1
|
Basari N, Sendova-Franks AB, Worley A, Franks NR. Differential response by tandem leaders and followers to landmark-rich and landmark-poor environments. Anim Cogn 2025; 28:40. [PMID: 40388021 PMCID: PMC12089173 DOI: 10.1007/s10071-025-01958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
When animals use the same route repeatedly, they have the opportunity to update information that might help them to navigate more quickly and more accurately. Here we analyse ants involved in tandem running, in which the leader has evaluated a new nest and decided to recruit to it while the follower has chosen to be led and shown the route. We used a motorised gantry equipped with a camera to track the movements of tandem members on their tandem and return trips in a landmark-rich and a landmark-poor environment. Although the amount of visual navigational information did not affect the movements of leaders or followers on their tandem trip, the paths of followers were significantly more tortuous and their speeds significantly slower than those of leaders on their return trips in the landmark-poor environment. By contrast, there were no such differences between the followers and leaders on their return trips in the landmark-rich environment even though the return paths of followers in the landmark-rich environment were significantly more tortuous than that of leaders in the landmark-poor environment. Indeed, in the landmark-rich environment, the majority of the leaders' return paths had loops while most were straight in the landmark-poor environment. Thus, the availability of more information when many landmarks are present may induce tandem leaders to make the loops, typically associated with the paths of tandem followers. This suggests knowledgeable individuals slow down to update navigational information and has implications for the formation of leader oligarchies in tandem running.
Collapse
Affiliation(s)
- Norasmah Basari
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Ana B Sendova-Franks
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Alan Worley
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Nigel R Franks
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
2
|
Zhang Y, Zhao Q, Zhang J, Wei S, Tao F, Yang P. Bio-Inspired Adaptive and Responsive Protein-Based Materials. Chempluschem 2024; 89:e202400309. [PMID: 39116292 DOI: 10.1002/cplu.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In nature, the inherent adaptability and responsiveness of proteins play a crucial role in the survival and reproduction of organisms, enabling them to adjust to ever-changing environments. A comprehensive understanding of protein structure and function is essential for unraveling the complex biological adaptive processes, providing new insights for the design of protein-based materials in advanced fields. Recently, materials derived from proteins with specific properties and functions have been engineered. These protein-based materials, distinguished by their engineered adaptability and responsiveness, range from the nanoscale to the macroscale through meticulous control of protein structure. First, the review introduces the natural adaptability and responsiveness of proteins in organisms, encompassing biological adhesion and the responses of organisms to light, magnetic fields, and temperature. Next, it discusses the achievements in protein-engineered adaptability and adhesion through protein assembly and nanotechnology, emphasizing precise control over protein bioactivity. Finally, the review briefly addresses the application of protein engineering techniques and the self-assembly capabilities of proteins to achieve responsiveness in protein-based materials to humidity, light, magnetism, temperature, and other factors. We hope this review will foster a multidimensional understanding of protein adaptability and responsiveness, thereby advancing the interdisciplinary integration of biomedical science, materials science, and biotechnology.
Collapse
Affiliation(s)
- Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Qi Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Jingjiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Shuo Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
3
|
Jonaitis J, Hibbard KL, McCafferty Layte K, Hiramoto A, Cardona A, Truman JW, Nose A, Zwart MF, Pulver SR. STEERING FROM THE REAR: COORDINATION OF CENTRAL PATTERN GENERATORS UNDERLYING NAVIGATION BY ASCENDING INTERNEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598162. [PMID: 38948859 PMCID: PMC11212907 DOI: 10.1101/2024.06.17.598162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.
Collapse
Affiliation(s)
- Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | | | - Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge UK
| | - James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
4
|
Gewily D, Shalaby W, Abumandour M, Choudhary OP, Kandyel R. Pecten oculi of kestrel (Falco tinnunculus rupicolaeformes) and little owl (Athene noctua glaux): Scanning electron microscopy and histology with unique insights into SEM-EDX elemental analysis. Microsc Res Tech 2024; 87:546-564. [PMID: 37955171 DOI: 10.1002/jemt.24449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
There is scanty data about the comparative morphological features between the pecten oculi of two carnivorous birds with different visual active clock hours: the diurnal common kestrel and the nocturnal little owl. This study illustrated the comparative gross, scanning electron microscopy, and histological characteristics between pecten oculi of kestrel and little owl. This study first attempts to describe the scanning electron microscopy-energy dispersive x-ray (SEM-EDX) elemental analysis at the parts (apex, middle, and base) of the pecten oculi of these two birds. The present study results observed the same position, origin, directions, parts, convoluted outer pleat surfaces, and SEM-EDX elemental analysis, but there were some minor variations due to the different visual active clock hours. These minor variations were summarized in the following points: pleat number (21-23 in the kestrel and 10-11 in the owl), shape (fan rhomboid in the kestrel and accordion in the owl), inter-pleat spaces (wider in the kestrel than in the owl), pigmentations (highly black pigmented in the owl than in the kestrel), hyalocyte cell aggregations (highest in the middle and dwindling at the apex and base in the kestrel, while highest in the middle and base and dwindling at the apex in the owl), and SEM-EDX elemental analysis percentage. SEM/EDX elemental analysis confirmed the presence of oxygen (the highest one), carbon, nitrogen (the second one), nitrogen (the third one), and aluminum (the lowest one) in varying percentages within the pecten oculi; these findings contribute to our understanding of its structural, adaptations with different visual active clock hours, and functional characteristics. RESEARCH HIGHLIGHTS: This study compared the pecten oculi of two carnivorous birds with different visual active clock hours: the diurnal common kestrel and the nocturnal little owl. Anatomically, the characteristic features were similar in both the birds, but some minor variations were observed adapted to their visual active clock hours. The pecten oculi of both birds were analyzed using SEM-EDX for elemental analysis, and it revealed that oxygen was the highest elemental concentration, followed by carbon and nitrogen. Aluminum concentrations were small as per SEM-EDX analysis. The study suggested that the pecten oculi of these birds are related to their active visual clocks and adaptive nutritional mechanisms.
