1
|
Tang P, Liu Y, Peng S, Cai Z, Tang G, Zhou Z, Hu K, Zhong Y. Cerebral [ 18F]AIF-FAPI-42-Based PET Imaging of Fibroblast Activation Protein for Non-invasive Quantification of Fibrosis After Ischemic Stroke. Transl Stroke Res 2025; 16:848-858. [PMID: 38940873 DOI: 10.1007/s12975-024-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.
Collapse
Affiliation(s)
- Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhikai Cai
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhou Zhou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Pingue V, Bossert I, D'Ambrosio D, Nardone A, Trifirò G, Canessa N, Franciotta D. Brain glucose metabolism in patients with traumatic brain injury undergoing rehabilitation: a longitudinal 18F-FDG PET study. Front Neurol 2025; 16:1556427. [PMID: 40115381 PMCID: PMC11922693 DOI: 10.3389/fneur.2025.1556427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 03/23/2025] Open
Abstract
Background Measuring 18F-FDG PET-detected brain glucose uptake provides reliable information on metabolic tissue abnormalities, cells dysfunction, and neurovascular changes after traumatic brain injury (TBI). Objectives We aimed to study the relationship between post-traumatic brain glucose metabolism and functional outcomes in the so far unexplored field of longitudinally 18F-FDG PET-monitored patients undergoing rehabilitation after moderate-to-severe TBI. Methods Fourteen patients consecutively admitted to our unit in the post-acute phase after TBI underwent 18F-FDG-PET scans performed before and 6 months after inpatient rehabilitation program. The Glasgow Coma Scale (GCS) for neurological status, and the Functional Independence Measure (FIM) plus the Glasgow Outcome Scale-Extended (GOSE) scales for the rehabilitation outcome, were applied on admission and discharge. Voxel-wise analyses were performed, with the Statistical Parametric Mapping (SPM12) software, to investigate pre- vs. post-rehabilitation changes of brain metabolism, and their relationships with clinical indices. Results In the whole sample, 18F-FDG uptake significantly increased in the following five regions that were hypometabolic before rehabilitation: inferior frontal gyrus bilaterally, alongside right precentral gyrus, inferior parietal lobule, and cerebellum. However, only for the right precentral gyrus the median voxel peak-value at baseline resulted a significant predictor of both cognitive (FIM cognitive subscale, p = 0.012), and functional (GOS-E, p = 0.02; post- vs. pre-treatment GOS-E difference, p = 0.009) improvements. ROC curve analysis showed that a peak voxel-value of 1.7998 was the optimal cut-off for favorable rehabilitation outcome. Unfavorable functional outcomes were predicted by increased 18F-FDG uptake in the inferior frontal gyrus (GOS-E, p = 0.032) and precentral gyrus (FIM cognitive subscale, p = 0.017; GOS-E, p = 0.015). Conclusion This proof-of-principle study enlightens the metabolic changes occurring in moderate-to-severe TBI course. Notably, such changes preferentially involve definite frontal brain areas regardless of TBI localization and entity. These findings pave the way for further studies with translational purposes.
Collapse
Affiliation(s)
- Valeria Pingue
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation and Spinal Units of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Irene Bossert
- Nuclear Medicine Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Daniela D'Ambrosio
- Medical Physics Unit, Istituti Clinici ScientificiMaugeri SpA SB IRCCS, Pavia, Italy
| | - Antonio Nardone
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation and Spinal Units of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Giuseppe Trifirò
- Nuclear Medicine Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia, Italy
| | - Diego Franciotta
- UOM, Laboratory of Clinical Pathology, Department of Laboratories, APSS Santa Chiara Hospital, Trento, Italy
| |
Collapse
|
3
|
Liu J, Li Y, Zhao D, Zhong L, Wang Y, Hao M, Ma J. Efficacy and safety of brain-computer interface for stroke rehabilitation: an overview of systematic review. Front Hum Neurosci 2025; 19:1525293. [PMID: 40115885 PMCID: PMC11922947 DOI: 10.3389/fnhum.2025.1525293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Background Stroke is a major global health challenge that significantly influences public health. In stroke rehabilitation, brain-computer interfaces (BCI) offer distinct advantages over traditional training programs, including improved motor recovery and greater neuroplasticity. Here, we provide a first re-evaluation of systematic reviews and meta-analyses to further explore the safety and clinical efficacy of BCI in stroke rehabilitation. Methods A standardized search was conducted in major databases up to October 2024. We assessed the quality of the literature based on the following aspects: AMSTAR-2, PRISMA, publication year, study design, homogeneity, and publication bias. The data were subsequently visualized as radar plots, enabling a comprehensive and rigorous evaluation of the literature. Results We initially identified 908 articles and, after removing duplicates, we screened titles and abstracts of 407 articles. A total of 18 studies satisfied inclusion criteria were included. The re-evaluation showed that the quality of systematic reviews and meta-analyses concerning stroke BCI training is moderate, which can provide relatively good evidence. Conclusion It has been proven that BCI-combined treatment can improve upper limb motor function and the quality of daily life for stroke patients, especially those in the subacute phase, demonstrating good safety. However, its effects on improving speech function, lower limb motor function, and long-term outcomes require further evidence. Multicenter, long-term follow-up studies are needed to increase the reliability of the results. Clinical Trial Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024562114, CRD42023407720.
Collapse
Affiliation(s)
- Jiajun Liu
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiwei Li
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongjie Zhao
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lirong Zhong
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Man Hao
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Subclinical brain manifestations of repeated mild traumatic brain injury are changed by chronic exposure to sleep loss, caffeine, and sleep aids. Exp Neurol 2024; 381:114928. [PMID: 39168169 DOI: 10.1016/j.expneurol.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION After mild traumatic brain injury (mTBI), the brain is labile for weeks and months and vulnerable to repeated concussions. During this time, patients are exposed to everyday circumstances that, in themselves, affect brain metabolism and blood flow and neural processing. How commonplace activities interact with the injured brain is unknown. The present study in an animal model investigated the extent to which three commonly experienced exposures-daily caffeine usage, chronic sleep loss, and chronic sleep aid medication-affect the injured brain in the chronic phase. METHODS Subclinical trauma by repeated mTBIs was produced by our head rotational acceleration injury model, which causes brain injury consistent with the mechanism of concussion in humans. Forty-eight hours after a third mTBI, chronic administrations of caffeine, sleep restriction, or zolpidem (sedative hypnotic) began and were continued for 70 days. On Days 30 and 60 post injury, resting state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were performed. RESULTS Chronic caffeine, sleep restriction, and zolpidem each changed the subclinical brain characteristics of mTBI at both 30 and 60 days post injury, detected by different MRI modalities. Each treatment caused microstructural alterations in DTI metrics in the insular cortex and retrosplenial cortex compared with mTBI, but also uniquely affected other gray and white matter regions. Zolpidem administration affected the largest number of individual structures in mTBI at both 30 and 60 days, and not necessarily toward normalization (sham treatment). Chronic sleep restriction changed local functional connectivity at 30 days in diametrical opposition to chronic caffeine ingestion, and both treatment outcomes were different from sham, mTBI-only and zolpidem comparisons. The results indicate that commonly encountered exposures modify subclinical brain activity and structure long after healing is expected to be complete. CONCLUSIONS Changes in activity and structure detected by fMRI are widely understood to reflect changes in the functions of the affected region which conceivably underlie mTBI neuropathology and symptomatology in the chronic phase after injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA,.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Matthew D Budde
- Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Winter-Hjelm N, Sikorski P, Sandvig A, Sandvig I. Engineered cortical microcircuits for investigations of neuroplasticity. LAB ON A CHIP 2024; 24:4974-4988. [PMID: 39264326 DOI: 10.1039/d4lc00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Recent advances in neural engineering have opened new ways to investigate the impact of topology on neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit motifs that promote both segregation and integration of information processing in the engineered neural networks, similar to those observed in vivo. However, the impact of the underlying topologies on network dynamics and response to pathological perturbation remains largely unresolved. In this work, we demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular, cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics across layers, mirroring key elements of the feedforward, hierarchical information processing observed in the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such perturbations induce ablation of information flow across the hypoxic node, while enabling the study of plasticity and information processing adaptations in neighboring nodes and neural communication pathways. In summary, our presented model system recapitulates fundamental attributes of the microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical neuroscience research. This model system holds promise for yielding new insights into the development, topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and mesoscale level, in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| | - Pawel Sikorski
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
- Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway.
| |
Collapse
|
6
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Chauhan K, Neiman AB, Tass PA. Synaptic reorganization of synchronized neuronal networks with synaptic weight and structural plasticity. PLoS Comput Biol 2024; 20:e1012261. [PMID: 38980898 PMCID: PMC11259284 DOI: 10.1371/journal.pcbi.1012261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/19/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
Abnormally strong neural synchronization may impair brain function, as observed in several brain disorders. We computationally study how neuronal dynamics, synaptic weights, and network structure co-emerge, in particular, during (de)synchronization processes and how they are affected by external perturbation. To investigate the impact of different types of plasticity mechanisms, we combine a network of excitatory integrate-and-fire neurons with different synaptic weight and/or structural plasticity mechanisms: (i) only spike-timing-dependent plasticity (STDP), (ii) only homeostatic structural plasticity (hSP), i.e., without weight-dependent pruning and without STDP, (iii) a combination of STDP and hSP, i.e., without weight-dependent pruning, and (iv) a combination of STDP and structural plasticity (SP) that includes hSP and weight-dependent pruning. To accommodate the diverse time scales of neuronal firing, STDP, and SP, we introduce a simple stochastic SP model, enabling detailed numerical analyses. With tools from network theory, we reveal that structural reorganization may remarkably enhance the network's level of synchrony. When weaker contacts are preferentially eliminated by weight-dependent pruning, synchrony is achieved with significantly sparser connections than in randomly structured networks in the STDP-only model. In particular, the strengthening of contacts from neurons with higher natural firing rates to those with lower rates and the weakening of contacts in the opposite direction, followed by selective removal of weak contacts, allows for strong synchrony with fewer connections. This activity-led network reorganization results in the emergence of degree-frequency, degree-degree correlations, and a mixture of degree assortativity. We compare the stimulation-induced desynchronization of synchronized states in the STDP-only model (i) with the desynchronization of models (iii) and (iv). The latter require stimuli of significantly higher intensity to achieve long-term desynchronization. These findings may inform future pre-clinical and clinical studies with invasive or non-invasive stimulus modalities aiming at inducing long-lasting relief of symptoms, e.g., in Parkinson's disease.
