1
|
Rasool D, Jahani-Asl A. Master regulators of neurogenesis: the dynamic roles of Ephrin receptors across diverse cellular niches. Transl Psychiatry 2024; 14:462. [PMID: 39505843 PMCID: PMC11541728 DOI: 10.1038/s41398-024-03168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
The ephrin receptors (EphRs) are the largest family of receptor tyrosine kinases (RTKs) that are abundantly expressed in the developing brain and play important roles at different stages of neurogenesis ranging from neural stem cell (NSC) fate specification to neural migration, morphogenesis, and circuit assembly. Defects in EphR signalling have been associated with several pathologies including neurodevelopmental disorders (NDDs), intellectual disability (ID), and neurodegenerative diseases (NDs). Here, we review our current understanding of the complex and dynamic role of EphRs in the brain and discuss how deregulation of these receptors contributes to disease, highlighting their potential as valuable druggable targets.
Collapse
Affiliation(s)
- Dilan Rasool
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montréal, QC, H4A 3T2, Canada.
- Regenerative Medicine Program, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Ottawa Institutes of System Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Huang H, Chen L, Yuan J, Zhang H, Yang J, Xu Z, Chen Y. Role and mechanism of EphB3 in epileptic seizures and epileptogenesis through Kalirin. Mol Cell Neurosci 2024; 128:103915. [PMID: 38143048 DOI: 10.1016/j.mcn.2023.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND The EphB receptor tyrosine kinase family participates in intricate signaling pathways that orchestrate neural networks, guide neuronal axon development, and modulate synaptic plasticity through interactions with surface-bound ephrinB ligands. Additionally, Kalirin, a Rho guanine nucleotide exchange factor, is notably expressed in the postsynaptic membrane of excitatory neurons and plays a role in synaptic morphogenesis. This study postulates that Kalirin may act as a downstream effector of EphB3 in epilepsy. This investigation focuses on understanding the link between EphB3 and epilepsy. MATERIALS AND METHODS Chronic seizure models using LiCl-pilocarpine (LiCl/Pilo) and pentylenetetrazol were developed in rats. Neuronal excitability was gauged through whole-cell patch clamp recordings on rat hippocampal slices. Real-time PCR determined Kalirin's mRNA expression, and Western blotting was employed to quantify EphB3 and Kalirin protein levels. Moreover, dendritic spine density in epileptic rats was evaluated using Golgi staining. RESULTS Modulation of EphB3 functionality influenced acute seizure severity, latency duration, and frequency of spontaneous recurrent seizures. Golgi staining disclosed an EphB3-driven alteration in dendritic spine density within the hippocampus of epileptic rats, underscoring its pivotal role in the reconfiguration of hippocampal neural circuits. Furthermore, our data propose Kalirin as a prospective downstream mediator of the EphB3 receptor. CONCLUSIONS Our findings elucidate that EphB3 impacts the action potential dynamics in isolated rat hippocampal slices and alters dendritic spine density in the inner molecular layer of epileptic rat hippocampi, likely through Kalirin-mediated pathways. This hints at EphB3's significant role in shaping excitatory circuit loops and recurrent seizure activity via Kalirin.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China; Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Ling Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China
| | - Haiqing Zhang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Juan Yang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi 563003, Guizhou Province, China.
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
4
|
Poniatowski ŁA, Woźnica M, Wojdasiewicz P, Mela-Kalicka A, Romanowska-Próchnicka K, Purrahman D, Żurek G, Krawczyk M, Nameh Goshay Fard N, Furtak-Niczyporuk M, Jaroszyński J, Mahmoudian-Sani MR, Joniec-Maciejak I. The Role of Progranulin (PGRN) in the Pathogenesis of Glioblastoma Multiforme. Cells 2024; 13:124. [PMID: 38247816 PMCID: PMC10814625 DOI: 10.3390/cells13020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive malignant form of brain tumour in adults and is characterized by an extremely poor prognosis with dismal survival rates. Currently, expanding concepts concerning the pathophysiology of GBM are inextricably linked with neuroinflammatory phenomena. On account of this fact, the identification of novel pathomechanisms targeting neuroinflammation seems to be crucial in terms of yielding successful individual therapeutic strategies. In recent years, the pleiotropic growth factor progranulin (PGRN) has attracted significant attention in the neuroscience and oncological community regarding its neuroimmunomodulatory and oncogenic functions. This review of the literature summarizes and updates contemporary knowledge about PGRN, its associated receptors and signalling pathway involvement in GBM pathogenesis, indicating possible cellular and molecular mechanisms with potential diagnostic, prognostic and therapeutic targets in order to yield successful individual therapeutic strategies. After a review of the literature, we found that there are possible PGRN-targeted therapeutic approaches for implementation in GBM treatment algorithms both in preclinical and future clinical studies. Furthermore, PGRN-targeted therapies exerted their highest efficacy in combination with other established chemotherapeutic agents, such as temozolomide. The results of the analysis suggested that the possible implementation of routine determinations of PGRN and its associated receptors in tumour tissue and biofluids could serve as a diagnostic and prognostic biomarker of GBM. Furthermore, promising preclinical applications of PGRN-related findings should be investigated in clinical studies in order to create new diagnostic and therapeutic algorithms for GBM treatment.
Collapse
Affiliation(s)
- Łukasz A. Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036 Neubrandenburg, Germany
| | - Michał Woźnica
- Department of Spine Surgery, 7th Navy Hospital, Polanki 117, 80-305 Gdańsk, Poland;
| | - Piotr Wojdasiewicz
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
| | - Aneta Mela-Kalicka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Katarzyna Romanowska-Próchnicka
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland (K.R.-P.)
- Department of Systemic Connective Tissue Diseases, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Grzegorz Żurek
- Department of Biostructure, Wrocław University of Health and Sport Sciences, I. J. Paderewskiego 35, 51-612 Wrocław, Poland;
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Najmeh Nameh Goshay Fard
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Marzena Furtak-Niczyporuk
- Department of Public Health, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Janusz Jaroszyński
- Department of Administrative Proceedings, Faculty of Law and Administration, Maria Curie-Skłodowska University of Lublin, Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; (D.P.)
