1
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
2
|
Straub JS, Patel ML, Nowotarski MS, Rao L, Turiansky ME, Fisher MPA, Helgeson ME. Evidence for a possible quantum effect on the formation of lithium-doped amorphous calcium phosphate from solution. Proc Natl Acad Sci U S A 2025; 122:e2423211122. [PMID: 40048269 PMCID: PMC11912366 DOI: 10.1073/pnas.2423211122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Differential isotope effects are an emerging tool for discovering possible nontrivial quantum mechanical effects within biological systems. However, it is often nearly impossible to elucidate the exact mechanisms by which a biological isotope effect manifests due to the complexity of these systems. As such, one proposed in vitro system of study for a quantum isotope effect is calcium phosphate aggregation, where symmetric calcium phosphate molecular species, known as Posner molecules, have been theorized to have phosphorus nuclear spin-dependent self-binding rates, which could be differently modulated by doping with stable lithium isotopes. Here, we present in vitro evidence for such a differential lithium isotope effect on the formation and aggregation of amorphous calcium phosphate from solution under certain conditions. Experiments confirm that lithium incorporates into amorphous calcium phosphate, with 7Li found to promote a greater abundance of observable calcium phosphate particles than 6Li under identical solution preparations. These in vitro results offer a potential explanation for in vivo biological studies that have shown differential lithium isotope effects. Given the importance of calcium phosphate in biological systems-ranging from mitochondrial signaling pathways to key biomineralization processes, as well as the proposed role of Posner molecules as a "neural qutrit"-these results present an important step in understanding calcium phosphate nucleation as well as the potential role of calcium phosphate for quantum biology and processing.
Collapse
Affiliation(s)
- Joshua S. Straub
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Manisha L. Patel
- Department of Physics, University of California, Santa Barbara, CA93106
| | | | - Lokeswara Rao
- Department of Chemistry, University of California, Santa Barbara, CA93106
| | - Mark E. Turiansky
- Department of Materials, University of California, Santa Barbara, CA93106
| | | | - Matthew E. Helgeson
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
3
|
Shaykevich DA, Pareja-Mejía D, Golde C, Pašukonis A, O'Connell LA. Neural and sensory basis of homing behaviour in the invasive cane toad, Rhinella marina. Proc Biol Sci 2025; 292:20250045. [PMID: 39999889 PMCID: PMC11858788 DOI: 10.1098/rspb.2025.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
The behavioural, sensory and neural bases of vertebrate navigation are primarily described in mammals and birds. While many studies have explored amphibian navigation, none have characterized brain activity associated with navigation in the wild. To address this knowledge gap, we conducted a study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive cane toads in Hawaii navigate home and observed homing following displacements of up to 1 km. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, further supporting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homologue to the hippocampus, is involved in homing. Our comparisons of neural activity revealed evidence supporting a conservation of neural structures associated with navigation across vertebrates consistent with neural models of amphibian spatial cognition from recent laboratory studies. Our work furthers our evolutionary understanding of spatial behaviour and cognition in vertebrates and lays a foundation for studying the behavioural, sensory and neural bases of navigation in an invasive amphibian.
Collapse
Affiliation(s)
- Daniel A. Shaykevich
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | - Chloe Golde
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
| | | | - Lauren A. O'Connell
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Shaykevich DA, Pareja-Mejía D, Golde C, Pašukonis A, O’Connell LA. Neural and sensory basis of homing behavior in the invasive cane toad, Rhinella marina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600658. [PMID: 38979178 PMCID: PMC11230440 DOI: 10.1101/2024.06.25.600658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The behavioral, sensory, and neural bases of vertebrate navigation are primarily described in mammals and birds. While many studies have explored amphibian navigation, none have characterized brain activity associated with navigation in the wild. To address this knowledge gap, we conducted a study on navigation in the cane toad, Rhinella marina. First, we performed a translocation experiment to describe how invasive cane toads in Hawai'i navigate home and observed homing following displacements of up to one kilometer. Next, we tested the effect of olfactory and magnetosensory manipulations on homing, as these senses are most commonly associated with amphibian navigation. We found that neither ablation alone prevents homing, further supporting that toad navigation is multimodal. Finally, we tested the hypothesis that the medial pallium, the amphibian homolog to the hippocampus, is involved in homing. Our comparisons of neural activity revealed evidence supporting a conservation of neural structures associated with navigation across vertebrates consistent with neural models of amphibian spatial cognition from recent laboratory studies. Our work furthers our evolutionary understanding of spatial behavior and cognition in vertebrates and lays a foundation for studying the behavioral, sensory, and neural bases of navigation in an invasive amphibian.
Collapse
Affiliation(s)
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, Stanford, CA, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | - Chloe Golde
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford CA, USA
| |
Collapse
|
5
|
Arai S, Kobayashi R, Adachi M, Kimura K, Masai H. Possibility of two-dimensional ordering of cryptochrome 4a from European robin. Biochem Biophys Res Commun 2024; 737:150513. [PMID: 39126860 DOI: 10.1016/j.bbrc.2024.150513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Cryptochrome (Cry) in some species could act as a quantum senser to detect the inclination angle of geomagnetic field, the function of which attributes the magnetic sensitivity of spins of unpaired electrons in radical pair (RP) in CRY generated by blue light irradiation. However, the effect of blue light on the structure and molecular behavior of Cry has not been well investigated. We conducted the size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS) analyses to inspect the molecular structure and behavior of cryptochrome 4a (ErCry4a) from European robin, a representative magnetosensory animal. The results indicated that ErCry4a could form flat-shape oligomers. Moreover, blue light irradiation induced the contraction of the ErCry4a molecule at the monomer scale and simultaneously accelerated the two-dimensional oligomerization of ErCry4a. This oligomerization may enhance the regularity of the two-dimensional arrangement of ErCry4a molecules, providing a positive effect for detecting the inclination angle.
Collapse
Affiliation(s)
- Shigeki Arai
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.
| | - Ryoma Kobayashi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Motoyasu Adachi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Koji Kimura
- Graduate School of Engineering Global College, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hirokazu Masai
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
6
|
Grüning G, Gerhards L, Wong SY, Kattnig DR, Solov'yov IA. The Effect of Spin Relaxation on Magnetic Compass Sensitivity in ErCry4a. Chemphyschem 2024; 25:e202400129. [PMID: 38668824 DOI: 10.1002/cphc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Indexed: 09/04/2024]
Abstract
This study explores the impact of thermal motion on the magnetic compass mechanism in migratory birds, focusing on the radical pair mechanism within cryptochrome photoreceptors. The coherence of radical pairs, crucial for magnetic field inference, is curbed by spin relaxation induced by intra-protein motion. Molecular dynamics simulations, density-functional-theory-based calculations, and spin dynamics calculations were employed, utilizing Bloch-Redfield-Wangsness (BRW) relaxation theory, to investigate compass sensitivity. Previous research hypothesized that European robin's cryptochrome 4a (ErCry4a) optimized intra-protein motion to minimize spin relaxation, enhancing magnetic sensing compared to the plant Arabidopsis thaliana's cryptochrome 1 (AtCry1). Different correlation times of the nuclear hyperfine coupling constants in AtCry1 and ErCry4a were indeed found, leading to distinct radical pair recombination yields in the two species, with ErCry4a showing optimized sensitivity. However, this optimization is likely negligible in realistic spin systems with numerous nuclear spins. Beyond insights in magnetic sensing, the study presents a detailed method employing molecular dynamics simulations to assess for spin relaxation effects on chemical reactions with realistically modelled protein motion, relevant for studying radical pair reactions at finite temperature.
