 24002 Nellore, AP, India
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 09125 Cagliari, Italy
| | - Gavino Faa
- Department of Pathology, AOU of Cagliari, 09125 Cagliari, Italy
| | - Inder M Singh
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Paramjit S Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27749 Delmenhorst, Germany
| | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON K7L, Canada
| | - Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | | | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 106 71 Athens, Greece
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | - Martin Miner
- Men's Health Center, Miriam Hospital Providence, RI 02903, USA
| | - David W Sobel
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02906, USA
| | | | - Petros P Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 106 71 Athens, Greece
| | - George Tsoulfas
- Aristoteleion University of Thessaloniki, 546 30 Thessaloniki, Greece
| | | | - Prasanna Misra
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - Vikas Agarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, 226018 Lucknow, UP, India
| | - George D Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY2 8 Dudley, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, M13 9 Manchester, UK
| | | | - Jagjit Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60629, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5H, Canada
| | - Surinder K Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, 110001 New Delhi, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95823, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, MN 55441, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, 600003 Chennai, India
| | - P K Krishnan
- Neurology Department, Fortis Hospital, 562123 Bangalore, India
| | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, 999058 Nicosia, Cyprus
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPointTM, Roseville, CA 95678, USA
| |
Collapse
|
40
|
Jain PK, Sharma N, Saba L, Paraskevas KI, Kalra MK, Johri A, Nicolaides AN, Suri JS. Automated deep learning-based paradigm for high-risk plaque detection in B-mode common carotid ultrasound scans: an asymptomatic Japanese cohort study. INT ANGIOL 2021; 41:9-23. [PMID: 34825801 DOI: 10.23736/s0392-9590.21.04771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The death due to stroke is caused by embolism of the arteries which is due to the rupture of the atherosclerotic lesions in carotid arteries. The lesion formation is over time, and thus, early screening is recommended for asymptomatic and moderate-risk patients. The previous techniques adopted conventional methods or semi-automated and, more recently, machine learning solutions. A handful of studies have emerged based on solo deep learning (SDL) models such as UNet architecture. METHODS The proposed research is the first to adopt hybrid deep learning (HDL) artificial intelligence models such as SegNet-UNet. This model is benchmarked against UNet and advanced conventional models using scale-space such as AtheroEdge 2.0 (AtheroPoint, CA, USA). All our resultant statistics of the three systems were in the order of UNet, SegNet-UNet, and AtheroEdge 2.0. RESULTS Using the database of 379 ultrasound scans from a Japanese cohort of 190 patients having moderate risk and implementing the cross-validation deep learning framework, our system performance using area-under-the-curve (AUC) for UNet, SegNet-UNet, and AtheroEdge 2.0 were 0.93, 0.94, and 0.95 (p<0.001), respectively. The coefficient of correlation between the three systems and ground truth (GT) were: 0.82, 0.89, and 0.85 (p<0.001 for all three), respectively. The mean absolute area error for the three systems against manual GT was 4.07±4.70 mm2, 3.11±3.92 mm2, 3.72±4.76 mm2, respectively, proving the superior performance SegNet-UNet against UNet and AtheroEdge 2.0, respectively. Statistical tests were also conducted for their reliability and stability. CONCLUSIONS The proposed study demonstrates a fast, accurate, and reliable solution for early detection and quantification of plaque lesions in common carotid artery ultrasound scans. The system runs on a test US image in < 1 second, proving overall performance to be clinically reliable.