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology (CePT), Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Purrahman D, Shojaeian A, Poniatowski ŁA, Piechowski-Jóźwiak B, Mahmoudian-Sani MR. The Role of Progranulin (PGRN) in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3435-3447. [PMID: 37561339 PMCID: PMC11410000 DOI: 10.1007/s10571-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Stroke is a life-threatening medical condition and is a leading cause of disability. Cerebral ischemia is characterized by a distinct inflammatory response starting with the production of various cytokines and other inflammation-related agents. Progranulin (PGRN), a multifunctional protein, is critical in diverse physiological reactions, such as cell proliferation, inflammation, wound healing, and nervous system development. A mature PGRN is anti-inflammatory, while granulin, its derivative, conversely induces pro-inflammatory cytokine expression. PGRN is significantly involved in the brain tissue and its damage, for example, improving mood and cognitive disorders caused by cerebral ischemia. It may also have protective effects against nerve and spinal cord injuries by inhibiting neuroinflammatory response and apoptosis or it may be related to the proliferation, accumulation, differentiation, and activation of microglia. PGRN is a neurotrophic factor in the central nervous system. It may increase post-stroke neurogenesis of the subventricular zone (SVZ), which is particularly important in improving long-term brain function following cerebral ischemia. The neurogenesis enhanced via PGRN in the ischemic brain SVZ may be attributed to the induction of PI3K/AKT and MAPK/ERK signaling routes. PGRN can also promote the proliferation of neural stem/progenitor cells through PI3K/AKT signaling pathway. PGRN increases hippocampal neurogenesis, reducing anxiety and impaired spatial learning post-cerebral ischemia. PGRN alleviates cerebral ischemia/reperfusion injury by reducing endoplasmic reticulum stress and suppressing the NF-κB signaling pathway. PGRN can be introduced as a potent neuroprotective agent capable of improving post-ischemia neuronal actions, mainly by reducing and elevating the inflammatory and anti-inflammatory cytokines. Expression, storage, cleavage, and function of progranulin (PGRN) in the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Bartłomiej Piechowski-Jóźwiak
- Neurological Institute, Cleveland Clinic Abu Dhabi, 59 Hamouda Bin Ali Al Dhaheri Street, Jazeerat Al Maryah, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Xu LJ, Wang HN, Zhou H, Li SY, Li F, Miao Y, Lei B, Sun XH, Gao F, Wang Z. EphA4/ephrinA3 reverse signaling induced Müller cell gliosis and production of pro-inflammatory cytokines in experimental glaucoma. Brain Res 2023; 1801:148204. [PMID: 36529265 DOI: 10.1016/j.brainres.2022.148204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous work showed that ephrinA3/EphA4 forward signaling contributed to retinal ganglion cell (RGC) damage in experimental glaucoma. Since up-regulated patterns of ephrinA3 and EphA4 were observed in Müller cells and RGCs, an EphA4/ephrinA3 reverse signaling may exist in Müller cells of chronic ocular hypertension (COH) retina. We investigated effects of EphA4/ephrinA3 reverse signaling activation on Müller cells in COH retina. Intravitreal injection of the ephrinA3 agonist EphA4-Fc increased glial fibrillary acidic protein (GFAP) levels in normal retinas, suggestive of Müller cell gliosis, which was confirmed in purified cultured Müller cells treated with EphA4-Fc. These effects were mediated by intracellular STAT3 signaling pathway as phosphorylated STAT3 (p-STAT3) levels and ratios of p-STAT3/STAT3 were significantly increased in both COH retinas and EphA4-Fc intravitreally injected retinas, as well as in EphA4-Fc treated purified cultured Müller cells. The increase of GFAP protein levels in EphA4-Fc-injected retinas and EphA4-Fc treated purified cultured Müller cells could be partially eliminated by stattic, a selective STAT3 blocker. Co-immunoprecipitation results testified to the presence of interaction between ephrinA3 and STAT3/p-STAT3. In addition, intravitreal injection of EphA4-Fc or EphA4-Fc treatment of cultured Müller cells significantly up-regulated mRNA and protein contents of pro-inflammatory cytokines. Moreover, intravitreal injection of EphA4-Fc increased the number of apoptotic RGCs, which could be reversed by the tyrosine kinase blocker PP2. Overall, EphA4/ephrinA3 reverse signaling may induce Müller cell gliosis and increases release of pro-inflammatory factors, which could contribute to RGC death in glaucoma. Inhibition of EphA4/ephrinA3 signaling may provide an effective neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Han Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450003, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Feng Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Identification and Experimental Validation of Marker Genes between Diabetes and Alzheimer’s Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8122532. [PMID: 35996379 PMCID: PMC9391608 DOI: 10.1155/2022/8122532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
Currently, Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are widely prevalent in the elderly population, and accumulating evidence implies a strong link between them. For example, patients with T2DM have a higher risk of developing neurocognitive disorders, including AD, but the exact mechanisms are still unclear. This time, by combining bioinformatics analysis and in vivo experimental validation, we attempted to find a common biological link between AD and T2DM. We firstly downloaded the gene expression profiling (AD: GSE122063; T2DM: GSE161355) derived from the temporal cortex. To find the associations, differentially expressed genes (DEGs) of the two datasets were filtered and intersected. Based on them, enrichment analysis was carried out, and the least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify the specific genes. After verifying in the external dataset and in the samples from the AD and type 2 diabetes animals, the shared targets of the two diseases were finally determined. Based on them, the ceRNA networks were constructed. Besides, the logistic regression and single-sample gene set enrichment analysis (ssGSEA) were performed. As a result, 62 DEGs were totally identified between AD and T2DM, and the enrichment analysis indicated that they were much related to the function of synaptic vesicle and MAPK signaling pathway. Based on the evidence from external dataset and RT-qPCR, CARTPT, EPHA5, and SERPINA3 were identified as the marker genes in both diseases, and their clinical significance and biological functions were further analyzed. In conclusion, discovering and exploring the marker genes that are dysregulated in both 2 diseases could help us better comprehend the intrinsic relationship between T2DM and AD, which may inspire us to develop new strategies for facing the dilemmas of clinical or basic research in cognitive dysfunction.
Collapse
|
9
|
Kowalski EA, Soliman E, Kelly C, Basso EKG, Leonard J, Pridham KJ, Ju J, Cash A, Hazy A, de Jager C, Kaloss AM, Ding H, Hernandez RD, Coleman G, Wang X, Olsen ML, Pickrell AM, Theus MH. Monocyte proinflammatory phenotypic control by ephrin type A receptor 4 mediates neural tissue damage. JCI Insight 2022; 7:e156319. [PMID: 35737458 PMCID: PMC9462496 DOI: 10.1172/jci.insight.156319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.
Collapse
Affiliation(s)
- Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, and
| | | | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Hazy
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Caroline de Jager
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Hanzhang Ding
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Raymundo D. Hernandez
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, and
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
- Center for Engineered Health, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
10
|
The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell Mol Biol Lett 2022; 27:10. [PMID: 35109786 PMCID: PMC8809072 DOI: 10.1186/s11658-022-00311-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.
Collapse
|
11
|
Bodin R, Paillé V, Oullier T, Durand T, Aubert P, Le Berre-Scoul C, Hulin P, Neunlist M, Cissé M. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. J Biol Chem 2021; 297:101300. [PMID: 34648765 PMCID: PMC8569587 DOI: 10.1016/j.jbc.2021.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.
