1
|
Kozlowski MM, Strickland A, Benitez AM, Schmidt RE, Bloom AJ, Milbrandt J, DiAntonio A. Pmp2+ Schwann Cells Maintain the Survival of Large-Caliber Motor Axons. J Neurosci 2025; 45:e1362242025. [PMID: 39880678 PMCID: PMC11961402 DOI: 10.1523/jneurosci.1362-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Neurodegenerative diseases of both the central and peripheral nervous system are characterized by selective neuronal vulnerability, i.e., pathology that affects particular types of neurons. While much of this cell type selectivity may be driven by intrinsic differences among the neuron subpopulations, neuron-extrinsic mechanisms such as the selective malfunction of glial support cells may also play a role. Recently, we identified a population of Schwann cells (SCs) expressing Adamtsl1, Cldn14, and Pmp2 (a.k.a. PMP2+ SCs) that preferentially myelinate large-caliber motor axons. PMP2+ SCs are decreased in both amyotrophic lateral sclerosis (ALS) model mice and ALS patient nerves. Thus, PMP2+ SC dysfunction could contribute to motor-selective neuropathies. We engineered a tamoxifen-inducible Pmp2-CreERT2 mouse and expressed diphtheria toxin in PMP2+ SCs to assess the consequences of ablating this SC subtype in male and female mice. Loss of PMP2+ SCs led to significant loss of large-caliber motor axons with concomitant behavioral, electrophysiological, and ultrastructural defects. Subsequent withdrawal of tamoxifen restored both PMP2+ SCs and large-caliber motor axons and improved behavioral and electrophysiological readouts. Together, our findings highlight that the survival of large-caliber motor axons relies on PMP2+ SCs, demonstrating that malfunction of a specific SC subtype can lead to selective neuronal vulnerability.
Collapse
Affiliation(s)
- Mikolaj M Kozlowski
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Amy Strickland
- Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Ana Morales Benitez
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Robert E Schmidt
- Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - A Joseph Bloom
- Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, 63110
| | - Jeffrey Milbrandt
- Genetics, Washington University School of Medicine, St. Louis, Missouri, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, 63110
| | - Aaron DiAntonio
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, 63110
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, 63110
| |
Collapse
|
2
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Kim W, Angulo MC. Unraveling the role of oligodendrocytes and myelin in pain. J Neurochem 2025; 169:e16206. [PMID: 39162089 PMCID: PMC11657919 DOI: 10.1111/jnc.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024]
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system (CNS), are crucial for rapid action potential conduction and neuronal communication. While extensively studied for their roles in neuronal support and axonal insulation, their involvement in pain modulation is an emerging research area. This review explores the interplay between oligodendrocytes, myelination, and pain, focusing on neuropathic pain following peripheral nerve injury, spinal cord injury (SCI), chemotherapy, and HIV infection. Studies indicate that a decrease in oligodendrocytes and increased cytokine production by oligodendroglia in response to injury can induce or exacerbate pain. An increase in endogenous oligodendrocyte precursor cells (OPCs) may be a compensatory response to repair damaged oligodendrocytes. Exogenous OPC transplantation shows promise in alleviating SCI-induced neuropathic pain and enhancing remyelination. Additionally, oligodendrocyte apoptosis in brain regions such as the medial prefrontal cortex is linked to opioid-induced hyperalgesia, highlighting their role in central pain mechanisms. Chemotherapeutic agents disrupt oligodendrocyte differentiation, leading to persistent pain, while HIV-associated neuropathy involves up-regulation of oligodendrocyte lineage cell markers. These findings underscore the multifaceted roles of oligodendrocytes in pain pathways, suggesting that targeting myelination processes could offer new therapeutic strategies for chronic pain management. Further research should elucidate the underlying molecular mechanisms to develop effective pain treatments.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
- Korean Medicine‐Based Drug Repositioning Cancer Research Center, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - María Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team: Interactions between Neurons and Oligodendroglia in Myelination and Myelin Repair”ParisFrance
- GHU PARIS Psychiatrie & NeurosciencesParisFrance
| |
Collapse
|
4
|
Zhang A. Revisiting the role of ErbBs in oligodendrocyte development. Proc Natl Acad Sci U S A 2024; 121:e2422181121. [PMID: 39680783 DOI: 10.1073/pnas.2422181121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Affiliation(s)
- Albert Zhang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
5
|
Martinez Moreno M, Karambizi D, Hwang H, Fregoso K, Michles MJ, Fajardo E, Fiser A, Tapinos N. Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape. Biomedicines 2024; 12:2594. [PMID: 39595160 PMCID: PMC11592338 DOI: 10.3390/biomedicines12112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Schwann cells (SCs) and their plasticity contribute to the peripheral nervous system's capacity for nerve regeneration after injury. The Egr2/Krox20 promoter antisense RNA (Egr2-AS) recruits chromatin remodeling complexes to inhibit Egr2 transcription following peripheral nerve injury. Methods: RNA-seq and ATAC-seq were performed on control cells, Lenti-GFP-transduced cells, and cells overexpressing Egr2-AS (Lenti-AS). Egr2 AS-RNA was cloned into the pLVX-DsRed-Express2-N1 lentiviral expression vector (Clontech, Mountain View, CA, USA), and the levels of AS-RNA expression were determined. Ezh2 and Wdr5 were immunoprecipitated from rat SCs and RT-qPCR was performed against AS-Egr2 RNA. ChIP followed by DNA purification columns was used to perform qPCR for relevant promoters. Hi-C, HiC-DC+, R, Bioconductor, and TOBIAS were used for significant and differential loop analysis, identifications of COREs and CORE-promotor loops, comparisons of TF activity at promoter sites, and identification of site-specific TF footprints. OnTAD was used to detect TADs, and Juicer was used to identify A/B compartments. Results: Here we show that a Neuregulin-ErbB2/3 signaling axis mediates binding of the Egr2-AS to YY1Ser184 and regulates its expression. Egr2-AS modulates the chromatin accessibility of Schwann cells and interacts with two distinct histone modification complexes. It binds to EZH2 and WDR5 and enables targeting of H3K27me3 and H3K4me3 to promoters of Egr2 and C-JUN, respectively. Expression of the Egr2-AS results in reorganization of the global chromatin landscape and quantitative changes in the loop formation and contact frequency at domain boundaries exhibiting enrichment for AP-1 genes. In addition, the Egr2-AS induces changes in the hierarchical TADs and increases transcription factor binding scores on an inter-TAD loop between a super-enhancer regulatory hub and the promoter of mTOR. Conclusions: Our results show that Neuregulin-ErbB2/3-YY1 regulates the expression of Egr2-AS, which mediates remodeling of the chromatin landscape in Schwann cells.
Collapse
Affiliation(s)
- Margot Martinez Moreno
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - David Karambizi
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| | - Hyeyeon Hwang
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| | - Kristen Fregoso
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| | - Madison J. Michles
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nikos Tapinos
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Laboratory of Cancer Epigenetics and Plasticity, Brown University, Providence, RI 02903, USA
| |
Collapse
|
6
|
Hu X, Zhu Q, Lou T, Hu Q, Li H, Xu Y, Niu X, He L, Huang H, Qiu M, Shen Y, Jia JM, Tao Y. Pan-ErbB inhibition impairs cognition via disrupting myelination and aerobic glycolysis in oligodendrocytes. Proc Natl Acad Sci U S A 2024; 121:e2405152121. [PMID: 39475641 PMCID: PMC11551437 DOI: 10.1073/pnas.2405152121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
White matter (WM) abnormalities are an emerging feature of schizophrenia, yet the underlying pathophysiological mechanisms are largely unknown. Disruption of ErbB signaling, which is essential for peripheral myelination, has been genetically associated with schizophrenia and WM lesions in schizophrenic patients. However, the roles of ErbB signaling in oligodendrocytes remain elusive. Here, we used an in vivo pan-ErbB inhibition strategy and demonstrated the functions of endogenous ErbB receptors in oligodendrocytes. Through analyses of the cellular, histological, biochemical, behavioral, and electrophysiological differences in mice with manipulated ErbB activities in oligodendrocytes at different differentiation stages, we found that ErbB signaling regulates myelination and aerobic glycolysis in oligodendrocytes, and both functions are required for working memory. ErbB inhibition in oligodendrocytes at early differentiation stages induces hypomyelination by suppressing the myelinating capacity of newly formed oligodendrocytes. In contrast, ErbB inhibition in mature oligodendrocytes alters neither myelination nor oligodendrocyte numbers, but accelerates axonal conduction decline under energy stress. Mechanistically, ErbB inhibition attenuates K-Ras activities, leading to the reduced expression of lactate dehydrogenase A that promotes aerobic glycolysis in mature oligodendrocytes. Supplementation of L-lactate restores axonal conduction and working memory capacity that are suppressed by ErbB inhibition in mature oligodendrocytes. These findings emphasize the indispensable roles of ErbB signaling in WM integrity and function and provide insights into the multifaceted contributions of WM abnormalities to cognitive impairment.