Collapse
Affiliation(s)
- Kanishk Chauhan
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - Alexander B. Neiman
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, United States of America
- Neuroscience Program, Ohio University, Athens, Ohio, United States of America
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
8
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Sloane KL, Hamilton RH. Transcranial Direct Current Stimulation to Ameliorate Post-Stroke Cognitive Impairment. Brain Sci 2024; 14:614. [PMID: 38928614 PMCID: PMC11202055 DOI: 10.3390/brainsci14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Post-stroke cognitive impairment is a common and disabling condition with few effective therapeutic options. After stroke, neural reorganization and other neuroplastic processes occur in response to ischemic injury, which can result in clinical improvement through spontaneous recovery. Neuromodulation through transcranial direct current stimulation (tDCS) is a promising intervention to augment underlying neuroplasticity in order to improve cognitive function. This form of neuromodulation leverages mechanisms of neuroplasticity post-stroke to optimize neural reorganization and improve function. In this review, we summarize the current state of cognitive neurorehabilitation post-stroke, the practical features of tDCS, its uses in stroke-related cognitive impairment across cognitive domains, and special considerations for the use of tDCS in the post-stroke patient population.
Collapse
Affiliation(s)
- Kelly L. Sloane
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy H. Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Hakon J, Quattromani MJ, Sjölund C, Talhada D, Kim B, Moyanova S, Mastroiacovo F, Di Menna L, Olsson R, Englund E, Nicoletti F, Ruscher K, Bauer AQ, Wieloch T. Inhibiting metabotropic glutamate receptor 5 after stroke restores brain function and connectivity. Brain 2024; 147:186-200. [PMID: 37656990 PMCID: PMC10766240 DOI: 10.1093/brain/awad293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.
Collapse
Affiliation(s)
- Jakob Hakon
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Miriana J Quattromani
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Carin Sjölund
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Daniela Talhada
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Byungchan Kim
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Slavianka Moyanova
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | | | - Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Roger Olsson
- Department of Experimental Medical Sciences, Chemical Biology & Therapeutics, Lund University, Lund 221 84, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund 221 84, Sweden
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome La Sapienza, 00185 Rome, Italy
| | - Karsten Ruscher
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| | - Adam Q Bauer
- Department of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Tadeusz Wieloch
- Division of Neurosurgery, Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund University, Lund 221 84, Sweden
| |
Collapse
|
11
|
Snowden T, Morrison J, Boerstra M, Eyolfson E, Acosta C, Grafe E, Reid H, Brand J, Galati M, Gargaro J, Christie BR. Brain changes: aerobic exercise for traumatic brain injury rehabilitation. Front Hum Neurosci 2023; 17:1307507. [PMID: 38188504 PMCID: PMC10771390 DOI: 10.3389/fnhum.2023.1307507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Traumatic Brain Injury (TBI) accounts for millions of hospitalizations and deaths worldwide. Aerobic exercise is an easily implementable, non-pharmacological intervention to treat TBI, however, there are no clear guidelines for how to best implement aerobic exercise treatment for TBI survivors across age and injury severity. Methods We conducted a PRISMA-ScR to examine research on exercise interventions following TBI in children, youth and adults, spanning mild to severe TBI. Three electronic databases (PubMed, PsycInfo, and Web of Science) were searched systematically by two authors, using keywords delineated from "Traumatic Brain Injury," "Aerobic Exercise," and "Intervention." Results Of the 415 papers originally identified from the search terms, 54 papers met the inclusion criteria and were included in this review. The papers were first grouped by participants' injury severity, and subdivided based on age at intervention, and time since injury where appropriate. Discussion Aerobic exercise is a promising intervention for adolescent and adult TBI survivors, regardless of injury severity. However, research examining the benefits of post-injury aerobic exercise for children and older adults is lacking.
Collapse
Affiliation(s)
- Taylor Snowden
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Jamie Morrison
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Meike Boerstra
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Eric Eyolfson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Crystal Acosta
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Erin Grafe
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Hannah Reid
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Justin Brand
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Judith Gargaro
- KITE Research Institute, University Health Network, Toronto, ON, Canada
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, The University of British Columbia, Victoria, BC, Canada
| |
Collapse
|
12
|
Jones C, Elliott B, Liao Z, Johnson Z, Ma F, Bailey ZS, Gilsdorf J, Scultetus A, Shear D, Webb K, Lee JS. PEG hydrogel containing dexamethasone-conjugated hyaluronic acid reduces secondary injury and improves motor function in a rat moderate TBI model. Exp Neurol 2023; 369:114533. [PMID: 37666386 DOI: 10.1016/j.expneurol.2023.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Traumatic brain injury (TBI) leads to long-term impairments in motor and cognitive function. TBI initiates a secondary injury cascade including a neuro-inflammatory response that is detrimental to tissue repair and limits recovery. Anti-inflammatory corticosteroids such as dexamethasone can reduce the deleterious effects of secondary injury; but challenges associated with dosing, administration route, and side effects have hindered their clinical application. Previously, we developed a hydrolytically degradable hydrogel (PEG-bis-AA/HA-DXM) composed of poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) and dexamethasone-conjugated hyaluronic acid (HA-DXM) for local and sustained dexamethasone delivery. In this study, we evaluated the effect of locally applied PEG-bis-AA/HA-DXM hydrogel on secondary injury and motor function recovery after moderate controlled cortical impact (CCI) TBI. Hydrogel treatment significantly improved motor function evaluated by beam walk and rotarod tests compared to untreated rats over 7 days post-injury (DPI). We also observed that the hydrogel treatment reduced lesion volume, inflammatory response, astrogliosis, apoptosis, and increased neuronal survival compared to untreated rats at 7 DPI. These results suggest that PEG-bis-AA/HA-DXM hydrogels can mitigate secondary injury and promote motor functional recovery following moderate TBI.
Collapse
Affiliation(s)
- Claire Jones
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Bradley Elliott
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Zhen Liao
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Zack Johnson
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Fuying Ma
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Zachary S Bailey
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Anke Scultetus
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Deborah Shear
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Ken Webb
- MicroEnvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jeoung Soo Lee
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
13
|
Catalogna M, Hadanny A, Parag Y, Adler M, Elkarif V, Efrati S. Functional MRI evaluation of hyperbaric oxygen therapy effect on hand motor recovery in a chronic post-stroke patient: a case report and physiological discussion. Front Neurol 2023; 14:1233841. [PMID: 37840920 PMCID: PMC10570419 DOI: 10.3389/fneur.2023.1233841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Impairments in activities of daily living (ADL) are a major concern in post-stroke rehabilitation. Upper-limb motor impairments, specifically, have been correlated with low quality of life. In the current case report, we used both task-based and resting state functional MRI (fMRI) tools to investigate the neural response mechanisms and functional reorganization underlying hyperbaric oxygen therapy (HBOT)-induced motor rehabilitation in a chronic post-stroke patient suffering from severe upper-limb motor impairment. Methods We studied motor task fMRI activation and resting-state functional connectivity (rsFC) in a 61-year-old right-handed male patient who suffered hemiparesis and physical weakness in the right upper limb, 2 years after his acute insult, pre- and post-treatment of 60 daily HBOT sessions. Motor functions were assessed at baseline and at the end of the treatment using the Fugl-Meyer assessment (FMA) and the handgrip maximum voluntary contraction (MVC). Results Following HBOT, the FMA score improved from 17 (severe impairment) to 31 (moderate impairment). Following the intervention during trials involving the affected hand, there was an observed increase in fMRI activation in both the supplementary motor cortex (SMA) and the premotor cortex (PMA) bilaterally. The lateralization index (LI) decreased from 1 to 0.63, demonstrating the recruitment of the contralesional hemisphere. The region of interest, ROI-to-ROI, analysis revealed increased post-intervention inter-hemispheric connectivity (P = 0.002) and a between-network connectivity increase (z-score: 0.35 ± 0.21 to 0.41 ± 0.21, P < 0.0001). Seed-to-voxel-based rsFC analysis using the right SMA as seed showed increased connectivity to the left posterior parietal cortex, the left primary somatosensory cortex, and the premotor cortex. Conclusion This study provides additional insights into HBOT-induced brain plasticity and functional improvement in chronic post-stroke patients.
Collapse
Affiliation(s)
- Merav Catalogna
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Parag
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Moran Adler
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Vicktoria Elkarif
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Brunelli S, Giannella E, Bizzaglia M, De Angelis D, Sancesario GM. Secondary neurodegeneration following Stroke: what can blood biomarkers tell us? Front Neurol 2023; 14:1198216. [PMID: 37719764 PMCID: PMC10502514 DOI: 10.3389/fneur.2023.1198216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Stroke is one of the leading causes of death and the primary source of disability in adults, resulting in neuronal necrosis of ischemic areas, and in possible secondary degeneration of regions surrounding or distant to the initial damaged area. Secondary neurodegeneration (SNDG) following stroke has been shown to have different pathogenetic origins including inflammation, neurovascular response and cytotoxicity, but can be associated also to regenerative processes. Aside from focal neuronal loss, ipsilateral and contralateral effects distal to the lesion site, disruptions of global functional connectivity and a transcallosal diaschisis have been reported in the chronic stages after stroke. Furthermore, SNDG can be observed in different areas not directly connected to the primary lesion, such as thalamus, hippocampus, amygdala, substantia nigra, corpus callosum, bilateral inferior fronto-occipital fasciculus and superior longitudinal fasciculus, which can be highlighted by neuroimaging techniques. Although the clinical relevance of SNDG following stroke has not been well understood, the identification of specific biomarkers that reflect the brain response to the damage, is of paramount importance to investigate in vivo the different phases of stroke. Actually, brain-derived markers, particularly neurofilament light chain, tau protein, S100b, in post-stroke patients have yielded promising results. This review focuses on cerebral morphological modifications occurring after a stroke, on associated cellular and molecular changes and on state-of-the-art of biomarkers in acute and chronic phase. Finally, we discuss new perspectives regarding the implementation of blood-based biomarkers in clinical practice to improve the rehabilitation approaches and post stroke recovery.