Collapse
Affiliation(s)
- Pankaj K Jain
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Neeraj Sharma
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Luca Saba
- Department of Radiology, Cagliari University Hospital, Cagliari, Italy
| | | | - Mandeep K Kalra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
41
|
Suri JS, Agarwal S, Gupta SK, Puvvula A, Viskovic K, Suri N, Alizad A, El-Baz A, Saba L, Fatemi M, Naidu DS. Systematic Review of Artificial Intelligence in Acute Respiratory Distress Syndrome for COVID-19 Lung Patients: A Biomedical Imaging Perspective. IEEE J Biomed Health Inform 2021; 25:4128-4139. [PMID: 34379599 PMCID: PMC8843049 DOI: 10.1109/jbhi.2021.3103839] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 has infected over ∼165 million people worldwide causing Acute Respiratory Distress Syndrome (ARDS) and has killed ∼3.4 million people. Artificial Intelligence (AI) has shown to benefit in the biomedical image such as X-ray/Computed Tomography in diagnosis of ARDS, but there are limited AI-based systematic reviews (aiSR). The purpose of this study is to understand the Risk-of-Bias (RoB) in a non-randomized AI trial for handling ARDS using novel AtheroPoint-AI-Bias (AP(ai)Bias). Our hypothesis for acceptance of a study to be in low RoB must have a mean score of 80% in a study. Using the PRISMA model, 42 best AI studies were analyzed to understand the RoB. Using the AP(ai)Bias paradigm, the top 19 studies were then chosen using the raw-cutoff of 1.9. This was obtained using the intersection of the cumulative plot of "mean score vs. study" and score distribution. Finally, these studies were benchmarked against ROBINS-I and PROBAST paradigm. Our observation showed that AP(ai)Bias, ROBINS-I, and PROBAST had only 32%, 16%, and 26% studies, respectively in low-moderate RoB (cutoff>2.5), however none of them met the RoB hypothesis. Further, the aiSR analysis recommends six primary and six secondary recommendations for the non-randomized AI for ARDS. The primary recommendations for improvement in AI-based ARDS design inclusive of (i) comorbidity, (ii) inter-and intra-observer variability studies, (iii) large data size, (iv) clinical validation, (v) granularity of COVID-19 risk, and (vi) cross-modality scientific validation. The AI is an important component for diagnosis of ARDS and the recommendations must be followed to lower the RoB.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnosis and Monitoring DivisionAtheroPoint LLCRosevilleCA95661USA
| | - Sushant Agarwal
- Advanced Knowledge Engineering CentreGBTIRosevilleCA95661USA
- Department of Computer Science EngineeringPranveer Singh Institute of Technology (PSIT)Kanpur209305India
| | - Suneet K. Gupta
- Department of Computer Science EngineeringBennett UniversityNoida524101India
| | - Anudeep Puvvula
- Stroke Diagnosis and Monitoring DivisionAtheroPoint LLCRosevilleCA95661USA
- Annu's Hospitals for Skin and DiabetesNellore524101India
| | | | - Neha Suri
- Mira Loma High SchoolSacramentoCA95821USA
| | - Azra Alizad
- Department of RadiologyMayo Clinic College of Medicine and ScienceRochesterMN55905USA
| | - Ayman El-Baz
- Department of BioengineeringUniversity of LouisvilleLouisvilleKY40292USA
| | - Luca Saba
- Department of RadiologyAzienda Ospedaliero Universitaria (AOU)09124CagliariItaly
| | - Mostafa Fatemi
- Department of Physiology and Biomedical EngineeringMayo Clinic College of Medicine and ScienceRochesterMN55905USA
| | - D. Subbaram Naidu
- Electrical Engineering DepartmentUniversity of MinnesotaDuluthMN55812USA
| |
Collapse
|
42
|
Shaban WM, Rabie AH, Saleh AI, Abo-Elsoud MA. Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy. PATTERN RECOGNITION 2021; 119:108110. [PMID: 34149100 PMCID: PMC8205562 DOI: 10.1016/j.patcog.2021.108110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/09/2021] [Accepted: 05/19/2021] [Indexed: 05/19/2023]
Abstract
COVID-19, as an infectious disease, has shocked the world and still threatens the lives of billions of people. Early detection of COVID-19 patients is an important issue for treating and controlling the disease from spreading. In this paper, a new strategy for detecting COVID-19 infected patients will be introduced, which is called Distance Biased Naïve Bayes (DBNB). The novelty of DBNB as a proposed classification strategy is concentrated in two contributions. The first is a new feature selection technique called Advanced Particle Swarm Optimization (APSO) which elects the most informative and significant features for diagnosing COVID-19 patients. APSO is a hybrid method based on both filter and wrapper methods to provide accurate and significant features for the next classification phase. The considered features are extracted from Laboratory findings for different cases of people, some of whom are COVID-19 infected while some are not. APSO consists of two sequential feature selection stages, namely; Initial Selection Stage (IS2) and Final Selection Stage (FS2). IS2 uses filter technique to quickly select the most important features for diagnosing COVID-19 patients while removing the redundant and ineffective ones. This behavior minimizes the computational cost in FS2, which is the next stage of APSO. FS2 uses Binary Particle Swarm Optimization (BPSO) as a wrapper method for accurate feature selection. The second contribution of this paper is a new classification model, which combines evidence from statistical and distance based classification models. The proposed classification technique avoids the problems of the traditional NB and consists of two modules; Weighted Naïve Bayes Module (WNBM) and Distance Reinforcement Module (DRM). The proposed DBNB tries to accurately detect infected patients with the minimum time penalty based on the most effective features selected by APSO. DBNB has been compared with recent COVID-19 diagnose strategies. Experimental results have shown that DBNB outperforms recent COVID-19 diagnose strategies as it introduce the maximum accuracy with the minimum time penalty.