Collapse
Affiliation(s)
- Xu Hu
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Qingyu Zhu
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Tianjie Lou
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Qianqian Hu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Huashun Li
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
| | - Yijia Xu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Xiaojie Niu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Li He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Hao Huang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Mengsheng Qiu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Jie-Min Jia
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Yanmei Tao
- Department of Physiology, School of Medicine, Southeast University, Nanjing210009, China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing210009, China
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| |
Collapse
|
7
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
8
|
Berrocal-Rubio MA, Pawer YDJ, Dinevska M, De Paoli-Iseppi R, Widodo SS, Gleeson J, Rajab N, De Nardo W, Hallab J, Li A, Mantamadiotis T, Clark MB, Wells CA. Discovery of NRG1-VII: the myeloid-derived class of NRG1. BMC Genomics 2024; 25:814. [PMID: 39210279 PMCID: PMC11360300 DOI: 10.1186/s12864-024-10723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The growth factor Neuregulin-1 (NRG1) has pleiotropic roles in proliferation and differentiation of the stem cell niche in different tissues. It has been implicated in gut, brain and muscle development and repair. Six isoform classes of NRG1 and over 28 protein isoforms have been previously described. Here we report a new class of NRG1, designated NRG1-VII to denote that these NRG1 isoforms arise from a myeloid-specific transcriptional start site (TSS) previously uncharacterized. Long-read sequencing was used to identify eight high-confidence NRG1-VII transcripts. These transcripts presented major structural differences from one another, through the use of cassette exons and alternative stop codons. Expression of NRG1-VII was confirmed in primary human monocytes and tissue resident macrophages and induced pluripotent stem cell-derived macrophages (iPSC-derived macrophages). Isoform switching via cassette exon usage and alternate polyadenylation was apparent during monocyte maturation and macrophage differentiation. NRG1-VII is the major class expressed by the myeloid lineage, including tissue-resident macrophages. Analysis of public gene expression data indicates that monocytes and macrophages are a primary source of NRG1. The size and structure of class VII isoforms suggests that they may be more diffusible through tissues than other NRG1 classes. However, the specific roles of class VII variants in tissue homeostasis and repair have not yet been determined.
Collapse
Affiliation(s)
- Miguel A Berrocal-Rubio
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Yair David Joseph Pawer
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Ricardo De Paoli-Iseppi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Josie Gleeson
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nadia Rajab
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Will De Nardo
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Jeannette Hallab
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Anran Li
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Michael B Clark
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Christine A Wells
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
9
|
Hong J, Garfolo R, Kabre S, Humml C, Velanac V, Roué C, Beck B, Jeanette H, Haslam S, Bach M, Arora S, Acheta J, Nave KA, Schwab MH, Jourd’heuil D, Poitelon Y, Belin S. PMP2 regulates myelin thickening and ATP production during remyelination. Glia 2024; 72:885-898. [PMID: 38311982 PMCID: PMC11027087 DOI: 10.1002/glia.24508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3. Here, we demonstrate PMP2 expression is directly regulated by NRG1t3 active form, following proteolytic cleavage. Then, using a transgenic mouse model overexpressing axonal NRG1t3 (NRG1t3OE) and knocked out for PMP2, we demonstrate that PMP2 is required for NRG1t3-mediated remyelination. We demonstrate that the sustained expression of Pmp2 in NRG1t3OE mice enhances the fatty acid uptake in sciatic nerve fibers and the mitochondrial ATP production in Schwann cells. In sum, our findings demonstrate that PMP2 is a direct downstream mediator of NRG1t3 and that the modulation of PMP2 downstream NRG1t3 activation has distinct effects on Schwann cell function during developmental myelination and remyelination.
Collapse
Affiliation(s)
- Jiayue Hong
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Rebekah Garfolo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sejal Kabre
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Christian Humml
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Viktorija Velanac
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Clémence Roué
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Brianna Beck
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Haley Jeanette
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sarah Haslam
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Martin Bach
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Simar Arora
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus H. Schwab
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul Flechsig Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - David Jourd’heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
10
|
Bin JM, Suminaite D, Benito-Kwiecinski SK, Kegel L, Rubio-Brotons M, Early JJ, Soong D, Livesey MR, Poole RJ, Lyons DA. Importin 13-dependent axon diameter growth regulates conduction speeds along myelinated CNS axons. Nat Commun 2024; 15:1790. [PMID: 38413580 PMCID: PMC10899189 DOI: 10.1038/s41467-024-45908-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Maria Rubio-Brotons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Daniel Soong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
11
|
Nilsson G, Mottahedin A, Zelco A, Lauschke VM, Ek CJ, Song J, Ardalan M, Hua S, Zhang X, Mallard C, Hagberg H, Leavenworth JW, Wang X. Two different isoforms of osteopontin modulate myelination and axonal integrity. FASEB Bioadv 2023; 5:336-353. [PMID: 37554545 PMCID: PMC10405251 DOI: 10.1096/fba.2023-00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Abnormal myelination underlies the pathology of white matter diseases such as preterm white matter injury and multiple sclerosis. Osteopontin (OPN) has been suggested to play a role in myelination. Murine OPN mRNA is translated into a secreted isoform (sOPN) or an intracellular isoform (iOPN). Whether there is an isoform-specific involvement of OPN in myelination is unknown. Here we generated mouse models that either lacked both OPN isoforms in all cells (OPN-KO) or lacked sOPN systemically but expressed iOPN specifically in oligodendrocytes (OLs-iOPN-KI). Transcriptome analysis of isolated oligodendrocytes from the neonatal brain showed that genes and pathways related to increase of myelination and altered cell cycle control were enriched in the absence of the two OPN isoforms in OPN-KO mice compared to control mice. Accordingly, adult OPN-KO mice showed an increased axonal myelination, as revealed by transmission electron microscopy imaging, and increased expression of myelin-related proteins. In contrast, neonatal oligodendrocytes from OLs-iOPN-KI mice compared to control mice showed differential regulation of genes and pathways related to the increase of cell adhesion, motility, and vasculature development, and the decrease of axonal/neuronal development. OLs-iOPN-KI mice showed abnormal myelin formation in the early phase of myelination in young mice and signs of axonal degeneration in adulthood. These results suggest an OPN isoform-specific involvement, and a possible interplay between the isoforms, in myelination, and axonal integrity. Thus, the two isoforms of OPN need to be separately considered in therapeutic strategies targeting OPN in white matter injury and diseases.
Collapse
Affiliation(s)
- Gisela Nilsson
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Amin Mottahedin
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Aura Zelco
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - C. Joakim Ek
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Juan Song
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Maryam Ardalan
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sha Hua
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Cardiology, Ruijin Hospital/Luwan Branch, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoli Zhang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Carina Mallard
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jianmei W. Leavenworth
- Department of NeurosurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Xiaoyang Wang
- Centre of Perinatal Medicine & Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Henan Key Laboratory of Child Brain InjuryInstitute of Neuroscience and Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Tunçkol E, Purkart L, Eigen L, Vida I, Brecht M. Fiber counts and architecture of the human dorsal penile nerve. Sci Rep 2023; 13:8862. [PMID: 37258532 DOI: 10.1038/s41598-023-35030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
The human penis transmits behaviorally important sensory information via the dorsal penile nerve, which is required for initiation and maintenance of erection. The human penis differs from the penes of other hominids. The lack of a baculum makes the human penis dependent on erectile tissue, which is under control of neural signals activated by tactile stimulation. Accordingly, the penile sensory innervation is crucial for human sexual behavior. To clarify penile innervation, we analyzed the architecture of the dorsal penile nerve of five male subjects who donated their body. We stained the sensory fibers in the penile dorsal nerve with anti-neurofilament H antibody, and identified myelinated axons with Luxol fast blue staining. Furthermore, we visualized nerve bundles as they travel along the shaft of the penis by performing microfocus computed tomography scans after counterstaining penes with iodine. Our results show that the dorsal penile nerve is organized in 25-45 loosely packed nerve bundles, running mediodorsally in the shaft of the penis. This organization corresponds to that in penes of other mammalian species, but differs from the organization of the other peripheral sensory nerves. Around half of the dorsal penile nerve fibers were myelinated and a human hemipenis contained a total of 8290 ± 2553 (mean ± SD) axons. Thus, the number of sensory axons in the human dorsal penile nerve is higher than in other species described so far. The large fraction of unmyelinated nerve fibers suggests that the conduction speed is not a crucial aspect of penile sensory transmission.