Collapse
Affiliation(s)
- Stefano Brunelli
- NeuroRehabilitation Unit 4, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emilia Giannella
- Clinical Neurochemistry Unit and Biobank, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mirko Bizzaglia
- Radiology and Diagnostic Imaging Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | | |
Collapse
|
15
|
He D, Nguyen DT, Ogmen H, Nishina S, Yazdanbakhsh A. Perception of rigidity in three- and four-dimensional spaces. Front Psychol 2023; 14:1180561. [PMID: 37663341 PMCID: PMC10470465 DOI: 10.3389/fpsyg.2023.1180561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Our brain employs mechanisms to adapt to changing visual conditions. In addition to natural changes in our physiology and those in the environment, our brain is also capable of adapting to "unnatural" changes, such as inverted visual-inputs generated by inverting prisms. In this study, we examined the brain's capability to adapt to hyperspaces. We generated four spatial-dimensional stimuli in virtual reality and tested the ability to distinguish between rigid and non-rigid motion. We found that observers are able to differentiate rigid and non-rigid motion of hypercubes (4D) with a performance comparable to that obtained using cubes (3D). Moreover, observers' performance improved when they were provided with more immersive 3D experience but remained robust against increasing shape variations. At this juncture, we characterize our findings as "3 1/2 D perception" since, while we show the ability to extract and use 4D information, we do not have yet evidence of a complete phenomenal 4D experience.
Collapse
Affiliation(s)
- Dongcheng He
- Department of Electrical and Computer Engineering, Laboratory of Perceptual and Cognitive Dynamics, University of Denver, Denver, CO, United States
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA, United States
| | - Dat-Thanh Nguyen
- Department of Psychological and Brain Sciences, Computational Neuroscience and Vision Lab, Center for Systems Neuroscience, Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Haluk Ogmen
- Department of Electrical and Computer Engineering, Laboratory of Perceptual and Cognitive Dynamics, University of Denver, Denver, CO, United States
| | | | - Arash Yazdanbakhsh
- Department of Psychological and Brain Sciences, Computational Neuroscience and Vision Lab, Center for Systems Neuroscience, Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
16
|
Pingue V, Franciotta D. Functional outcome in patients with traumatic or hemorrhagic brain injuries undergoing decompressive craniectomy versus craniotomy and 6-month rehabilitation. Sci Rep 2023; 13:10624. [PMID: 37391549 PMCID: PMC10313652 DOI: 10.1038/s41598-023-37747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Decompressive craniectomy (DC) and craniotomy (CT) to treat increased intracranial pressure after brain injury are common but controversial choices in clinical practice. Studying a large cohort of patients with traumatic brain injury (TBI) and hemorrhagic stroke (HS) on rehabilitation pathways, we aimed to determine the impact of DC and CT on functional outcome/mortality, and on seizures occurrence. This observational retrospective study included patients with either TBI, or HS, who underwent DC or CT, consecutively admitted to our unit for 6-month neurorehabilitation programs between January 1, 2009 and December 31, 2018. Neurological status using Glasgow Coma Scale (GCS), and rehabilitation outcome with Functional Independence Measure, both assessed at baseline and on discharge, post-DC cranioplasty, prophylactic antiepileptic drug use, occurrence of early/late seizures, infectious complications, and death during hospitalization were evaluated and analyzed with linear and logistic regression models. Among 278 patients, DC was performed in 98 (66.2%) with HS, and in 98 (75.4%) with TBI, whilst CT in 50 (33.8%) with HS, and in 32 (24.6%) with TBI. On admission, GCS scores were lower in patients treated with CT than in those with DC (HS, p = 0.016; TBI, p = 0.024). Severity of brain injury and older age were the main factors affecting functional outcome, without between-group differences, but DC associated with worse functional outcome, independently from severity or type of brain injury. Unprovoked seizures occurred post-DC cranioplasty more frequently after HS (OR = 5.142, 95% CI 1.026-25.784, p = 0.047). DC and CT shared similar risk of mortality, which associated with sepsis (OR = 16.846, 95% CI 5.663-50.109, p < 0.0001), or acute symptomatic seizures (OR = 4.282, 95% CI 1.276-14.370, p = 0.019), independently from the neurosurgery procedures. Among CT and DC, the latter neurosurgical procedure is at major risk of worse functional outcome in patients with mild-to-severe TBI, or HS undergoing an intensive rehabilitation program. Complications with sepsis or acute symptomatic seizures increase the risk of death.
Collapse
Affiliation(s)
- Valeria Pingue
- Neurorehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy.
| | | |
Collapse
|
17
|
Gullotta GS, Costantino G, Sortino MA, Spampinato SF. Microglia and the Blood-Brain Barrier: An External Player in Acute and Chronic Neuroinflammatory Conditions. Int J Mol Sci 2023; 24:ijms24119144. [PMID: 37298096 DOI: 10.3390/ijms24119144] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system that guarantee immune surveillance and exert also a modulating role on neuronal synaptic development and function. Upon injury, microglia get activated and modify their morphology acquiring an ameboid phenotype and pro- or anti-inflammatory features. The active role of microglia in blood-brain barrier (BBB) function and their interaction with different cellular components of the BBB-endothelial cells, astrocytes and pericytes-are described. Here, we report the specific crosstalk of microglia with all the BBB cell types focusing in particular on the involvement of microglia in the modulation of BBB function in neuroinflammatory conditions that occur in conjunction with an acute event, such as a stroke, or in a slow neurodegenerative disease, such as Alzheimer's disease. The potential of microglia to exert a dual role, either protective or detrimental, depending on disease stages and environmental conditioning factors is also discussed.
Collapse
Affiliation(s)
- Giorgia Serena Gullotta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Costantino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Ph.D. Program in Neuroscience and Education, DISTUM, University of Foggia, 71121 Foggia, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | |
Collapse
|
18
|
Pingue V, Boetto V, Bassetto A, Nava M, Nardone A, Mele C. The Role of Decompressive Craniectomy on Functional Outcome, Mortality and Seizure Onset after Traumatic Brain Injury. Brain Sci 2023; 13:brainsci13040581. [PMID: 37190546 DOI: 10.3390/brainsci13040581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Decompressive craniectomy (DC) to treat increased intracranial pressure after a traumatic brain injury (TBI) is a common but controversial choice in clinical practice. This study aimed to determine the impact of DC on functional outcomes, mortality and the occurrence of seizures in a large cohort of patients with TBI. METHODS This retrospective study included patients with TBI consecutively admitted for a 6-month neurorehabilitation program between 1 January 2009 and 31 December 2018. The radiological characteristics of brain injury were determined with the Marshall computed tomographic classification. The neurological status and rehabilitation outcome were assessed using the Glasgow Coma Scale (GCS) and the Functional Independence Measure (FIM), which were both assessed at baseline and on discharge. Furthermore, the GCS was recorded on arrival at the emergency department. The DC procedure, prophylactic antiepileptic drug (AED) use, the occurrence of early or late seizures (US, unprovoked seizures) and death during hospitalization were also recorded. RESULTS In our cohort of 309 adults with mild-to-severe TBI, DC was performed in 98 (31.7%) patients. As expected, a craniectomy was more frequently performed in patients with severe TBI (p < 0.0001). However, after adjusting for the confounding variables including GCS scores, age and the radiological characteristics of brain injury, there was no association between DC and poor functional outcomes or mortality during the inpatient rehabilitation period. In our cohort, the independent predictors of an unfavorable outcome at discharge were the occurrence of US (β = -0.14, p = 0.020), older age (β = -0.13, p = 0.030) and the TBI severity on admission (β = -0.25, p = 0.002). Finally, DC (OR 3.431, 95% CI 1.233-9.542, p = 0.018) and early seizures (OR = 3.204, 95% CI 1.176-8.734, p = 0.023) emerged as the major risk factors for US, independently from the severity of the brain injury and the prescription of a primary prophylactic therapy with AEDs. CONCLUSIONS DC after TBI represents an independent risk factor for US, regardless of the prescription of prophylactic AEDs. Meanwhile, there is no significant association between DC and mortality, or a poor functional outcome during the inpatient rehabilitation period.
Collapse
Affiliation(s)
- Valeria Pingue
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, 27100 Pavia, Italy
| | - Valentina Boetto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Anna Bassetto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maruska Nava
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, 27100 Pavia, Italy
| | - Antonio Nardone
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Mele
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
19
|
Plautz EJ, Barbay S, Frost SB, Stowe AM, Dancause N, Zoubina EV, Eisner-Janowicz I, Guggenmos DJ, Nudo RJ. Spared Premotor Areas Undergo Rapid Nonlinear Changes in Functional Organization Following a Focal Ischemic Infarct in Primary Motor Cortex of Squirrel Monkeys. J Neurosci 2023; 43:2021-2032. [PMID: 36788028 PMCID: PMC10027035 DOI: 10.1523/jneurosci.1452-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.
Collapse
Affiliation(s)
- Erik J Plautz
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Scott Barbay
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shawn B Frost
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ann M Stowe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Numa Dancause
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Elena V Zoubina
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ines Eisner-Janowicz
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David J Guggenmos
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Randolph J Nudo
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
20
|
Götz J, Wieters F, Fritz VJ, Käsgen O, Kalantari A, Fink GR, Aswendt M. Temporal and Spatial Gene Expression Profile of Stroke Recovery Genes in Mice. Genes (Basel) 2023; 14:454. [PMID: 36833381 PMCID: PMC9956317 DOI: 10.3390/genes14020454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Stroke patients show some degree of spontaneous functional recovery, but this is not sufficient to prevent long-term disability. One promising approach is to characterize the dynamics of stroke recovery genes in the lesion and distant areas. We induced sensorimotor cortex lesions in adult C57BL/6J mice using photothrombosis and performed qPCR on selected brain areas at 14, 28, and 56 days post-stroke (P14-56). Based on the grid walk and rotating beam test, the mice were classified into two groups. The expression of cAMP pathway genes Adora2a, Pde10a, and Drd2, was higher in poor- compared to well-recovered mice in contralesional primary motor cortex (cl-MOp) at P14&56 and cl-thalamus (cl-TH), but lower in cl-striatum (cl-Str) at P14 and cl-primary somatosensory cortex (cl-SSp) at P28. Plasticity and axonal sprouting genes, Lingo1 and BDNF, were decreased in cl-MOp at P14 and cl-Str at P28 and increased in cl-SSp at P28 and cl-Str at P14, respectively. In the cl-TH, Lingo1 was increased, and BDNF decreased at P14. Atrx, also involved in axonal sprouting, was only increased in poor-recovered mice in cl-MOp at P28. The results underline the gene expression dynamics and spatial variability and challenge existing theories of restricted neural plasticity.
