1
|
Xia L, Stoika R, Li Y, Zheng Y, Liu Y, Li D, Liu K, Zhang X, Shang X, Jin M. 2,3,4-Trihydroxybenzophenone-induced cardiac and neurological toxicity: Heart-brain interaction mediated by regulation of pgam1a and pgk1 involved in glycolysis and gluconeogenesis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179212. [PMID: 40157088 DOI: 10.1016/j.scitotenv.2025.179212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
2,3,4-trihydroxybenzophenone (2,3,4-THBP) is a benzophenone-type UV filter commonly used in sunscreens. However, the widespread application of BP-UV filters has led to an appearance of this chemical in the environment and living organisms. Despite of this, there is poor understanding of the bio-toxicity of 2,3,4-THBP. Here, we investigated the adverse effects of 2,3,4-THBP in varying doses (115, 230, 460, 920, and 1840 μg/L) in zebrafish experimental model. Specifically, we assessed its impact on the cardio- and neuro-development, including pericardiac area, heart rate, as well as brain vessels and differentiation of dopaminergic and central nervous system (CNS) neurons. The expression of genes whose products are involved in cardio- and neuro-development was also monitored. It was found that 2,3,4-THBP caused heart failure (HF)-like symptoms in zebrafish embryos including pericardial edema, reduced heart rate, and yolk sac malformation. It also induced dramatic neurotoxicity, namely defective neuron differentiation, cerebrovascular loss, cognition and behavior defects. It disrupted the vascular system, leading to potentially toxic interactions between the heart and brain, further worsening the state of both organs. Notably, RNA-seq findings indicated that 2,3,4-THBP damaged the energy metabolic function via upregulating the expression of phosphoglycerate mutase 1a (pgam1a) and phosphoglycerate kinase 1 (pgk1) whose protein products are involved in regulation of glycolysis and gluconeogenesis, highlighting their role in the interplay between heart and brain. Summarizing, 2,3,4-THBP triggered cardiac and neurological toxicity, which is possibly associated with heart-brain interaction mediated by regulation of pgam1a and pgk1 involved in glycolysis and gluconeogenesis.
Collapse
Affiliation(s)
- Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Yuqing Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China
| | - Yuanteng Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China
| | - Yanao Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China
| | - Dong Li
- R&D Department, Jinan Perfect Biological Technology Co., Ltd., Jinan 250101, Shandong Province, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China
| | - Xiujun Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China
| | - Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Deng X, Zhu S. Ephrin-mediated dendrite-dendrite repulsion regulates compartment-specific targeting of dendrites in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620860. [PMID: 39554189 PMCID: PMC11565762 DOI: 10.1101/2024.10.29.620860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neurons often forms synaptic contacts at specific subcellular domains to differentially regulate the activity of target neurons. However, how dendrites are targeted to specific subcellular domains of axons is rarely studied. Here we use Drosophila mushroom body out neurons (MBONs) and local dopaminergic neurons (DANs) as a model system to study how dendrites and axons are targeted to specific subcellular domains (compartments) of mushroom body axonal lobes to form synaptic contacts. We found that Ephrin-mediated dendrite-dendrite repulsion between neighboring compartments restricts the projection of MBON dendrites to their specific compartments and prevents the formation of ectopic synaptic connections with DAN axons in neighboring compartments. Meanwhile, DAN neurons in a subset of compartments may also depend on their partner MBONs for projecting their axons to a specific compartment and cover the same territory as their partner MBON dendrites. Our work reveals that compartment-specific targeting of MBON dendrites and DAN axons is regulated in part by a combination of dendrite-dendrite repulsion between neighboring compartments and dendrite-axon interactions within the same compartment.
Collapse
|
3
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 PMCID: PMC11833509 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Guo S, Wang Y, Duan Q, Gu W, Fu Q, Ma Z, Ruan J. Activation of EphrinB2/EphB2 signaling in the spine cord alters glia-neuron interactions in mice with visceral hyperalgesia following maternal separation. Front Pharmacol 2024; 15:1463339. [PMID: 39290870 PMCID: PMC11405339 DOI: 10.3389/fphar.2024.1463339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Sress early in life has been linked to visceral hyperalgesia and associated functional gastrointestinal disorders. In a mouse model of visceral hyperalgesia, we investigated whether the EphB2 receptor and its EphrinB2 ligand in spinal cord contribute to dysregulation of glia-neuron interactions. Methods An established mouse model of stress due to maternal separation (MS). Pups were separated from their mothers for 14 days during early development, then analyzed several weeks later in terms of visceral sensitivity based on the abdominal withdrawal reflex score and in terms of expression of c-fos, EphrinB2, EphB2, and phosphorylated MAP kinases (ERK, p38, JNK). Results Visceral hyperalgesia due to MS upregulated EphB2, EphrinB2 and c-fos in the spinal cord, and c-fos levels positively correlated with those of EphB2 and EphrinB2. Spinal astrocytes, microglia, and neurons showed upregulation of EphB2, EphrinB2 and phosphorylated MAP kinases. Blocking EphrinB2/EphB2 signaling in MS mice reduced visceral sensitivity, activation of neurons and glia, and phosphorylation of NMDA receptor. Activating EphrinB2/EphB2 signaling in unstressed mice induced visceral hyperalgesia, upregulation of c-fos, and activation of NMDA receptor similar to maternal separation. Conclusion The stress of MS during early development may lead to visceral hyperalgesia by upregulating EphrinB2/EphB2 in the spinal cord and thereby altering neuron-glia interactions.