Collapse
Affiliation(s)
- Warda M Shaban
- Nile higher institute for engineering and technology, Egypt
| | - Asmaa H Rabie
- Computers and Control Dept. faculty of engineering Mansoura University, Egypt
| | - Ahmed I Saleh
- Computers and Control Dept. faculty of engineering Mansoura University, Egypt
| | - M A Abo-Elsoud
- Electronics and Communication Dept. faculty of engineering Mansoura University, Egypt
| |
Collapse
|
43
|
Berglund J. COVID-19 and Cardiovascular Health. IEEE Pulse 2021; 12:2-5. [PMID: 34714732 DOI: 10.1109/mpuls.2021.3113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In late February 2020, a time when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, or COVID-19) still felt like an abstraction in the United States, New York City's first infected patient was admitted to Mount Sinai Hospital's emergency room. Working a few doors down was Sean Pinney, the Director of Advanced Heart Failure and Transplantation. Little did he know, but "that night was the beginning of hell," he said.
Collapse
|
44
|
Cau R, Pacielli A, Fatemeh H, Vaudano P, Arru C, Crivelli P, Stranieri G, Suri JS, Mannelli L, Conti M, Mahammedi A, Kalra M, Saba L. Complications in COVID-19 patients: Characteristics of pulmonary embolism. Clin Imaging 2021; 77:244-249. [PMID: 34029929 PMCID: PMC8130594 DOI: 10.1016/j.clinimag.2021.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/09/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study is to evaluate chest CT imaging features, clinical characteristics, laboratory values of COVID-19 patients who underwent CTA for suspected pulmonary embolism. We also examined whether clinical, laboratory or radiological characteristics could be associated with a higher rate of PE. MATERIALS AND METHODS This retrospective study included 84 consecutive patients with laboratory-confirmed SARS-CoV-2 who underwent CTA for suspected PE. The presence and localization of PE as well as the type and extent of pulmonary opacities on chest CT exams were examined and correlated with the information on comorbidities and laboratory values for all patients. RESULTS Of the 84 patients, pulmonary embolism was discovered in 24 patients. We observed that 87% of PE was found to be in lung parenchyma affected by COVID-19 pneumonia. Compared with no-PE patients, PE patients showed an overall greater lung involvement by consolidation (p = 0.02) and GGO (p < 0.01) and a higher level of D-Dimer (p < 0,01). Moreover, the PE group showed a lower level of saturation (p = 0,01) and required more hospitalization (p < 0,01). CONCLUSION Our study showed a high incidence of PE in COVID-19 pneumonia. In 87% of patients, PE was found in lung parenchyma affected by COVID-19 pneumonia with a worse CT severity score and a greater number of lung lobar involvement compared with non-PE patients. CT severity, lower level of saturation, and a rise in D-dimer levels could be an indication for a CTPA. ADVANCES IN KNOWLEDGE Certain findings of non-contrast chest CT could be an indication for a CTPA.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy
| | - Alberto Pacielli
- Department of Radiology, Ospedale S. Giovanni Bosco, 10154 Turin, Italy
| | - Homayounieh Fatemeh
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Paolo Vaudano
- Department of Radiology, Ospedale S. Giovanni Bosco, 10154 Turin, Italy
| | - Chiara Arru
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy
| | - Paola Crivelli
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Sassari - Sassari, Italy
| | | | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | | | - Maurizio Conti
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Sassari - Sassari, Italy
| | - Abdelkader Mahammedi
- Department of Neuroradiology, University of Cincinnati Medical Center, OH 45267, USA
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato s.s. 554, Monserrato (Cagliari) 09045, Italy.