Collapse
Affiliation(s)
- Gesa Grüning
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Luca Gerhards
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Siu Y Wong
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
7
|
Williams D. Eagle eyed or bird brained? Eye (Lond) 2023; 37:2426-2430. [PMID: 37353509 PMCID: PMC10397276 DOI: 10.1038/s41433-023-02568-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/25/2023] Open
Abstract
The importance of the visual system to birds for behaviours from feeding, mate choice, flying, navigation and determination of seasons, together with the presence of photoreceptors in the retina, the pineal and the brain, render the avian visual system a particularly fruitful model for understanding of eye-brain interactions. In this review we will particularly focus on the pigeon, since here we have a brain stereotactically mapped and a genome fully sequenced, together with a particular bird, the homing pigeon, with remarkable ability to navigate over hundreds of miles and return to exactly the same roosting site with exceptional precision. We might denigrate the avian species by the term bird brained, but here are animals with phenomenal abilities to use their exceptional vision, their eagle eyedness, to best advantage.
Collapse
|
8
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|
9
|
Grüning G, Wong SY, Gerhards L, Schuhmann F, Kattnig DR, Hore PJ, Solov’yov IA. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. J Am Chem Soc 2022; 144:22902-22914. [DOI: 10.1021/jacs.2c06233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Gesa Grüning
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Ilia A. Solov’yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstreet 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
10
|
Levitt BB, Lai HC, Manville AM. Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front Public Health 2022; 10:1000840. [PMID: 36505009 PMCID: PMC9732734 DOI: 10.3389/fpubh.2022.1000840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
There is enough evidence to indicate we may be damaging non-human species at ecosystem and biosphere levels across all taxa from rising background levels of anthropogenic non-ionizing electromagnetic fields (EMF) from 0 Hz to 300 GHz. The focus of this Perspective paper is on the unique physiology of non-human species, their extraordinary sensitivity to both natural and anthropogenic EMF, and the likelihood that artificial EMF in the static, extremely low frequency (ELF) and radiofrequency (RF) ranges of the non-ionizing electromagnetic spectrum are capable at very low intensities of adversely affecting both fauna and flora in all species studied. Any existing exposure standards are for humans only; wildlife is unprotected, including within the safety margins of existing guidelines, which are inappropriate for trans-species sensitivities and different non-human physiology. Mechanistic, genotoxic, and potential ecosystem effects are discussed.
Collapse
Affiliation(s)
- B. Blake Levitt
- National Association of Science Writers, Berkeley, CA, United States
| | - Henry C. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Albert M. Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington, DC, United States
| |
Collapse
|
11
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
12
|
Li Y, Sun C, Zhou H, Huang H, Chen Y, Duan X, Huang S, Li J. Extremely Low-Frequency Electromagnetic Field Impairs the Development of Honeybee (Apis cerana). Animals (Basel) 2022; 12:ani12182420. [PMID: 36139284 PMCID: PMC9495099 DOI: 10.3390/ani12182420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The ELF-EMF pollution generated by the increase in electrically powered devices and power lines, accompanied by economic development, has a widespread effect on surrounding organisms. Honeybees are one of the most important pollinators. The decline in the honeybee population caused by a variety factors, including EMFs, has attracted attention worldwide. It was already known that ELF-EMFs could impair the ability of learning and cognition, causing foraging bees to lose their ability to find their way home. The pollination ability of foraging bees is derived from the rearing quantity of larvae and continuous eclosion of new adult bees in the colony. However, the effect of ELF-EMFs on honeybee larvae is not clear. The aims and objectives of this study were therefore to investigate it. The results showed that ELF-EMF exposure decreases honeybee survival rate and body weight and extends the duration of development time. Transcriptome sequencing showed that ELF-EMF exposure decreases the biological process of nutrient and energy metabolism, impedes the degradation of larvae tissues and the rebuilding of pupae tissues in the metamorphosis process, and seriously interferes with the growth and development of honeybee larvae. This provides an experimental basis and new perspective for protecting honeybee populations from ELF-EMF pollution. Abstract Increasing ELF-EMF pollution in the surrounding environment could impair the cognition and learning ability of honeybees, posing a threat to the honeybee population and its pollination ability. In a social honeybee colony, the numbers of adult bees rely on the successful large-scale rearing of larvae and continuous eclosion of new adult bees. However, no studies exist on the influence of ELF-EMFs on honeybee larvae. Therefore, we investigated the survival rate, body weight, and developmental duration of first instar larvae continuously subjected to ELF-EMF exposure. Moreover, the transcriptome of fifth instar larvae were sequenced for analyzing the difference in expressed genes. The results showed that ELF-EMF exposure decreases the survival rate and body weight of both white-eye pupae and newly emerged adults, extends the duration of development time and seriously interferes with the process of metamorphosis and pupation. The transcriptome sequencing showed that ELF-EMF exposure decreases the nutrient and energy metabolism and impedes the degradation of larvae tissues and rebuilding of pupae tissues in the metamorphosis process. The results provide an experimental basis and a new perspective for the protection of honeybee populations from ELF-EMF pollution.
Collapse
Affiliation(s)
- Yingjiao Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaoxia Sun
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Zhou
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongji Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijie Chen
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
13
|
Mshenskaya N, Sinitsyna Y, Kalyasova E, Valeria K, Zhirova A, Karpeeva I, Ilin N. Influence of Schumann Range Electromagnetic Fields on Components of Plant Redox Metabolism in Wheat and Peas. PLANTS 2022; 11:plants11151955. [PMID: 35956432 PMCID: PMC9370302 DOI: 10.3390/plants11151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. ScR are the part of electromagnetic field (EMF) of Earth. The influence of ScR on biological systems is still insufficiently understood. The purpose of the study is to characterize the possible role of the plant cell redox metabolism regulating system in the Schumann Resonances EMF perception. Activity of catalase and superoxide dismutase, their isoenzyme structure, content of malondialdehyde, composition of polar lipids in leaf extracts of wheat and pea plants treated with short-time (30 min) and long-time (18 days) ELF EMF with a frequency of 7.8 Hz, 14.3 Hz, 20.8 Hz have been investigated. Short-time exposure ELF EMF caused more pronounced bio effects than long-time exposure. Wheat catalase turned out to be the most sensitive parameter to magnetic fields. It is assumed that the change in the activity of wheat catalase after a short-term ELF EMF may be associated with the ability of this enzyme to perceive the action of a weak EMF through calcium calmodulin and/or cryptochromic signaling systems.