Collapse
Affiliation(s)
- Jan Götz
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Frederique Wieters
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Veronika J. Fritz
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Olivia Käsgen
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Aref Kalantari
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| | - Gereon R. Fink
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Markus Aswendt
- Faculty of Medicine, University of Cologne, 50923 Cologne, Germany
- Department of Neurology, University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
21
|
Seyedaghamiri F, Salimi L, Ghaznavi D, Sokullu E, Rahbarghazi R. Exosomes-based therapy of stroke, an emerging approach toward recovery. Cell Commun Signal 2022; 20:110. [PMID: 35869548 PMCID: PMC9308232 DOI: 10.1186/s12964-022-00919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractBased on clinical observations, stroke is touted as one of the specific pathological conditions, affecting an individual’s life worldwide. So far, no effective treatment has been introduced to deal with stroke post-complications. Production and release of several neurotrophic factors by different cells exert positive effects on ischemic areas following stroke. As a correlate, basic and clinical studies have focused on the development and discovery of de novo modalities to introduce these factors timely and in appropriate doses into the affected areas. Exosomes (Exo) are non-sized vesicles released from many cells during pathological and physiological conditions and participate in intercellular communication. These particles transfer several arrays of signaling molecules, like several neurotrophic factors into the acceptor cells and induce specific signaling cascades in the favor of cell bioactivity. This review aimed to highlight the emerging role of exosomes as a therapeutic approach in the regeneration of ischemic areas.
Collapse
|
22
|
Lagging C, Klasson S, Pedersen A, Nilsson S, Jood K, Stanne TM, Jern C. Investigation of 91 proteins implicated in neurobiological processes identifies multiple candidate plasma biomarkers of stroke outcome. Sci Rep 2022; 12:20080. [PMID: 36418382 PMCID: PMC9684578 DOI: 10.1038/s41598-022-23288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The inter-individual variation in stroke outcomes is large and protein studies could point to potential underlying biological mechanisms. We measured plasma levels of 91 neurobiological proteins in 209 cases included in the Sahlgrenska Academy Study on Ischemic Stroke using a Proximity Extension Assay, and blood was sampled in the acute phase and at 3-month and 7-year follow-ups. Levels were also determined once in 209 controls. Acute stroke severity and neurological outcome were evaluated by the National Institutes of Health Stroke Scale. In linear regression models corrected for age, sex, and sampling day, acute phase levels of 37 proteins were associated with acute stroke severity, and 47 with 3-month and/or 7-year outcome at false discovery rate < 0.05. Three-month levels of 8 proteins were associated with 7-year outcome, of which the associations for BCAN and Nr-CAM were independent also of acute stroke severity. Most proteins followed a trajectory with lower levels in the acute phase compared to the 3-month follow-up and the control sampling point. Conclusively, we identified multiple candidate plasma biomarkers of stroke severity and neurological outcome meriting further investigation. This study adds novel information, as most of the reported proteins have not been previously investigated in a stroke cohort.
Collapse
Affiliation(s)
- Cecilia Lagging
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Sofia Klasson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Annie Pedersen
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Staffan Nilsson
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.5371.00000 0001 0775 6028Division of Applied Mathematics and Statistics, Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Katarina Jood
- grid.8761.80000 0000 9919 9582Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Tara M. Stanne
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Christina Jern
- grid.8761.80000 0000 9919 9582Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden ,grid.1649.a000000009445082XDepartment of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
23
|
Pingue V, Mele C, Biscuola S, Nardone A, Bagnato S, Franciotta D. Impact of seizures and their prophylaxis with antiepileptic drugs on rehabilitation course of patients with traumatic or hemorrhagic brain injury. Front Neurol 2022; 13:1060008. [PMID: 36438966 PMCID: PMC9691976 DOI: 10.3389/fneur.2022.1060008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To determine whether, in patients undergoing rehabilitation after traumatic or hemorrhagic brain injury, seizures and the use of antiepileptic drugs (AEDs) negatively impact on functional outcome, and, in turn, whether prophylactic AED therapy can prevent the development of seizures. DESIGN Observational retrospective study. SETTING Highly specialized inpatient neurorehabilitation clinic. PARTICIPANTS Patients with traumatic brain injury (TBI), or hemorrhagic stroke (HS) consecutively admitted to our neurorehabilitation unit between January 1, 2009, and December 31, 2018. MAIN MEASURES AND VARIABLES Patients' demographic data, neurological status (Glasgow Coma Scale), and rehabilitation outcome (Functional Independence Measure scale), both assessed on admission and on discharge, associated neurosurgical procedures (craniectomy, or cranioplasty), AED use, early or late seizures occurrence, and death during hospitalization. RESULTS Of 740 patients, 162 (21.9%) had seizures, and prophylactic AEDs were started in 192 (25.9%). Multivariate logistic regression identified severity of brain injury as a risk factor for acute symptomatic seizures (ASS) in HS (OR = 1.800, 95%CI = 1.133-1.859, p = 0.013), and for unprovoked seizures (US) in TBI (OR = 1.679, 95%CI = 1.062-2.655, p = 0.027). Prophylaxis with AEDs reduced ASS frequency, but, if protracted for months, was associated with US occurrence (HS, p < 0.0001; TBI, p = 0.0002; vs. untreated patients). Presence of US (β = -0.12; p < 0.0001) and prophylaxis with AEDs (β = -0.09; p = 0.002), were associated with poor functional outcome, regardless of age, severity of brain insult, and HS vs. TBI subtype. CONCLUSIONS Severity of brain injury and occurrence of seizures during neurorehabilitation are the main driver of poor outcome in both HS and TBI. The possible detrimental role on the epileptogenic and functional outcome played by seizures prophylaxis with AEDs, nonetheless useful to prevent ASS if administered over the first week after the brain injury, warrants further investigation.
Collapse
Affiliation(s)
- Valeria Pingue
- Neurorehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Chiara Mele
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Stefania Biscuola
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Antonio Nardone
- Neurorehabilitation and Spinal Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Neurorehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, PV, Italy
| | - Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù, PA, Italy
| | | |
Collapse
|
24
|
Troeung L, Mann G, Cullinan L, Wagland J, Martini A. Rehabilitation outcomes at discharge from staged community-based brain injury rehabilitation: A retrospective cohort study (ABI-RESTaRT), Western Australia, 2011–2020. Front Neurol 2022; 13:925225. [PMID: 36212668 PMCID: PMC9534320 DOI: 10.3389/fneur.2022.925225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate change in functional independence, psychosocial functioning, and goal attainment at discharge from a slow-stream Staged Community-Based Brain Injury Rehabilitation (SCBIR) service in Western Australia, 2011–2020. Methods Retrospective cohort study of n = 323 adults with acquired brain injury (ABI) enrolled in a post-acute SCBIR service compared against a control cohort of n = 312 with ABI admitted to three non-rehabilitation programs. Outcome measures were the UK Functional Independence Measure and Functional Assessment Measure (FIM+FAM), Mayo Portland Adaptability Inventory-4 (MPAI-4), and Goal Attainment Scale. Change in FIM+FAM and MPAI-4 scores and predictors of goal attainment at discharge were evaluated using multilevel mixed-effects regression. Results Median SCBIR length of stay was 20.5 months. Rehabilitation clients demonstrated clinically significant functional gains at discharge, adjusted mean change = +20.3, p < 0.001 (FIM+FAM). Peak gains of +32.3 were observed after 24–30 months and clinically significant gains were observed 5 years post-admission. Individuals discharged ≤6 months had the smallest functional gains (+12.7). Small psychosocial improvements were evidenced at discharge, mean reduction = −2.9T, p < 0.001 (MPAI-4) but not clinically significant. 47% of rehabilitation clients achieved their goals at the expected level or higher at discharge. Compared to the control, rehabilitation clients evidenced significantly greater functional gains and psychosocial improvement but lower goal attainment. Significant predictors of goal attainment at discharge were >2 years since injury, higher cognitive function and higher emotional adjustment at admission. Conclusions Functional recovery after ABI is a gradual and ongoing process. SCBIR is effective for functional rehabilitation post-injury but can be improved to achieve clinically meaningful psychosocial improvement.
Collapse
Affiliation(s)
- Lakkhina Troeung
- Brightwater Research Centre, Brightwater Care Group, Inglewood, WA, Australia
- *Correspondence: Lakkhina Troeung
| | - Georgina Mann
- Brightwater Research Centre, Brightwater Care Group, Inglewood, WA, Australia
| | - Lily Cullinan
- Brightwater Research Centre, Brightwater Care Group, Inglewood, WA, Australia
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Janet Wagland
- Disability Services, Brightwater Care Group, Inglewood, WA, Australia
| | - Angelita Martini
- Brightwater Research Centre, Brightwater Care Group, Inglewood, WA, Australia
| |
Collapse
|
25
|
Lin X, Li N, Tang H. Recent Advances in Nanomaterials for Diagnosis, Treatments, and Neurorestoration in Ischemic Stroke. Front Cell Neurosci 2022; 16:885190. [PMID: 35836741 PMCID: PMC9274459 DOI: 10.3389/fncel.2022.885190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a major public health issue, corresponding to the second cause of mortality and the first cause of severe disability. Ischemic stroke is the most common type of stroke, accounting for 87% of all strokes, where early detection and clinical intervention are well known to decrease its morbidity and mortality. However, the diagnosis of ischemic stroke has been limited to the late stages, and its therapeutic window is too narrow to provide rational and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, inactivation, allergic reactions, and non-specific tissue targeting. Another problem is the limited ability of current neuroprotective agents to promote recovery of the ischemic brain tissue after stroke, which contributes to the progressive and irreversible nature of ischemic stroke and also the severity of the outcome. Fortunately, because of biomaterials’ inherent biochemical and biophysical properties, including biocompatibility, biodegradability, renewability, nontoxicity, long blood circulation time, and targeting ability. Utilization of them has been pursued as an innovative and promising strategy to tackle these challenges. In this review, special emphasis will be placed on the recent advances in the study of nanomaterials for the diagnosis and therapy of ischemic stroke. Meanwhile, nanomaterials provide much promise for neural tissue salvage and regeneration in brain ischemia, which is also highlighted.
Collapse
Affiliation(s)
- Xinru Lin
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Na Li
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Na Li Hongli Tang
| |
Collapse
|
26
|
Bice AR, Xiao Q, Kong J, Yan P, Rosenthal ZP, Kraft AW, Smith KP, Wieloch T, Lee JM, Culver JP, Bauer AQ. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. eLife 2022; 11:e68852. [PMID: 35723585 PMCID: PMC9333991 DOI: 10.7554/elife.68852] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia.