Collapse
Affiliation(s)
- Shufen Guo
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qingling Duan
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qun Fu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaping Ruan
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Tin A, Fohner AE, Yang Q, Brody JA, Davies G, Yao J, Liu D, Caro I, Lindbohm JV, Duggan MR, Meirelles O, Harris SE, Gudmundsdottir V, Taylor AM, Henry A, Beiser AS, Shojaie A, Coors A, Fitzpatrick AL, Langenberg C, Satizabal CL, Sitlani CM, Wheeler E, Tucker-Drob EM, Bressler J, Coresh J, Bis JC, Candia J, Jennings LL, Pietzner M, Lathrop M, Lopez OL, Redmond P, Gerszten RE, Rich SS, Heckbert SR, Austin TR, Hughes TM, Tanaka T, Emilsson V, Vasan RS, Guo X, Zhu Y, Tzourio C, Rotter JI, Walker KA, Ferrucci L, Kivimäki M, Breteler MMB, Cox SR, Debette S, Mosley TH, Gudnason VG, Launer LJ, Psaty BM, Seshadri S, Fornage M. Identification of circulating proteins associated with general cognitive function among middle-aged and older adults. Commun Biol 2023; 6:1117. [PMID: 37923804 PMCID: PMC10624811 DOI: 10.1038/s42003-023-05454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.
Collapse
Grants
- N01 HC095163 NHLBI NIH HHS
- RC2 HL102419 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- UH3 NS100605 NINDS NIH HHS
- R01 HL103612 NHLBI NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- U01 HL096812 NHLBI NIH HHS
- MC_UU_00006/1 Medical Research Council
- UF1 NS125513 NINDS NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- N01AG12100 NIA NIH HHS
- N01HC95160 NHLBI NIH HHS
- R01 AG054076 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- BB/F019394/1 Biotechnology and Biological Sciences Research Council
- RF1 AG059421 NIA NIH HHS
- R01 HL131136 NHLBI NIH HHS
- N01 HC095168 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 AG015928 NIA NIH HHS
- HHSN268201800004I NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- N01HC95163 NHLBI NIH HHS
- N01 AG012100 NIA NIH HHS
- HHSN268201500001C NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- N01 HC085082 NHLBI NIH HHS
- U01 HL096917 NHLBI NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- R01 HL085251 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- R01 NS087541 NINDS NIH HHS
- 75N92020D00001 NHLBI NIH HHS
- R01 HL086694 NHLBI NIH HHS
- R01 AG054628 NIA NIH HHS
- U01 HL096902 NHLBI NIH HHS
- R01 HL087652 NHLBI NIH HHS
- N01 HC095162 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- N01HC95164 NHLBI NIH HHS
- N01 HC085086 NHLBI NIH HHS
- N01HC55222 NHLBI NIH HHS
- R01 AG049607 NIA NIH HHS
- R01 AG065596 NIA NIH HHS
- N01 HC095165 NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- MR/R024227/1 Medical Research Council
- N01HC85086 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- N01 HC095169 NHLBI NIH HHS
- HHSN268201800003I NHLBI NIH HHS
- P30 DK063491 NIDDK NIH HHS
- HHSN268201800007I NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- R01 AG066524 NIA NIH HHS
- RF1 AG063507 NIA NIH HHS
- HHSN268201200036C NHLBI NIH HHS
- R01 HL144483 NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- HHSN268201700001I NHLBI NIH HHS
- R01 AG056477 NIA NIH HHS
- HHSN268201700004I NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01 HC095159 NHLBI NIH HHS
- U01 AG058589 NIA NIH HHS
- N01HC95159 NHLBI NIH HHS
- N01 HC095161 NHLBI NIH HHS
- HHSN268201500001I NHLBI NIH HHS
- R01 AG058969 NIA NIH HHS
- HHSN271201200022C NIDA NIH HHS
- N01 HC025195 NHLBI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- U01 HL096814 NHLBI NIH HHS
- P30 AG066509 NIA NIH HHS
- R01 HL132320 NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- P30 AG066546 NIA NIH HHS
- R01 AG033040 NIA NIH HHS
- MR/S011676/1 Medical Research Council
- U01 AG052409 NIA NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- K01 AG071689 NIA NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- R01 AG026307 NIA NIH HHS