Collapse
Affiliation(s)
- Elçin Tunçkol
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany
| | - Leopold Purkart
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany
| | - Lennart Eigen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, CCM, Philippstrasse 12, 10115, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 6, Berlin, Germany.
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Kong L, Hassinan CW, Gerstner F, Buettner JM, Petigrow JB, Valdivia DO, Chan-Cortés MH, Mistri A, Cao A, McGaugh SA, Denton M, Brown S, Ross J, Schwab MH, Simon CM, Sumner CJ. Boosting neuregulin 1 type-III expression hastens SMA motor axon maturation. Acta Neuropathol Commun 2023; 11:53. [PMID: 36997967 PMCID: PMC10061791 DOI: 10.1186/s40478-023-01551-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
Intercellular communication between axons and Schwann cells is critical for attaining the complex morphological steps necessary for axon maturation. In the early onset motor neuron disease spinal muscular atrophy (SMA), many motor axons are not ensheathed by Schwann cells nor grow sufficiently in radial diameter to become myelinated. These developmentally arrested motor axons are dysfunctional and vulnerable to rapid degeneration, limiting efficacy of current SMA therapeutics. We hypothesized that accelerating SMA motor axon maturation would improve their function and reduce disease features. A principle regulator of peripheral axon development is neuregulin 1 type III (NRG1-III). Expressed on axon surfaces, it interacts with Schwann cell receptors to mediate axon ensheathment and myelination. We examined NRG1 mRNA and protein expression levels in human and mouse SMA tissues and observed reduced expression in SMA spinal cord and in ventral, but not dorsal root axons. To determine the impact of neuronal NRG1-III overexpression on SMA motor axon development, we bred NRG1-III overexpressing mice to SMA∆7 mice. Neonatally, elevated NRG1-III expression increased SMA ventral root size as well as axon segregation, diameter, and myelination resulting in improved motor axon conduction velocities. NRG1-III was not able to prevent distal axonal degeneration nor improve axon electrophysiology, motor behavior, or survival of older mice. Together these findings demonstrate that early SMA motor axon developmental impairments can be ameliorated by a molecular strategy independent of SMN replacement providing hope for future SMA combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Lingling Kong
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Cera W Hassinan
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jeffrey B Petigrow
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - David O Valdivia
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Michelle H Chan-Cortés
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Amy Mistri
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Annie Cao
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Scott Alan McGaugh
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Madeline Denton
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Stephen Brown
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Joshua Ross
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA
| | - Markus H Schwab
- Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Charlotte J Sumner
- Departments of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Rangos Building Room 234, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Du M, Wang N, Xin X, Yan CL, Gu Y, Wang L, Shen Y. Endothelin-1–Endothelin receptor B complex contributes to oligodendrocyte differentiation and myelin deficits during preterm white matter injury. Front Cell Dev Biol 2023; 11:1163400. [PMID: 37009471 PMCID: PMC10063893 DOI: 10.3389/fcell.2023.1163400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Preterm cerebral white matter injury (WMI), a major form of prenatal brain injury, may potentially be treated by oligodendrocyte (OL) precursor cell (OPC) transplantation. However, the defective differentiation of OPCs during WMI seriously hampers the clinical application of OPC transplantation. Thus, improving the ability of transplanted OPCs to differentiate is critical to OPC transplantation therapy for WMI. We established a hypoxia–ischemia-induced preterm WMI model in mice and screened the molecules affected by WMI using single-cell RNA sequencing. We revealed that endothelin (ET)-1 and endothelin receptor B (ETB) are a pair of signaling molecules responsible for the interaction between neurons and OPCs and that preterm WMI led to an increase in the number of ETB-positive OPCs and premyelinating OLs. Furthermore, the maturation of OLs was reduced by knocking out ETB but promoted by stimulating ET-1/ETB signaling. Our research reveals a new signaling module for neuron–OPC interaction and provides new insight for therapy targeting preterm WMI.
Collapse
Affiliation(s)
- Mengjie Du
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Xin
- NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chun-Lan Yan
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Gu
- Department of Stem Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Liang Wang, ; Ying Shen,
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Liang Wang, ; Ying Shen,
| |
Collapse
|
15
|
Low-intensity pulsed ultrasound promotes proliferation and myelinating genes expression of Schwann cells through NRG1/ErbB signaling pathway. Tissue Cell 2023; 80:101985. [PMID: 36459840 DOI: 10.1016/j.tice.2022.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Schwann cells (SCs) are the major component of myelin sheath in the peripheral nervous system, which are necessary in the development, function maintenance, and repair of peripheral nerves. This study aimed to investigate the potential mechanism of low-intensity pulsed ultrasound (LIPUS) affecting the proliferation and myelinating activity of SCs. Rat Schwann cell line RSC96 were cultured and exposed to LIPUS of different duty ratios (control, 20 %, 50 %, 80 %). Results demonstrated that LIPUS with a duty ratio of 50 % showing the maximal effect in facilitating proliferation of SCs. The expressions of Krox20 and myelin basic protein (MBP), the key molecules of SC myelination, and the potent inducer of myelination neuregulin 1 (NRG1) and its receptors ErbB2 and ErbB3 increased significantly by LIPUS. The reaction of these factors to LIPUS were both time- and duty ratio-dependent: namely LIPUS with higher duty ratios took effects when applied repeatedly over more consecutive days. These observations indicated that NRG1/ErbB signaling pathway might contribute to the effects of LIPUS on the proliferation and myelinating status of SCs, which could be one of the mechanisms in the protective role of LIPUS in nerve repair and regeneration. Our work provided novel insights for promising strategies of nerve repair therapy.
Collapse
|
16
|
Han SH, Kim YH, Park SJ, Cho JG, Shin YK, Hong YB, Yun J, Han JY, Park HT, Park JI. COUP-TFII plays a role in cAMP-induced Schwann cell differentiation and in vitro myelination by up-regulating Krox20. J Neurochem 2023; 165:660-681. [PMID: 36648143 DOI: 10.1111/jnc.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Schwann cells (SCs) are known to produce myelin for saltatory nerve conduction in the peripheral nervous system (PNS). Schwann cell differentiation and myelination processes are controlled by several transcription factors including Sox10, Oct6/Pou3f1, and Krox20/Egr2. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan receptor that plays a role in the development and differentiation. However, the role of COUP-TFII in the transcriptional regulatory network of SC differentiation has not been fully identified yet. Thus, the objective of this study was to investigate the role and molecular hierarchy of COUP-TFII during cAMP-induced SC differentiation. Our results showed that dibutyryl-cAMP (db-cAMP) increased expression levels of COUP-TFII along with the expressions of Oct6, Krox20, and myelin-related genes known to be related to SC differentiation. Our mechanistic studies showed that COUP-TFII acted downstream of Hsp90/ErbB2/Gab1/ERK-AKT pathway during db-cAMP-induced SC differentiation. In addition, we found that COUP-TFII induced Krox20 expression by directly binding to Krox20-MSE8 as revealed by chromatin immunoprecipitation assay and promoter activity assay. In line with this, the expression of COUP-TFII was increased before up-regulation of Oct6, Krox20, and myelin-related genes in the sciatic nerves during early postnatal myelination period. Finally, COUP-TFII knockdown by COUP-TFII siRNA or via AAV-COUP-TFII shRNA in SCs inhibited db-cAMP-induced SC differentiation and in vitro myelination of sensory axons, respectively. Taken together, these findings indicate that COUP-TFII might be involved in postnatal myelination through induction of Krox20 in SCs. Our results present a new insight into the transcriptional regulatory mechanism in SC differentiation and myelination.