Collapse
Affiliation(s)
- Annie R Bice
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| | - Qingli Xiao
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Justin Kong
- Department of Biology, Washington University in St. LouisSaint LouisUnited States
| | - Ping Yan
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Andrew W Kraft
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Karen P Smith
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Joseph P Culver
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| |
Collapse
|
27
|
Whitener R, Henchir JJ, Miller TA, Levy E, Krysiewicz-Bell A, Abrams ESL, Carlson SW, Menon N, Dixon CE, Whalen MJ, Rogers CJ. Localization of Multi-Lamellar Vesicle Nanoparticles to Injured Brain Tissue in a Controlled Cortical Impact Injury Model of Traumatic Brain Injury in Rodents. Neurotrauma Rep 2022; 3:158-167. [PMID: 35403102 PMCID: PMC8985535 DOI: 10.1089/neur.2021.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Severe traumatic brain injury (TBI), such as that suffered by patients with cerebral contusion, is a major cause of death and disability in young persons. Effective therapeutics to treat or mitigate the effects of severe TBI are lacking, in part because drug delivery to the injured brain remains a challenge. Promising therapeutics targeting secondary injury mechanisms may have poor pharmacokinetics/pharmacodynamics, unwanted side effects, or high hydrophobicity. To address these challenges, we have developed a multi-lamellar vesicle nanoparticle (MLV-NP) formulation with a narrow size distribution (243 nm in diameter, 0.09 polydispersity index) and the capability of encapsulating hydrophobic small molecule drugs for delivery to the injured brain. To demonstrate the utility of these particles, we produced dual-fluorescent labeled nanoparticles containing the organic dyes, coumarin 153 and rhodamine B, that were delivered intravenously to Sprague-Dawley rats and C57Bl6/J mice at 1, 1 and 4, 24, or 48 h after controlled cortical impact injury. Distribution of particles was measured at 5, 25, 48, or 49 h post-injury by fluorescence microscopy of coronal brain sections. In all cases of MLV administration, a 1.2- to 1.9-fold enhancement of ipsilateral fluorescence signal was observed compared to the contralateral cortex. Enhanced fluorescence was also observed in the injured hippocampal tissue in these animals. MLV-NPs administered at 1 h were observed intracellularly in the injured hemisphere at 48 h, suggesting the possibility of concentrated drug delivery to injured cells. These results suggest that MLV-NP delivery of therapeutic agents may be a viable strategy for treating cerebral contusion TBI.
Collapse
Affiliation(s)
| | - Jeremy J. Henchir
- Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Emily Levy
- Department of Pediatrics/Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aubrienne Krysiewicz-Bell
- Department of Pediatrics/Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eliza S. LaRovere Abrams
- Department of Pediatrics/Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shaun W. Carlson
- Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - C. Edward Dixon
- Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Michael J. Whalen
- Department of Pediatrics/Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Claude J. Rogers
- ChromoLogic LLC, Monrovia, California, USA
- Address correspondence to: Claude J. Rogers, PhD, ChromoLogic LLC, 1225 South Shamrock Avenue, Monrovia, CA 91016, USA;
| |
Collapse
|
28
|
Michalettos G, Ruscher K. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery. Front Cell Neurosci 2022; 16:807911. [PMID: 35401118 PMCID: PMC8983863 DOI: 10.3389/fncel.2022.807911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Adaptive plasticity processes are required involving neurons as well as non-neuronal cells to recover lost brain functions after an ischemic stroke. Recent studies show that gamma-Aminobutyric acid (GABA) has profound effects on glial and immune cell functions in addition to its inhibitory actions on neuronal circuits in the post-ischemic brain. Here, we provide an overview of how GABAergic neurotransmission changes during the first weeks after stroke and how GABA affects functions of astroglial and microglial cells as well as peripheral immune cell populations accumulating in the ischemic territory and brain regions remote to the lesion. Moreover, we will summarize recent studies providing data on the immunomodulatory actions of GABA of relevance for stroke recovery. Interestingly, the activation of GABA receptors on immune cells exerts a downregulation of detrimental anti-inflammatory cascades. Conversely, we will discuss studies addressing how specific inflammatory cascades affect GABAergic neurotransmission on the level of GABA receptor composition, GABA synthesis, and release. In particular, the chemokines CXCR4 and CX3CR1 pathways have been demonstrated to modulate receptor composition and synthesis. Together, the actual view on the interactions between GABAergic neurotransmission and inflammatory cascades points towards a specific crosstalk in the post-ischemic brain. Similar to what has been shown in experimental models, specific therapeutic modulation of GABAergic neurotransmission and inflammatory pathways may synergistically promote neuronal plasticity to enhance stroke recovery.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Karsten Ruscher
| |
Collapse
|
29
|
Diao X, Lu Q, Qiao L, Gong Y, Lu X, Feng M, Su P, Shen Y, Yuan TF, He C. Cortical Inhibition State-Dependent iTBS Induced Neural Plasticity. Front Neurosci 2022; 16:788538. [PMID: 35250445 PMCID: PMC8891511 DOI: 10.3389/fnins.2022.788538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intermittent theta burst stimulation (iTBS) is an effective stimulus for long-term potentiation (LTP)-like plasticity. However, iTBS-induced effects varied greatly between individuals. Ample evidence suggested that an initial decrease in local γ-aminobutyric acid (GABA) or enhancement in N-methyl-D-aspartate (NMDA) facilitation neurotransmission is of vital importance for allowing LTP-like plasticity to occur. Therefore, we aimed to investigate whether the individual level of GABA or NMDA receptor-mediated activity before stimulation is correlated with the after-effect in cortical excitability induced by iTBS. Methods Fifteen healthy volunteers were recruited for the present study. We measured short-interval intracortical inhibitory (SICI), long-interval intracortical inhibitory (LICI), and intracortical facilitation (ICF), which index GABAA receptor-, GABAB receptor-, and glutamate receptor-mediated activity, respectively, in the cortex before conducting iTBS. After iTBS intervention, the changes of motor-evoked potential (MEP) amplitude were taken as a measure for cortical excitability in response to iTBS protocol. Results There was a significant negative correlation between the amount of SICI measured before iTBS and the after-effect of iTBS-induced LTP-like plasticity at the time points of 5, 10, and 15 min after inducing iTBS. A multiple linear regression model indicated that SICI was a good predictor of the after-effect in cortical excitability induced by iTBS at 5, 10, and 15 min following stimulation. Conclusion The present study found that GABAA receptor-mediated activity measured before stimulation is negatively correlated with the after-effect of cortical excitability induced by iTBS. SICI, as the index of GABAA receptor-mediated activity measured before stimulation, might be a good predictor of iTBS-induced LTP-like plasticity for a period lasting 15 min following stimulation.
Collapse
Affiliation(s)
- Xiaoying Diao
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Lei Qiao
- Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Youhui Gong
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Min Feng
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Panpan Su
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ying Shen,
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Ti-Fei Yuan,
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- Chuan He,
| |
Collapse
|
30
|
Laaksonen K, Ward NS. Biomarkers of plasticity for stroke recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:287-298. [PMID: 35034742 DOI: 10.1016/b978-0-12-819410-2.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Stroke is the commonest cause of physical disability in the world. Our understanding of the biologic mechanisms involved in recovery and repair has advanced to the point that therapeutic opportunities to promote recovery through manipulation of post-stroke plasticity have never been greater. This work has almost exclusively been carried out in rodent models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques can now provide the appropriate intermediate level of description to bridge the gap between a molecular and cellular account of recovery and a behavioral one. Clinical trials can then be designed in a stratified manner taking into account when an intervention should be delivered and who is most likely to benefit. This approach is most likely to lead to the step-change in how restorative therapeutic strategies are delivered in human stroke patients.
Collapse
Affiliation(s)
- Kristina Laaksonen
- Department of Neurology, Helsinki University Hospital, and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
31
|
Liew SL, Lin DJ, Cramer SC. Interventions to Improve Recovery After Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Cho JE, Shin JH, Kim H. Does electrical stimulation synchronized with ankle movements better improve ankle proprioception and gait kinematics in chronic stroke? A randomized controlled study. NeuroRehabilitation 2022; 51:259-269. [PMID: 35527578 PMCID: PMC9535592 DOI: 10.3233/nre-220018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Individuals with stroke have impaired sensorimotor function of ankle. OBJECTIVE To investigate the effects of passive biaxial ankle movement training synchronized with electrical stimulation therapy (AMT-EST) on ankle proprioception, passive range of motion (pROM), and strength, balance, and gait of chronic stroke patients. METHODS Thirty-five stroke patients were randomized. The experimental group received a total of 20 AMT-EST sessions. The control group received only EST. Primary outcome measures were ankle functions. Secondary outcome measures were clinical assessments of motor, balance, and gait-related functions. All assessments were compared before and after the intervention. RESULTS The experimental group had significantly improved ankle dorsiflexor strength (p = 0.015) and ankle pROM during foot supination (p = 0.026) and pronation (p = 0.004) and clinical assessment (Fugl-Meyer Assessment of the lower extremities [FM-L], Berg Balance Scale, Timed Up and Go test, Fall Efficacy Scale, walking speed, and step length; all p < 0.05) values. The regression model predicting ankle proprioception showed significantly large effects (adjusted R2 = 0.493; p < 0.01) of the combined FM-L score and time since stroke. CONCLUSION Biaxial AMT-EST resulted in better ankle pROM and strength than conventional EST. Ankle proprioception was not significantly improved after AMT-EST and was predicted by the FM-L score and time since stroke.