Collapse
Affiliation(s)
- Natalia Mshenskaya
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
- Correspondence:
| | - Yulia Sinitsyna
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Ekaterina Kalyasova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Koshcheeva Valeria
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Anastasia Zhirova
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Irina Karpeeva
- Department of Biochemistry and Biotechnology, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (Y.S.); (E.K.); (K.V.); (A.Z.); (I.K.)
| | - Nikolay Ilin
- Earth’s Electromagnetic Environment Laboratory, Institute of Applied Physics of Russian Academy of Sciences, 603600 Nizhny Novgorod, Russia;
| |
Collapse
|
14
|
Arai S, Shimizu R, Adachi M, Hirai M. Magnetic field effects on the structure and molecular behavior of pigeon iron–sulfur protein. Protein Sci 2022; 31:e4313. [DOI: 10.1002/pro.4313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shigeki Arai
- Institute for Quantum Life Science National Institutes for Quantum Science and Technology Tokai Ibaraki Japan
| | - Rumi Shimizu
- Institute for Quantum Life Science National Institutes for Quantum Science and Technology Tokai Ibaraki Japan
| | - Motoyasu Adachi
- Institute for Quantum Life Science National Institutes for Quantum Science and Technology Tokai Ibaraki Japan
| | - Mitsuhiro Hirai
- Graduate School of Science and Technology Gunma University Maebashi Gunma Japan
| |
Collapse
|
15
|
Shaykevich DA, Pašukonis A, O'Connell LA. Long distance homing in the cane toad (Rhinella marina) in its native range. J Exp Biol 2021; 225:273860. [PMID: 34940881 PMCID: PMC8917446 DOI: 10.1242/jeb.243048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022]
Abstract
Many animals exhibit complex navigation over different scales and environments. Navigation studies in amphibians have largely focused on species with life histories that require accurate spatial movements, such as territorial poison frogs and migratory pond-breeding amphibians that show fidelity to mating sites. However, other amphibian species have remained relatively understudied, leaving open the possibility that well-developed navigational abilities are widespread. Here, we measured short-term space use in non-territorial, non-migratory cane toads (Rhinella marina) in their native range in French Guiana. After establishing site fidelity, we tested their ability to return home following translocations of 500 and 1000 m. Toads were able to travel in straight trajectories back to home areas, suggesting navigational abilities similar to those observed in amphibians with more complex spatial behavior. These observations break with the current paradigm of amphibian navigation and suggest that navigational abilities may be widely shared among amphibians. Summary: Translocation-homing experiments reveal that non-territorial, non-migratory Rhinella marina can navigate to home areas following displacements exceeding regular, natural movements, suggesting a previously unconsidered prevalence of navigational abilities amongst amphibians.
Collapse
Affiliation(s)
- Daniel A Shaykevich
- Stanford University, Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305, USA
| | - Andrius Pašukonis
- Stanford University, Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305, USA.,CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lauren A O'Connell
- Stanford University, Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Xu S, Kong X, Liu J. Expression of CRY2 Gene in the Brain Is Related to Human Navigation. FRONTIERS IN RADIOLOGY 2021; 1:731070. [PMID: 37492180 PMCID: PMC10365100 DOI: 10.3389/fradi.2021.731070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/18/2021] [Indexed: 07/27/2023]
Abstract
Navigation is a complex cognitive process. CRY2 gene has been proposed to play an important role in navigation behaviors in various non-human animal species. Utilizing a recently developed neuroimaging-transcriptomics approach, the present study reported a tentative link between the CRY2 gene and human navigation. Specifically, we showed a significant pattern similarity between CRY2 gene expression in the human brain and navigation-related neural activation in functional magnetic resonance imaging. To further illuminate the functionality of CRY2 in human navigation, we examined the correlation between CRY2 expression and various cognitive processes underlying navigation, and found high correlation of CRY2 expression with neural activity of multiple cognitive domains, particularly object and shape perception and spatial memory. Further analyses on the relation between the neural activity of human navigation and the expression maps of genes of two CRY2-related pathways, i.e., the magnetoreceptive and circadian-related functions, found a trend of correlation for the CLOCK gene, a core circadian regulator gene, suggesting that CRY2 may modulate human navigation through its role in circadian rhythm. This observation was further confirmed by a behavioral study where individuals with better circadian regularity in daily life showed better sense of direction. Taken together, our study presents the first neural evidence that links CRY2 with human navigation, possibly through the modulation of circadian rhythm.
Collapse
Affiliation(s)
- Shan Xu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Jia Liu
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Sharpe MA, Baskin DS, Pichumani K, Ijare OB, Helekar SA. Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells. Front Oncol 2021; 11:768758. [PMID: 34858847 PMCID: PMC8631329 DOI: 10.3389/fonc.2021.768758] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Electromagnetic fields (EMF) raise intracellular levels of reactive oxygen species (ROS) that can be toxic to cancer cells. Because weak magnetic fields influence spin state pairing in redox-active radical electron pairs, we hypothesize that they disrupt electron flow in the mitochondrial electron transport chain (ETC). We tested this hypothesis by studying the effects of oscillating magnetic fields (sOMF) produced by a new noninvasive device involving permanent magnets spinning with specific frequency and timing patterns. We studied the effects of sOMF on ETC by measuring the consumption of oxygen (O2) by isolated rat liver mitochondria, normal human astrocytes, and several patient derived brain tumor cells, and O2 generation/consumption by plant cells with an O2 electrode. We also investigated glucose metabolism in tumor cells using 1H and 13C nuclear magnetic resonance and assessed mitochondrial alterations leading to cell death by using fluorescence microscopy with MitoTracker™ and a fluorescent probe for Caspase 3 activation. We show that sOMF of appropriate field strength, frequency, and on/off profiles completely arrest electron transport in isolated, respiring, rat liver mitochondria and patient derived glioblastoma (GBM), meningioma and diffuse intrinsic pontine glioma (DIPG) cells and can induce loss of mitochondrial integrity. These changes correlate with a decrease in mitochondrial carbon flux in cancer cells and with cancer cell death even in the non-dividing phase of the cell cycle. Our findings suggest that rotating magnetic fields could be therapeutically efficacious in brain cancers such as GBM and DIPG through selective disruption of the electron flow in immobile ETC complexes.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States
| | - David S Baskin
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States.,Department of Neurosurgery, Weill Cornell Medical College, New York, NY, United States
| | - Kumar Pichumani
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States.,Department of Neurosurgery, Weill Cornell Medical College, New York, NY, United States
| | - Omkar B Ijare
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States
| | - Santosh A Helekar
- Kenneth R. Peak Center for Brain and Pituitary Tumor Treatment and Research, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States.,Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States.,Department of Neurosurgery, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
18
|
Ozturk N. Light-dependent reactions of animal circadian photoreceptor cryptochrome. FEBS J 2021; 289:6622-6639. [PMID: 34750956 DOI: 10.1111/febs.16273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Circadian rhythms are endogenous autonomous 24-h oscillations that are generated by a transcription-translation feedback loop (TTFL). In the positive arm of the TTFL, two transcription factors activate the expression of two genes of the negative arm as well as circadian clock-regulated genes. The circadian clocks are reset through photoreceptor proteins by sunlight in the early morning to keep synchrony with the geological clock. Among animal circadian photoreceptors, Drosophila Cryptochrome (DmCRY) has some unique properties because Drosophila has a single cryptochrome (CRY) that appears to have functions which are specific to organs or tissues, or even to a subset of cells. In mammals, CRYs are not photoreceptors but function in the TTFL, while insects have a light-insensitive mammalian-like CRY or a Drosophila-like photoreceptor CRY (or both). Here, we postulate that as being just one CRY in Drosophila, DmCRY might play different roles in different tissues/organs in a context-dependent manner. In addition to being a circadian photoreceptor/protein, attributing also a magnetoreception function to DmCRY has increased its workload. Considering that DmCRY senses photons as a photoreceptor but also can regulate many different events in a light-dependent manner, differential protein-protein interactions (PPIs) of DmCRY might play a critical role in the generation of such diverse outputs. Therefore, we need to add novel approaches in addition to the current ones to study multiple and context-dependent functions of DmCRY by adopting recently developed techniques. Successful identification of transient/fast PPIs on a scale of minutes would enhance our understanding of light-dependent and/or magnetoreception-associated reactions.