Collapse
Affiliation(s)
- Raphael Bodin
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Tony Durand
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Philippe Aubert
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | | | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Moustapha Cissé
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.
| |
Collapse
|
12
|
Singal CMS, Jaiswal P, Mehta A, Saleem K, Seth P. Role of EphrinA3 in HIV-1 Neuropathogenesis. ASN Neuro 2021; 13:17590914211044359. [PMID: 34618621 PMCID: PMC8504696 DOI: 10.1177/17590914211044359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glial cells perform important supporting functions for neurons through a dynamic crosstalk. Neuron–glia communication is the major phenomenon to sustain homeostatic functioning of the brain. Several interactive pathways between neurons and astrocytes are critical for the optimal functioning of neurons, and one such pathway is the ephrinA3–ephA4 signaling. The role of this pathway is essential in maintaining the levels of extracellular glutamate by regulating the excitatory amino acid transporters, EAAT1 and EAAT2 on astrocytes. Human immunodeficiency virus-1 (HIV-1) and its proteins cause glutamate excitotoxicity due to excess glutamate levels at sites of high synaptic activity. This study unravels the effects of HIV-1 transactivator of transcription (Tat) from clade B on ephrinA3 and its role in regulating glutamate levels in astrocyte–neuron co-cultures of human origin. It was observed that the expression of ephrinA3 increases in the presence of HIV-1 Tat B, while the expression of EAAT1 and EAAT2 was attenuated. This led to reduced glutamate uptake and therefore high neuronal death due to glutamate excitotoxicity. Knockdown of ephrinA3 using small interfering RNA, in the presence of HIV-1 Tat B reversed the neurotoxic effects of HIV-1 Tat B via increased expression of glutamate transporters that reduced the levels of extracellular glutamate. The in vitro findings were validated in autopsy brain sections from acquired immunodeficiency syndrome patients and we found ephrinA3 to be upregulated in the case of HIV-1-infected patients. This study offers valuable insights into astrocyte-mediated neuronal damage in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
| | - Paritosh Jaiswal
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Anuradha Mehta
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Kanza Saleem
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, 29050National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
13
|
Sun Y, Ma L, Chen J, Wang W, Peng S, Cheng Y, Zhang Y, Chen J, Ju P. RNA-seq co-expression network analysis reveals anxiolytic behavior of mice with Efnb2 knockout in parvalbumin+ neurons. Mol Brain 2021; 14:118. [PMID: 34281570 PMCID: PMC8287822 DOI: 10.1186/s13041-021-00829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/11/2021] [Indexed: 11/10/2022] Open
Abstract
Anxiety disorders are the most common psychiatric disorders, and the change in the activity of the prefrontal cortex (PFC) is considered as the underlying pathological mechanism. Parvalbumin-expressing (PV+) inhibition contributes to the overall activity of the PFC. However, the molecular mechanism underlying the excitation-inhibition imbalance of PV+ neurons in the PFC is unknown. Efnb2 is a membrane-bound molecule that plays an important role in the nervous system through binding the Eph receptor. To investigate whether the loss of Efnb2 in PV+ affects anxiety, we examined the behavior of wild type and Efnb2 in PV+ neurons knockout (KO) mice. We monitored the defensive responses to aversive stimuli of elevated plus maze (EPM) and found that KO mice exhibited obvious fearless and anxiolytic behaviors. To further investigate the underlying regulatory mechanism, we performed RNA sequencing, analyzed the differentially expressed genes (DEGs), and constructed the weighted gene co-expression network analysis (WGCNA). The WGCNA identified 12 characteristic modules. Among them, the MEgreen module showed the most significant correlation with KO mice of EPM stimuli. The Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that this was related to the distal axon, Ras signaling pathway and insulin signaling pathway. Furthermore, the whole-cell voltage clamp recordings also proved that Efnb2 gene knock-out could affect synaptic function. Together with the transcriptomic analysis of mice with Efnb2 knockout on PV+ neurons, our findings suggest that Efnb2 gene in the PV+ neuron of PFC may be a crucial factor for fear and anxiety, which provide an insight into anxiety pathophysiology.
Collapse
Affiliation(s)
- Ying Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| | - Le Ma
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, 200240 China
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| | - Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| | - Shiyu Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310000 China
| | - Ying Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| | - Yu Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| | - Jinghong Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200240 China
| |
Collapse
|
14
|
Light TP, Gomez-Soler M, Wang Z, Karl K, Zapata-Mercado E, Gehring MP, Lechtenberg BC, Pogorelov TV, Hristova K, Pasquale EB. A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. J Biol Chem 2021; 297:100876. [PMID: 34139238 PMCID: PMC8260879 DOI: 10.1016/j.jbc.2021.100876] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 06/13/2021] [Indexed: 12/24/2022] Open
Abstract
The Eph receptor tyrosine kinases and their ephrin ligands regulate many physiological and pathological processes. EphA4 plays important roles in nervous system development and adult homeostasis, while aberrant EphA4 signaling has been implicated in neurodegeneration. EphA4 may also affect cancer malignancy, but the regulation and effects of EphA4 signaling in cancer are poorly understood. A correlation between decreased patient survival and high EphA4 mRNA expression in melanoma tumors that also highly express ephrinA ligands suggests that enhanced EphA4 signaling may contribute to melanoma progression. A search for EphA4 gain-of-function mutations in melanoma uncovered a mutation of the highly conserved leucine 920 in the EphA4 sterile alpha motif (SAM) domain. We found that mutation of L920 to phenylalanine (L920F) potentiates EphA4 autophosphorylation and signaling, making it the first documented EphA4 cancer mutation that increases kinase activity. Quantitative Föster resonance energy transfer and fluorescence intensity fluctuation (FIF) analyses revealed that the L920F mutation induces a switch in EphA4 oligomer size, from a dimer to a trimer. We propose this switch in oligomer size as a novel mechanism underlying EphA4-linked tumorigenesis. Molecular dynamics simulations suggest that the L920F mutation alters EphA4 SAM domain conformation, leading to the formation of EphA4 trimers that assemble through two aberrant SAM domain interfaces. Accordingly, EphA4 wild-type and the L920F mutant are affected differently by the SAM domain and are differentially regulated by ephrin ligand stimulation. The increased EphA4 activation induced by the L920F mutation, through the novel mechanism we uncovered, supports a functional role for EphA4 in promoting pathogenesis.
Collapse
Affiliation(s)
- Taylor P Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Zichen Wang
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kelly Karl
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Marina P Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, and National Center for Supercomputing Applications, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Program in Molecular Biophysics, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
15
|
Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proc Natl Acad Sci U S A 2021; 118:2016265118. [PMID: 33627480 DOI: 10.1073/pnas.2016265118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.
Collapse
|
16
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
17
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
18
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
19
|
Xu LJ, Gao F, Cheng S, Zhou ZX, Li F, Miao Y, Niu WR, Yuan F, Sun XH, Wang Z. Activated ephrinA3/EphA4 forward signaling induces retinal ganglion cell apoptosis in experimental glaucoma. Neuropharmacology 2020; 178:108228. [PMID: 32745487 DOI: 10.1016/j.neuropharm.2020.108228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that EphA4 participates in neuronal injury, and there is a strong interaction between ephrinA3 and EphA4. In this study, we showed that in a rat chronic ocular hypertension (COH) experimental glaucoma model, expression of EphA4 and ephrinA3 proteins was increased in retinal cells, including retinal ganglion cells (RGCs) and Müller cells, which may result in ephrinA3/EphA4 forward signaling activation on RGCs, as evidenced by increased p-EphA4/EphA4 ratio. Intravitreal injection of ephrinA3-Fc, an activator of EphA4, mimicked the effect of COH on p-EphA4/EphA4 and induced an increase in TUNEL-positive signals in normal retinas, which was accompanied by dendritic spine retraction and thinner dendrites in RGCs. Furthermore, Intravitreal injection of ephrinA3-Fc increased the levels of phosphorylated src and GluA2 (p-src and p-GluA2). Co-immunoprecipitation assay demonstrated interactions between EphA4, p-src and GluA2. Intravitreal injection of ephrinA3-Fc reduced the expression of GluA2 proteins on the surface of normal retinal cells, which was prevented by intravitreal injection of PP2, an inhibitor of src-family tyrosine kinases. Pre-injection of PP2 or the Ca2+-permeable GluA2-lacking AMPA receptor inhibitor Naspm significantly and partially reduced the number of TUNEL-positive RGCs in the ephrinA3-Fc-injected and COH retinas. Our results suggest that activated ephrinA3/EphA4 forward signaling promoted GluA2 endocytosis, then resulted in dendritic spine retraction of RGCs, thus contributing to RGC apoptosis in COH rats. Attenuation of the strength of ephrinA/EphA signaling in an appropriate manner may be an effective way for preventing the loss of RGCs in glaucoma.