Collapse
Affiliation(s)
- Ji-Eun Cho
- Department of Rehabilitative and Assistive Technology, National Rehabilitation Center, Seoul, South Korea
| | - Joon-Ho Shin
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, South Korea
| | - Hogene Kim
- Department of Clinical Rehabilitation Research, National Rehabilitation Center, Seoul, South Korea
| |
Collapse
|
33
|
Cho JE, Kim H. Ankle Proprioception Deficit Is the Strongest Factor Predicting Balance Impairment in Patients With Chronic Stroke. Arch Rehabil Res Clin Transl 2021; 3:100165. [PMID: 34977547 PMCID: PMC8683870 DOI: 10.1016/j.arrct.2021.100165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To determine the main factor that predicts balance impairment in patients with chronic stroke. DESIGN Cross-sectional study. SETTING Inpatient rehabilitation hospital and research laboratory. PARTICIPANTS A total of 57 patients (42 men, 15 women; mean age 55.7±12.2 years) with chronic symptoms after stroke. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Primary outcomes were ankle functions, including strength, range of motion, and proprioception, and balance, including Berg Balance Scale score and Timed Up and Go test values. Secondary outcomes included gait kinematics, Fugl-Meyer Scale score, and Fall Efficacy Scale score. RESULTS According to the cutoff score <46 on the Berg Balance Scale and the Timed Up and Go test ≥13.5 seconds, 21 patients were classified as having a balance impairment (36.8%). Multivariable logistic regressions showed that ankle proprioception (odds ratio = 3.49; 95% confidence interval, 1.17-10.42) was a significant predictor when coupled with step length (odds ratio = 0.00; 95% confidence interval, 0.00-0.22). A cutoff score of 2.59 for the ankle proprioception value predicts balance impairment in patients with stroke (area under the curve 0.784). CONCLUSION Ankle proprioception can be used to predict balance impairment in patients with stroke.
Collapse
Affiliation(s)
- Ji-Eun Cho
- Department of Rehabilitation & Assistive Technology, National Rehabilitation Center, Seoul, South Korea
| | - Hogene Kim
- Department of Clinical Rehabilitation Research, National Rehabilitation Center, Seoul, South Korea
| |
Collapse
|
34
|
Onose G, Anghelescu A, Blendea CD, Ciobanu V, Daia CO, Firan FC, Munteanu C, Oprea M, Spinu A, Popescu C. Non-invasive, non-pharmacological/bio-technological interventions towards neurorestoration upshot after ischemic stroke, in adults-systematic, synthetic, literature review. FRONT BIOSCI-LANDMRK 2021; 26:1204-1239. [PMID: 34856764 DOI: 10.52586/5020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/02/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Considering its marked life-threatening and (not seldom: severe and/or permanent) disabling, potential, plus the overall medico-psycho-socio-economic tough burden it represents for the affected persons, their families and the community, the cerebrovascular accident (CVA)-including with the, by far more frequent, ischemic type-is subject to considerable scientific research efforts that aim (if possible) at eliminating the stroke induced lesions, and consist, as well, in ambitious-but still poorly transferable into medical practice-goals such as brain neuroregeneration and/or repair, within related corollary/upshot of neurorestoration. We have conducted, in this respect, a systematic and synthetic literature review, following the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" concept. Accordingly, we have interrogated five internationally renowned medical data bases: Elsevier, NCBI/PubMed, NCBI/PMC, PEDro, and ISI Web of Knowledge/Science (the last one to check whether the initially identified articles are published in ISI indexed journals), based on a large (details in the body text) number of most appropriate, to our knowledge, key word combinations/"syntaxes"-used contextually-and subsequently fulfilling the related, on five steps, filtering/selection methodology. We have thereby selected 114 fully eligible (of which contributive: 83-see further) papers; at the same time, additionally, we have enhanced our documentation-basically, but not exclusively, for the introductive part of this work (see further)-with bibliographic resources, overall connected to our subject, identified in the literature within a non-standardized search. It appears that the opportunity window for morph-functional recovery after stroke is larger than previously thought, actually being considered that brain neurorestoration/repair could occur, and therefore be expected, in later stages than in earlier ones, although, in this context, the number of cases possibly benefitting (for instance after physical and/or cognitive rehabilitation-including with magnetic or direct current transcranial stimulation) is quite small and with more or less conflicting, related outcomes, in the literature. Moreover, applying especially high intense, solicitating, rehabilitation interventions, in early stages post (including ischemic) stroke could even worsen the functional evolution. Accordingly, for clarifications and validation of more unitary points of view, continuing and boosting research efforts in this complex, interdisciplinary domain, is necessary. Until finding (if ever) effective modalities to cure the lesions of the central nervous system (CNS)-including post ischemic stroke-it is reasonable and recommendable-based on rigorous methodologies-the avail of combined ways: physiatric, pharmacologic, possibly also bio-technologic. On a different note, but however connected to our subject: periodic related systematic, synthetic literature reviews reappraisals are warranted and welcome.
Collapse
Affiliation(s)
- Gelu Onose
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Aurelian Anghelescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
- Specific Disciplines Department, Faculty of Midwifes and Nursing, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| | - Corneliu Dan Blendea
- Medical-Surgical and Prophylactic Disciplines Department - Medical Rehabilitation, Recovery and Medical Physical Culture Discipline, Faculty of Medicine, University "Titu Maiorescu", 040051 Bucharest, Romania
- Physical and Rehabilitation Medicine & Balneology Clinic Division - The Neuro-Rehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania
| | - Vlad Ciobanu
- Politehnica University of Bucharest, Computer Science Department, 060042 Bucharest, Romania
| | - Cristina Octaviana Daia
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Florentina Carmen Firan
- Physical and Rehabilitation Medicine & Balneology Clinic Division - The Neuro-Rehabilitation Compartment, Teaching Emergency Hospital of the Ilfov County, 22104 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, 700454 Iasi, Romania
| | - Mihaela Oprea
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Aura Spinu
- Physical and Rehabilitation Medicine Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Teaching Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| |
Collapse
|
35
|
Rungseethanakul S, Tretriluxana J, Piriyaprasarth P, Pakaprot N, Jitaree K, Tretriluxana S, Danoff JV. Task Oriented Training Activities Post Stroke Will Produce Measurable Alterations in Brain Plasticity Concurrent with Skill Improvement. Top Stroke Rehabil 2021; 29:241-254. [PMID: 34320899 DOI: 10.1080/10749357.2021.1926136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Task-oriented training with upper extremity (UE) skilled movements has been established as a method to regain function post stroke. Although improved UE function has been shown after this type of therapy, there is minimal evidence that brain plasticity is associated with this training. The accelerated skill acquisition program (ASAP) is an example of an approach for promoting UE function using targeting movements. OBJECTIVE To investigate the effects of a single 2-hour session of ASAP in individuals with stroke on measures of brain plasticity as represented by corticospinal excitability (CE) and determine associations with reach-to-grasp (RTG) performance. METHODS Eighteen post-acute stroke patients were randomized to two groups. Experimental group (n = 9) underwent ASAP for 2 hours, while the control group (n = 9) received dose equivalent usual and customary care. Both groups were evaluated for CE and RTG performance prior to the session and then four times after training: immediately, 1 day, 6 days, and 12 days. RESULTS Significant alterations in CE were found in the peak-to-peak of Motor Evoked Potential amplitude of elbow and wrist extensor muscles in the lesioned hemisphere. The experimental group also demonstrated improved execution (shortened total movement time, TMT), feed-forward mechanism (deceleration time, DT) and planning (lengthened relative time to maximum hand aperture, RTApmax) compared to the control group. CONCLUSION Alterations in brain plasticity occur concurrently with improvements in RTG performance in post-acute stroke patients with mild impairment after a single 2-hour session of task-oriented training and persist for at least 12 days.
Collapse
Affiliation(s)
- Somchanok Rungseethanakul
- Motor Control and Neural Plasticity Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Jarugool Tretriluxana
- Motor Control and Neural Plasticity Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Pagamas Piriyaprasarth
- Motor Control and Neural Plasticity Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Narawut Pakaprot
- Faculty of Medicine Siriraj Hospital, Mahidol University, Wang Lang, Thailand
| | - Khanitha Jitaree
- Motor Control and Neural Plasticity Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Suradej Tretriluxana
- Department of Electronics Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jerome V Danoff
- Department of Exercise and Nutrition Science, George Washington University, Washington, DC, USA
| |
Collapse
|
36
|
Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021; 7:3503-3529. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complexity of the nervous system structure and function, and its slow regeneration rate, makes it more difficult to treat compared to other tissues in the human body when an injury occurs. Moreover, the current therapeutic approaches including the use of autografts, allografts, and pharmacological agents have several drawbacks and can not fully restore nervous system injuries. Recently, nanotechnology and tissue engineering approaches have attracted many researchers to guide tissue regeneration in an effective manner. Owing to their remarkable physicochemical and biological properties, two-dimensional (2D) nanomaterials have been extensively studied in the tissue engineering and regenerative medicine field. The great conductivity of these materials makes them a promising candidate for the development of novel scaffolds for neural tissue engineering application. Moreover, the high loading capacity of 2D nanomaterials also has attracted many researchers to utilize them as a drug/gene delivery method to treat various devastating nervous system disorders. This review will first introduce the fundamental physicochemical properties of 2D nanomaterials used in biomedicine and the supporting biological properties of 2D nanomaterials for inducing neuroregeneration, including their biocompatibility on neural cells, the ability to promote the neural differentiation of stem cells, and their immunomodulatory properties which are beneficial for alleviating chronic inflammation at the site of the nervous system injury. It also discusses various types of 2D nanomaterials-based scaffolds for neural tissue engineering applications. Then, the latest progress on the use of 2D nanomaterials for nervous system disorder treatment is summarized. Finally, a discussion of the challenges and prospects of 2D nanomaterials-based applications in neural tissue engineering is provided.
Collapse
Affiliation(s)
- Alexander Halim
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| | - Xiao-Feng Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
37
|
Beghi E, Binder H, Birle C, Bornstein N, Diserens K, Groppa S, Homberg V, Lisnic V, Pugliatti M, Randall G, Saltuari L, Strilciuc S, Vester J, Muresanu D. European Academy of Neurology and European Federation of Neurorehabilitation Societies guideline on pharmacological support in early motor rehabilitation after acute ischaemic stroke. Eur J Neurol 2021; 28:2831-2845. [PMID: 34152062 DOI: 10.1111/ene.14936] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Early pharmacological support for post-stroke neurorehabilitation has seen an abundance of mixed results from clinical trials, leaving practitioners at a loss regarding the best options to improve patient outcomes. The objective of this evidence-based guideline is to support clinical decision-making of healthcare professionals involved in the recovery of stroke survivors. METHODS This guideline was developed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework. PubMed, Cochrane Library and Embase were searched (from database inception to June 2018, inclusive) to identify studies on pharmacological interventions for stroke rehabilitation initiated in the first 7 days (inclusive) after stroke, which were delivered together with neurorehabilitation. A sensitivity analysis was conducted on identified interventions to address results from breaking studies (from end of search to February 2020). RESULTS Upon manually screening 17,969 unique database entries (of 57,001 original query results), interventions underwent meta-analysis. Cerebrolysin (30 ml/day, intravenous, minimum 10 days) and citalopram (20 mg/day, oral) are recommended for clinical use for early neurorehabilitation after acute ischaemic stroke. The remaining interventions identified by our systematic search are not recommended for clinical use: amphetamine (5, 10 mg/day, oral), citalopram (10 mg/day, oral), dextroamphetamine (10 mg/day, oral), Di-Huang-Yi-Zhi (2 × 18 g/day, oral), fluoxetine (20 mg/day, oral), lithium (2 × 300 mg/day, oral), MLC601(3 × 400 mg/day, oral), phosphodiesterase-5 inhibitor PF-03049423 (6 mg/day, oral). No recommendation 'for' or 'against' is provided for selegiline (5 mg/day, oral). Issues with safety and tolerability were identified for amphetamine, dextroamphetamine, fluoxetine and lithium. CONCLUSIONS This guideline provides information for clinicians regarding existing pharmacological support in interventions for neurorecovery after acute ischaemic stroke. Updates to this material will potentially elucidate existing conundrums, improve current recommendations, and hopefully expand therapeutic options for stroke survivors.