Collapse
Affiliation(s)
- Nuri Ozturk
- Molecular Biology and Genetics, Gebze Technical University, Turkey
| |
Collapse
|
19
|
Castello P, Jimenez P, Martino CF. The Role of Pulsed Electromagnetic Fields on the Radical Pair Mechanism. Bioelectromagnetics 2021; 42:491-500. [PMID: 34224591 DOI: 10.1002/bem.22358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 11/09/2022]
Abstract
In recent decades, the use of pulsed electromagnetic fields (PEMF) in therapeutics has been one of the main fields of activity in the bioelectromagnetics arena. Nevertheless, progress in this area has been hindered by the lack of consensus on a biophysical mechanism of interaction that can satisfactorily explain how low-level, non-thermal electromagnetic fields would be able to sufficiently affect chemistry as to elicit biological effects in living organisms. This specifically applies in cases where the induced electric fields are too small to generate a biological response of any consequence. A growing body of experimental observations that would explain the nature of these effects speaks strongly about the involvement of a theory known as the radical pair mechanism (RPM). This mechanism explains how a pair of reactive oxygen species with distinct chemical fate can be influenced by a low-level external magnetic field through Zeeman and hyperfine interactions. So far, a study of the effects of complex spatiotemporal signals within the context of the RPM has not been performed. Here, we present a computational investigation of such effects by utilizing a generic PEMF test signal and RPM models of different complexity. Surprisingly, our results show how substantially different chemical results can be obtained within ranges that depend on the specific orientation of the PEMF test signal with respect to the background static magnetic field, its waveform, and both of their amplitudes. These results provide a basis for explaining the distinctive biological relevance of PEMF signals on radical pair chemical reactions. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Pablo Castello
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina
| | - Pablo Jimenez
- Centro Atómico Bariloche, CONICET, CNEA, S. C. de Bariloche, Argentina
| | - Carlos F Martino
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
| |
Collapse
|
20
|
Zhou H, Yang S, Chen F. The Magnetic Receptor of Monascus ruber M7: Gene Clone and Its Heterologous Expression in Escherichia coli. Front Microbiol 2020; 11:1112. [PMID: 32636810 PMCID: PMC7318567 DOI: 10.3389/fmicb.2020.01112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/04/2020] [Indexed: 01/04/2023] Open
Abstract
It is well known that many organisms can perceive the magnetic field (MF), including the geomagnetic field, but how to feel MF is unclear. Recently, a study has claimed that a biological compass, namely a complex of the magnetic receptor (MagR) and blue light (BL) receptor (cryptochrome), has been found in Homo sapiens, Drosophila melanogaster, and Danaus plexippus, which may bring some new ideas to explore the mechanism of biomagnetism. Monascus spp. are edible filamentous fungi that can produce abundant beneficial secondary metabolites and have been used to produce food colorants for nearly 2000 years in the world, especially in China, Japan, and Korea. In this work, we firstly treated M. ruber M7 by BL (500 lux,465–467 nm), MF (5, 10, 30 mT), and the combination of MF and BL (MF-BL), respectively. The results revealed that, compared with the control (CK, neither BL nor MF), the MF alone had no effect on the growth and morphological characteristics of M7, but BL made the colonial diameters only 66.7% of CK’s and inhibited the formation of cleistothecia. Under MF-BL, the colony diameters were still 66.7% of CK’s, but the colonial growth and cleistothecia production inhibited by BL were partially restored. Then, we have found that the magR gene widely exists in the genomes of animals, plants, and microorganisms, and we have also discovered a magR gene in the M7 genome, hereinafter referred to mr-magR. Finally, the full-length cDNA of mr-magR was successfully cloned and expressed in Escherichia coli BL21 (DE3), and the Mr-MagR protein was purified by a Ni+-NTA column and identified by Western blot. These results have laid a foundation for further investigation on the relationship between Mr-MagR and BL receptor(s) that might exist in M7. According to a literature search, it is the first time to report magR in filamentous fungi.
Collapse
Affiliation(s)
- Hongyi Zhou
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuyan Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Shao Y, Tian HY, Zhang JJ, Kharrati-Koopaee H, Guo X, Zhuang XL, Li ML, Nanaie HA, Dehghani Tafti E, Shojaei B, Reza Namavar M, Sotoudeh N, Oluwakemi Ayoola A, Li JL, Liang B, Esmailizadeh A, Wang S, Wu DD. Genomic and Phenotypic Analyses Reveal Mechanisms Underlying Homing Ability in Pigeon. Mol Biol Evol 2020; 37:134-148. [PMID: 31501895 DOI: 10.1093/molbev/msz208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hang-Yu Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | | | - Elahe Dehghani Tafti
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bahador Shojaei
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Narges Sotoudeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adeola Oluwakemi Ayoola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shu Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Sjulstok E, Lüdemann G, Kubař T, Elstner M, Solov'yov IA. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome. Biophys J 2019; 114:2563-2572. [PMID: 29874607 DOI: 10.1016/j.bpj.2018.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Cryptochrome proteins are activated by the absorption of blue light, leading to the formation of radical pairs through electron transfer in the active site. Recent experimental studies have shown that once some of the amino acid residues in the active site of Xenopus laevis cryptochrome DASH are mutated, radical-pair formation is still observed. In this study, we computationally investigate electron-transfer pathways in the X. laevis cryptochrome DASH by extensively equilibrating a previously established homology model using molecular dynamics simulations and then mutating key amino acids involved in the electron transfer. The electron-transfer pathways are then probed by using tight-binding density-functional theory. We report the alternative electron-transfer pathways resolved at the molecular level and, through comparison of amino acid sequences for cryptochromes from different species, we demonstrate that one of these alternative electron-transfer pathways could be general for all cryptochrome DASH proteins.
Collapse
Affiliation(s)
- Emil Sjulstok
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Gesa Lüdemann
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ilia A Solov'yov
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Mino H. Modeling of spike trains in auditory nerves with self-exciting point processes of the von Mises type. BIOLOGICAL CYBERNETICS 2019; 113:347-356. [PMID: 31004189 DOI: 10.1007/s00422-019-00799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
This article presents the modeling of spike trains in auditory nerve fiber (ANF) models with a one-memory self-exciting point process (SEPP) of the von Mises type. The ANF models were acoustically stimulated by a synaptic current of inner hair cells, or electrically stimulated by sinusoidally amplitude-modulated pulsatile waveforms. It has been shown that the parameters of one-memory SEPP of the von Mises type could be estimated by numerically maximizing the likelihood function from sample realizations of the spike trains in response to acoustic or electric stimulus. Furthermore, it was found that period histograms of the one-memory SEPP generated artificially on the basis of the estimated von Mises parameters agreed well with those of acoustic or electric stimulus, by performing the uniform-scores test. It implies that the waveforms of pulsatile electric stimuli should be selected such that the spike trains can be represented by one-memory SEPP of the von Mises type with appropriate parameters, efficiently carrying information to the cochlear implant user's brain, like that in acoustic stimulation of the healthy ear. The findings presented in this paper may play an important role in determining optimal parameters of pulsatile electric stimuli by using one-memory SEPP of the von Mises type, and further in the design of better cochlear prostheses.