Collapse
Affiliation(s)
- Lin-Jie Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feng Gao
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhi-Xin Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei-Ran Niu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fei Yuan
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Tang FHF, Davis D, Arap W, Pasqualini R, Staquicini FI. Eph receptors as cancer targets for antibody-based therapy. Adv Cancer Res 2020; 147:303-317. [PMID: 32593404 DOI: 10.1016/bs.acr.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Receptor tyrosine kinases (RTKs) are integral membrane sensors that govern cell differentiation, proliferation and mobility, and enable rapid communication between cells and their environment. Of the 20 RTK subfamilies currently known, Eph receptors are the largest group. Together with their corresponding ephrin ligands, Eph receptors regulate a diverse array of physiologic processes including axonal guidance, bone remodeling, and immune cell development and trafficking. Deregulation of Eph signaling pathways is linked to cancer and other proliferative diseases and, because RTKs play critical roles in cancer development, the specific targeting of these molecules in malignancies provides a promising treatment approach. Monoclonal antibodies targeting RTKs represent a potentially attractive modality for pharmaceutical development due to their relatively high target specificity and low off-target binding rates. Therefore, new technologies to generate antibodies able to target RTKs in their native in vivo context are likely to facilitate pre-clinical and clinical development of antibody-based therapies. Our group has recently reported a platform discovery methodology termed Selection of Phage-displayed Accessible Recombinant Targeted Antibodies (SPARTA). SPARTA is a novel and robust stepwise method, which combines the attributes of in vitro screenings of a naïve human recombinant antibody library against known tumor targets with those features of in vivo selections based on tumor-homing capabilities of a pre-enriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human monoclonal antibodies amenable to rapid translation into medical applications.
Collapse
Affiliation(s)
- Fenny H F Tang
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Deodate Davis
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Fernanda I Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States; Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
22
|
Roy R, Pattnaik S, Sivagurunathan S, Chidambaram S. Small ncRNA binding protein, PIWI: A potential molecular bridge between blood brain barrier and neuropathological conditions. Med Hypotheses 2020; 138:109609. [DOI: 10.1016/j.mehy.2020.109609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
|
23
|
Darling TK, Mimche PN, Bray C, Umaru B, Brady LM, Stone C, Eboumbou Moukoko CE, Lane TE, Ayong LS, Lamb TJ. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog 2020; 16:e1008261. [PMID: 31999807 PMCID: PMC6991964 DOI: 10.1371/journal.ppat.1008261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023] Open
Abstract
Disruption of blood-brain barrier (BBB) function is a key feature of cerebral malaria. Increased barrier permeability occurs due to disassembly of tight and adherens junctions between endothelial cells, yet the mechanisms governing junction disassembly and vascular permeability during cerebral malaria remain poorly characterized. We found that EphA2 is a principal receptor tyrosine kinase mediating BBB breakdown during Plasmodium infection. Upregulated on brain microvascular endothelial cells in response to inflammatory cytokines, EphA2 is required for the loss of junction proteins on mouse and human brain microvascular endothelial cells. Furthermore, EphA2 is necessary for CD8+ T cell brain infiltration and subsequent BBB breakdown in a mouse model of cerebral malaria. Blocking EphA2 protects against BBB breakdown highlighting EphA2 as a potential therapeutic target for cerebral malaria.
Collapse
Affiliation(s)
- Thayer K. Darling
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrice N. Mimche
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christian Bray
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Banlanjo Umaru
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Lauren M. Brady
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Colleen Stone
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, University of Douala, Douala, Cameroon
| | - Thomas E. Lane
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence S. Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
24
|
Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflammation 2019; 16:210. [PMID: 31711546 PMCID: PMC6844068 DOI: 10.1186/s12974-019-1605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
Collapse
|
25
|
Ernst AS, Böhler LI, Hagenston AM, Hoffmann A, Heiland S, Sticht C, Bendszus M, Hecker M, Bading H, Marti HH, Korff T, Kunze R. EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke. Acta Neuropathol Commun 2019; 7:15. [PMID: 30722785 PMCID: PMC6362601 DOI: 10.1186/s40478-019-0669-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Local cerebral hypoperfusion causes ischemic stroke while driving multiple cell-specific responses including inflammation, glutamate-induced neurotoxicity mediated via NMDAR, edema formation and angiogenesis. Despite the relevance of these pathophysiological mechanisms for disease progression and outcome, molecular determinants controlling the onset of these processes are only partially understood. In this context, our study intended to investigate the functional role of EphB2, a receptor tyrosine kinase that is crucial for synapse function and binds to membrane-associated ephrin-B ligands. Cerebral ischemia was induced in Ephb2−/− mice by transient middle cerebral artery occlusion followed by different times (6, 12, 24 and 48 h) of reperfusion. Histological, neurofunctional and transcriptome analyses indicated an increase in EphB2 phosphorylation under these conditions and attenuated progression of stroke in Ephb2−/− mice. Moreover, while infiltration of microglia/macrophages and astrocytes into the peri-infarct region was not altered, expression of the pro-inflammatory mediators MCP-1 and IL-6 was decreased in these mice. In vitro analyses indicated that binding of EphB2 to astrocytic ephrin-B ligands stimulates NF-κB-mediated cytokine expression via the MAPK pathway. Further magnetic resonance imaging of the Ephb2−/− ischemic brain revealed a lower level of cytotoxic edema formation within 6 h upon onset of reperfusion. On the mechanistic level, absence of neuronal EphB2 decreased the mitochondrial Ca2+ load upon specific activation of NMDAR but not during synaptic activity. Furthermore, neuron-specific loss of ephrin-B2 reduced the extent of cerebral tissue damage in the acute phase of ischemic stroke. Collectively, EphB2 may promote the immediate response to an ischemia-reperfusion event in the central nervous system by (i) pro-inflammatory activation of astrocytes via ephrin-B-dependent signaling and (ii) amplification of NMDA-evoked neuronal excitotoxicity.