| |
Collapse
|
45
|
Suri JS, Agarwal S, Pathak R, Ketireddy V, Columbu M, Saba L, Gupta SK, Faa G, Singh IM, Turk M, Chadha PS, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Teji JS, Al-Maini M, Dhanjil SK, Nicolaides A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Frence N, Ruzsa Z, Gupta A, Naidu S, Kalra M. COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models. Diagnostics (Basel) 2021; 11:1405. [PMID: 34441340 PMCID: PMC8392426 DOI: 10.3390/diagnostics11081405] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies proposed in 2020 were semi- or automated but not reliable, accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System (COVLIAS 1.0, AtheroPoint™, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models for lung segmentation. METHODOLOGY The COVLIAS 1.0 consists of three methods based on solo deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI approaches were benchmarked against the National Institute of Health (NIH)-based conventional segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio between training and testing was designed, with 10% validation data. The ground truth (GT) was manually traced by a radiologist trained personnel. For performance evaluation, nine different criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and lungs long axis against GT. RESULTS Using the database of 5000 chest CT images (from 72 patients), COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value < 0.001), respectively within 5% range of GT area, for SegNet, VGG-SegNet, ResNet-SegNet, and NIH. The mean Figure of Merit using four models (left and right lung) was above 94%. On benchmarking against the National Institute of Health (NIH) segmentation method, the proposed model demonstrated a 58% and 44% improvement in ResNet-SegNet, 52% and 36% improvement in VGG-SegNet for lung area, and lung long axis, respectively. The PE statistics performance was in the following order: ResNet-SegNet > VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image. CONCLUSIONS The COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
| | - Sushant Agarwal
- Advanced Knowledge Engineering Centre, GBTI, Roseville, CA 95661, USA;
- Department of Computer Science Engineering, PSIT, Kanpur 209305, India
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | | | - Marta Columbu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Suneet K. Gupta
- Department of Computer Science, Bennett University, Noida 201310, India;
| | - Gavino Faa
- Department of Pathology—AOU of Cagliari, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Paramjit S. Chadha
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA; (I.M.S.); (P.S.C.)
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 208011, India;
| | - Klaudija Viskovic
- Department of Radiology, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Center, 176 74 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence City, RI 02912, USA; (G.P.); (D.W.S.)
| | - Martin Miner
- Men’s Health Center, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Minimally Invasive Urology Institute, Brown University, Providence City, RI 02912, USA; (G.P.); (D.W.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), 09124 Cagliari, Italy; (M.C.); (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - George Tsoulfas
- Department of Transplantation Surgery, Aristoteleion University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON M5G 1N8, Canada;
| | | | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Athero Point LLC, Roseville, CA 95611, USA; (S.K.D.); (V.R.)
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engg., Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | | | - Nagy Frence
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary; (N.F.); (Z.R.)
| | - Zoltan Ruzsa
- Department of Internal Medicines, Invasive Cardiology Division, University of Szeged, 6720 Szeged, Hungary; (N.F.); (Z.R.)
| | - Archna Gupta
- Radiology Department, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55455, USA;
| | - Mannudeep Kalra
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA;
| |
Collapse
|
46
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
47
|
Alipoor SD, Mortaz E, Varahram M, Garssen J, Adcock IM. The Immunopathogenesis of Neuroinvasive Lesions of SARS-CoV-2 Infection in COVID-19 Patients. Front Neurol 2021; 12:697079. [PMID: 34393976 PMCID: PMC8363128 DOI: 10.3389/fneur.2021.697079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The new coronavirus disease COVID-19 was identified in December 2019. It subsequently spread across the world with over 125 M reported cases and 2.75 M deaths in 190 countries. COVID-19 causes severe respiratory distress; however, recent studies have reported neurological consequences of infection by the COVID-19 virus SARS-CoV-2 even in subjects with mild infection and no initial neurological effects. It is likely that the virus uses the olfactory nerve to reach the CNS and that this transport mechanism enables virus access to areas of the brain stem that regulates respiratory rhythm and may even trigger cell death by alteration of these neuronal nuclei. In addition, the long-term neuronal effects of COVID-19 suggest a role for SARS-CoV-2 in the development or progression of neurodegerative disease as a result of inflammation and/or hypercoagulation. In this review recent findings on the mechanism(s) by which SARS-CoV-2 accesses the CNS and induces neurological dysregulation are summarized.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health Research Imperial Biomedical Research Centre, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
48
|
Deep Transfer Learning-Based Framework for COVID-19 Diagnosis Using Chest CT Scans and Clinical Information. ACTA ACUST UNITED AC 2021; 2:390. [PMID: 34337433 PMCID: PMC8308084 DOI: 10.1007/s42979-021-00785-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) which first emerged in Wuhan, China in late December, 2019, has now spread to all the countries in the world. Conventional testing methods such as the antigen test, serology tests, and polymerase chain reaction tests are widely used. However, the test results can take anything from a few hours to a few days to reach the patient. Chest CT scan images have been used as alternatives for the detection of COVID-19 infection. Use of CT scan images alone might have limited capabilities, which calls attention to incorporating clinical features. In this paper, deep learning algorithms have been utilized to integrate the chest CT scan images obtained from patients with their clinical characteristics for fast and accurate diagnosis of COVID-19 patients. The framework uses an ANN to obtain the probability of the patient being infected with COVID-19 using their clinical information. Beyond a certain threshold, the chest CT scan of the patient is classified using a deep learning model which has been trained to classify the CT scan with 99% accuracy.