Collapse
Affiliation(s)
- Doaa Gewily
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Walaa Shalaby
- Zoology Department, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohamed Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Punjab, India
| | - Ramadan Kandyel
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| |
Collapse
|
5
|
Givon S, Pickholtz R, Pickholtz EY, Ben-Shahar O, Kiflawi M, Segev R. Toward Naturalistic Neuroscience of Navigation: Opportunities in Coral Reef Fish. Front Neural Circuits 2022; 16:895381. [PMID: 35874430 PMCID: PMC9298462 DOI: 10.3389/fncir.2022.895381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to navigate in the world is crucial to many species. One of the most fundamental unresolved issues in understanding animal navigation is how the brain represents spatial information. Although navigation has been studied extensively in many taxa, the key efforts to determine the neural basis of navigation have focused on mammals, usually in lab experiments, where the allocated space is typically very small; e.g., up to one order of magnitude the size of the animal, is limited by artificial walls, and contains only a few objects. This type of setting is vastly different from the habitat of animals in the wild, which is open in many cases and is virtually limitless in size compared to its inhabitants. Thus, a fundamental open question in animal navigation is whether small-scale, spatially confined, and artificially crafted lab experiments indeed reveal how navigation is enacted in the real world. This question is difficult to study given the technical problems associated with in vivo electrophysiology in natural settings. Here, we argue that these difficulties can be overcome by implementing state of the art technology when studying the rivulated rabbitfish, Siganus rivulatus as the model animal. As a first step toward this goal, using acoustic tracking of the reef, we demonstrate that individual S. rivulatus have a defined home range of about 200 m in length, from which they seldom venture. They repeatedly visit the same areas and return to the same sleeping grounds, thus providing evidence for their ability to navigate in the reef environment. Using a clustering algorithm to analyze segments of daily trajectories, we found evidence of specific repeating patterns in behavior within the home range of individual fish. Thus, S. rivulatus appears to have the ability to carry out its daily routines and revisit places of interest by employing sophisticated means of navigation while exploring its surroundings. In the future, using novel technologies for wireless recording from single cells of fish brains, S. rivulatus can emerge as an ideal system to study the neural basis of navigation in natural settings and lead to “electrophysiology in the wild.”
Collapse
Affiliation(s)
- Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Renanel Pickholtz
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | | | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Ronen Segev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
6
|
Haase K, Musielak I, Warmuth-Moles L, Leberecht B, Zolotareva A, Mouritsen H, Heyers D. In Search for the Avian Trigeminal Magnetic Sensor: Distribution of Peripheral and Central Terminals of Ophthalmic Sensory Neurons in the Night-Migratory Eurasian Blackcap (Sylvia atricapilla). Front Neuroanat 2022; 16:853401. [PMID: 35321391 PMCID: PMC8936129 DOI: 10.3389/fnana.2022.853401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
In night-migratory songbirds, neurobiological and behavioral evidence suggest the existence of a magnetic sense associated with the ophthalmic branch of the trigeminal nerve (V1), possibly providing magnetic positional information. Curiously, neither the unequivocal existence, structural nature, nor the exact location of any sensory structure has been revealed to date. Here, we used neuronal tract tracing to map both the innervation fields in the upper beak and the detailed trigeminal brainstem terminations of the medial and lateral V1 subbranches in the night-migratory Eurasian Blackcap (Sylvia atricapilla). The medial V1 subbranch takes its course along the ventral part of the upper beak to innervate subepidermal layers and the mucosa of the nasal cavity, whereas the lateral V1 subbranch runs along dorsolateral levels until the nostrils to innervate mainly the skin of the upper beak. In the trigeminal brainstem, medial V1 terminals innervate both the dorsal part and the ventral, magnetically activated part of the principal sensory trigeminal brainstem nuclei (PrV). In contrast, the lateral V1 subbranch innervates only a small part of the ventral PrV. The spinal sensory trigeminal brainstem nuclei (SpV) receive topographically ordered projections. The medial V1 subbranch mainly innervates rostral and medial parts of SpV, whereas the lateral V1 subbranch mainly innervates the lateral and caudal parts of SpV. The present findings could provide valuable information for further analysis of the trigeminal magnetic sense of birds.
Collapse
Affiliation(s)
- Katrin Haase
- AG Neurosensorik, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Isabelle Musielak
- AG Neurosensorik, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leonie Warmuth-Moles
- AG Neurosensorik, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Bo Leberecht
- AG Neurosensorik, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Anna Zolotareva
- Biological Station Rybachy, Zoological Institute of Russian Academy of Sciences, St Petersburg, Russia
| | - Henrik Mouritsen
- AG Neurosensorik, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Dominik Heyers
- AG Neurosensorik, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- *Correspondence: Dominik Heyers,
| |
Collapse
|
7
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
8
|
Einwich A, Dedek K, Seth PK, Laubinger S, Mouritsen H. A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci Rep 2020; 10:15794. [PMID: 32978454 PMCID: PMC7519125 DOI: 10.1038/s41598-020-72579-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
The primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye. Here, we report on the identification of a novel isoform of erCry4, which we named erCry4b. Cry4b includes an additional exon of 29 amino acids compared to the previously described form of Cry4, now called Cry4a. When comparing the retinal circadian mRNA expression pattern of the already known isoform erCry4a and the novel erCry4b isoform, we find that erCry4a is stably expressed throughout day and night, whereas erCry4b shows a diurnal mRNA oscillation. The differential characteristics of the two erCry4 isoforms regarding their 24-h rhythmicity in mRNA expression leads us to suggest that they might have different functions. Based on the 24-h expression pattern, erCry4a remains the more likely cryptochrome to be involved in radical-pair-based magnetoreception, but at the present time, an involvement of erCry4b cannot be excluded.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Sascha Laubinger
- Institute for Biology and Environmental Sciences, Evolutionäre Genetik der Pflanzen, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.
| |
Collapse
|
9
|
Henrique EP, Oliveira MA, Paulo DC, Pereira PDC, Dias C, Siqueira LS, Lima CM, Miranda DDA, Rego PS, Araripe J, Melo MAD, Diniz DG, Morais Magalhães NG, Sherry DF, Picanço Diniz CW, Diniz CG. Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds. Eur J Neurosci 2020; 54:5687-5704. [DOI: 10.1111/ejn.14781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/26/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Marcus Augusto Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Dario Carvalho Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Cleyssian Dias
- Curso de Pós‐Graduação em Zoologia Museu Paraense Emílio Goeldi Universidade Federal do Pará Belém Pará Brazil
| | - Lucas Silva Siqueira
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Camila Mendes Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Diego de Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Péricles Sena Rego
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Pará Brazil
| | - Juliana Araripe
- Instituto de Estudos Costeiros Universidade Federal do Pará Bragança Pará Brazil
| | - Mauro André Damasceno Melo
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
- Instituto Evandro Chagas Laboratório de Miscroscopia Eletrônica Belém Pará Brazil
| | - Nara Gyzely Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| | - David Francis Sherry
- Department of Psychology Advanced Facility for Avian Research University of Western Ontario London ON Canada
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto Instituto de Ciências Biológicas Universidade Federal do Pará Belém Pará Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança Bragança Pará Brazil
| |
Collapse
|
10
|
Alan A, Onuk B, Alan E, Kabak M. Light and electron microscopic studies on the pecten oculi showing blood-retina barrier properties in Turkey's native Gerze chicken. Anat Histol Embryol 2020; 49:478-485. [PMID: 32181521 DOI: 10.1111/ahe.12551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/28/2020] [Indexed: 11/27/2022]
Abstract
The pecten oculi is a highly vascularized and pigmented organ that projects from the optic disc into the vitreous body in the avian eye. In this study, the pecten oculi of Turkey's native Gerze chicken was examined by light and scanning electron microscopy. Furthermore, the localization of some adherens junction components (E-cadherin and pan-cadherin) in intact vessels of the blood-retina barrier was investigated by immunohistochemistry. In the Gerze chicken, the pecten oculi was a thin structure, which was located over the head of the discus nervi optici and projected from the retina into the corpus vitreum. The pecten oculi consisted of 18-21 highly vascularized pleats, joined apically by a bridge and resembled an accordion in appearance. Hyalocytes and melanocytes were observed around the small and large vessels. The morphometric data of the pecten oculi showed that there were no statistical differences in terms of sex. The immunohistochemical analysis of the pecten oculi, which is used as a model for the investigation of the formation and maturation of the barrier properties in the central nervous system, revealed cytoplasmic E-cadherin and pan-cadherin immunoreactivity in the endothelial cells of the small, large and capillary vessels. These observations suggest that while the morphological and histological structure of the Gerze chicken's pecten oculi was generally similar to that of other diurnal domestic birds, the pecten oculi, a model system for vascular differentiation and the blood-retina barrier, expressed different cadherins.