Collapse
|
26
|
Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY. Pericyte Structural Remodeling in Cerebrovascular Health and Homeostasis. Front Aging Neurosci 2018; 10:210. [PMID: 30065645 PMCID: PMC6057109 DOI: 10.3389/fnagi.2018.00210] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
The biology of brain microvascular pericytes is an active area of research and discovery, as their interaction with the endothelium is critical for multiple aspects of cerebrovascular function. There is growing evidence that pericyte loss or dysfunction is involved in the pathogenesis of Alzheimer’s disease, vascular dementia, ischemic stroke and brain injury. However, strategies to mitigate or compensate for this loss remain limited. In this review, we highlight a novel finding that pericytes in the adult brain are structurally dynamic in vivo, and actively compensate for loss of endothelial coverage by extending their far-reaching processes to maintain contact with regions of exposed endothelium. Structural remodeling of pericytes may present an opportunity to foster pericyte-endothelial communication in the adult brain and should be explored as a potential means to counteract pericyte loss in dementia and cerebrovascular disease. We discuss the pathophysiological consequences of pericyte loss on capillary function, and the biochemical pathways that may control pericyte remodeling. We also offer guidance for observing pericytes in vivo, such that pericyte structural remodeling can be more broadly studied in mouse models of cerebrovascular disease.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - David A Hartmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, United States
| | - Narayan R Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
27
|
Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071884. [PMID: 29954063 PMCID: PMC6073792 DOI: 10.3390/ijms19071884] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
It is estimated that Alzheimer’s disease (AD) affects tens of millions of people, comprising not only suffering patients, but also their relatives and caregivers. AD is one of age-related neurodegenerative diseases (NDs) characterized by progressive synaptic damage and neuronal loss, which result in gradual cognitive impairment leading to dementia. The cause of AD remains still unresolved, despite being studied for more than a century. The hallmark pathological features of this disease are senile plaques within patients’ brain composed of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) of Tau protein. However, the roles of Aβ and Tau in AD pathology are being questioned and other causes of AD are postulated. One of the most interesting theories proposed is the causative role of amyloid β oligomers (AβOs) aggregation in the pathogenesis of AD. Moreover, binding of AβOs to cell membranes is probably mediated by certain proteins on the neuronal cell surface acting as AβO receptors. The aim of our paper is to describe alternative hypotheses of AD etiology, including genetic alterations and the role of misfolded proteins, especially Aβ oligomers, in Alzheimer’s disease. Furthermore, in this review we present various putative cellular AβO receptors related to toxic activity of oligomers.
Collapse
|
28
|
Malik VA, Di Benedetto B. The Blood-Brain Barrier and the EphR/Ephrin System: Perspectives on a Link Between Neurovascular and Neuropsychiatric Disorders. Front Mol Neurosci 2018; 11:127. [PMID: 29706868 PMCID: PMC5906525 DOI: 10.3389/fnmol.2018.00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.
Collapse
Affiliation(s)
- Victoria A Malik
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- RG Neuro-Glia Pharmacology, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Amyloid-β oligomers synaptotoxicity: The emerging role of EphA4/c-Abl signaling in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1148-1159. [DOI: 10.1016/j.bbadis.2018.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
|
30
|
Dong L, Cheng X, Zhou L, Hu Y. Calcium channels are involved in EphB/ephrinB reverse signaling‑induced apoptosis in a rat chronic ocular hypertension model. Mol Med Rep 2017; 17:2465-2471. [PMID: 29207174 PMCID: PMC5783492 DOI: 10.3892/mmr.2017.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Erythropoietin-producing hepatocyte receptor B (EphB)/ephrinB reverse signaling has been revealed to be activated in chronic ocular hypertension (COH) by increasing the apoptosis of retinal ganglion cells (RGCs). However, the exact mechanism is not well understood. The present study investigated the involvement of Ca2+ channels in the apoptosis of RGCs induced by EphB/ephrinB reverse signaling in a rat CHO model, which was established by cauterizing 3 out of the 4 episcleral veins. The expression levels of four voltage-gated Ca2+ channel subunits (Cav3.1–3.3 and Cav1.2) were detected using immunofluorescence and western blot analysis. TUNEL staining was performed to assess RGC apoptosis following an injection with the T type Ca2+ channel blocker. Ca2+ channels, mainly the T type, were upregulated in COH rat retinas when compared with the sham group (P<0.01). Additionally, the Cav3.2 subunit of T type calcium channels was predominantly expressed in Müller cells and RGCs, such as ephrinB2. Furthermore, an intravitreal injection of the Ca2+ channel blocker Mibefradil (3 µM) reduced EphB2-fragment crystallizable region-induced RGC apoptosis in normal rats. Thus, the results suggest that Ca2+ channels in a COH model may be a pathway involved in ephrinB/EphB signaling-induced RGC apoptosis.
Collapse
Affiliation(s)
- Lingdan Dong
- Central Laboratory, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xianglin Cheng
- Department of Neurology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Long Zhou
- Department of Pathology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yanhong Hu
- Nursing Department of Medical School of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
31
|
Guo H, Huang ZL, Wang W, Zhang SX, Li J, Cheng K, Xu K, He Y, Gui SW, Li PF, Wang HY, Dong ZF, Xie P. iTRAQ-Based Proteomics Suggests Ephb6 as a Potential Regulator of the ERK Pathway in the Prefrontal Cortex of Chronic Social Defeat Stress Model Mice. Proteomics Clin Appl 2017; 11. [PMID: 28967185 DOI: 10.1002/prca.201700115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/03/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Major depressive disorder (MDD) is a worldwide concern and devastating psychiatric disease. The World Health Organization claims that MDD leads to at least 11.9% of the global burden of disease. However, the underlying pathophysiology mechanisms of MDD remain largely unknown. EXPERIMENTAL DESIGN Herein, we proteomic-based strategy is used to compare the prefrontal cortex (PFC) in chronic social defeat stress (CSDS) model mice with a control group. Based on pooled samples, differential proteins are identified in the PFC proteome using iTRAQ coupled with LC-MS/MS. RESULTS Ingenuity Pathway Analysis (IPA) is then followed to predict relevant pathways, with the ephrin receptor signaling pathway selected for further research. Additionally, as the selected key proteins of the ephrin receptor signaling pathway, ephrin type-B receptor 6 (EphB6) and the ERK pathway are validated by Western blotting. CONCLUSION AND CLINICAL RELEVANT Altogether, increased understanding of the ephrin receptor signaling pathway in MDD is provided, which implicates further investigation of PFC dysfunction induced by CSDS treatment.