Collapse
|
49
|
Imaging Cardiovascular Inflammation in the COVID-19 Era. Diagnostics (Basel) 2021; 11:diagnostics11061114. [PMID: 34207266 PMCID: PMC8233709 DOI: 10.3390/diagnostics11061114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiac complications are among the most frequent extrapulmonary manifestations of COVID-19 and are associated with high mortality rates. Moreover, positive SARS-CoV-2 patients with underlying cardiovascular disease are more likely to require intensive care and are at higher risk of death. The underlying mechanism for myocardial injury is multifaceted, in which the severe inflammatory response causes myocardial inflammation, coronary plaque destabilization, acute thrombotic events, and ischemia. Cardiac magnetic resonance (CMR) imaging is the non-invasive method of choice for identifying myocardial injury, and it is able to differentiate between underlying causes in various and often challenging clinical scenarios. Multimodal imaging protocols that incorporate CMR and computed tomography provide a complex evaluation for both respiratory and cardiovascular complications of SARS-CoV2 infection. This, in relation to biological evaluation of systemic inflammation, can guide appropriate therapeutic management in every stage of the disease. The use of artificial intelligence can further improve the diagnostic accuracy of these imaging techniques, thus enabling risk stratification and evaluation of prognosis. The present manuscript aims to review the current knowledge on the possible modalities for imaging COVID-related myocardial inflammation or post-COVID coronary inflammation and atherosclerosis.
Collapse
|
50
|
Abdulkareem M, Petersen SE. The Promise of AI in Detection, Diagnosis, and Epidemiology for Combating COVID-19: Beyond the Hype. Front Artif Intell 2021; 4:652669. [PMID: 34056579 PMCID: PMC8160471 DOI: 10.3389/frai.2021.652669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has created enormous suffering, affecting lives, and causing deaths. The ease with which this type of coronavirus can spread has exposed weaknesses of many healthcare systems around the world. Since its emergence, many governments, research communities, commercial enterprises, and other institutions and stakeholders around the world have been fighting in various ways to curb the spread of the disease. Science and technology have helped in the implementation of policies of many governments that are directed toward mitigating the impacts of the pandemic and in diagnosing and providing care for the disease. Recent technological tools, artificial intelligence (AI) tools in particular, have also been explored to track the spread of the coronavirus, identify patients with high mortality risk and diagnose patients for the disease. In this paper, areas where AI techniques are being used in the detection, diagnosis and epidemiological predictions, forecasting and social control for combating COVID-19 are discussed, highlighting areas of successful applications and underscoring issues that need to be addressed to achieve significant progress in battling COVID-19 and future pandemics. Several AI systems have been developed for diagnosing COVID-19 using medical imaging modalities such as chest CT and X-ray images. These AI systems mainly differ in their choices of the algorithms for image segmentation, classification and disease diagnosis. Other AI-based systems have focused on predicting mortality rate, long-term patient hospitalization and patient outcomes for COVID-19. AI has huge potential in the battle against the COVID-19 pandemic but successful practical deployments of these AI-based tools have so far been limited due to challenges such as limited data accessibility, the need for external evaluation of AI models, the lack of awareness of AI experts of the regulatory landscape governing the deployment of AI tools in healthcare, the need for clinicians and other experts to work with AI experts in a multidisciplinary context and the need to address public concerns over data collection, privacy, and protection. Having a dedicated team with expertise in medical data collection, privacy, access and sharing, using federated learning whereby AI scientists hand over training algorithms to the healthcare institutions to train models locally, and taking full advantage of biomedical data stored in biobanks can alleviate some of problems posed by these challenges. Addressing these challenges will ultimately accelerate the translation of AI research into practical and useful solutions for combating pandemics.
Collapse
Affiliation(s)
- Musa Abdulkareem
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
| | - Steffen E. Petersen
- Barts Heart Centre, Barts Health National Health Service (NHS) Trust, London, United Kingdom
- National Institute for Health Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Health Data Research UK, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|