Collapse
Affiliation(s)
- Aydın Alan
- Department of Anatomy, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| | - Burcu Onuk
- Department of Anatomy, Faculty of Veterinary Medicine, University of On Dokuz Mayıs, Samsun, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| | - Murat Kabak
- Department of Anatomy, Faculty of Veterinary Medicine, University of On Dokuz Mayıs, Samsun, Turkey
| |
Collapse
|
11
|
von Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, Quintero Pérez M, Homberg U. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. J Comp Neurol 2019; 528:906-934. [PMID: 31625611 DOI: 10.1002/cne.24796] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
The central complex (CX) comprises a group of midline neuropils in the insect brain, consisting of the protocerebral bridge (PB), the upper (CBU) and lower division (CBL) of the central body and a pair of globular noduli. It receives prominent input from the visual system and plays a major role in spatial orientation of the animals. Vertical slices and horizontal layers of the CX are formed by columnar, tangential, and pontine neurons. While pontine and columnar neurons have been analyzed in detail, especially in the fruit fly and desert locust, understanding of the organization of tangential cells is still rudimentary. As a basis for future functional studies, we have studied the morphologies of tangential neurons of the CX of the desert locust Schistocerca gregaria. Intracellular dye injections revealed 43 different types of tangential neuron, 8 of the PB, 5 of the CBL, 24 of the CBU, 2 of the noduli, and 4 innervating multiple substructures. Cell bodies of these neurons were located in 11 different clusters in the cell body rind. Judging from the presence of fine versus beaded terminals, the vast majority of these neurons provide input into the CX, especially from the lateral complex (LX), the superior protocerebrum, the posterior slope, and other surrounding brain areas, but not directly from the mushroom bodies. Connections are largely subunit- and partly layer-specific. No direct connections were found between the CBU and the CBL. Instead, both subdivisions are connected in parallel with the PB and distinct layers of the noduli.
Collapse
Affiliation(s)
- Joss von Hadeln
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Tobias Bockhorst
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Rosner
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Ronny Heidasch
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uta Pegel
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Manuel Quintero Pérez
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
12
|
Mendes de Lima C, Douglas Corrêa Pereira P, Pereira Henrique E, Augusto de Oliveira M, Carvalho Paulo D, Silva de Siqueira L, Guerreiro Diniz D, Almeida Miranda D, André Damasceno de Melo M, Gyzely de Morais Magalhães N, Francis Sherry D, Wanderley Picanço Diniz C, Guerreiro Diniz C. Differential Change in Hippocampal Radial Astrocytes and Neurogenesis in Shorebirds With Contrasting Migratory Routes. Front Neuroanat 2019; 13:82. [PMID: 31680881 PMCID: PMC6798042 DOI: 10.3389/fnana.2019.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
Little is known about environmental influences on radial glia-like (RGL) α cells (radial astrocytes) and their relation to neurogenesis. Because radial glia is involved in adult neurogenesis and astrogenesis, we investigated this association in two migratory shorebird species that complete their autumnal migration using contrasting strategies. Before their flights to South America, the birds stop over at the Bay of Fundy in Canada. From there, the semipalmated sandpiper (Calidris pusilla) crosses the Atlantic Ocean in a non-stop 5-day flight, whereas the semipalmated plover (Charadrius semipalmatus) flies primarily overland with stopovers for rest and feeding. From the hierarchical cluster analysis of multimodal morphometric features, followed by the discriminant analysis, the radial astrocytes were classified into two main morphotypes, Type I and Type II. After migration, we detected differential changes in the morphology of these cells that were more intense in Type I than in Type II in both species. We also compared the number of doublecortin (DCX)-immunolabeled neurons with morphometric features of radial glial-like α cells in the hippocampal V region between C. pusilla and C. semipalmatus before and after autumn migration. Compared to migrating birds, the convex hull surface area of radial astrocytes increased significantly in wintering individuals in both C. semipalmatus and C. pusilla. Although to a different extent we found a strong correlation between the increase in the convex hull surface area and the increase in the total number of DCX immunostained neurons in both species. Despite phylogenetic differences, it is of interest to note that the increased morphological complexity of radial astrocytes in C. semipalmatus coincides with the fact that during the migratory process over the continent, the visuospatial environment changes more intensely than that associated with migration over Atlantic. The migratory flight of the semipalmated plover, with stopovers for feeding and rest, vs. the non-stop flight of the semipalmated sandpiper may differentially affect radial astrocyte morphology and neurogenesis.
Collapse
Affiliation(s)
- Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Dario Carvalho Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Diego Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - David Francis Sherry
- Advanced Facility for Avian Research, Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| |
Collapse
|
13
|
Adaptive principles of weight regulation: Insufficient, but perhaps necessary, for understanding obesity. Behav Brain Sci 2019; 40:e131. [PMID: 29342592 DOI: 10.1017/s0140525x16002041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We reflect on the major issues raised by a thoughtful and diverse set of commentaries on our target article. We draw attention to the need to differentiate between ultimate and proximate explanation; the insurance hypothesis (IH) needs to be understood as an ultimate-level argument, although we welcome the various suggestions made about proximate mechanisms. Much of this response is concerned with clarifying the interrelationships between adaptationist explanations like the IH, constraint explanations, and dysfunction explanations, in understanding obesity. We also re-examine the empirical evidence base, concurring that it is equivocal and only partially supportive. Several commentators offer additional supporting evidence, whereas others propose alternative explanations for the evidence we reviewed and suggest ways that our current knowledge could be strengthened. Finally, we take the opportunity to clarify some of the assumptions and predictions of our formal model.