Collapse
Affiliation(s)
- Hua Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi-Lin Huang
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Shu-Xiao Zhang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Juan Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Xu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Wen Gui
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng-Fei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Hai-Yang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi-Fang Dong
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
32
|
Hoxha E, Lippiello P, Scelfo B, Tempia F, Ghirardi M, Miniaci MC. Maturation, Refinement, and Serotonergic Modulation of Cerebellar Cortical Circuits in Normal Development and in Murine Models of Autism. Neural Plast 2017; 2017:6595740. [PMID: 28894610 PMCID: PMC5574313 DOI: 10.1155/2017/6595740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
| | | | - Bibiana Scelfo
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Torino, Italy
- Department of Neuroscience, University of Torino, Torino, Italy
- National Institute of Neuroscience (INN), Torino, Italy
| | | | | |
Collapse
|
33
|
Tanaka T, Yamada H, Kuroki M, Kodama S, Tamura K, Takamatsu Y. A Modified Adenovirus Vector-Mediated Antibody Screening Method Identifies EphA2 as a Cancer Target. Transl Oncol 2017; 10:476-484. [PMID: 28505517 PMCID: PMC5430157 DOI: 10.1016/j.tranon.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND: We constructed a genetically modified adenovirus vector incorporating an IgG Fc-binding motif from staphylococcal protein A, Z33 (Adv-FZ33). Adv-FZ33 allows an antibody to redirect the vector to a target molecule on the cell surface. We attempted to search for target antigen candidates and antibodies that allowed highly selective gene transduction into malignant tumors. METHODS: Hybridoma libraries producing monoclonal antibodies (mAbs) were screened that increased transduction efficiency in cancer cell lines after cross-linking with Adv-FZ33. Target antigens of the mAbs were identified by immunoprecipitation and mass spectrometry. Of these mAbs, we noted a clone, F2-27, that recognized the receptor tyrosine kinase EphA2. Next, we generated an adenovirus vector, Ax3CMTK-FZ33, that expressed a herpes simplex virus thymidine kinase (HSV-TK). The therapeutic efficacy of F2-27–mediated HSV-TK gene transduction, followed by ganciclovir (GCV) administration, was studied in vitro. The inhibitory effect of F2-27 on cancer cell invasion was investigated by a three-dimensional spheroid formation assay. RESULTS: In vitro reporter gene expression after Adv-FZ33 infection via F2-27 was 146 times higher than with control mAb in EphA2-expressing cancer cell lines. F2-27–mediated Ax3CMTK-FZ33 infection induced the HSV-TK gene in an F2-27–dependent manner and had a highly effective cytotoxic effect in a GCV-dependent manner. Additionally, F2-27 independently inhibited migration of EphA2-positive breast cancer cell lines in three-dimensional culture. CONCLUSION: Our modified adenovirus and hybridoma screening system is useful for the development of targeted cancer therapy, and F2-27 has the potential to be an antibody-based therapy for various EphA2-positive cancers.
Collapse
Affiliation(s)
- Toshihiro Tanaka
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiromi Yamada
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Masahide Kuroki
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kazuo Tamura
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yasushi Takamatsu
- Division of Oncology, Hematology and Infectious Diseases, Department of Internal Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
34
|
Li Y, Sun Z, Cao Q, Chen M, Luo H, Lin X, Xiao F. Role of amyloid β protein receptors in mediating synaptic plasticity. Biomed Rep 2017; 6:379-386. [PMID: 28413635 PMCID: PMC5374942 DOI: 10.3892/br.2017.863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/01/2016] [Indexed: 11/05/2022] Open
Abstract
There are few diseases in modern biomedicine that have garnered as much scientific interest and public concern as Alzheimer's disease (AD). The amyloid hypothesis has become the dominant model of AD pathogenesis; however, the details of the hypothesis are changing over time. Recently, given the increasing recognition, subtle effects of amyloid β protein (Aβ) on synaptic efficacy may be critical to AD progression. Synaptic plasticity is the important neurochemical foundation of learning and memory. Recent studies have identified that soluble Aβ oligomers combine with certain receptors to impair synaptic plasticity in AD, which advanced the amyloid hypothesis. The aim of the present review was to summarize the role of Aβ-relevant receptors in regulating synaptic plasticity and their downstream signaling cascades, which may provide novel insights into the understanding of the pathogenesis of AD and the development of therapeutic strategies to slow down the progression of AD-associated memory decline in the early stages.
Collapse
Affiliation(s)
- Yu Li
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhongqing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiaoyu Cao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
35
|
Choi DH, Ahn JH, Choi IA, Kim JH, Kim BR, Lee J. Effect of task-specific training on Eph/ephrin expression after stroke. BMB Rep 2017; 49:635-640. [PMID: 27756445 PMCID: PMC5346325 DOI: 10.5483/bmbrep.2016.49.11.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 11/30/2022] Open
Abstract
Recent evidence indicates that the ephrin receptors and ephrin ligands (Eph/ephrin) expression modulate axonal reorganization and synaptic plasticity in stroke recovery. To investigate the effect of task-specific training (TST) on Eph/ephrin expression in the corticospinal tract (CST) after stroke, we compared Eph/ephrin expression in the peri-infarct cortex, pyramid, and spinal cord of a photothrombotic stroke model of rat brains treated with or without TST. The TST treatment showed significantly better recovery in the behavioral tests compared with no treatment. The significant upregulation of ephrin-A1 and ephrin-A5 observed in activated astrocytes of the CST at 2 weeks’ post-stroke was decreased by TST. At 5 weeks, post-stroke, the elevated ephrin-A5 levels were decreased in the ipsilateral pyramid and spinal cord by TST. Glial fibrillary acidic protein was upregulated concomitantly with the altered ephrin expression after stroke, and the expression of these proteins was attenuated by TST. These data suggest that TST alters the expression of ephrin ligands in the CST after stroke.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Departments of Medical Science, Konkuk University School of Medicine; Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jin-Hee Ahn
- Departments of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - In-Ae Choi
- Departments of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Ji-Hye Kim
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Bo-Ram Kim
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Jongmin Lee
- Rehabilitation Medicine, Konkuk University School of Medicine; Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
36
|
Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L, Morrione A, Iozzo RV. EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 2016; 215:687-703. [PMID: 27903606 PMCID: PMC5146997 DOI: 10.1083/jcb.201603079] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/12/2016] [Accepted: 10/19/2016] [Indexed: 01/03/2023] Open
Abstract
The receptor for the growth factor progranulin has remained unclear. Neill et al. show that the Ephrin receptor tyrosine kinase EphA2 is a functional signaling receptor for progranulin and mediates its effects in capillary morphogenesis and autoregulation. Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Atul Goyal
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Catherine Sharpe
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Elizabeth Natkanski
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main 60323, Germany
| | - Andrea Morrione
- Department of Urology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107.,Biology of Prostate Cancer Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 .,Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
37
|
Rosenberger AFN, Hilhorst R, Coart E, García Barrado L, Naji F, Rozemuller AJM, van der Flier WM, Scheltens P, Hoozemans JJM, van der Vies SM. Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer's Disease Pathology. J Alzheimers Dis 2016; 49:927-43. [PMID: 26519433 PMCID: PMC4927853 DOI: 10.3233/jad-150429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is characterized by a long pre-clinical phase (20–30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention.
Collapse
Affiliation(s)
- Andrea F N Rosenberger
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Elisabeth Coart
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | | | - Faris Naji
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Saskia M van der Vies
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear. J Neurosci 2016; 36:10151-62. [PMID: 27683910 DOI: 10.1523/jneurosci.0845-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/17/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.