Collapse
Affiliation(s)
- Hiroyuki Mino
- Department of Electrical Engineering, Kanto Gakuin University, 1-50-1 Mutsuura E., Kanazawa-ku, Yokohama, 236-8501, Japan.
| |
Collapse
|
24
|
Kimø SM, Friis I, Solov'yov IA. Atomistic Insights into Cryptochrome Interprotein Interactions. Biophys J 2018; 115:616-628. [PMID: 30078611 DOI: 10.1016/j.bpj.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
It is striking that the mechanism by which birds sense geomagnetic fields during the biannual migration seasons is not entirely understood. A protein believed to be responsible for avian magnetoreception is the flavoprotein cryptochrome (CRY), which fulfills many of the criteria for a magnetic field sensor. Some experiments, however, indicate that magnetoreception in birds may be disturbed by extremely weak radio frequency fields, an effect that likely cannot be described by an isolated CRY protein. An explanation can possibly be delivered if CRY binds to another protein inside a cell that would possess certain biochemical properties, and it is, therefore, important to identify possible intracellular CRY interaction partners. The goal of this study is to investigate a possible interaction between CRY4 and the iron-sulfur-containing assembly protein (ISCA1) from Erithacus rubecula (European robin), which has recently been proposed to be relevant for magnetic field sensing. The interaction between the proteins is established through classical molecular dynamics simulations for several possible protein-docking modes. The analysis of these simulations concludes that the ISCA1 complex and CRY4 are capable of binding; however, the peculiarities of this binding argue strongly against ISCA1 as relevant for magnetoreception.
Collapse
Affiliation(s)
- Sarafina M Kimø
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ida Friis
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
25
|
Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W. The Geomagnetic Field Is a Compass Cue in Cataglyphis Ant Navigation. Curr Biol 2018; 28:1440-1444.e2. [DOI: 10.1016/j.cub.2018.03.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
|
26
|
Meier CM, Karaardıç H, Aymí R, Peev SG, Bächler E, Weber R, Witvliet W, Liechti F. What makes Alpine swift ascend at twilight? Novel geolocators reveal year-round flight behaviour. Behav Ecol Sociobiol 2018; 72:45. [PMID: 29568149 PMCID: PMC5847200 DOI: 10.1007/s00265-017-2438-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/27/2022]
Abstract
Abstract Studying individual flight behaviour throughout the year is indispensable to understand the ecology of a bird species. Recent development in technology allows now to track flight behaviour of small long-distance bird migrants throughout its annual cycle. The specific flight behaviour of twilight ascents in birds has been documented in a few studies, but only during a short period of the year, and never quantified on the individual level. It has been suggested that twilight ascents might be a role in orientation and navigation. Previous studies had reported the behaviour only near the breeding site and during migration. We investigated year-round flight behaviour of 34 individual Alpine swifts (Apus melba) of four different populations in relation to twilight ascents. We recorded twilight ascents all around the year and found a twofold higher frequency in ascents during the non-breeding residence phase in Africa compared to all other phases of the year. Dawn ascents were twice as common as dusk ascents and occurred mainly when atmospheric conditions remained stable over a 24-h period. We found no conclusive support that twilight ascents are essential for recalibration of compass cues and landmarks. Data on the wing flapping intensity revealed that high activity at twilight occurred more regularly than the ascents. We therefore conclude that alpine swift generally increase flight activity—also horizontal flight—during the twilight period and we suppose that this increased flight activity, including ascents, might be part of social interactions between individuals. Significance statement Year-round flight altitude tracking with a light-weight multi-sensor tag reveals that Alpine swifts ascend several hundred meters high at twilight regularly. The reason for this behaviour remains unclear and the low-light conditions at this time of the day preclude foraging as a possibility. The frequency and altitude of twilight ascents were highest during the non-breeding period, intermediate during migration and low for active breeders during the breeding phase. We discuss our findings in the context of existing hypotheses on twilight ascent and we propose an additional hypothesis which links twilight ascent with social interaction between flock members. Our study highlights how flight behaviour of individuals of a migratory bird species can be studied even during the sparsely documented non-breeding period. Electronic supplementary material The online version of this article (10.1007/s00265-017-2438-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christoph M Meier
- 1Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Hakan Karaardıç
- Elementary Science Education Department, Education Faculty, Alanya Alaaddin Keykubat University, 07400 Alanya, Turkey
| | - Raül Aymí
- Catalan Ornithological Institute, Museu de Ciències Naturals de Barcelona, Pl. Leonardo da Vinci, 4-5, 08019 Barcelona, Spain
| | - Strahil G Peev
- 4Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2, Gagarin Street, 1113 Sofia, Bulgaria
| | - Erich Bächler
- 1Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Roger Weber
- 5Bern University of Applied Sciences Engineering and Information Technology, Jlcoweg 1, 3400 Burgdorf, Switzerland
| | - Willem Witvliet
- Willem Witvliet, Zuidersloot 16, 1741 Broek op Langedijk, HL Netherlands
| | - Felix Liechti
- 1Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| |
Collapse
|
27
|
Tackenberg MC, McMahon DG. Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast 2018; 2018:8217345. [PMID: 29552032 PMCID: PMC5818903 DOI: 10.1155/2018/8217345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Though the seasonal response of organisms to changing day lengths is a phenomenon that has been scientifically reported for nearly a century, significant questions remain about how photoperiod is encoded and effected neurobiologically. In mammals, early work identified the master circadian clock, the suprachiasmatic nuclei (SCN), as a tentative encoder of photoperiodic information. Here, we provide an overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN's role in a putative brain network controlling photoperiodic input and output. Lastly, we discuss the importance of photoperiodic research in the context of tangible benefits to human health that have been realized through this research as well as challenges that remain.
Collapse
Affiliation(s)
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Abstract
Evolution has equipped life on our planet with an array of extraordinary senses, but perhaps the least understood is magnetoreception. Despite compelling behavioral evidence that this sense exists, the cells, molecules, and mechanisms that mediate sensory transduction remain unknown. So how could animals detect magnetic fields? We introduce and discuss 3 concepts that attempt to address this question: (1) a mechanically sensitive magnetite-based magnetoreceptor, (2) a light-sensitive chemical-based mechanism, and (3) electromagnetic induction within accessory structures. In discussing the merits and issues with each of these ideas, we draw on existing precepts in sensory biology. We argue that solving this scientific mystery will require the development of new genetic tools in magnetosensitive species, coupled with an interdisciplinary approach that bridges physics, behavior, anatomy, physiology, molecular biology, and genetics.
Collapse
|
29
|
Krichen S, Liu L, Sharma P. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals. Phys Rev E 2017; 96:042404. [PMID: 29347612 DOI: 10.1103/physreve.96.042404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 11/07/2022]
Abstract
Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.
Collapse
Affiliation(s)
- S Krichen
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - L Liu
- Department of Mathematics and Department of Mechanical Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P Sharma
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA.,Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
30
|
Insight into shark magnetic field perception from empirical observations. Sci Rep 2017; 7:11042. [PMID: 28887553 PMCID: PMC5591188 DOI: 10.1038/s41598-017-11459-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
Elasmobranch fishes are among a broad range of taxa believed to gain positional information and navigate using the earth’s magnetic field, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making significantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S−). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic field, with no difference seen in approaches to the target under the S+ and S− conditions (p = 0.375). We provide quantified detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic field perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks.