Collapse
|
14
|
Pegel U, Pfeiffer K, Zittrell F, Scholtyssek C, Homberg U. Two Compasses in the Central Complex of the Locust Brain. J Neurosci 2019; 39:3070-3080. [PMID: 30755489 PMCID: PMC6468101 DOI: 10.1523/jneurosci.0940-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
Many migratory insects rely on a celestial compass for spatial orientation. Several features of the daytime sky, all generated by the sun, can be exploited for navigation. Two of these are the position of the sun and the pattern of polarized skylight. Neurons of the central complex (CX), a group of neuropils in the central brain of insects, have been shown to encode sky compass cues. In desert locusts, the CX holds a topographic, compass-like representation of the plane of polarized light (E-vector) presented from dorsal direction. In addition, these neurons also encode the azimuth of an unpolarized light spot, likely representing the sun. Here, we investigate whether, in addition to E-vector orientation, the solar azimuth is represented topographically in the CX. We recorded intracellularly from eight types of CX neuron while stimulating animals of either sex with polarized blue light from zenithal direction and an unpolarized green light spot rotating around the animal's head at different elevations. CX neurons did not code for elevation of the unpolarized light spot. However, two types of columnar neuron showed a linear correlation between innervated slice in the CX and azimuth tuning to the unpolarized green light spot, consistent with an internal compass representation of solar azimuth. Columnar outputs of the CX also showed a topographic representation of zenithal E-vector orientation, but the two compasses were not linked to each other. Combined stimulation with unpolarized green and polarized blue light suggested that the two compasses interact in a nonlinear way.SIGNIFICANCE STATEMENT In the brain of the desert locust, neurons sensitive to the plane of celestial polarization are arranged like a compass in the slices of the central complex (CX). These neurons, in addition, code for the horizontal direction of an unpolarized light cue possibly representing the sun. We show here that horizontal directions are, in addition to E-vector orientations from the dorsal direction, represented in a compass-like manner across the slices of the CX. However, the two compasses are not linked to each other, but rather seem to interact in a cell-specific, nonlinear way. Our study confirms the role of the CX in signaling heading directions and shows that different cues are used for this task.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, and
| | - Frederick Zittrell
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christine Scholtyssek
- School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, United Kingdom
| | - Uwe Homberg
- Animal Physiology, Department of Biology and Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany,
| |
Collapse
|
15
|
Zhao M. Human spatial representation: what we cannot learn from the studies of rodent navigation. J Neurophysiol 2018; 120:2453-2465. [PMID: 30133384 DOI: 10.1152/jn.00781.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies of human and rodent navigation often reveal a remarkable cross-species similarity between the cognitive and neural mechanisms of navigation. Such cross-species resemblance often overshadows some critical differences between how humans and nonhuman animals navigate. In this review, I propose that a navigation system requires both a storage system (i.e., representing spatial information) and a positioning system (i.e., sensing spatial information) to operate. I then argue that the way humans represent spatial information is different from that inferred from the cellular activity observed during rodent navigation. Such difference spans the whole hierarchy of spatial representation, from representing the structure of an environment to the representation of subregions of an environment, routes and paths, and the distance and direction relative to a goal location. These cross-species inconsistencies suggest that what we learn from rodent navigation does not always transfer to human navigation. Finally, I argue for closing the loop for the dominant, unidirectional animal-to-human approach in navigation research so that insights from behavioral studies of human navigation may also flow back to shed light on the cellular mechanisms of navigation for both humans and other mammals (i.e., a human-to-animal approach).
Collapse
Affiliation(s)
- Mintao Zhao
- School of Psychology, University of East Anglia , Norwich , United Kingdom.,Department of Human Perception, Cognition, and Action, Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| |
Collapse
|
16
|
Jacobson A, Chen Z, Milford M. Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework. BIOLOGICAL CYBERNETICS 2018; 112:209-225. [PMID: 29353330 DOI: 10.1007/s00422-017-0745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Most robot navigation systems perform place recognition using a single-sensor modality and one, or at most two heterogeneous map scales. In contrast, mammals perform navigation by combining sensing from a wide variety of modalities including vision, auditory, olfactory and tactile senses with a multi-scale, homogeneous neural map of the environment. In this paper, we develop a multi-scale, multi-sensor system for mapping and place recognition that combines spatial localization hypotheses at different spatial scales from multiple different sensors to calculate an overall place recognition estimate. We evaluate the system's performance over three repeated 1.5-km day and night journeys across a university campus spanning outdoor and multi-level indoor environments, incorporating camera, WiFi and barometric sensory information. The system outperforms a conventional camera-only localization system, with the results demonstrating not only how combining multiple sensing modalities together improves performance, but also how combining these sensing modalities over multiple scales further improves performance over a single-scale approach. The multi-scale mapping framework enables us to analyze the naturally varying spatial acuity of different sensing modalities, revealing how the multi-scale approach captures each sensing modality at its optimal operation point where a single-scale approach does not, and enables us to then weight sensor contributions at different scales based on their utility for place recognition at that scale.
Collapse
Affiliation(s)
- Adam Jacobson
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia.
| | - Zetao Chen
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
| | - Michael Milford
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
17
|
Carvalho-Paulo D, de Morais Magalhães NG, de Almeida Miranda D, Diniz DG, Henrique EP, Moraes IAM, Pereira PDC, de Melo MAD, de Lima CM, de Oliveira MA, Guerreiro-Diniz C, Sherry DF, Diniz CWP. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla. Front Neuroanat 2018; 11:126. [PMID: 29354035 PMCID: PMC5758497 DOI: 10.3389/fnana.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play different physiological roles during migration.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara G de Morais Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Diego de Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Daniel G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Ediely P Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Isis A M Moraes
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick D C Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro A D de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Camila M de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marcus A de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - David F Sherry
- Department of Psychology, University of Western Ontario, London, ON, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
18
|
Ince NG, Onuk B, Kabak YB, Alan A, Kabak M. Macroanatomic, light, and electron microscopic examination of pecten oculi in the seagull (Larus canus). Microsc Res Tech 2017; 80:787-792. [PMID: 28295892 DOI: 10.1002/jemt.22865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 11/10/2022]
Abstract
The present study was conducted to determine macroanatomic characteristic as well as light and electron microscopic examination (SEM) of pecten oculi and totally 20 bulbus oculi belonging to 10 seagulls (Larus canus) were used. Pecten oculi formations consisted of 18 to 21 pleats and their shape looked like a snail. Apical length of the pleats forming pecten oculi were averagely measured as 5.77 ± 0.56 mm, retina-dependent base length was 9.01 ± 1.35 mm and height was measured as 6.4 ± 0.62 mm. In pecten oculi formations which extend up to 1/3 of the bulbus oculi, two different vascular formations were determined according to thickness of the vessel diameter. Among these, vessels with larger diameters which are less than the others in count were classified as afferent and efferent vessels, smaller vessels which are greater in size were classified as capillaries. Furthermore, the granules which were observed intensely in apical side of the pleats of pecten oculi were observed to distribute randomly along the plica.