Collapse
Affiliation(s)
- Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Su-Jeong Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jun-Gi Cho
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Young Bin Hong
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jeanho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea.,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, South Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| |
Collapse
|
17
|
Mansour HM, El-Khatib AS. Repositioning of receptor tyrosine kinase inhibitors. RECEPTOR TYROSINE KINASES IN NEURODEGENERATIVE AND PSYCHIATRIC DISORDERS 2023:353-401. [DOI: 10.1016/b978-0-443-18677-6.00010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Abd Razak NH, Zainey AS, Idris J, Daud MF. The Fundamentals of Schwann Cell Biology. INDUSTRIAL REVOLUTION IN KNOWLEDGE MANAGEMENT AND TECHNOLOGY 2023:105-113. [DOI: 10.1007/978-3-031-29265-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Grimaldi A, Gruel A, Besnainou C, Jérémie JN, Martinet J, Perrinet LU. Precise Spiking Motifs in Neurobiological and Neuromorphic Data. Brain Sci 2022; 13:68. [PMID: 36672049 PMCID: PMC9856822 DOI: 10.3390/brainsci13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption-a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.
Collapse
Affiliation(s)
- Antoine Grimaldi
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Amélie Gruel
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Camille Besnainou
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean-Nicolas Jérémie
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean Martinet
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Laurent U. Perrinet
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
20
|
Lysko DE, Talbot WS. Unmyelinated sensory neurons use Neuregulin signals to promote myelination of interneurons in the CNS. Cell Rep 2022; 41:111669. [PMID: 36384112 PMCID: PMC9719401 DOI: 10.1016/j.celrep.2022.111669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The signaling mechanisms neurons use to modulate myelination of circuits in the central nervous system (CNS) are only partly understood. Through analysis of isoform-specific neuregulin1 (nrg1) mutants in zebrafish, we demonstrate that nrg1 type II is an important regulator of myelination of two classes of spinal cord interneurons. Surprisingly, nrg1 type II expression is prominent in unmyelinated Rohon-Beard sensory neurons, whereas myelination of neighboring interneurons is reduced in nrg1 type II mutants. Cell-type-specific loss-of-function studies indicate that nrg1 type II is required in Rohon-Beard neurons to signal to other neurons, not oligodendrocytes, to modulate spinal cord myelination. Together, our data support a model in which unmyelinated neurons express Nrg1 type II proteins to regulate myelination of neighboring neurons, a mode of action that may coordinate the functions of unmyelinated and myelinated neurons in the CNS.
Collapse
Affiliation(s)
- Daniel E Lysko
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Liu Y, Yue W, Yu S, Zhou T, Zhang Y, Zhu R, Song B, Guo T, Liu F, Huang Y, Wu T, Wang H. A physical perspective to understand myelin II: The physical origin of myelin development. Front Neurosci 2022; 16:951998. [PMID: 36263368 PMCID: PMC9574017 DOI: 10.3389/fnins.2022.951998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The physical principle of myelin development is obtained from our previous study by explaining Peter's quadrant mystery: an externally applied negative and positive E-field can promote and inhibit the growth of the inner tongue of the myelin sheath, respectively. In this study, this principle is considered as a fundamental hypothesis, named Hypothesis-E, to explain more phenomena about myelin development systematically. Specifically, the g-ratio and the fate of the Schwann cell's differentiation are explained in terms of the E-field. Moreover, an experiment is proposed to validate this theory.
Collapse
Affiliation(s)
- Yonghong Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wenji Yue
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Shoujun Yu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tian Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yapeng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ran Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianruo Guo
- Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen, China
| | - Fenglin Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yubin Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Hao Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Lysko DE, Meireles AM, Folland C, McNamara E, Laing NG, Lamont PJ, Ravenscroft G, Talbot WS. Partial loss-of-function variant in neuregulin 1 identified in family with heritable peripheral neuropathy. Hum Mutat 2022; 43:1216-1223. [PMID: 35485770 PMCID: PMC9357049 DOI: 10.1002/humu.24393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.
Collapse
Affiliation(s)
- Daniel E Lysko
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ana M Meireles
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Elyshia McNamara
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
| | | | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
- Centre of Medical Research, University of Western Australia, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Mikdache A, Boueid MJ, Lesport E, Delespierre B, Loisel-Duwattez J, Degerny C, Tawk M. Timely Schwann cell division drives peripheral myelination in vivo via the laminin/cAMP pathway. Development 2022; 149:276236. [DOI: 10.1242/dev.200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp−/−) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp−/− restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp−/− posterior lateral line nerve and that forcing Laminin 2 expression in csp−/− fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marie-José Boueid
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Emilie Lesport
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marcel Tawk
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| |
Collapse
|
24
|
León-Andrino A, Noriega DC, Lapuente JP, Pérez-Valdecantos D, Caballero-García A, Herrero AJ, Córdova A. Biological Approach in the Treatment of External Popliteal Sciatic Nerve (Epsn) Neurological Injury: Review. J Clin Med 2022; 11:2804. [PMID: 35628928 PMCID: PMC9144828 DOI: 10.3390/jcm11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The external popliteal sciatic nerve (EPSN) is the nerve of the lower extremity most frequently affected by compressive etiology. Its superficial and sinuous anatomical course is closely related to other rigid anatomical structures and has an important dynamic neural component. Therefore, this circumstance means that this nerve is exposed to multiple causes of compressive etiology. Despite this fact, there are few publications with extensive case studies dealing with treatment. In this review, we propose to carry out a narrative review of the neuropathy of the EPSN, including an anatomical reminder, its clinical presentation and diagnosis, as well as its surgical and biological approach. The most novel aspect we propose is the review of the possible role of biological factors in the reversal of this situation.
Collapse
Affiliation(s)
- Alejandro León-Andrino
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
| | - David C. Noriega
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan P. Lapuente
- SCO (Scientific Chief Officer) Laboratorio de Biología Molecular y Celular R4T, University Hospital of Fuenlabrada, 28942 Fuenlabrada, Spain;
| | - Daniel Pérez-Valdecantos
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Azael J. Herrero
- Department of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| |
Collapse
|
25
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
26
|
Suazo I, Vega JA, García-Mesa Y, García-Piqueras J, García-Suárez O, Cobo T. The Lamellar Cells of Vertebrate Meissner and Pacinian Corpuscles: Development, Characterization, and Functions. Front Neurosci 2022; 16:790130. [PMID: 35356056 PMCID: PMC8959428 DOI: 10.3389/fnins.2022.790130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory corpuscles, or cutaneous end-organ complexes, are complex structures localized at the periphery of Aβ-axon terminals from primary sensory neurons that primarily work as low-threshold mechanoreceptors. Structurally, they consist, in addition to the axons, of non-myelinating Schwann-like cells (terminal glial cells) and endoneurial- and perineurial-related cells. The terminal glial cells are the so-called lamellar cells in Meissner and Pacinian corpuscles. Lamellar cells are variably arranged in sensory corpuscles as a “coin stack” in the Meissner corpuscles or as an “onion bulb” in the Pacinian ones. Nevertheless, the origin and protein profile of the lamellar cells in both morphotypes of sensory corpuscles is quite similar, although it differs in the expression of mechano-gated ion channels as well as in the composition of the extracellular matrix between the cells. The lamellar cells have been regarded as supportive cells playing a passive role in the process of genesis of the action potential, i.e., the mechanotransduction process. However, they express ion channels related to the mechano–electric transduction and show a synapse-like mechanism that suggest neurotransmission at the genesis of the electrical action potential. This review updates the current knowledge about the embryonic origin, development modifications, spatial arrangement, ultrastructural characteristics, and protein profile of the lamellar cells of cutaneous end-organ complexes focusing on Meissner and Pacinian morphotypes.