Collapse
Affiliation(s)
- Ettore Beghi
- Laboratorio di Malattie Neurologiche, Dipartimento di Neuroscienze, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Heinrich Binder
- Department of Neurology, Otto Wagner Hospital, Vienna, Austria
| | - Codruta Birle
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Natan Bornstein
- Shaare Zedek Medical Center, Jerusalem, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Stanislav Groppa
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Volker Homberg
- Department of Neurology, SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Germany
| | - Vitalie Lisnic
- Department of Neurology, State University of Medicine and Pharmacy 'Nicolae Testemitanu', Chisinau, Republic of Moldova
| | - Maura Pugliatti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Gary Randall
- Stroke Alliance for Europe (SAFE), Brussels, Belgium
| | - Leopold Saltuari
- Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| | - Stefan Strilciuc
- Department of Neurosciences, University of Medicine and Pharmacy Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Johannes Vester
- Department of Biometry and Clinical Research, idv Data Analysis and Study Planning, Gauting, Germany
| | - Dafin Muresanu
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Research Department for Neurorehabilitation South Tyrol, Bolzano, Italy
| |
Collapse
|
38
|
Neurofilament Light Chain (NfL) in Blood-A Biomarker Predicting Unfavourable Outcome in the Acute Phase and Improvement in the Late Phase after Stroke. Cells 2021; 10:cells10061537. [PMID: 34207058 PMCID: PMC8235722 DOI: 10.3390/cells10061537] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Increased sensitivity of methods assessing the levels of neurofilament light chain (NfL), a neuron-specific intermediate filament protein, in human plasma or serum, has in recent years led to a number of studies addressing the utility of monitoring NfL in the blood of stroke patients. In this review, we discuss that elevated blood NfL levels after stroke may reflect several different neurobiological processes. In the acute and post-acute phase after stroke, high blood levels of NfL are associated with poor clinical outcome, and later on, the blood levels of NfL positively correlate with secondary neurodegeneration as assessed by MRI. Interestingly, increased blood levels of NfL in individuals who survived stroke for more than 10 months were shown to predict functional improvement in the late phase after stroke. Whereas in the acute phase after stroke the injured axons are assumed to be the main source of blood NfL, synaptic turnover and secondary neurodegeneration could be major contributors to blood NfL levels in the late phase after stroke. Elevated blood NfL levels after stroke should therefore be interpreted with caution. More studies addressing the clinical utility of blood NfL assessment in stroke patients are needed before the inclusion of NfL in the clinical workout as a useful biomarker in both the acute and the chronic phase after stroke.
Collapse
|
39
|
Song D, Zhu M, Chi S, Xia L, Li Z, Liu Z. Sensitizing the Luminescence of Lanthanide-Doped Nanoparticles over 1500 nm for High-Contrast and Deep Imaging of Brain Injury. Anal Chem 2021; 93:7949-7957. [PMID: 34032404 DOI: 10.1021/acs.analchem.1c00731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Real-time and in situ visualization of cerebrovascular dysfunction is significant for studying brain injury, which however, is restricted by the complex brain structure and limited imaging strategies. Luminescence imaging in NIR-IIb region (1500-1700 nm) is a promising tool owing to its merits including deep penetration, high resolution, and fast data acquisition. Unfortunately, a luminescent material in this region with sufficient brightness and biocompatibility is scarce. Herein, Ag2Se quantum dot-sensitized lanthanide-doped nanocrystals (QDs-LnNCs) with emission beyond 1500 nm were fabricated to image the cerebrovascular structure and hemodynamics in ischemic stroke and traumatic brain injury. The sensitization by QDs provided an over 100-fold enhanced brightness of LnNCs and a remarkable penetration depth of 11 mm. Dynamic information of blood perfusion and flow rates were acquired and the damage of the blood-brain barrier in the two injury models was investigated. Our results proved QDs-LnNCs as a kind of competent nanomaterial for noninvasive brain imaging.
Collapse
Affiliation(s)
- Dan Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengting Zhu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Siyu Chi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lan Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
40
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 2021; 22:249-262. [PMID: 33231840 DOI: 10.1007/s10561-020-09885-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70-80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Departments of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
41
|
Cell Proliferation in the Piriform Cortex of Rats with Motor Cortex Ablation Treated with Growth Hormone and Rehabilitation. Int J Mol Sci 2021; 22:ijms22115440. [PMID: 34064044 PMCID: PMC8196768 DOI: 10.3390/ijms22115440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury represents one of the main health problems in developed countries. Growth hormone (GH) and rehabilitation have been claimed to significantly contribute to the recovery of lost motor function after acquired brain injury, but the mechanisms by which this occurs are not well understood. In this work, we have investigated cell proliferation in the piriform cortex (PC) of adult rats with ablation of the frontal motor cortex treated with GH and rehabilitation, in order to evaluate if this region of the brain, related to the sense of smell, could be involved in benefits of GH treatment. Male rats were either ablated the frontal motor cortex in the dominant hemisphere or sham-operated and treated with GH or vehicle at 35 days post-injury (dpi) for five days. At 36 dpi, all rats received daily injections of bromodeoxyuridine (BrdU) for four days. We assessed motor function through the paw-reaching-for-food task. GH treatment and rehabilitation at 35 dpi significantly improved the motor deficit caused by the injury and promoted an increase of cell proliferation in the PC ipsilateral to the injury, which could be involved in the improvement observed. Cortical ablation promoted a greater number of BrdU+ cells in the piriform cortex that was maintained long-term, which could be involved in the compensatory mechanisms of the brain after injury.
Collapse
|
42
|
Wang X, Liu X, Wang Z, Tong S, Jin Z, Guo X. Different reorganizations of functional brain networks after first-ever and recurrent ischemic stroke. Brain Res 2021; 1765:147494. [PMID: 33887252 DOI: 10.1016/j.brainres.2021.147494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Even though recurrent stroke patients constitute a large percentage of the stroke population, few studies specifically investigated their neural reorganization. In this study, we recruited seventeen first-ever stroke patients as well as fourteen recurrent stroke patients, and recorded their resting EEG signals and NIHSS score before and after two weeks of recovery, to compare their neural reorganization from network scale. The clinical improvements were comparable in two groups during the two weeks. However, their brain networks were differently reorganized, especially in the delta band. The recurrent stroke patients showed an increased clustering coefficient and a decreased characteristic path length of the delta network, along with increased ipsilesional intrahemispheric connectivity; while no such changes were observed in the first-ever stroke patients. Our results suggest that stroke history influences neural reorganization during recovery.
Collapse
Affiliation(s)
- Xu Wang
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaonan Liu
- Department of Rehabilitation Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhuo Wang
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanbao Tong
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Jin
- Department of Neurology, Minhang Branch of Yueyang Hospital, Chinese Medicine University of Shanghai, Shanghai 200241, China.
| | - Xiaoli Guo
- The School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
43
|
Chiazza F, Pintana H, Lietzau G, Nyström T, Patrone C, Darsalia V. The Stroke-Induced Increase of Somatostatin-Expressing Neurons is Inhibited by Diabetes: A Potential Mechanism at the Basis of Impaired Stroke Recovery. Cell Mol Neurobiol 2021; 41:591-603. [PMID: 32447613 PMCID: PMC7921043 DOI: 10.1007/s10571-020-00874-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) hampers recovery after stroke, but the underling mechanisms are mostly unknown. In a recently published study (Pintana et al. in Clin Sci (Lond) 133(13):1367-1386, 2019), we showed that impaired recovery in T2D was associated with persistent atrophy of parvalbumin+ interneurons in the damaged striatum. In the current work, which is an extension of the abovementioned study, we investigated whether somatostatin (SOM)+ interneurons are also affected by T2D during the stroke recovery phase. C57Bl/6j mice were fed with high-fat diet or standard diet (SD) for 12 months and subjected to 30-min transient middle cerebral artery occlusion (tMCAO). SOM+ cell number/density in the striatum was assessed by immunohistochemistry 2 and 6 weeks after tMCAO in peri-infarct and infarct areas. This was possible by establishing a computer-based quantification method that compensates the post-stroke tissue deformation and the irregular cell distribution. SOM+ interneurons largely survived the stroke as seen at 2 weeks. Remarkably, 6 weeks after stroke, the number of SOM+ interneurons increased (vs. contralateral striatum) in SD-fed mice in both peri-infarct and infarct areas. However, this increase did not result from neurogenesis. T2D completely abolished this effect specifically in the in the infarct area. The results suggest that the up-regulation of SOM expression in the post-stroke phase could be related to neurological recovery and T2D could inhibit this process. We also present a new and precise method for cell counting in the stroke-damaged striatum that allows to reveal accurate, area-related effects of stroke on cell number.
Collapse
Affiliation(s)
- Fausto Chiazza
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmaceutical Sciences, Università Degli Studi del Piemonte Orientale, Novara, Italy
| | - Hiranya Pintana
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Lin DJ, Cramer SC. Principles of Neural Repair and Their Application to Stroke Recovery Trials. Semin Neurol 2021; 41:157-166. [PMID: 33663003 DOI: 10.1055/s-0041-1725140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.