Collapse
Affiliation(s)
- Nazan Gezer Ince
- Faculty of Veterinary Medicine, Department of Anatomy, Istanbul University, İstanbul, 34320, Turkey
| | - Burcu Onuk
- Faculty of Veterinary Medicine, Department of Anatomy, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Yonca Betil Kabak
- Faculty of Veterinary Medicine, Department of Pathology, Ondokuz Mayıs University, Samsun, 55139, Turkey
| | - Aydin Alan
- Faculty of Veterinary Medicine, Department of Anatomy, Erciyes University, Kayseri, 38039, Turkey
| | - Murat Kabak
- Faculty of Veterinary Medicine, Department of Anatomy, Ondokuz Mayıs University, Samsun, 55139, Turkey
| |
Collapse
|
19
|
Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla). PLoS One 2017; 12:e0179134. [PMID: 28591201 PMCID: PMC5462419 DOI: 10.1371/journal.pone.0179134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.
Collapse
|
20
|
Pegel U, Pfeiffer K, Homberg U. Integration of celestial compass cues in the central complex of the locust brain. J Exp Biol 2017; 221:jeb.171207. [DOI: 10.1242/jeb.171207] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Many insects rely on celestial compass cues such as the polarization pattern of the sky for spatial orientation. In the desert locust, the central complex (CX) houses multiple sets of neurons, sensitive to the oscillation plane of polarized light and, thus, likely acts as an internal polarization compass. We investigated whether other sky compass cues like direct sunlight or the chromatic gradient of the sky might contribute to this compass. We recorded from polarization-sensitive CX neurons while an unpolarized green or UV light spot was moved around the head of the animal. All types of neuron that were sensitive to the plane of polarization (E-vector) above the animal also responded to the unpolarized light spots in an azimuth-dependent way. The tuning to the unpolarized light spots was independent of wavelength, suggesting that the neurons encode solar azimuth based on direct sunlight and not on the sky chromatic gradient. Two cell types represented the natural 90°-relationship between solar azimuth and zenithal E-vector orientation, providing evidence to suggest that solar azimuth information supports the internal polarization compass. Most neurons showed advances in their tuning to the E-vector and the unpolarized light spots dependent on rotation direction, consistent with anticipatory signaling. The amplitude of responses and its variability were dependent on the level of background firing, possibly indicating different internal states. The integration of polarization and solar azimuth information strongly suggests that besides the polarization pattern of the sky, direct sunlight might be an important cue for sky compass navigation in the locust.
Collapse
Affiliation(s)
- Uta Pegel
- Animal Physiology, Department of Biology, Philipps-University, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-University, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
21
|
Vincze O, Vágási CI, Pap PL, Osváth G, Møller AP. Brain regions associated with visual cues are important for bird migration. Biol Lett 2016; 11:rsbl.2015.0678. [PMID: 26538538 DOI: 10.1098/rsbl.2015.0678] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long-distance migratory birds have relatively smaller brains than short-distance migrants or residents. Here, we test whether reduction in brain size with migration distance can be generalized across the different brain regions suggested to play key roles in orientation during migration. Based on 152 bird species, belonging to 61 avian families from six continents, we show that the sizes of both the telencephalon and the whole brain decrease, and the relative size of the optic lobe increases, while cerebellum size does not change with increasing migration distance. Body mass, whole brain size, optic lobe size and wing aspect ratio together account for a remarkable 46% of interspecific variation in average migration distance across bird species. These results indicate that visual acuity might be a primary neural adaptation to the ecological challenge of migration.
Collapse
Affiliation(s)
- Orsolya Vincze
- MTA-DE 'Lendület' Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egytem tér 1, 4032, Debrecen, Hungary Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Clinicilor Street 5-7, 400006, Cluj-Napoca, Romania
| | - Csongor I Vágási
- MTA-DE 'Lendület' Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egytem tér 1, 4032, Debrecen, Hungary Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Clinicilor Street 5-7, 400006, Cluj-Napoca, Romania
| | - Péter L Pap
- MTA-DE 'Lendület' Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egytem tér 1, 4032, Debrecen, Hungary Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Clinicilor Street 5-7, 400006, Cluj-Napoca, Romania
| | - Gergely Osváth
- MTA-DE 'Lendület' Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egytem tér 1, 4032, Debrecen, Hungary Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Clinicilor Street 5-7, 400006, Cluj-Napoca, Romania Museum of Zoology, Babeş-Bolyai University, Clinicilor Street 5-7, 400006, Cluj-Napoca, Romania
| | - Anders Pape Møller
- Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, 91405 Orsay Cedex, France
| |
Collapse
|
22
|
Affiliation(s)
- P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, DE-26111 Oldenburg, Germany;
- Research Centre for Neurosensory Sciences, University of Oldenburg, DE-26111 Oldenburg, Germany
| |
Collapse
|
23
|
Warrant E, Frost B, Green K, Mouritsen H, Dreyer D, Adden A, Brauburger K, Heinze S. The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator. Front Behav Neurosci 2016; 10:77. [PMID: 27147998 PMCID: PMC4838632 DOI: 10.3389/fnbeh.2016.00077] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 02/03/2023] Open
Abstract
The nocturnal Bogong moth (Agrotis infusa) is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW) and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September), Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m). In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”). Towards the end of the summer (February and March), the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes clear that the Bogong moth represents a new and very promising model organism for understanding the sensory basis of nocturnal migration in insects.
Collapse
Affiliation(s)
- Eric Warrant
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| | - Barrie Frost
- Department of Psychology, Queens University Kingston, ON, Canada
| | - Ken Green
- New South Wales National Parks and Wildlife Service Jindabyne, NSW, Australia
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, University of Oldenburg Oldenburg, Germany
| | - David Dreyer
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, University of Lund Lund, Sweden
| |
Collapse
|
24
|
Mouritsen H, Heyers D, Güntürkün O. The Neural Basis of Long-Distance Navigation in Birds. Annu Rev Physiol 2016; 78:133-54. [DOI: 10.1146/annurev-physiol-021115-105054] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky-Universität Oldenburg, D-26111 Oldenburg, Germany; ,
- Research Center Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Dominik Heyers
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky-Universität Oldenburg, D-26111 Oldenburg, Germany; ,
- Research Center Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, D-44780 Bochum, Germany;
| |
Collapse
|
25
|
Alert B, Michalik A, Helduser S, Mouritsen H, Güntürkün O. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning? PLoS One 2015; 10:e0119919. [PMID: 25807499 PMCID: PMC4373800 DOI: 10.1371/journal.pone.0119919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/01/2015] [Indexed: 11/19/2022] Open
Abstract
Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.