Collapse
Affiliation(s)
- Iván Suazo
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - José A. Vega
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
- Faculcultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: José A. Vega,
| | - Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
27
|
Sustained ErbB Activation Causes Demyelination and Hypomyelination by Driving Necroptosis of Mature Oligodendrocytes and Apoptosis of Oligodendrocyte Precursor Cells. J Neurosci 2021; 41:9872-9890. [PMID: 34725188 PMCID: PMC8638686 DOI: 10.1523/jneurosci.2922-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 11/26/2022] Open
Abstract
Oligodendrocytes are vulnerable to genetic and environmental insults and its injury leads to demyelinating diseases. The roles of ErbB receptors in maintaining the CNS myelin integrity are largely unknown. Here, we overactivate ErbB receptors that mediate signaling of either neuregulin (NRG) or epidermal growth factor (EGF) family growth factors and found their synergistic activation caused deleterious outcomes in white matter. Sustained ErbB activation induced by the tetracycline-dependent mouse tool Plp-tTA resulted in demyelination, axonal degeneration, oligodendrocyte precursor cell (OPC) proliferation, astrogliosis, and microgliosis in white matter. Moreover, there was hypermyelination before these inflammatory pathologic events. In contrast, sustained ErbB activation induced by another tetracycline-dependent mouse tool Sox10+/rtTA caused hypomyelination in the corpus callosum and optic nerve, which appeared to be a developmental deficit and did not associate with OPC regeneration, astrogliosis, or microgliosis. By tracing the differentiation states of cells expressing tetracycline-controlled transcriptional activator (tTA)/reverse tTA (rtTA)-dependent transgene or pulse-labeled reporter proteins in vitro and in vivo, we found that Plp-tTA targeted mainly mature oligodendrocytes (MOs), whereas Sox10+/rtTA targeted OPCs and newly-formed oligodendrocytes (NFOs). The distinct phenotypes of mice with ErbB overactivation induced by Plp-tTA and Sox10+/rtTA consolidated their nonoverlapping targeting preferences in the oligodendrocyte lineage, and enabled us to demonstrate that ErbB overactivation in MOs induced necroptosis that caused inflammatory demyelination, whereas in OPCs induced apoptosis that caused noninflammatory hypomyelination. Early interference with aberrant ErbB activation ceased oligodendrocyte deaths and restored myelin development in both mice. This study suggests that aberrant ErbB activation is an upstream pathogenetic mechanism of demyelinating diseases, providing a potential therapeutic target. SIGNIFICANCE STATEMENT Primary oligodendropathy is one of the etiologic mechanisms for multiple sclerosis, and oligodendrocyte necroptosis is a pathologic hallmark in the disease. Moreover, the demyelinating disease is now a broad concept that embraces schizophrenia, in which white matter lesions are an emerging feature. ErbB overactivation has been implicated in schizophrenia by genetic analysis and postmortem studies. This study suggests the etiologic implications of ErbB overactivation in myelin pathogenesis and elucidates the pathogenetic mechanisms.
Collapse
|
28
|
Remyelination in PNS and CNS: current and upcoming cellular and molecular strategies to treat disabling neuropathies. Mol Biol Rep 2021; 48:8097-8110. [PMID: 34731366 DOI: 10.1007/s11033-021-06755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 09/15/2021] [Indexed: 10/19/2022]
Abstract
Myelin is a lipid-rich nerve cover that consists of glial cell's plasmalemma layers and accelerates signal conduction. Axon-myelin contact is a source for many developmental and regenerative signals of myelination. Intra- or extracellular factors including both enhancers and inhibitors are other factors affecting the myelination process. Myelin damages are observed in several congenital and hereditary diseases, physicochemical conditions, infections, or traumatic insults, and remyelination is known as an intrinsic response to injuries. Here we discuss some molecular events and conditions involved in de- and remyelination and compare the phenomena of remyelination in CNS and PNS. We have explained applying some of these molecular events in myelin restoration. Finally, the current and upcoming treatment strategies for myelin restoration are explained in three groups of immunotherapy, endogenous regeneration enhancement, and cell therapy to give a better insight for finding the more effective rehabilitation strategies considering the underlying molecular events of a lesion formation and its current condition.
Collapse
|
29
|
Mammel AE, Delgado KC, Chin AL, Condon AF, Hill JQ, Aicher SA, Wang Y, Fedorov LM, Robinson FL. Distinct roles for the Charcot-Marie-tooth disease-causing endosomal regulators Mtmr5 and Mtmr13 in axon radial sorting and Schwann cell myelination. Hum Mol Genet 2021; 31:1216-1229. [PMID: 34718573 DOI: 10.1093/hmg/ddab311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
The form of Charcot-Marie-Tooth type 4B (CMT4B) disease caused by mutations in myotubularin-related 5 (MTMR5; also called SET Binding Factor 1; SBF1) shows a spectrum of axonal and demyelinating nerve phenotypes. This contrasts with the CMT4B subtypes caused by MTMR2 or MTMR13 (SBF2) mutations, which are characterized by myelin outfoldings and classic demyelination. Thus, it is unclear whether MTMR5 plays an analogous or distinct role from that of its homolog, MTMR13, in the peripheral nervous system (PNS). MTMR5 and MTMR13 are pseudophosphatases predicted to regulate endosomal trafficking by activating Rab GTPases and binding to the phosphoinositide 3-phosphatase MTMR2. In the mouse PNS, Mtmr2 was required to maintain wild type levels of Mtmr5 and Mtmr13, suggesting that these factors function in discrete protein complexes. Genetic elimination of both Mtmr5 and Mtmr13 in mice led to perinatal lethality, indicating that the two proteins have partially redundant functions during embryogenesis. Loss of Mtmr5 in mice did not cause CMT4B-like myelin outfoldings. However, adult Mtmr5-/- mouse nerves contained fewer myelinated axons than control nerves, likely as a result of axon radial sorting defects. Consistently, Mtmr5 levels were highest during axon radial sorting and fell sharply after postnatal day seven. Our findings suggest that Mtmr5 and Mtmr13 ensure proper axon radial sorting and Schwann cell myelination, respectively, perhaps through their direct interactions with Mtmr2. This study enhances our understanding of the non-redundant roles of the endosomal regulators MTMR5 and MTMR13 during normal peripheral nerve development and disease.
Collapse
Affiliation(s)
- Anna E Mammel
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Cell, Developmental & Cancer Biology Graduate Program, Oregon Health & Science University
| | - Katherine C Delgado
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Andrea L Chin
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Alec F Condon
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Neuroscience Graduate Program, Oregon Health & Science University
| | - Jo Q Hill
- Department of Physiology and Pharmacology, Oregon Health & Science University
| | - Sue A Aicher
- Department of Physiology and Pharmacology, Oregon Health & Science University
| | - Yingming Wang
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health & Science University
| | - Lev M Fedorov
- OHSU Transgenic Mouse Models Shared Resource, Knight Cancer Institute, Oregon Health & Science University
| | - Fred L Robinson
- The Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.,Vollum Institute, Oregon Health & Science University
| |
Collapse
|
30
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
31
|
Mòdol-Caballero G, Herrando-Grabulosa M, Verdés S, García-Lareu B, Hernández N, Francos-Quijorna I, López-Vales R, Bosch A, Navarro X. Gene Therapy Overexpressing Neuregulin 1 Type I in Combination With Neuregulin 1 Type III Promotes Functional Improvement in the SOD1 G93A ALS Mice. Front Neurol 2021; 12:693309. [PMID: 34630277 PMCID: PMC8492910 DOI: 10.3389/fneur.2021.693309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the neuromuscular system for which currently there is no effective therapy. Motoneuron (MN) degeneration involves several complex mechanisms, including surrounding glial cells and skeletal muscle contributions. Neuregulin 1 (NRG1) is a trophic factor present particularly in MNs and neuromuscular junctions. Our previous studies revealed that gene therapy overexpressing the isoform I (NRG1-I) in skeletal muscles as well as overexpressing the isoform III (NRG1-III) directly in the central nervous system are both effective in preserving MNs in the spinal cord of ALS mice, opening novel therapeutic approaches. In this study, we combined administration of both viral vectors overexpressing NRG1-I in skeletal muscles and NRG1-III in spinal cord of the SOD1G93A mice in order to obtain a synergistic effect. The results showed that the combinatorial gene therapy increased preservation of MNs and of innervated neuromuscular junctions and reduced glial reactivity in the spinal cord of the treated SOD1G93A mice. Moreover, NRG1 isoforms overexpression improved motor function of hindlimb muscles and delayed the onset of clinical disease. However, this combinatory gene therapy did not produce a synergic effect compared with single therapies, suggesting an overlap between NRG1-I and NRG1-III activated pathways and their beneficial effects.
Collapse
Affiliation(s)
- Guillem Mòdol-Caballero
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma De Barcelona, Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Belén García-Lareu
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Neus Hernández
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Isaac Francos-Quijorna
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rubén López-Vales
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Assumpció Bosch
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma De Barcelona, Barcelona, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
32
|
Bosco L, Falzone YM, Previtali SC. Animal Models as a Tool to Design Therapeutical Strategies for CMT-like Hereditary Neuropathies. Brain Sci 2021; 11:1237. [PMID: 34573256 PMCID: PMC8465478 DOI: 10.3390/brainsci11091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Since ancient times, animal models have provided fundamental information in medical knowledge. This also applies for discoveries in the field of inherited peripheral neuropathies (IPNs), where they have been instrumental for our understanding of nerve development, pathogenesis of neuropathy, molecules and pathways involved and to design potential therapies. In this review, we briefly describe how animal models have been used in ancient medicine until the use of rodents as the prevalent model in present times. We then travel along different examples of how rodents have been used to improve our understanding of IPNs. We do not intend to describe all discoveries and animal models developed for IPNs, but just to touch on a few arbitrary and paradigmatic examples, taken from our direct experience or from literature. The idea is to show how strategies have been developed to finally arrive to possible treatments for IPNs.