Collapse
|
31
|
Nohr D, Franz S, Rodriguez R, Paulus B, Essen LO, Weber S, Schleicher E. Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids. Biophys J 2017; 111:301-311. [PMID: 27463133 DOI: 10.1016/j.bpj.2016.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
The cryptochrome/photolyase protein family possesses a conserved triad of tryptophans that may act as a molecular wire to transport electrons from the protein surface to the FAD cofactor for activation and/or signaling-state formation. Members from the animal (and animal-like) cryptochrome subclade use this process in a light-induced fashion in a number of exciting responses, such as the (re-)setting of circadian rhythms or magnetoreception; however, electron-transfer pathways have not been explored in detail yet. Therefore, we present an in-depth time-resolved optical and electron-paramagnetic resonance spectroscopic study of two cryptochromes from Chlamydomonas reinhardtii and Drosophila melanogaster. The results do not only reveal the existence of a fourth, more distant aromatic amino acid that serves as a terminal electron donor in both proteins, but also show that a tyrosine is able to fulfill this very role in Chlamydomonas reinhardtii cryptochrome. Additionally, exchange of the respective fourth aromatic amino acid to redox-inactive phenylalanines still leads to light-induced radical pair formation; however, the lifetimes of these species are drastically reduced from the ms- to the μs-range. The results presented in this study open up a new chapter, to our knowledge, in the diversity of electron-transfer pathways in cryptochromes. Moreover, they could explain unique functions of animal cryptochromes, in particular their potential roles in magnetoreception because magnetic-field effects of light-induced radical pairs strongly depend on distance and orientation parameters.
Collapse
Affiliation(s)
- Daniel Nohr
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Ryan Rodriguez
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Bernd Paulus
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | | | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
König SU, Schumann F, Keyser J, Goeke C, Krause C, Wache S, Lytochkin A, Ebert M, Brunsch V, Wahn B, Kaspar K, Nagel SK, Meilinger T, Bülthoff H, Wolbers T, Büchel C, König P. Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception. PLoS One 2016; 11:e0166647. [PMID: 27959914 PMCID: PMC5154504 DOI: 10.1371/journal.pone.0166647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/28/2016] [Indexed: 11/19/2022] Open
Abstract
Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation.
Collapse
Affiliation(s)
- Sabine U. König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Frank Schumann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris, France
| | - Johannes Keyser
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Caspar Goeke
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Carina Krause
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Susan Wache
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Aleksey Lytochkin
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Manuel Ebert
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Vincent Brunsch
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Basil Wahn
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Kai Kaspar
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- Department of Psychology, University of Cologne, Cologne, Germany
| | - Saskia K. Nagel
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - Tobias Meilinger
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - Thomas Wolbers
- Aging & Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christian Büchel
- NeuroImage Nord, Department of Systems Neuroscience, Hamburg University Hospital Eppendorf, Hamburg, Germany
| | - Peter König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Affiliation(s)
- Reto Gieré
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316
| |
Collapse
|
34
|
Worster S, Kattnig DR, Hore PJ. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception. J Chem Phys 2016; 145:035104. [DOI: 10.1063/1.4958624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Susannah Worster
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Daniel R. Kattnig
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
35
|
Ilieva M, Bianco G, Åkesson S. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements. Biol Open 2016; 5:272-8. [PMID: 26883627 PMCID: PMC4810738 DOI: 10.1242/bio.014779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds, fat accumulation before and during migration has been shown to be endogenously controlled and tuned by, among other factors, the Earth's magnetic field. However, our knowledge about the influence of the geomagnetic field on the fuelling in migrating birds is still limited to just a few nocturnally migrating passerine species. In order to study if variations of the magnetic field can also influence the fuelling of both day- and night-migrating passerines, we caught first-year dunnocks (Prunella modularis) and subjected them to three magnetic field conditions simulated by a system of magnetic coils: (1) local geomagnetic field of southern Sweden, (2) magnetic field corresponding to the centre of the expected wintering area, and (3) magnetic field met at the northern limit of the species' breeding distribution. We did not find a difference in mass increase between the birds kept in a local magnetic field and a field resembling their wintering area, irrespectively of the mode of magnetic displacement, i.e. direct or step-wise. However, the dunnocks magnetically displaced north showed a lower rate of fuelling in comparison to the control group, probably due to elevated activity. Compared with previous studies, our results suggest that the fuelling response to magnetic displacements during the migration period is specific to the eco-physiological situation. Future studies need to address if there is an effect of magnetic field manipulation on the level of migratory activity in dunnocks and how widespread the influence of local geomagnetic field parameters is on fuelling decisions in different bird species, which have different migratory strategies, distances and migration history. Summary: Fuelling rate in migrating dunnocks, a predominantly diurnal migratory songbird is influenced by a manipulated magnetic field when the birds are magnetically displaced north, but not south, in autumn.
Collapse
Affiliation(s)
- Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, Lund SE-223 62, Sweden Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, Lund SE-223 62, Sweden
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, Lund SE-223 62, Sweden
| |
Collapse
|
36
|
Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, Hao J, Deng L, Yan X, Dong X, Zhao Z, Jiang T, Wang HW, Luo SJ, Xie C. A magnetic protein biocompass. NATURE MATERIALS 2016; 15:217-226. [PMID: 26569474 DOI: 10.1038/nmat4484] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
The notion that animals can detect the Earth's magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.
Collapse
Affiliation(s)
- Siying Qin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Celi Yang
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yunfeng Dou
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhongmin Liu
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peng Zhang
- Key Laboratory of Protein &Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - He Yu
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Huang
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Feng
- Key Laboratory of Protein &Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junfeng Hao
- Center for Experimental Animal Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Hao
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lizong Deng
- Key Laboratory of Protein &Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiyun Yan
- Key Laboratory of Protein &Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Dong
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongxian Zhao
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Taijiao Jiang
- Key Laboratory of Protein &Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu-Jin Luo
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Altshuler DL, Bahlman JW, Dakin R, Gaede AH, Goller B, Lentink D, Segre PS, Skandalis DA. The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2015-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bird flight is a remarkable adaptation that has allowed the approximately 10 000 extant species to colonize all terrestrial habitats on earth including high elevations, polar regions, distant islands, arid deserts, and many others. Birds exhibit numerous physiological and biomechanical adaptations for flight. Although bird flight is often studied at the level of aerodynamics, morphology, wingbeat kinematics, muscle activity, or sensory guidance independently, in reality these systems are naturally integrated. There has been an abundance of new studies in these mechanistic aspects of avian biology but comparatively less recent work on the physiological ecology of avian flight. Here we review research at the interface of the systems used in flight control and discuss several common themes. Modulation of aerodynamic forces to respond to different challenges is driven by three primary mechanisms: wing velocity about the shoulder, shape within the wing, and angle of attack. For birds that flap, the distinction between velocity and shape modulation synthesizes diverse studies in morphology, wing motion, and motor control. Recently developed tools for studying bird flight are influencing multiple areas of investigation, and in particular the role of sensory systems in flight control. How sensory information is transformed into motor commands in the avian brain remains, however, a largely unexplored frontier.