Collapse
Affiliation(s)
- Bianca Alert
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, D-26111, Oldenburg, Germany
- Research Centre Neurosensory Science, University of Oldenburg, D-26111, Oldenburg, Germany
- * E-mail:
| | - Andreas Michalik
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, D-26111, Oldenburg, Germany
- Research Centre Neurosensory Science, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Sascha Helduser
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, D-44780, Bochum, Germany
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, D-26111, Oldenburg, Germany
- Research Centre Neurosensory Science, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Onur Güntürkün
- Department of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, D-44780, Bochum, Germany
| |
Collapse
|
26
|
Bockhorst T, Homberg U. Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. J Neurophysiol 2015; 113:3291-311. [PMID: 25609107 DOI: 10.1152/jn.00742.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
The polarization pattern of skylight provides a compass cue that various insect species use for allocentric orientation. In the desert locust, Schistocerca gregaria, a network of neurons tuned to the electric field vector (E-vector) angle of polarized light is present in the central complex of the brain. Preferred E-vector angles vary along slices of neuropils in a compasslike fashion (polarotopy). We studied how the activity in this polarotopic population is modulated in ways suited to control compass-guided locomotion. To this end, we analyzed tuning profiles using measures of correlation between spike rate and E-vector angle and, furthermore, tested for adaptation to stationary angles. The results suggest that the polarotopy is stabilized by antagonistic integration across neurons with opponent tuning. Downstream to the input stage of the network, responses to stationary E-vector angles adapted quickly, which may correlate with a tendency to steer a steady course previously observed in tethered flying locusts. By contrast, rotating E-vectors corresponding to changes in heading direction under a natural sky elicited nonadapting responses. However, response amplitudes were particularly variable at the output stage, covarying with the level of ongoing activity. Moreover, the responses to rotating E-vector angles depended on the direction of rotation in an anticipatory manner. Our observations support a view of the central complex as a substrate of higher-stage processing that could assign contextual meaning to sensory input for motor control in goal-driven behaviors. Parallels to higher-stage processing of sensory information in vertebrates are discussed.
Collapse
Affiliation(s)
- Tobias Bockhorst
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
27
|
Bech M, Homberg U, Pfeiffer K. Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 2014; 24:2124-2129. [PMID: 25201687 DOI: 10.1016/j.cub.2014.07.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/24/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
Abstract
Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation.
Collapse
Affiliation(s)
- Miklós Bech
- Department of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany.
| | - Keram Pfeiffer
- Department of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
28
|
Barkan S, Yom-Tov Y, Barnea A. A possible relation between new neuronal recruitment and migratory behavior inAcrocephaluswarblers. Dev Neurobiol 2014; 74:1194-209. [DOI: 10.1002/dneu.22198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Shay Barkan
- Department of Zoology; Tel-Aviv University; Tel-Aviv 61391 Israel
| | - Yoram Yom-Tov
- Department of Zoology; Tel-Aviv University; Tel-Aviv 61391 Israel
| | - Anat Barnea
- Department of Natural and Life Sciences; The Open University of Israel; Ra'anana 43107 Israel
| |
Collapse
|
29
|
Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G, Whitney O, Jarvis SC, Jarvis ER, Kubikova L, Puck AEP, Siang-Bakshi C, Martin S, McElroy M, Hara E, Howard J, Pfenning A, Mouritsen H, Chen CC, Wada K. Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J Comp Neurol 2014; 521:3614-65. [PMID: 23818122 DOI: 10.1002/cne.23404] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/06/2022]
Abstract
Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals.
Collapse
Affiliation(s)
- Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina, 27710
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:575-89. [PMID: 24589854 DOI: 10.1007/s00359-014-0890-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/13/2023]
Abstract
Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.
Collapse
|
31
|
Scanning Electron Microscopic Studies of the Pecten Oculi in the Quail (Coturnix coturnix japonica). ANATOMY RESEARCH INTERNATIONAL 2013; 2013:650601. [PMID: 24198967 PMCID: PMC3807703 DOI: 10.1155/2013/650601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 11/17/2022]
Abstract
The main purpose of this study is to extend the microscopic investigations of the pecten oculi in the quail in order to add some information on the unresolved functional anatomy of this unique avian organ. The pecten oculi of the quail was studied by scanning electron microscopy. Eighteen- to-twenty two highly vascularised accordion-like folds were joined apically by a heavily pigmented bridge of tissue, which holds the pecten in a fanlike shape, widest at the base. The structure of the double layered limiting membrane was recorded. The presence of hyalocytes with macrophage-like appearance was illustrated. It is assumed that the pecten oculi of the quail resembles that of the chicken. Illustrated morphological features of this species may add information on the active physiological role of the pecten. But still, the functional significance of this organ is a matter of controversies.
Collapse
|
32
|
el Jundi B, Homberg U. Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarious locusts. J Neurophysiol 2012; 108:1695-710. [PMID: 22773775 DOI: 10.1152/jn.01023.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many migrating insects rely on the plane of sky polarization as a cue to detect spatial directions. Desert locusts (Schistocerca gregaria), like other insects, perceive polarized light through specialized photoreceptors in a dorsal eye region. Desert locusts occur in two phases: a gregarious swarming phase, which migrates during the day, and a solitarious nocturnal phase. Neurons in a small brain area, the anterior optic tubercle (AOTu), are critically involved in processing polarized light in the locust brain. While polarization-sensitive intertubercle cells [lobula-tubercle neuron 1 (LoTu1) and tubercle-tubercle neuron 1 (TuTu1)] interconnect the AOTu of both hemispheres, tubercle-lateral accessory lobe tract (TuLAL1) neurons transmit sky compass signals to a polarization compass in the central brain. To better understand the neural network underlying polarized light processing in the AOTu and to investigate possible adaptations of the polarization vision system to a diurnal versus nocturnal lifestyle, we analyzed receptive field properties, intensity-response relationships, and daytime dependence of responses of AOTu neurons in gregarious and solitarious locusts. Surprisingly, no differences in the physiology of these neurons were found between the two locust phases. Instead, clear differences were observed between the different types of AOTu neurons. Whereas TuTu1 and TuLAL1 neurons encoded E-vector orientation independent of light intensity and would thus be operational in bright daylight, LoTu1 neurons were inhibited by high light intensity and provided strong polarization signaling only under dim light conditions. The presence of high- and low-intensity polarization channels might, therefore, allow solitarious and gregarious locusts to use the same polarization coding system despite their different activity cycles.