Collapse
Affiliation(s)
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (Y.M.F.)
| |
Collapse
|
33
|
Chesnut M, Hartung T, Hogberg H, Pamies D. Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. Int J Mol Sci 2021; 22:7929. [PMID: 34360696 PMCID: PMC8347131 DOI: 10.3390/ijms22157929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopment is uniquely sensitive to toxic insults and there are concerns that environmental chemicals are contributing to widespread subclinical developmental neurotoxicity (DNT). Increased DNT evaluation is needed due to the lack of such information for most chemicals in common use, but in vivo studies recommended in regulatory guidelines are not practical for the large-scale screening of potential DNT chemicals. It is widely acknowledged that developmental neurotoxicity is a consequence of disruptions to basic processes in neurodevelopment and that testing strategies using human cell-based in vitro systems that mimic these processes could aid in prioritizing chemicals with DNT potential. Myelination is a fundamental process in neurodevelopment that should be included in a DNT testing strategy, but there are very few in vitro models of myelination. Thus, there is a need to establish an in vitro myelination assay for DNT. Here, we summarize the routes of myelin toxicity and the known models to study this particular endpoint.
Collapse
Affiliation(s)
- Megan Chesnut
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Center for Alternatives to Animal Testing (CAAT-Europe), University of Konstanz, 78464 Konstanz, Germany
| | - Helena Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (M.C.); (T.H.)
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| |
Collapse
|
34
|
Tanaka T, Ohno N, Osanai Y, Saitoh S, Thai TQ, Nishimura K, Shinjo T, Takemura S, Tatsumi K, Wanaka A. Large-scale electron microscopic volume imaging of interfascicular oligodendrocytes in the mouse corpus callosum. Glia 2021; 69:2488-2502. [PMID: 34165804 DOI: 10.1002/glia.24055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Single oligodendrocytes produce myelin sheaths around multiple axons in the central nervous system. Interfascicular oligodendrocytes (IOs) facilitate nerve conduction, but their detailed morphologies remain largely unknown. In the present study, we three-dimensionally reconstructed IOs in the corpus callosum of adult mouse using serial block face scanning electron microscopy. The cell bodies of IOs were morphologically polarized and extended thick processes from the cytoplasm-rich part of the cell. Processes originating from the cell body of each IO can be classified into two types: one myelinates an axon without branching, while the other type branches and each branch myelinates a distinct axon. Myelin sheaths originating from a particular IO have biased thicknesses, wrapping axons of a limited range of diameters. Consistent with this finding, IOs transduced and visualized with a rabies viral vector expressing GFP showed statistically significant variation in their myelination patterns. We further reconstructed the sheath immediately adjacent to that derived from each of the analyzed IOs; the thicknesses of the pair of sheaths were significantly correlated despite emanating from different IOs. These results suggest that a single axon could regulate myelin sheath thicknesses, even if the sheaths are derived from distinct IOs. Collectively, our results indicate that the IOs have their own myelin profiles defined by myelin thickness and axonal diameter although axons may regulate thickness of myelin sheath.
Collapse
Affiliation(s)
- Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan.,Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy II and Cell Biology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Truc Quynh Thai
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Kazuya Nishimura
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Takeaki Shinjo
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Shoko Takemura
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University, Kashihara, Japan
| |
Collapse
|
35
|
Wang M, Kleele T, Xiao Y, Plucinska G, Avramopoulos P, Engelhardt S, Schwab MH, Kneussel M, Czopka T, Sherman DL, Brophy PJ, Misgeld T, Brill MS. Completion of neuronal remodeling prompts myelination along developing motor axon branches. J Cell Biol 2021; 220:e201911114. [PMID: 33538762 PMCID: PMC7868780 DOI: 10.1083/jcb.201911114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.
Collapse
Affiliation(s)
- Mengzhe Wang
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Tatjana Kleele
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Yan Xiao
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Gabriela Plucinska
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Petros Avramopoulos
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Markus H. Schwab
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Matthias Kneussel
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Hamburg, Germany
| | - Tim Czopka
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Monika S. Brill
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
36
|
Xu HY, Sun YJ, Sun YY, Wu YJ, Xu MY, Chen LP, Zhu L. Lapatinib alleviates TOCP-induced axonal damage in the spinal cord of mouse. Neuropharmacology 2021; 189:108535. [PMID: 33766630 DOI: 10.1016/j.neuropharm.2021.108535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Neuregulin-1 (NRG1), a family of EGF-like factors that activates ErbB receptors, can regulate the proliferation, migration, and myelinating of Schwann cells. We previously reported that NRG1/ErbB signal is responsible for organophosphate (OP)-induced delayed neuropathy (OPIDN) in hens, a susceptive animal model to neuropathic organophosphorous compounds. Our previous study discovered that a neuropathic OP, tri-o-cresyl phosphate (TOCP) activated NRG1/ErbB signaling pathway in both spinal cord and sciatic nerves of hens during the formation of OPIDN and lapatinib, a non-selective antagonist of ErbB1 and ErbB2 receptors, alleviated the toxicity. In this study, we intended to further look into the potential role of NRG1 in the pathogenesis of TOCP-induced axon damage in spinal cord and sciatic nerves and whether lapatinib could also rescue this damage in mice, an OPIDN-resistant animal model. The results revealed that no obvious toxic signs were observed after single TOCP exposure. However, slight histopathological wreck in lumbar spinal cord and sciatic nerves was found following TOCP intoxication, and the damage in sciatic nerves was characterized by axon degeneration of myelin sheath but not the loss of neural skeleton. Only histopathological damage induced by TOCP in spinal cord could be prevented by lapatinib. The translational expression of NRG1/ErbB signaling molecules was analyzed by both in vivo and in vitro studies. In general, NRG1/ErbB pathway was activated by TOCP while combined treatment with lapatinib attenuated TOCP-induced NRG1/ErbB signaling cascade. The results implied that NRG1/ErbB system may predominately play functional role in spinal cord (central nervous system) but not in sciatic nerves (peripheral nervous system) of mouse subjected to neurotoxic OP, which was confirmed by the study in vitro that lapatinib was not able to attenuate TOCP-induced neurotoxicity in rodent Schwann cell line RSC 96 cells.
Collapse
Affiliation(s)
- Hai-Yang Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Ying-Jian Sun
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, 102206, PR China
| | - Yan-Yan Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Li-Ping Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Li Zhu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| |
Collapse
|
37
|
Abstract
Myelination of axons provides the structural basis for rapid saltatory impulse propagation along vertebrate fiber tracts, a well-established neurophysiological concept. However, myelinating oligodendrocytes and Schwann cells serve additional functions in neuronal energy metabolism that are remarkably similar to those of axon-ensheathing glial cells in unmyelinated invertebrates. Here we discuss myelin evolution and physiological glial functions, beginning with the role of ensheathing glia in preventing ephaptic coupling, axoglial metabolic support, and eliminating oxidative radicals. In both vertebrates and invertebrates, axoglial interactions are bidirectional, serving to regulate cell fate, nerve conduction, and behavioral performance. One key step in the evolution of compact myelin in the vertebrate lineage was the emergence of the open reading frame for myelin basic protein within another gene. Several other proteins were neofunctionalized as myelin constituents and help maintain a healthy nervous system. Myelination in vertebrates became a major prerequisite of inhabiting new ecological niches.
Collapse
Affiliation(s)
- Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany; ,
| |
Collapse
|
38
|
Klein PC, Ettinger U, Schirner M, Ritter P, Rujescu D, Falkai P, Koutsouleris N, Kambeitz-Ilankovic L, Kambeitz J. Brain Network Simulations Indicate Effects of Neuregulin-1 Genotype on Excitation-Inhibition Balance in Cortical Dynamics. Cereb Cortex 2021; 31:2013-2025. [PMID: 33279967 DOI: 10.1093/cercor/bhaa339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking. In this work, we demonstrate the application of computational, biophysical network models to advance our understanding of the interaction between cortical activity observed in neuroimaging and the underlying neurobiology. We employed a biophysical neuronal model to simulate large-scale brain dynamics and to investigate the role of polymorphisms in the NRG1 gene (rs35753505, rs3924999) in n = 96 healthy adults. Our results show that G/G-carriers (rs3924999) exhibit a significant difference in global coupling (P = 0.048) and multiple parameters determining E/I-balance such as excitatory synaptic coupling (P = 0.047), local excitatory recurrence (P = 0.032) and inhibitory synaptic coupling (P = 0.028). This indicates that NRG1 may be related to excitatory recurrence or excitatory synaptic coupling potentially resulting in altered E/I-balance. Moreover, we suggest that computational modeling is a suitable tool to investigate specific biological mechanisms in health and disease.