Collapse
Affiliation(s)
- Douglas L. Altshuler
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph W. Bahlman
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Roslyn Dakin
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea H. Gaede
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Benjamin Goller
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Paolo S. Segre
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dimitri A. Skandalis
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
38
|
Long X, Ye J, Zhao D, Zhang SJ. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull (Beijing) 2015; 60:2107-2119. [PMID: 26740890 PMCID: PMC4692962 DOI: 10.1007/s11434-015-0902-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/15/2023]
Abstract
Current neuromodulation techniques such as optogenetics and deep-brain stimulation are transforming basic and translational neuroscience. These two neuromodulation approaches are, however, invasive since surgical implantation of an optical fiber or wire electrode is required. Here, we have invented a non-invasive magnetogenetics that combines the genetic targeting of a magnetoreceptor with remote magnetic stimulation. The non-invasive activation of neurons was achieved by neuronal expression of an exogenous magnetoreceptor, an iron-sulfur cluster assembly protein 1 (Isca1). In HEK-293 cells and cultured hippocampal neurons expressing this magnetoreceptor, application of an external magnetic field resulted in membrane depolarization and calcium influx in a reproducible and reversible manner, as indicated by the ultrasensitive fluorescent calcium indicator GCaMP6s. Moreover, the magnetogenetic control of neuronal activity might be dependent on the direction of the magnetic field and exhibits on-response and off-response patterns for the external magnetic field applied. The activation of this magnetoreceptor can depolarize neurons and elicit trains of action potentials, which can be triggered repetitively with a remote magnetic field in whole-cell patch-clamp recording. In transgenic Caenorhabditis elegans expressing this magnetoreceptor in myo-3-specific muscle cells or mec-4-specific neurons, application of the external magnetic field triggered muscle contraction and withdrawal behavior of the worms, indicative of magnet-dependent activation of muscle cells and touch receptor neurons, respectively. The advantages of magnetogenetics over optogenetics are its exclusive non-invasive, deep penetration, long-term continuous dosing, unlimited accessibility, spatial uniformity and relative safety. Like optogenetics that has gone through decade-long improvements, magnetogenetics, with continuous modification and maturation, will reshape the current landscape of neuromodulation toolboxes and will have a broad range of applications to basic and translational neuroscience as well as other biological sciences. We envision a new age of magnetogenetics is coming.
Collapse
Affiliation(s)
- Xiaoyang Long
- />School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Jing Ye
- />School of Medicine, Tsinghua University, Beijing, 100084 China
- />IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
| | - Di Zhao
- />School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Sheng-Jia Zhang
- />School of Life Sciences, Tsinghua University, Beijing, 100084 China
- />IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084 China
- />Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
39
|
Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H. Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J R Soc Interface 2015; 11:20140777. [PMID: 25232052 DOI: 10.1098/rsif.2014.0777] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Magnetoreception remains one of the few unsolved mysteries in sensory biology. The upper beak, which is innervated by the ophthalmic branch of the trigeminal nerve (V1), has been suggested to contain magnetic sensors based on ferromagnetic structures. Recently, its existence in pigeons has been seriously challenged by studies suggesting that the previously described iron-accumulations are macrophages, not magnetosensitive nerve endings. This raised the fundamental question of whether V1 is involved in magnetoreception in pigeons at all. We exposed pigeons to either a constantly changing magnetic field (CMF), to a zero magnetic field providing no magnetic information, or to CMF conditions after V1 was cut bilaterally. Using immediate early genes as a marker of neuronal responsiveness, we report that the trigeminal brainstem nuclei of pigeons, which receive V1 input, are activated under CMF conditions and that this neuronal activation disappears if the magnetic stimuli are removed or if V1 is cut. Our data suggest that the trigeminal system in pigeons is involved in processing magnetic field information and that V1 transmits this information from currently unknown, V1-associated magnetosensors to the brain.
Collapse
Affiliation(s)
- Nele Lefeldt
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Dominik Heyers
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Nils-Lasse Schneider
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Svenja Engels
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Dana Elbers
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Henrik Mouritsen
- AG Neurosensorik/Animal Navigation, Institute of Biological and Environmental Sciences, University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
40
|
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states. FEBS J 2015; 282:3175-89. [PMID: 25879256 DOI: 10.1111/febs.13299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 01/05/2023]
Abstract
Drosophila melanogaster cryptochrome is one of the model proteins for animal blue-light photoreceptors. Using time-resolved and steady-state optical spectroscopy, we studied the mechanism of light-induced radical-pair formation and decay, and the photoreduction of the FAD cofactor. Exact kinetics on a microsecond to minutes timescale could be extracted for the wild-type protein using global analysis. The wild-type exhibits a fast photoreduction reaction from the oxidized FAD to the FAD(•-) state with a very positive midpoint potential of ~ +125 mV, although no further reduction could be observed. We could also demonstrate that the terminal tryptophan of the conserved triad, W342, is directly involved in electron transfer; however, photoreduction could not be completely inhibited in a W342F mutant. The investigation of another mutation close to the FAD cofactor, C416N, rather unexpectedly reveals accumulation of a protonated flavin radical on a timescale of several seconds. The obtained data are critically discussed with the ones obtained from another protein, Escherichia coli photolyase, and we conclude that the amino acid opposite N(5) of the isoalloxazine moiety of FAD is able to (de)stabilize the protonated FAD radical but not to significantly modulate the kinetics of any light-inducted reactions.
Collapse
Affiliation(s)
- Bernd Paulus
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Csaba Bajzath
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie Université de Strasbourg, France
| | - Lorenz Heidinger
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Viktoria Kromm
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | | | - Ulrike Benz
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Lisa Mann
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Patricia Stehle
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie Université de Strasbourg, France
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
41
|
Michael N, Löwel S, Bischof HJ. Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata). PLoS One 2015; 10:e0124917. [PMID: 25853253 PMCID: PMC4390349 DOI: 10.1371/journal.pone.0124917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
The visual wulst of the zebra finch comprises at least two retinotopic maps of the contralateral eye. As yet, it is not known how much of the visual field is represented in the wulst neuronal maps, how the organization of the maps is related to the retinal architecture, and how information from the ipsilateral eye is involved in the activation of the wulst. Here, we have used autofluorescent flavoprotein imaging and classical anatomical methods to investigate such characteristics of the most posterior map of the multiple retinotopic representations. We found that the visual wulst can be activated by visual stimuli from a large part of the visual field of the contralateral eye. Horizontally, the visual field representation extended from -5° beyond the beak tip up to +125° laterally. Vertically, a small strip from -10° below to about +25° above the horizon activated the visual wulst. Although retinal ganglion cells had a much higher density around the fovea and along a strip extending from the fovea towards the beak tip, these areas were not overrepresented in the wulst map. The wulst area activated from the foveal region of the ipsilateral eye, overlapped substantially with the middle of the three contralaterally activated regions in the visual wulst, and partially with the other two. Visual wulst activity evoked by stimulation of the frontal visual field was stronger with contralateral than with binocular stimulation. This confirms earlier electrophysiological studies indicating an inhibitory influence of the activation of the ipsilateral eye on wulst activity elicited by stimulating the contralateral eye. The lack of a foveal overrepresentation suggests that identification of objects may not be the primary task of the zebra finch visual wulst. Instead, this brain area may be involved in the processing of visual information necessary for spatial orientation.
Collapse
Affiliation(s)
- Neethu Michael
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany
- * E-mail:
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
42
|
Todorović D, Perić-Mataruga V, Mirčić D, Ristić-Djurović J, Prolić Z, Petković B, Savić T. Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong static magnetic field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5305-5314. [PMID: 25475617 DOI: 10.1007/s11356-014-3910-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
As an ecological factor, a magnetic field can affect insects causing a wide range of responses. The main purpose of this study was to analyze the fitness components (postembryonic development and viability of individuals) and the antioxidant defense (superoxide dismutase, catalase, and total glutathione) in laboratory strains of Drosophila subobscura, originating from oak and beech forests after exposure to the strong static magnet (2.4 T, VINCY Cyclotron magnet). The first instar larvae were placed near the north pole (N group) or the south pole (S group) of the magnet for 2 h. Oak and beech populations of D. subobscura had longer development time and lower viability in N and S groups compared to controls. These differences were significant only in S group of oak population and in N group of beech population. Total glutathione content was significantly decreased in both exposed groups of oak population, while catalase activity was significantly increased in both exposed groups of beech population. Being significantly decreased in both exposed groups of oak population and significantly increased in S group of beech population in comparison to controls, superoxide dismutase activity was observed in different values. According to the results, it can be stated that applied static magnetic field could be considered a potential stressor influencing the fitness components and antioxidant defense in Drosophila flies.