Collapse
Affiliation(s)
- Basil el Jundi
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität Marburg, Marburg D-35032, Germany
| | | |
Collapse
|
33
|
el Jundi B, Pfeiffer K, Homberg U. A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS One 2011; 6:e27855. [PMID: 22114712 PMCID: PMC3218074 DOI: 10.1371/journal.pone.0027855] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
Mass migration of desert locusts is a common phenomenon in North Africa and the Middle East but how these insects navigate is still poorly understood. Laboratory studies suggest that locusts are able to exploit the sky polarization pattern as a navigational cue. Like other insects locusts detect polarized light through a specialized dorsal rim area (DRA) of the eye. Polarization signals are transmitted through the optic lobe to the anterior optic tubercle (AOTu) and, finally, to the central complex in the brain. Whereas neurons of the AOTu integrate sky polarization and chromatic cues in a daytime dependent manner, the central complex holds a topographic representation of azimuthal directions suggesting a role as an internal sky compass. To understand further the integration of sky compass cues we studied polarization-sensitive (POL) neurons in the medulla that may be intercalated between DRA photoreceptors and AOTu neurons. Five types of POL-neuron were characterized and four of these in multiple recordings. All neurons had wide arborizations in medulla layer 4 and most, additionally, in the dorsal rim area of the medulla and in the accessory medulla, the presumed circadian clock. The neurons showed type-specific orientational tuning to zenithal polarized light and azimuth tuning to unpolarized green and UV light spots. In contrast to neurons of the AOTu, we found no evidence for color opponency and daytime dependent adjustment of sky compass signals. Therefore, medulla layer 4 is a distinct stage in the integration of sky compass signals that precedes the time-compensated integration of celestial cues in the AOTu.
Collapse
Affiliation(s)
- Basil el Jundi
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
| | - Keram Pfeiffer
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University, Marburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|
35
|
Yaski O, Portugali J, Eilam D. Arena geometry and path shape: when rats travel in straight or in circuitous paths? Behav Brain Res 2011; 225:449-54. [PMID: 21840341 DOI: 10.1016/j.bbr.2011.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
We show here that the global geometry of the environment affects the shape of the paths of travel in rats. To examine this, individual rats were introduced into an unfamiliar arena. One group of rats (n=8) was tested in a square arena (2 m × 2 m), and the other group (n=8) in a round arena (2 m diameter). Testing was in a total darkness, since in the absence of visual information the geometry is not perceived immediately and the extraction of environment shape is slower. We found that while the level of the rats' activity did not seem to differ between both arenas, path shape differed significantly. When traveling along the perimeter, path shape basically followed the arena walls, with perimeter paths curving along the walls of the round arena, while being straight along the walls of the square arena. A similar impact of arena geometry was observed for travel away from the arena walls. Indeed, when the rats abandoned the arena walls to crosscut through the center of the arena, their center paths were circuitous in the round arena and relatively straight in the square arena. We suggest that the shapes of these paths are exploited for the same spatial task: returning back to a familiar location in the unsighted environment.
Collapse
Affiliation(s)
- Osnat Yaski
- Department of Zoology, Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | | | | |
Collapse
|
36
|
Sakura M, Okada R, Aonuma H. Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm. Proc Biol Sci 2011; 279:535-42. [PMID: 21733901 DOI: 10.1098/rspb.2011.0929] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many insects use the polarization pattern of the sky for obtaining compass information during orientation or navigation. E-vector information is collected by a specialized area in the dorsal-most part of the compound eye, the dorsal rim area (DRA). We tested honeybees' capability of learning certain e-vector orientations by using a classical conditioning paradigm with the proboscis extension reflex. When one e-vector orientation (CS+) was associated with sugar water, while another orientation (CS-) was not rewarded, the honeybees could discriminate CS+ from CS-. Bees whose DRA was inactivated by painting did not learn CS+. When ultraviolet (UV) polarized light (350 nm) was used for CS, the bees discriminated CS+ from CS-, but no discrimination was observed in blue (442 nm) or green light (546 nm). Our data indicate that honeybees can learn and discriminate between different e-vector orientations, sensed by the UV receptors of the DRA, suggesting that bees can determine their flight direction from polarized UV skylight during foraging. Fixing the bees' heads during the experiments did not prevent learning, indicating that they use an 'instantaneous' algorithm of e-vector detection; that is, the bees do not need to actively scan the sky with their DRAs ('sequential' method) to determine e-vector orientation.
Collapse
Affiliation(s)
- Midori Sakura
- Laboratory of Neurocybernetics, Research Institute for Electronic Science, Hokkaido University, Kita 12, Nishi 7, Sapporo, Hokkaido 060-0812, Japan.
| | | | | |
Collapse
|
37
|
El Jundi B, Homberg U. Evidence for the possible existence of a second polarization-vision pathway in the locust brain. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:971-979. [PMID: 20488187 DOI: 10.1016/j.jinsphys.2010.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
For spatial orientation and navigation, many insects derive compass information from the polarization pattern of the blue sky. The desert locust Schistocerca gregaria detects polarized light with a specialized dorsal rim area of its compound eye. In the locust brain, polarized-light signals are passed through the anterior optic tract and tubercle to the central complex which most likely serves as an internal sky compass. Here, we suggest that neurons of a second visual pathway, via the accessory medulla and posterior optic tubercle, also provide polarization information to the central complex. Intracellular recordings show that two types of neuron in this posterior pathway are sensitive to polarized light. One cell type connects the dorsal rim area of the medulla with the medulla and accessory medulla, and a second type connects the bilaterally paired posterior optic tubercles. Given the evidence for a role of the accessory medulla as the master clock controlling circadian changes in behavioral activity in flies and cockroaches, our data open the possibility that time-compensated polarized-light signals may reach the central complex via this pathway for time-compensated sky-compass navigation.
Collapse
Affiliation(s)
- Basil El Jundi
- Fachbereich Biologie, Tierphysiologie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | | |
Collapse
|
38
|
Burger T, Lucová M, Moritz RE, Oelschläger HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Nemec P. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J R Soc Interface 2010; 7:1275-92. [PMID: 20219838 DOI: 10.1098/rsif.2009.0551] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.