Collapse
Affiliation(s)
- Pedro Costa Klein
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Bonn, 53111, Germany
| | - Michael Schirner
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, 10117, Germany.,Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin 10115, Germany
| | - Petra Ritter
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Dept. of Neurology, 10117, Germany.,Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin 10115, Germany
| | - Dan Rujescu
- University Clinic for Psychiatry, Psychotherapy and Psychosomatic, Martin-Luther-University, Halle-Wittenberg, 06112, Germany
| | - Peter Falkai
- Department of Psychiatry, Ludwig Maximilians Universität München, 80336, Germany
| | | | - Lana Kambeitz-Ilankovic
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany.,Department of Psychiatry, Ludwig Maximilians Universität München, 80336, Germany
| | - Joseph Kambeitz
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| |
Collapse
|
39
|
Kataria H, Hart CG, Alizadeh A, Cossoy M, Kaushik DK, Bernstein CN, Marrie RA, Yong VW, Karimi-Abdolrezaee S. Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain 2021; 144:162-185. [PMID: 33313801 PMCID: PMC7880664 DOI: 10.1093/brain/awaa385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis is characterized by immune mediated neurodegeneration that results in progressive, life-long neurological and cognitive impairments. Yet, the endogenous mechanisms underlying multiple sclerosis pathophysiology are not fully understood. Here, we provide compelling evidence that associates dysregulation of neuregulin-1 beta 1 (Nrg-1β1) with multiple sclerosis pathogenesis and progression. In the experimental autoimmune encephalomyelitis model of multiple sclerosis, we demonstrate that Nrg-1β1 levels are abated within spinal cord lesions and peripherally in the plasma and spleen during presymptomatic, onset and progressive course of the disease. We demonstrate that plasma levels of Nrg-1β1 are also significantly reduced in individuals with early multiple sclerosis and is positively associated with progression to relapsing-remitting multiple sclerosis. The functional impact of Nrg-1β1 downregulation preceded disease onset and progression, and its systemic restoration was sufficient to delay experimental autoimmune encephalomyelitis symptoms and alleviate disease burden. Intriguingly, Nrg-1β1 therapy exhibited a desirable and extended therapeutic time window of efficacy when administered prophylactically, symptomatically, acutely or chronically. Using in vivo and in vitro assessments, we identified that Nrg-1β1 treatment mediates its beneficial effects in EAE by providing a more balanced immune response. Mechanistically, Nrg-1β1 moderated monocyte infiltration at the blood-CNS interface by attenuating chondroitin sulphate proteoglycans and MMP9. Moreover, Nrg-1β1 fostered a regulatory and reparative phenotype in macrophages, T helper type 1 (Th1) cells and microglia in the spinal cord lesions of EAE mice. Taken together, our new findings in multiple sclerosis and experimental autoimmune encephalomyelitis have uncovered a novel regulatory role for Nrg-1β1 early in the disease course and suggest its potential as a specific therapeutic target to ameliorate disease progression and severity.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael Cossoy
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak K Kaushik
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Children Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
40
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
41
|
Mole JP, Fasano F, Evans J, Sims R, Hamilton DA, Kidd E, Metzler-Baddeley C. Genetic risk of dementia modifies obesity effects on white matter myelin in cognitively healthy adults. Neurobiol Aging 2020; 94:298-310. [PMID: 32736120 DOI: 10.1016/j.neurobiolaging.2020.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/05/2023]
Abstract
APOE-ε4 is a major genetic risk factor for late-onset Alzheimer's disease that interacts with other risk factors, but the nature of such combined effects remains poorly understood. We quantified the impact of APOE-ε4, family history (FH) of dementia, and obesity on white matter (WM) microstructure in 165 asymptomatic adults (38-71 years old) using quantitative magnetization transfer and neurite orientation dispersion and density imaging. Microstructural properties of the fornix, parahippocampal cingulum, and uncinate fasciculus were compared with those in motor and whole-brain WM regions. Widespread interaction effects between APOE, FH, and waist-hip ratio were found in the myelin-sensitive macromolecular proton fraction from quantitative magnetization transfer. Among individuals with the highest genetic risk (FH+ and APOE-ε4), obesity was associated with reduced macromolecular proton fraction in the right parahippocampal cingulum, whereas no effects were present for those without FH. Risk effects on apparent myelin were moderated by hypertension and inflammation-related markers. These findings suggest that genetic risk modifies the impact of obesity on WM myelin consistent with neuroglia models of aging and late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Derek A Hamilton
- Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
42
|
Mungroo MR, Khan NA, Siddiqui R. Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options. Microb Pathog 2020; 149:104475. [PMID: 32931893 DOI: 10.1016/j.micpath.2020.104475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
Abstract
Mycobacterium leprae is known to cause leprosy, a neurological and dermatological disease. In the past 20 years, 16 million leprosy cases have been recorded and more than 200,000 new cases were registered each year, indicating that the disease is still progressing without hindrance. M. leprae, an intracellular bacterium, infects the Schwann cells of the peripheral nervous system. Several types of leprosy have been described, including indeterminate, tuberculoid, borderline tuberculoid, mid-borderline, borderline lepromatous and lepromatous, and three different forms of leprosy reactions, namely type 1, 2 and 3, have been designated. Microscopic detection, serological diagnostic test, polymerase chain reaction and flow tests are employed in the diagnosis of leprosy. The recommended treatment for leprosy consists of rifampicin, dapsone, clofazimine, ofloxacin and minocycline and vaccines are also available. However, relapse may occur after treatment has been halted and hence patients must be educated on the signs of relapse to allow proper treatment and reduce severity. In this review, we depict the current understanding of M. leprae pathogenicity, clinical aspects and manifestations. Transmission of leprosy, diagnosis and treatment are also discussed.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates.
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
43
|
Eichel MA, Gargareta VI, D'Este E, Fledrich R, Kungl T, Buscham TJ, Lüders KA, Miracle C, Jung RB, Distler U, Kusch K, Möbius W, Hülsmann S, Tenzer S, Nave KA, Werner HB. CMTM6 expressed on the adaxonal Schwann cell surface restricts axonal diameters in peripheral nerves. Nat Commun 2020; 11:4514. [PMID: 32908139 PMCID: PMC7481192 DOI: 10.1038/s41467-020-18172-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/07/2020] [Indexed: 01/25/2023] Open
Abstract
The velocity of nerve conduction is moderately enhanced by larger axonal diameters and potently sped up by myelination of axons. Myelination thus allows rapid impulse propagation with reduced axonal diameters; however, no myelin-dependent mechanism has been reported that restricts radial growth of axons. By label-free proteomics, STED-microscopy and cryo-immuno electron-microscopy we here identify CMTM6 (chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6) as a myelin protein specifically localized to the Schwann cell membrane exposed to the axon. We find that disruption of Cmtm6-expression in Schwann cells causes a substantial increase of axonal diameters but does not impair myelin biogenesis, radial sorting or integrity of axons. Increased axonal diameters correlate with accelerated sensory nerve conduction and sensory responses and perturbed motor performance. These data show that Schwann cells utilize CMTM6 to restrict the radial growth of axons, which optimizes nerve function.