Collapse
Affiliation(s)
- Dajana Todorović
- Institute for Biological Research, University of Belgrade, 142 Despota Stefana Blvd., Belgrade, 11060, Serbia,
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang J, Du X, Pan W, Wang X, Wu W. Photoactivation of the cryptochrome/photolyase superfamily. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Todorović D, Prolić Z, Petković B, Kalauzi A. Effects of two different waveforms of ELF MF on bioelectrical activity of antennal lobe neurons of Morimus funereus (Insecta, Coleoptera). Int J Radiat Biol 2015; 91:435-42. [PMID: 25585816 DOI: 10.3109/09553002.2015.1004467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE External magnetic fields (MF) interact with organisms at all levels, including the nervous system. Bioelectrical activity of antennal lobe neurons of adult Morimus funereus was analyzed under the influence of extremely low frequency MF (ELF MF, 50 Hz, 2 mT) of different characteristics (exposure duration and waveform). MATERIAL AND METHODS Neuronal activity (background/neuronal population and those nearest to the recording electrode) in adult longhorn beetles was registered through several phases of exposure to the sine wave and square wave MF for 5, 10 and 15 min. RESULTS The sine wave MF, regardless of the exposure duration, did not change the reversibility factor of antennal lobe neuronal activity in adult M. funereus. In contrast, reversibility factors of the nearest neurons were significantly changed after the exposure to square wave MF for 10 and 15 min. CONCLUSION M. funereus individuals are sensitive to both sine wave and square wave ELF MF (50 Hz, 2 mT) of different duration, whereby their reactions depend on the characteristics of the applied MF and specificity of each individual.
Collapse
Affiliation(s)
- Dajana Todorović
- Institute for Biological Research, University of Belgrade , Belgrade , Serbia
| | | | | | | |
Collapse
|
45
|
Ramírez E, Marín G, Mpodozis J, Letelier JC. Extracellular recordings reveal absence of magneto sensitive units in the avian optic tectum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:983-96. [PMID: 25281335 PMCID: PMC4237910 DOI: 10.1007/s00359-014-0947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
There is a consensus that birds detect the earth's magnetic field and use some of its features for orientation and homing purposes. Since the late 1960s, when the first solid behavioral evidence of magnetoreception was obtained, much research has been devoted to describing the ethological aspects of this behavior. The neurophysiological basis of magnetoreception has been much less studied, although a frequently cited 1986 report described a high prevalence (70 %) of magneto-sensitive neurons in the pigeon optic tectum with high signal-to-noise ratios (Semm and Demaine, J Comp Physiol A 159:619-625, 1986). Here, we repeated these neurophysiological experiments using anesthetized as well as awake pigeons and new recording techniques. Our data indicate that magneto-sensitive units do not exist in the avian tectum.
Collapse
Affiliation(s)
- Edgardo Ramírez
- Department of Biology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile,
| | | | | | | |
Collapse
|
46
|
Brown C. Fish intelligence, sentience and ethics. Anim Cogn 2014; 18:1-17. [PMID: 24942105 DOI: 10.1007/s10071-014-0761-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 01/21/2023]
Abstract
Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people's perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal's intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any non-human vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate.
Collapse
Affiliation(s)
- Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia,
| |
Collapse
|
47
|
Du XL, Wang J, Pan WS, Liu QJ, Wang XJ, Wu WJ. Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons. Photochem Photobiol 2014; 90:989-96. [PMID: 24689535 DOI: 10.1111/php.12276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022]
Abstract
Cryptochromes are suggested to be involved in the bird magnetoreception based on the radical pair mechanism (RPM), a well established theory of weak magnetic field effects on chemical reactions. Two members of cryptochrome/photolyase family were found to respond to magnetic field, however, no direct responses of bird cryptochrome to magnetic field as weak as the Earth's magnetic field have been obtained so far. In this study, we used transient fluorescence spectroscopy to characterize the weak magnetic field effects of bird cryptochromes. To do this, we cloned the cryptochrome 1 gene (clCRY1) from the retina of homing pigeons (Columba livia), expressed it in insect Sf9 cells and analyzed the transient fluorescence of purified clCRY1 by application of 45-300 μT magnetic fields. The flavin adenine dinucleotide (FADox ) and glucose oxidase (GOD) in PBS buffer were set as controls which could be excited by light to generate radicals, but would not be sensitive to magnetic field. We observed that the transient fluorescence spectra of clCRY1 were sensitive to the applied magnetic field at room temperature. Our result provides a new proof of the cryptochrome-based model of avian magnetoreception in vitro.
Collapse
Affiliation(s)
- Xian-li Du
- Department of Chemistry and Biology, National University of Defense Technology, Changsha, China
| | | | | | | | | | | |
Collapse
|
48
|
Tiersch M, Guerreschi GG, Clausen J, Briegel HJ. Approaches to measuring entanglement in chemical magnetometers. J Phys Chem A 2013; 118:13-20. [PMID: 24372396 PMCID: PMC3888248 DOI: 10.1021/jp408569d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemical magnetometers are radical
pair systems such as solutions of pyrene and N,N-dimethylaniline (Py–DMA) that show magnetic field
effects in their spin dynamics and their fluorescence. We investigate
the existence and decay of quantum entanglement in free geminate Py–DMA
radical pairs and discuss how entanglement can be assessed in these
systems. We provide an entanglement witness and propose possible observables
for experimentally estimating entanglement in radical pair systems
with isotropic hyperfine couplings. As an application, we analyze
how the field dependence of the entanglement lifetime in Py–DMA
could in principle be used for magnetometry and illustrate the propagation
of measurement errors in this approach.
Collapse
Affiliation(s)
- M Tiersch
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences , Technikerstrasse 21A, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Gregory Scholes
- Department of Chemistry, University of Toronto, Toronto, ON, Canada M5S 3H6
| |
Collapse
|
50
|
Xu BM, Zou J, Li JG, Shao B. Estimating the hyperfine coupling parameters of the avian compass by comprehensively considering the available experimental results. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032703. [PMID: 24125290 DOI: 10.1103/physreve.88.032703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Migratory birds can utilize the geomagnetic field for orientation and navigation through a widely accepted radical-pair mechanism. Although many theoretical works have been done, the available experimental results have not been fully considered, especially the temporary disorientation induced by the field which is increased by 30% of the geomagnetic field and the disorientation of the very weak resonant field of 15 nT. In this paper, we consider the monotonicity of the singlet yield angular profile as the prerequisite of direction sensitivity, and find that for some optimal values of the hyperfine coupling parameters (that is, the order of 10^{-7}∼10^{-6} meV) the experimental results available so far can be satisfied. We also investigate the effects of two decoherence environments and demonstrate that, in order to satisfy the available experimental results, the decoherence rate should be lower than the recombination rate. Finally, we investigate the effects of the fluctuating magnetic noises and find that the vertical noise destroys the monotonicity of the profile completely, but the parallel noise preserves the monotonicity perfectly and even can enhance the direction sensitivity.
Collapse
Affiliation(s)
- Bao-Ming Xu
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | |
Collapse
|