Collapse
Affiliation(s)
- Tomás Burger
- Department of Zoology, Faculty of Science Charles University in Prague, Vinicna 7, CZ-12844 Praha 2, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Prato FS, Desjardins-Holmes D, Keenliside LD, McKay JC, Robertson JA, Thomas AW. Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations. J R Soc Interface 2009; 6:17-28. [PMID: 18583276 DOI: 10.1098/rsif.2008.0156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous experiments with mice have shown that repeated 1 hour daily exposure to an ambient magnetic field-shielded environment induces analgesia (antinociception). The exposures were carried out in the dark (less than 2.0x1016 photonss-1m-2) during the mid-light phase of the diurnal cycle. However, if the mice were exposed in the presence of visible light (2.0x1018 photonss-1m-2, 400-750 nm), then the analgesic effects of shielding were eliminated. Here, we show that this effect of light is intensity and wavelength dependent. Introduction of red light (peak at 635 nm) had little or no effect, presumably because mice do not have photoreceptors sensitive to red light above 600 nm in their eyes. By contrast, introduction of ultraviolet light (peak at 405 nm) abolished the effect, presumably because mice do have ultraviolet A receptors. Blue light exposures (peak at 465 nm) of different intensities demonstrate that the effect has an intensity threshold of approximately 12% of the blue light in the housing facility, corresponding to 5x1016 photonss-1m-2 (integral). This intensity is similar to that associated with photoreceptor-based magnetoreception in birds and in mice stimulates photopic/cone vision. Could the detection mechanism that senses ambient magnetic fields in mice be similar to that in bird navigation?
Collapse
Affiliation(s)
- Frank S Prato
- Bioelectromagnetics Group, Imaging Program, Lawson Health Research Institute, London, ON, Canada N6A 4V2.
| | | | | | | | | | | |
Collapse
|
40
|
Rodgers CT, Hore PJ. Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A 2009; 106:353-60. [PMID: 19129499 PMCID: PMC2626707 DOI: 10.1073/pnas.0711968106] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Indexed: 11/18/2022] Open
Abstract
Migratory birds travel vast distances each year, finding their way by various means, including a remarkable ability to perceive the Earth's magnetic field. Although it has been known for 40 years that birds possess a magnetic compass, avian magnetoreception is poorly understood at all levels from the primary biophysical detection events, signal transduction pathways and neurophysiology, to the processing of information in the brain. It has been proposed that the primary detector is a specialized ocular photoreceptor that plays host to magnetically sensitive photochemical reactions having radical pairs as fleeting intermediates. Here, we present a physical chemist's perspective on the "radical pair mechanism" of compass magnetoreception in birds. We outline the essential chemical requirements for detecting the direction of an Earth-strength approximately 50 microT magnetic field and comment on the likelihood that these might be satisfied in a biologically plausible receptor. Our survey concludes with a discussion of cryptochrome, the photoactive protein that has been put forward as the magnetoreceptor molecule.
Collapse
Affiliation(s)
- Christopher T. Rodgers
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom; and
- Oxford Centre for Clinical Magnetic Resonance Research, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom; and
| |
Collapse
|
41
|
Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS One 2008; 3:e1768. [PMID: 18335043 PMCID: PMC2258151 DOI: 10.1371/journal.pone.0001768] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 02/03/2008] [Indexed: 11/19/2022] Open
Abstract
Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.
Collapse
Affiliation(s)
- Gesa Feenders
- Volkswagen Nachwuchsgruppe Animal Navigation, Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, Oldenburg, Germany
| | - Miriam Liedvogel
- Volkswagen Nachwuchsgruppe Animal Navigation, Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, Oldenburg, Germany
| | - Miriam Rivas
- Duke University Medical Center, Department of Neurobiology, Durham, North Carolina, United States of America
| | - Manuela Zapka
- Volkswagen Nachwuchsgruppe Animal Navigation, Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, Oldenburg, Germany
| | - Haruhito Horita
- Duke University Medical Center, Department of Neurobiology, Durham, North Carolina, United States of America
| | - Erina Hara
- Duke University Medical Center, Department of Neurobiology, Durham, North Carolina, United States of America
| | - Kazuhiro Wada
- Duke University Medical Center, Department of Neurobiology, Durham, North Carolina, United States of America
| | - Henrik Mouritsen
- Volkswagen Nachwuchsgruppe Animal Navigation, Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, Oldenburg, Germany
| | - Erich D. Jarvis
- Duke University Medical Center, Department of Neurobiology, Durham, North Carolina, United States of America
| |
Collapse
|
42
|
Bolger DT, Newmark WD, Morrison TA, Doak DF. The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 2007; 11:63-77. [PMID: 17897327 DOI: 10.1111/j.1461-0248.2007.01109.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the last two centuries overhunting, anthropogenic barriers and habitat loss have disrupted many ungulate migrations. We review the literature on ungulate migration disruptions and find that for many species the disruption of migratory routes causes a rapid population collapse. Previous research has focused on the proximal ecological factors that might favour migration, particularly spatiotemporal variation in resources and predation. However, this does not provide an adequate basis for understanding and mitigating anthropogenic effects on migratory populations. Migration is a complex behaviour and we advocate an integrative approach that incorporates population dynamics, evolution, genetics, behaviour and physiology, and that borrows insights and approaches from research on other taxa. We draw upon research on avian migration to illustrate research approaches that might also be fruitful in ungulates. In particular, we suggest that the migratory cycle should be evaluated in the context of seasonal population limitation, an approach we highlight with a preliminary demographic perturbation analysis of the Serengeti wildebeest (Connochaetes taurinus) population. We provide suggestions for avenues of future research and highlight areas where we believe rapid progress can be made by applying recent advances in theory, technology and analytical approaches.
Collapse
Affiliation(s)
- Douglas T Bolger
- Environmental Studies Program, HB6182, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
43
|
Pfeiffer K, Homberg U. Coding of Azimuthal Directions via Time-Compensated Combination of Celestial Compass Cues. Curr Biol 2007; 17:960-5. [PMID: 17524646 DOI: 10.1016/j.cub.2007.04.059] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 11/25/2022]
Abstract
Many animals use the sun as a reference for spatial orientation [1-3]. In addition to sun position, the sky provides two other sources of directional information, a color gradient [4] and a polarization pattern [5]. Work on insects has predominantly focused on celestial polarization as an orientation cue [6, 7]. Relying on sky polarization alone, however, poses the following two problems: E vector orientations in the sky are not suited to distinguish between the solar and antisolar hemisphere of the sky, and the polarization pattern changes with changing solar elevation during the day [8, 9]. Here, we present neurons that overcome both problems in a locust's brain. The spiking activity of these neurons depends (1) on the E vector orientation of dorsally presented polarized light, (2) on the azimuthal, i.e., horizontal, direction, and (3) on the wavelength of an unpolarized light source. Their tuning to these stimuli matches the distribution of a UV/green chromatic contrast as well as the polarization of natural skylight and compensates for changes in solar elevation during the day. The neurons are, therefore, suited to code for solar azimuth by concurrent combination of signals from the spectral gradient, intensity gradient, and polarization pattern of the sky.
Collapse
Affiliation(s)
- Keram Pfeiffer
- Department of Biology, Animal Physiology, University of Marburg, 35032 Marburg, Germany
| | | |
Collapse
|