Collapse
Affiliation(s)
- Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Elisa D'Este
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- Optical Microscopy Facility, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
- Institute of Anatomy, University of Leipzig, 04103, Leipzig, Germany
| | - Theresa Kungl
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
- Institute of Anatomy, University of Leipzig, 04103, Leipzig, Germany
| | - Tobias J Buscham
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Katja A Lüders
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Cristina Miracle
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Swen Hülsmann
- Clinic for Anesthesiology, University Medical Center, 37073, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany.
| |
Collapse
|
44
|
Raasakka A, Kursula P. How Does Protein Zero Assemble Compact Myelin? Cells 2020; 9:E1832. [PMID: 32759708 PMCID: PMC7465998 DOI: 10.3390/cells9081832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin-the lipid-rich, periodic structure of membrane pairs that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes via homophilic adhesion, forming, as revealed by electron microscopy, the electron-dense, double "intraperiod line" that is split by a narrow, electron-lucent space corresponding to the extracellular space between membrane pairs. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs myelination. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when P0 is trafficked and modified to enable myelin compaction, and how mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
| |
Collapse
|
45
|
Cobo R, García-Mesa Y, García-Piqueras J, Feito J, Martín-Cruces J, García-Suárez O, A. Vega J. The Glial Cell of Human Cutaneous Sensory Corpuscles: Origin, Characterization, and Putative Roles. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Dunn AL, Michie PT, Hodgson DM, Harms L. Adolescent cannabinoid exposure interacts with other risk factors in schizophrenia: A review of the evidence from animal models. Neurosci Biobehav Rev 2020; 116:202-220. [PMID: 32610181 DOI: 10.1016/j.neubiorev.2020.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Many factors and their interaction are linked to the aetiology of schizophrenia, leading to the development of animal models of multiple risk factors and adverse exposures. Differentiating between separate and combined effects for each factor could better elucidate schizophrenia pathology, and drive development of preventative strategies for high-load risk factors. An epidemiologically valid risk factor commonly associated with schizophrenia is adolescent cannabis use. The aim of this review is to evaluate how early-life adversity from various origins, in combination with adolescent cannabinoid exposure interact, and whether these interactions confer main, synergistic or protective effects in animal models of schizophrenia-like behavioural, cognitive and morphological alterations. Patterns emerge regarding which models show consistent synergistic or protective effects, particularly those models incorporating early-life exposure to maternal deprivation and maternal immune activation, and sex-specific effects are observed. It is evident that more research needs to be conducted to better understand the risks and alterations of interacting factors, with particular interest in sex differences, to better understand the translatability of these preclinical models to humans.
Collapse
Affiliation(s)
- Ariel L Dunn
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren Harms
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
47
|
Lee DW, Kim E, Jeong I, Kim HK, Kim S, Park HC. Schwann cells selectively myelinate primary motor axons via neuregulin-ErbB signaling. Glia 2020; 68:2585-2600. [PMID: 32589818 DOI: 10.1002/glia.23871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 11/06/2022]
Abstract
Spinal motor neurons project their axons out of the spinal cord via the motor exit point (MEP) and regulate their target muscle fibers for diverse behaviors. Several populations of glial cells including Schwann cells, MEP glia, and perineurial glia are tightly associated with spinal motor axons in nerve fascicles. Zebrafish have two types of spinal motor neurons, primary motor neurons (PMNs) and secondary motor neurons (SMNs). PMNs are implicated in the rapid response, whereas SMNs are implicated in normal and slow movements. However, the precise mechanisms mediating the distinct functions of PMNs and SMNs in zebrafish are unclear. In this study, we found that PMNs were myelinated by MEP glia and Schwann cells, whereas SMNs remained unmyelinated at the examined stages. Immunohistochemical analysis revealed that myelinated PMNs solely innervated fast muscle through a distributed neuromuscular junction (NMJ), whereas unmyelinated SMNs innervated both fast and slow muscle through distributed and myoseptal NMJs, respectively, indicating that myelinated PMNs could provide rapid responses for startle and escape movements, while unmyelinated SMNs regulated normal, slow movement. Further, we demonstrate that neuregulin 1 (Nrg1) type III-ErbB signaling provides a key instructive signal that determines the myelination of primary motor axons by MEP glia and Schwann cells. Perineurial glia ensheathed unmyelinated secondary motor axons and myelinated primary motor nerves. Ensheathment required interaction with both MEP glia and Schwann cells. Collectively, these data suggest that primary and secondary motor neurons contribute to the regulation of movement in zebrafish with distinct patterns of myelination.
Collapse
Affiliation(s)
- Dong-Won Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Inyoung Jeong
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, Republic of Korea
| |
Collapse
|
48
|
Craig GA, Yoo S, Du TY, Xiao J. Plasticity in oligodendrocyte lineage progression: An OPC puzzle on our nerves. Eur J Neurosci 2020; 54:5747-5761. [PMID: 32478920 DOI: 10.1111/ejn.14845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/28/2022]
Abstract
Myelin deposition in the central nervous system has been shown to be responsive to experience, with sensory enrichment increasing myelination and sensory or social deprivation decreasing myelination. This process is referred to as "adaptive myelination" or "myelin plasticity" and signifies an essential component of new learning. However, whether these experience-driven adaptations are driven by (a) underlying changes in the generation of myelinating cells, (b) altered interactions between myelin sheath and axon, or (c) a combination of the above remains unclear. It has been suggested that myelination largely follows an "innate" and automatic programme, allowing for a predictable pattern of central nervous system myelin deposition over time. Adaptive myelination is thought to account for more nuanced alterations that do not dramatically shift this pattern, but ultimately drive functional responses. This makes the study of myelin plasticity particularly difficult, as it necessitates being able to clearly and specifically draw boundaries between the innate and adaptive programme. Thus, the field requires a holistic understanding of the remit of innate myelin development, prior to investigation of adaptive myelination. This review will collate literature regarding different aspects of oligodendrocyte and myelin development (namely, oligodendrocyte proliferation, differentiation, death and myelin sheath formation) in an innate context, before discussing how these parameters are proposed to change under adaptive conditions. It is the hope that this review will highlight the need for a comprehensive and integrated approach towards studying both innate and adaptive forms of myelination.
Collapse
Affiliation(s)
- Georgina A Craig
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Vic., Australia
| | - SangWon Yoo
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Tian Y Du
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
49
|
Leão LKR, Bittencourt LO, Oliveira AC, Nascimento PC, Miranda GHN, Ferreira RO, Nabiça M, Dantas K, Dionizio A, Cartágenes S, Buzalaf MAR, Crespo-Lopez ME, Maia CSF, Lima RR. Long-Term Lead Exposure Since Adolescence Causes Proteomic and Morphological Alterations in the Cerebellum Associated with Motor Deficits in Adult Rats. Int J Mol Sci 2020; 21:ijms21103571. [PMID: 32443589 PMCID: PMC7279001 DOI: 10.3390/ijms21103571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/16/2022] Open
Abstract
Lead (Pb) is an environmental contaminant that presents a high risk for human health. We aimed to investigate the possible alterations triggered by the exposure to Pb acetate for a long period in motor performance and the possible relationship with biochemical, proteomic and morphological alterations in the cerebellum of rats. Male Wistar rats were exposed for 55 days, at 50 mg/Kg of Pb acetate, and the control animals received distilled water. Open field (OF) and rotarod tests; biochemistry parameters (MDA and nitrite); staining/immunostaining of Purkinje cells (PC), mature neurons (MN), myelin sheath (MS) and synaptic vesicles (SYN) and proteomic profile were analyzed. Pb deposition on the cerebellum area and this study drove to exploratory and locomotion deficits and a decrease in the number of PC, MN, SYN and MS staining/immunostaining. The levels of MDA and nitrite remained unchanged. The proteomic profile showed alterations in proteins responsible for neurotransmitters release, as well as receptor function and second messengers signaling, and also proteins involved in the process of apoptosis. Thus, we conclude that the long-term exposure to low Pb dose promoted locomotion and histological tracings, associated with alterations in the process of cell signaling, as well as death by apoptosis.
Collapse
Affiliation(s)
- Luana Ketlen Reis Leão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
| | - Ana Carolina Oliveira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
| | - Giza Hellen Nonato Miranda
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
| | - Mariane Nabiça
- Laboratory of Applied Analytical Spectrometry, Institute of Exact and Natural Sciences, Federal University of Pará - Belém, Pará 66075-110, Brazil; (M.N.); (K.D.)
| | - Kelly Dantas
- Laboratory of Applied Analytical Spectrometry, Institute of Exact and Natural Sciences, Federal University of Pará - Belém, Pará 66075-110, Brazil; (M.N.); (K.D.)
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo - Bauru, São Paulo 17012-901, Brazil; (A.D.); (M.A.R.B.)
| | - Sabrina Cartágenes
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará - Belém, Pará 66075-110, Brazil; (S.C.); (C.S.F.M.)
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo - Bauru, São Paulo 17012-901, Brazil; (A.D.); (M.A.R.B.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará - Belém, Pará 66075-110, Brazil;
| | - Cristiane S F Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará - Belém, Pará 66075-110, Brazil; (S.C.); (C.S.F.M.)
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil; (L.K.R.L.); (L.O.B.); (A.C.O.); (P.C.N.); (G.H.N.M.); (R.O.F.)
- Correspondence: ; Tel.: +55-91-3201-7891
| |
Collapse
|
50
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|