Collapse
|
39
|
Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Sci Rep 2016; 6:29710. [PMID: 27405707 PMCID: PMC4942821 DOI: 10.1038/srep29710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/21/2016] [Indexed: 01/12/2023] Open
Abstract
Neuronal transmission is regulated by the local circuitry which is composed of principal neurons targeted at different subcellular compartments by a variety of interneurons. However, mechanisms that contribute to the subcellular localisation and maintenance of GABAergic interneuron terminals are poorly understood. Stabilization of GABAergic synapses depends on clustering of the postsynaptic scaffolding protein gephyrin and its interaction with the guanine nucleotide exchange factor collybistin. Lentiviral knockdown experiments in adult rats indicated that the receptor tyrosine kinase EphA7 is required for the stabilisation of basket cell terminals on proximal dendritic and somatic compartments of granular cells of the dentate gyrus. EphA7 deficiency and concomitant destabilisation of GABAergic synapses correlated with impaired long-term potentiation and reduced hippocampal learning. Reduced GABAergic innervation may be explained by an impact of EphA7 on gephyrin clustering. Overexpression or ephrin stimulation of EphA7 induced gephyrin clustering dependent on the mechanistic target of rapamycin (mTOR) which is an interaction partner of gephyrin. Gephyrin interactions with mTOR become released after mTOR activation while enhanced interaction with the guanine nucleotide exchange factor collybistin was observed in parallel. In conclusion, EphA7 regulates gephyrin clustering and the maintenance of inhibitory synaptic connectivity via mTOR signalling.
Collapse
|
40
|
Up-regulated ephrinB3/EphB3 expression in intractable temporal lobe epilepsy patients and pilocarpine induced experimental epilepsy rat model. Brain Res 2016; 1639:1-12. [DOI: 10.1016/j.brainres.2016.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/31/2016] [Accepted: 02/21/2016] [Indexed: 02/01/2023]
|
41
|
Burvenich IJG, Parakh S, Gan HK, Lee FT, Guo N, Rigopoulos A, Lee ST, Gong S, O'Keefe GJ, Tochon-Danguy H, Kotsuma M, Hasegawa J, Senaldi G, Scott AM. Molecular Imaging and Quantitation of EphA2 Expression in Xenograft Models with 89Zr-DS-8895a. J Nucl Med 2016; 57:974-80. [PMID: 26940768 DOI: 10.2967/jnumed.115.169839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Subtype A2 of the erythropoietin-producing hepatocellular tyrosine kinase (EphA2) cell surface receptor is expressed in a range of epithelial cancers. This study evaluated the molecular imaging of EphA2 expression in vivo in mouse tumor models using SPECT/MR and PET/MR and a humanized anti-EphA2 antibody, DS-8895a. METHODS DS-8895a was labeled with (111)In, (125)I, and (89)Zr and assessed for radiochemical purity, immunoreactivity (Lindmo analysis), antigen-binding affinity (Scatchard analysis), and serum stability in vitro. In vivo biodistribution, imaging, and pharmacokinetic studies were performed with SPECT/MR and PET/MR. A dose-escalation study was also performed to determine EphA2 receptor saturability through tissue and imaging quantitative analysis. RESULTS All conjugates demonstrated good serum stability and specific binding to EphA2-expressing cells in vitro. In vivo biodistribution studies showed high uptake of (111)In-CHX-A″-DTPA-DS-8895a and (89)Zr-Df-Bz-NCS-DS-8895a in EphA2-expressing xenograft models, with no specific uptake in normal tissues. In comparison, retention of (125)I-DS-8895a in tumors was lower because of internalization of the radioconjugate and dehalogenation. These results were confirmed by SPECT/MR and PET/MR. EphA2 receptor saturation was observed at the 30 mg/kg dose. CONCLUSION Molecular imaging of tumor uptake of DS-8895a allows noninvasive measurement of EphA2 expression in tumors in vivo and determination of receptor saturation. (89)Zr-Df-Bz-NCS-DS-8895a is suited for human bioimaging trials on the basis of superior imaging characteristics and will inform DS-8895a dose assessment and patient response evaluation in clinical trials.
Collapse
Affiliation(s)
- Ingrid J G Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia School of Cancer Medicine, La Trobe University, Melbourne, Australia Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia
| | - Fook-Thean Lee
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Sze-Ting Lee
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Sylvia Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Graeme J O'Keefe
- Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Henri Tochon-Danguy
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Masakatsu Kotsuma
- Translational Medicine and Clinical Pharmacology Department, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | - Jun Hasegawa
- Biologics Pharmacology Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan
| | - Giorgio Senaldi
- Department of Translational Medicine and Clinical Pharmacology, Daiichi-Sankyo Pharma Development, Edison, New Jersey; and
| | - Andrew M Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia Department of Medical Oncology, Austin Health, Heidelberg, Melbourne, Australia Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
42
|
Amegandjin CA, Jammow W, Laforest S, Riad M, Baharnoori M, Badeaux F, DesGroseillers L, Murai KK, Pasquale EB, Drolet G, Doucet G. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat. J Comp Neurol 2016; 524:2462-78. [PMID: 26780036 DOI: 10.1002/cne.23962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022]
Abstract
EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara A Amegandjin
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Wafaa Jammow
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Sylvie Laforest
- Centre hospitalier de l'Université Laval (CHUL), Québec, QC, Canada
| | - Mustapha Riad
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Moogeh Baharnoori
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| | - Frédérique Badeaux
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Luc DesGroseillers
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Keith K Murai
- Department of Neurology and Neurosurgery, McGill University, and Center for Research in Neuroscience, Montréal, QC, Canada
| | - Elena B Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, and Pathology Department, University of California, San Diego, La Jolla, California, USA
| | - Guy Drolet
- Centre hospitalier de l'Université Laval (CHUL), Québec, QC, Canada
| | - Guy Doucet
- Département de neurosciences and Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
43
|
Vrahnas C, Sims NA. EphrinB2 Signalling in Osteoblast Differentiation, Bone Formation and Endochondral Ossification. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0024-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH, Yu LN, Cao JL, Yan M. EphrinB–EphB signaling regulates spinal pain processing via PKCγ. Neuroscience 2015; 307:64-72. [DOI: 10.1016/j.neuroscience.2015.08.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/02/2015] [Accepted: 08/20/2015] [Indexed: 01/30/2023]
|
45
|
Schneider A, Puechberty J, Ng BL, Coubes C, Gatinois V, Tournaire M, Girard M, Dumont B, Bouret P, Magnetto J, Baghdadli A, Pellestor F, Geneviève D. Identification of disrupted AUTS2 and EPHA6 genes by array painting in a patient carrying a de novo balanced translocation t(3;7) with intellectual disability and neurodevelopment disorder. Am J Med Genet A 2015; 167A:3031-7. [PMID: 26333717 DOI: 10.1002/ajmg.a.37350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/12/2015] [Indexed: 11/09/2022]
Abstract
Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.