Collapse
Affiliation(s)
- David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA Medical Center, Providence, Rhode Island
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, California.,California Rehabilitation Institute, Los Angeles, California
| |
Collapse
|
45
|
Mouthon AL, Meyer-Heim A, Huber R, Van Hedel HJA. Neural correlates of memory recovery: Preliminary findings in children and adolescents with acquired brain injury. Restor Neurol Neurosci 2021; 39:61-71. [PMID: 33579882 PMCID: PMC7990412 DOI: 10.3233/rnn-201140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: After acquired brain injury (ABI), patients show various neurological impairments and outcome is difficult to predict. Identifying biomarkers of recovery could provide prognostic information about a patient’s neural potential for recovery and improve our understanding of neural reorganization. In healthy subjects, sleep slow wave activity (SWA, EEG spectral power 1–4.5 Hz) has been linked to neuroplastic processes such as learning and brain maturation. Therefore, we suggest that SWA might be a suitable measure to investigate neural reorganization underlying memory recovery. Objectives: In the present study, we used SWA to investigate neural correlates of recovery of function in ten paediatric patients with ABI (age range 7–15 years). Methods: We recorded high-density EEG (128 electrodes) during sleep at the beginning and end of rehabilitation. We used sleep EEG data of 52 typically developing children to calculate age-normalized values for individual patients. In patients, we also assessed every-day life memory impairment at the beginning and end of rehabilitation. Results: In the course of rehabilitation, memory recovery was paralleled by longitudinal changes in SWA over posterior parietal brain areas. SWA over left prefrontal and occipital brain areas at the beginning of rehabilitation predicted memory recovery. Conclusions: We show that longitudinal sleep-EEG measurements are feasible in the clinical setting. While posterior parietal and prefrontal brain areas are known to belong to the memory “core network”, occipital brain areas have never been related to memory. While we have to remain cautious in interpreting preliminary findings, we suggest that SWA is a promising measure to investigate neural reorganization.
Collapse
Affiliation(s)
- Anne-Laure Mouthon
- Swiss Children's Rehab - Research Department and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Switzerland
| | - Andreas Meyer-Heim
- Swiss Children's Rehab - Research Department and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Switzerland
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| | - Hubertus J A Van Hedel
- Swiss Children's Rehab - Research Department and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
46
|
Post-traumatic seizures and antiepileptic therapy as predictors of the functional outcome in patients with traumatic brain injury. Sci Rep 2021; 11:4708. [PMID: 33633297 PMCID: PMC7907376 DOI: 10.1038/s41598-021-84203-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic seizures (PTS) are a common and debilitating complication of traumatic brain injury (TBI) and could have a harmful impact on the progress of patient rehabilitation. To assess the effect of PTS and relative therapy on outcome in the initial phase after TBI, during the rehabilitation process when neuroplasticity is at its highest, we retrospectively examined the clinical data of 341 adult patients undergoing rehabilitation for at least 6 months post-TBI in our neurorehabilitation unit between 2008 and 2019. We correlated through logistic regression the occurrence of seizures and use of anti-seizure medication (ASM) with neurological and functional outcomes, respectively assessed with the Glasgow Coma Scale (GCS) and the Functional Independence Measure (FIM). PTS were documented in 19.4% of patients: early PTS (EPTS) in 7.0%; late PTS (LPTS) in 9.4%; both types in 3.0%. Patients who developed EPTS had an increased risk of developing LPTS (OR = 3.90, CI 95% 1.58–9.63, p = 0.003). Patients with LPTS had a significantly higher risk of worse neurological (p < 0.0001) and rehabilitation (p < 0.05) outcome. Overall, 38.7% of patients underwent therapy with ASM; prophylactic therapy was prescribed in 24.0% of patients, of whom 14.6% subsequently developed seizures. Mortality was associated with a lower FIM and GCS score on admission but not significantly with PTS. The use of ASM was associated with a worse rehabilitation outcome, independently of the onset of epilepsy during treatment. LPTS appear to exert a negative impact on rehabilitation outcome and their occurrence is not reduced by prophylactic therapy, whereas EPTS do not influence outcome. Our findings caution against the generic use of prophylactic therapy to prevent post-traumatic epilepsy in patients with TBI.
Collapse
|
47
|
Gamma frequency activation of inhibitory neurons in the acute phase after stroke attenuates vascular and behavioral dysfunction. Cell Rep 2021; 34:108696. [PMID: 33535035 DOI: 10.1016/j.celrep.2021.108696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
Alterations in gamma oscillations occur in several neurological disorders, and the entrainment of gamma oscillations has been recently proposed as a treatment for neurodegenerative disease. Optogenetic stimulation enhances recovery in models of stroke when applied weeks after injury; however, the benefits of acute brain stimulation have not been investigated. Here, we report beneficial effects of gamma-frequency modulation in the acute phase, within 1 h, after stroke. Transgenic VGAT-ChR2 mice are subject to awake photothrombotic stroke in an area encompassing the forelimb sensory and motor cortex. Optogenetic stimulation at 40 Hz in the peri-infarct zone recovers neuronal activity 24 h after stroke in motor and parietal association areas, as well as blood flow over the first week after stroke. Stimulation significantly reduces lesion volume and improves motor function. Our results suggest that acute-phase modulation of cortical oscillatory dynamics may serve as a target for neuroprotection against stroke.
Collapse
|
48
|
Chen P, Chen L, Zhao X, Sun Q. The Association of Mean Plasma Glucose and In hospital Death Proportion: A Retrospective, Cohort Study of 162,169 In-Patient Data. Int J Endocrinol 2021; 2021:1513683. [PMID: 33531898 PMCID: PMC7834774 DOI: 10.1155/2021/1513683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS To investigate the association between mean plasma glucose and inhospital death proportion. METHODS We retrospectively collected 162,169 inpatient data in Huashan Hospital from January 2012 to December 2015. Mean plasma glucose was calculated and considered as the average glycemia control during hospitalization. Patients were stratified into six groups according to mean plasma glucose. Nonlinear regression was performed to determine the associations between mean plasma glucose and inhospital death proportion, medical cost, and length of stay. Multivariate logistic regressions were performed to evaluate the relationship of mean plasma glucose and outcomes controlling for confounders including age, gender, and others. Subgroup analyses were performed on basis of whether they were surgical patients, ICU patients, patients with diabetes, or others. RESULTS Of the 162,169 hospitalized participants, 53.32% were male and 989 died during hospitalization. Nonlinear regression showed there were positive and significant associations between mean plasma glucose and death proportion, medical cost, and length of stay (P < 0.001 for all). Multivariate logistic regressions showed that, compared with group B, a statistically significant association between mean plasma glucose and predicted outcome was apparent, with the odds ratios (95% confidence interval) of 5.79 (3.51-9.55), 2.85 (2.40-3.38), 6.29 (5.24-7.54), 9.34 (7.51-11.62), and 23.52 (16.64-33.26), for group A, group C, group D, group E, and group F, respectively. There was a U-shaped association between mean plasma glucose and death proportion. Subgroup analyses showed similar associations between mean plasma glucose and death proportion, medical cost, and length of stay as in the whole sample. CONCLUSIONS There was a U-curve association between mean plasma glucose with inhospital death proportion. Mean plasma glucose was associated positively with medical cost and length of stay.
Collapse
Affiliation(s)
- Peili Chen
- Department of Endocrinology, Huashan Hospital Fudan University, Shanghai, China
| | - Lili Chen
- Department of Endocrinology, Huashan Hospital Fudan University, Shanghai, China
| | - Xiaolong Zhao
- Department of Endocrinology, Huashan Hospital Fudan University, Shanghai, China
| | - Quanya Sun
- Department of Endocrinology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
49
|
Nunes PF, Ostan I, Siqueira AAG. Evaluation of Motor Primitive-Based Adaptive Control for Lower Limb Exoskeletons. Front Robot AI 2020; 7:575217. [PMID: 33501336 PMCID: PMC7805746 DOI: 10.3389/frobt.2020.575217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
In order to assist after-stroke individuals to rehabilitate their movements, research centers have developed lower limbs exoskeletons and control strategies for them. Robot-assisted therapy can help not only by providing support, accuracy, and precision while performing exercises, but also by being able to adapt to different patient needs, according to their impairments. As a consequence, different control strategies have been employed and evaluated, although with limited effectiveness. This work presents a bio-inspired controller, based on the concept of motor primitives. The proposed approach was evaluated on a lower limbs exoskeleton, in which the knee joint was driven by a series elastic actuator. First, to extract the motor primitives, the user torques were estimated by means of a generalized momentum-based disturbance observer combined with an extended Kalman filter. These data were provided to the control algorithm, which, at every swing phase, assisted the subject to perform the desired movement, based on the analysis of his previous step. Tests are performed in order to evaluate the controller performance for a subject walking actively, passively, and at a combination of these two conditions. Results suggest that the robot assistance is capable of compensating the motor primitive weight deficiency when the subject exerts less torque than expected. Furthermore, though only the knee joint was actuated, the motor primitive weights with respect to the hip joint were influenced by the robot torque applied at the knee. The robot also generated torque to compensate for eventual asynchronous movements of the subject, and adapted to a change in the gait characteristics within three to four steps.
Collapse
Affiliation(s)
- Polyana F. Nunes
- Rehabilitation Robotics Laboratory, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | | |
Collapse
|
50
|
Lange Canhos L, Chen M, Falk S, Popper B, Straub T, Götz M, Sirko S. Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 2020; 69:165-181. [PMID: 32744730 DOI: 10.1002/glia.23893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Unlike microglia and NG2 glia, astrocytes are incapable of migrating to sites of injury in the posttraumatic cerebral cortex, instead relying on proliferation to replenish their numbers and distribution in the affected region. However, neither the spectrum of their proliferative repertoire nor their postinjury distribution has been examined in vivo. Using a combination of different thymidine analogs and clonal analysis in a model of repetitive traumatic brain injury, we show for the first time that astrocytes that are quiescent following an initial injury can be coerced to proliferate after a repeated insult in the cerebral cortex grey matter. Interestingly, this process is promoted by invasion of monocytes to the injury site, as their genetic ablation (using CCR2-/- mice) increased the number of repetitively dividing astrocytes at the expense of newly proliferating astrocytes in repeatedly injured parenchyma. These differences profoundly affected both the distribution of astrocytes and recovery period for posttraumatic behavior deficits suggesting key roles of astrocyte self-renewal in brain repair after injury.
Collapse
Affiliation(s)
- Luisa Lange Canhos
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Graduate School of Systemic Neurosciences (GSN-LMU), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Muxin Chen
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Falk
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Bastian Popper
- Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany.,Excellence Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|