- R01 AG020098 NIA NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- N01HC85082 NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- N01 HC095166 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- UH2 NS100605 NINDS NIH HHS
- N01HC25195 NHLBI NIH HHS
- 75N92019D00031 NHLBI NIH HHS
- U01 HL096899 NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- P30 AG072947 NIA NIH HHS
- R01 AG025941 NIA NIH HHS
- Chief Scientist Office
- 75N92020D00006 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- R01 HL087641 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- N01 HC085080 NHLBI NIH HHS
- UL1 TR001881 NCATS NIH HHS
- N01 HC095167 NHLBI NIH HHS
- HHSN268201800005I NHLBI NIH HHS
- N01HC85080 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- HHSN268201800006I NHLBI NIH HHS
- N01 HC095164 NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- N01 HC095160 NHLBI NIH HHS
- The ARIC study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Funding was also supported by 5RC2HL102419, R01NS087541 and R01HL131136. Neurocognitive data were collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, 2U01HL096917 from the NIH (NHLBI, NINDS, NIA and NIDCD). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. This Cardiovascular Heath Study (CHS) research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, 75N92021D00006; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, R01HL085251, R01HL144483, and U01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629, R01AG15928, and R01AG20098 from the National Institute on Aging (NIA). AEF is supported by K01AG071689. The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195, HHSN268201500001I and 75N92019D00031). This work was also supported by grant R01AG063507, R01AG054076, R01AG049607, R01AG059421, R01AG033040, R01AG066524, P30AG066546, U01 AG052409, U01 AG058589 from from the National Institute on Aging and R01 AG017950, UH2/3 NS100605, UF1 NS125513 from National Institute of Neurological Disorders and Stroke and R01HL132320. AGES has been funded by NIA contracts N01-AG012100 and HSSN271201200022C, NIH Grant No. 1R01AG065596-01A1, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). M. R. Duggan, T. Tanaka, J. Candia, K. A. Walker, L. Ferrucci, L.J. Launer, O. Meirelles are funded by the National Institute on Aging Intramural Research Program. This study was funded, in part, by the National Institute on Aging Intramural Research Program. The Coronary Artery Risk Development in Young Adults Study (CARDIA) is supported by contracts HHSN268201800003I, HHSN268201800004I, HHSN268201800005I, HHSN268201800006I, and HHSN268201800007I from the National Heart, Lung, and Blood Institute (NHLBI). The LBC1921 was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society, and The Chief Scientist Office of the Scottish Government. Genotyping was funded by the BBSRC (BB/F019394/1). LBC1936 is supported by the Biotechnology and Biological Sciences Research Council, and the Economic and Social Research Council [BB/W008793/1], Age UK (Disconnected Mind project), and the University of Edinburgh. Genotyping was funded by the BBSRC (BB/F019394/1). The Olink® Neurology Proteomics assay was supported by a National Institutes of Health (NIH) research grant R01AG054628. Phenotype harmonization, data management, sample-identity QC, and general study coordination, were provided by the TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and R01HL105756. The Three City (3C) Study is conducted under a partnership agreement among the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Bordeaux, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, Mutuelle Générale de l’Education Nationale (MGEN), Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Programme “Cohortes et collections de données biologiques.” Ilana Caro received a grant from the EUR digital public health. This PhD program is supported within the framework of the PIA3 (Investment for the future). Project reference 17-EURE-0019.
Collapse
Affiliation(s)
- Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Alison E Fohner
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA.