Collapse
Affiliation(s)
- Anouck Schneider
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | | | - Bee Ling Ng
- Cytometry Core Facility, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Vincent Gatinois
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Magali Tournaire
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Manon Girard
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Bruno Dumont
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Pauline Bouret
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - Julia Magnetto
- CRA, Département de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme, CHRU de Montpellier, France
| | - Amaria Baghdadli
- CRA, Département de Psychiatrie de l'Enfant et de l'Adolescent, Centre de Ressources Autisme, CHRU de Montpellier, France
| | - Franck Pellestor
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France
| | - David Geneviève
- Laboratoire de Génétique Chromosomique, Plateforme de puces à ADN, CHRU de Montpellier, France.,Département de Génétique Médicale, CHRU de Montpellier, France
| |
Collapse
|
46
|
GluA2 trafficking is involved in apoptosis of retinal ganglion cells induced by activation of EphB/EphrinB reverse signaling in a rat chronic ocular hypertension model. J Neurosci 2015; 35:5409-21. [PMID: 25834064 DOI: 10.1523/jneurosci.4376-14.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
EphB1, expressed in Müller cells, and ephrinB2, expressed in both Müller cells and retinal ganglion cells (RGCs), constitute an EphB/ephrinB reverse signaling in RGCs. Whether and how this reverse signaling is involved in RGC apoptosis in a rat chronic ocular hypertension (COH) model was investigated. In the COH model, both EphB1 and ephrinB2 were significantly increased and the reverse signaling was activated, which was accompanied by increased protein levels of phosphorylated (p) src, GluA2, and p-GluA2. Intravitreal injection of EphB2-Fc, an activator of ephrinB2, induced an increase in TUNEL-positive signals in normal retinae. A coimmunoprecipitation assay demonstrated direct interactions among ephrinB2, p-src, and GluA2. Moreover, in COH rats the expression of GluA2 proteins on the surface of retinal cells was decreased. Such GluA2 endocytosis could be prevented by preoperational intravitreal injection of 4-amino-3-(4-chlorophenyl)-1-(t-butyl)-1H-pyrazolo [3,4-d] pyrimidine (PP2), an inhibitor of src family tyrosine kinases, and possibly involved the protein interacting with C kinase 1 and phosphorylation of GluA2. In normal rats, intravitreal injection of EphB2-Fc caused changes in these protein levels similar to those observed in COH rats, which all could be avoided by preinjection of PP2. Patch-clamp experiments further showed that the current-voltage relationship of AMPA receptor-mediated EPSCs of RGCs exhibited stronger inward rectification in EphB2-Fc-injected rats. Furthermore, preinjection of PP2 or N-[3-[[4-[(3-aminopropyl)amino]butyl]amino]propyl]-1-naphthaleneacetamide trihydrochloride) (Naspm), a Ca(2+)-permeable GluA2-lacking AMPA receptor inhibitor, remarkably inhibited RGC apoptosis in either EphB2-Fc-injected or COH rats. Together, elevated GluA2 trafficking induced by activated EphB2/ephrinB2 reverse signaling likely contributes to RGC apoptosis in COH rats.
Collapse
|
47
|
Zhou XL, Wang Y, Zhang CJ, Yu LN, Cao JL, Yan M. COX-2 is required for the modulation of spinal nociceptive information related to ephrinB/EphB signalling. Eur J Pain 2015; 19:1277-87. [PMID: 25919495 DOI: 10.1002/ejp.657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 01/09/2023]
Affiliation(s)
- X.-L. Zhou
- Department of Anesthesiology; School of Medicine; The Second Affiliated Hospital; Zhejiang University; Hangzhou China
| | - Y. Wang
- Jiangsu Province Key Laboratory of Anesthesilogy; Xuzhou Medical College; China
| | - C.-J. Zhang
- Department of Gastroenterology; School of Medicine; The Second Affiliated Hospital; Zhejiang University; Hangzhou China
| | - L.-N. Yu
- Department of Anesthesiology; School of Medicine; The Second Affiliated Hospital; Zhejiang University; Hangzhou China
| | - J.-L. Cao
- Jiangsu Province Key Laboratory of Anesthesilogy; Xuzhou Medical College; China
| | - M. Yan
- Department of Anesthesiology; School of Medicine; The Second Affiliated Hospital; Zhejiang University; Hangzhou China
- Jiangsu Province Key Laboratory of Anesthesilogy; Xuzhou Medical College; China
| |
Collapse
|
48
|
Abstract
Eph receptor tyrosine kinases and the corresponding ephrin ligands play a pivotal role in the glioma development and progression. Aberrant protein expression levels of the Eph receptors and ephrins are often associated with higher tumor grade and poor prognosis. Their function in tumorigenesis is complex due to the intricate network of possible co-occurring interactions between neighboring tumor cells and tumor microenvironment. Both Ephs and ephrins localize on the surface of tumor cells, tumor vasculature, glioma stem cells, tumor cells infiltrating brain, and immune cells infiltrating tumors. They can both promote and inhibit tumorigenicity depending on the downstream forward and reverse signalling generated. All the above-mentioned features make the Ephs/ephrins system an intriguing candidate for the development of new therapeutic strategies in glioma treatment. This review will give a general overview on the structure and the function of Ephs and ephrins, with a particular emphasis on the state of the knowledge of their role in malignant gliomas.
Collapse
Affiliation(s)
- Sara Ferluga
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- To whom correspondence should be addressed: Waldemar Debinski, M.D., Ph.D., Director of Brain Tumor Center of Excellence, Thomas K. Hearn Jr. Brain Tumor Research Center, Professor of Neurosurgery, Radiation Oncology, and Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-9712, Fax: (336) 713-7639,
| |
Collapse
|
49
|
PKA is required for the modulation of spinal nociceptive information related to ephrinB-EphB signaling in mice. Neuroscience 2014; 284:546-554. [PMID: 25453775 DOI: 10.1016/j.neuroscience.2014.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/20/2014] [Accepted: 10/15/2014] [Indexed: 01/06/2023]
Abstract
EphB receptors and their ephrinB ligands are implicated in modulating of spinal nociceptive information processing. Here, we investigated whether protein kinase A (PKA), acts as a downstream effector, participates in the modulation spinal nociceptive information related to ephrinB-EphB signaling. Intrathecal injection of ephrinB2-Fc caused thermal hyperalgesia and mechanical allodynia, which were accompanied by increased expression of spinal PKA catalytic subunit (PKAca) and phosphorylated cAMP-response element-binding protein (p-CREB). Pre-treatment with H89, a PKA inhibitor, prevented the activation of CREB by ephrinB2-Fc. Inhibition of spinal PKA signaling prevented and reversed pain behaviors induced by the intrathecal injection of ephrinB2-Fc. Furthermore, blockade of the EphB receptors by intrathecal injection of EphB2-Fc reduced formalin-induced inflammatory, chronic constrictive injury (CCI)-induced neuropathic, and tibia bone cavity tumor cell implantation (TCI)-induced bone cancer pain behaviors, which were accompanied by decreased expression of spinal PKAca and p-CREB. Overall, these results confirmed the important involvement of PKA in the modulation of spinal nociceptive information related to ephrinBs-EphBs signaling. This finding may have important implications for exploring the roles and mechanisms of ephrinB-EphB signaling in physiologic and pathologic pain.
Collapse
|
50
|
Wurzman R, Forcelli PA, Griffey CJ, Kromer LF. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders. Behav Brain Res 2014; 278:115-28. [PMID: 25281279 DOI: 10.1016/j.bbr.2014.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms.
Collapse
Affiliation(s)
- Rachel Wurzman
- Georgetown University, Department of Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Department of Pharmacology and Physiology, Washington, DC 20057, United States of America.
| | - Patrick A Forcelli
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Department of Pharmacology and Physiology, Washington, DC 20057, United States of America
| | - Christopher J Griffey
- Georgetown University, Department of Biology, Washington, DC 20057, United States of America
| | - Lawrence F Kromer
- Georgetown University, Department of Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, United States of America
| |
Collapse
|