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Qiong Yang
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ilana Caro
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Joni V Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Osorio Meirelles
- National Institute on Aging, National Institutes of Health, Laboratory of Epidemiology and Population Science, Bethesda, MD, USA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Valborg Gudmundsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Adele M Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Albert Henry
- Institute of Cardiovascular Science, University of London, London, UK
| | - Alexa S Beiser
- Department of Biostatistics, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Annabell Coors
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annette L Fitzpatrick
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Family Medicine, University of Washington, Seattle, WA, USA
| | - Claudia Langenberg
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia L Satizabal
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Maik Pietzner
- Precision Healthcare Institute, Queen Mary University of London, London, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Thomas R Austin
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M Hughes
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Valur Emilsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- University of Texas School of Public Health in San Antonio, San Antonio, TX, USA
- University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yineng Zhu
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Christophe Tzourio
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mika Kivimäki
- UCL Brain Sciences, University College London, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Stephanie Debette
- University of Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research Center, UMR 1219, CHU Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Diseases, CHU de Bordeaux, Bordeaux, France
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Myriam Fornage
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
7
|
Nieves Torres D, Lee SH. Inter-neuronal signaling mediated by small extracellular vesicles: wireless communication? Front Mol Neurosci 2023; 16:1187300. [PMID: 37181650 PMCID: PMC10172472 DOI: 10.3389/fnmol.2023.1187300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional inter-neuronal communication conceptualizes the wired method of chemical synapses that physically connect pre-and post-synaptic neurons. In contrast, recent studies indicate that neurons also utilize synapse-independent, hence "wireless" broadcasting-type communications via small extracellular vesicles (EVs). Small EVs including exosomes are secreted vesicles released by cells and contain a variety of signaling molecules including mRNAs, miRNAs, lipids, and proteins. Small EVs are subsequently absorbed by local recipient cells via either membrane fusion or endocytic processes. Therefore, small EVs enable cells to exchange a "packet" of active biomolecules for communication purposes. It is now well established that central neurons also secrete and uptake small EVs, especially exosomes, a type of small EVs that are derived from the intraluminal vesicles of multivesicular bodies. Specific molecules carried by neuronal small EVs are shown to affect a variety of neuronal functions including axon guidance, synapse formation, synapse elimination, neuronal firing, and potentiation. Therefore, this type of volume transmission mediated by small EVs is thought to play important roles not only in activity-dependent changes in neuronal function but also in the maintenance and homeostatic control of local circuitry. In this review, we summarize recent discoveries, catalog neuronal small EV-specific biomolecules, and discuss the potential scope of small EV-mediated inter-neuronal signaling.
Collapse
Affiliation(s)
- Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sang H Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Sang H. Lee,
| |
Collapse
|
8
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
9
|
MINCER ST, NIETHAMER TK, TENG T, BUSH JO, PERCIVAL CJ. Investigating the effects of compound paralogous EPHB receptor mutations on mouse facial development. Dev Dyn 2022; 251:1138-1155. [PMID: 35025117 PMCID: PMC9924224 DOI: 10.1002/dvdy.454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.
Collapse
Affiliation(s)
- Sarah T. MINCER
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Terren K. NIETHAMER
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America,Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng TENG
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America,Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey O. BUSH
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America,Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. PERCIVAL
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
10
|
Li N, Chen S, Xu NJ, Sun S, Chen JJ, Liu XD. Scaffold Protein Lnx1 Stabilizes EphB Receptor Kinases for Synaptogenesis. Front Mol Neurosci 2022; 15:861873. [PMID: 35531068 PMCID: PMC9070102 DOI: 10.3389/fnmol.2022.861873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Postsynaptic structure assembly and remodeling are crucial for functional synapse formation during the establishment of neural circuits. However, how the specific scaffold proteins regulate this process during the development of the postnatal period is poorly understood. In this study, we find that the deficiency of ligand of Numb protein X 1 (Lnx1) leads to abnormal development of dendritic spines to impair functional synaptic formation. We further demonstrate that loss of Lnx1 promotes the internalization of EphB receptors from the cell surface. Constitutively active EphB2 intracellular signaling rescues synaptogenesis in Lnx1 mutant mice. Our data thus reveal a molecular mechanism whereby the Lnx1-EphB complex controls postsynaptic structure for synapse maturation during the adolescent period.
Collapse
Affiliation(s)
- Na Li
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si Chen
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan-Jie Xu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Jin Chen
- Research Center of Translational Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian-Dong Liu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Herrera E, Escalante A. Transcriptional Control of Axon Guidance at Midline Structures. Front Cell Dev Biol 2022; 10:840005. [PMID: 35265625 PMCID: PMC8900194 DOI: 10.3389/fcell.2022.840005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the nervous system is a time-ordered and multi-stepped process that includes neurogenesis and neuronal specification, axonal navigation, and circuits assembly. During axonal navigation, the growth cone, a dynamic structure located at the tip of the axon, senses environmental signals that guide axons towards their final targets. The expression of a specific repertoire of receptors on the cell surface of the growth cone together with the activation of a set of intracellular transducing molecules, outlines the response of each axon to specific guidance cues. This collection of axon guidance molecules is defined by the transcriptome of the cell which, in turn, depends on transcriptional and epigenetic regulators that modify the structure and DNA accessibility to determine what genes will be expressed to elicit specific axonal behaviors. Studies focused on understanding how axons navigate intermediate targets, such as the floor plate of vertebrates or the mammalian optic chiasm, have largely contributed to our knowledge of how neurons wire together during development. In fact, investigations on axon navigation at these midline structures led to the identification of many of the currently known families of proteins that act as guidance cues and their corresponding receptors. Although the transcription factors and the regulatory mechanisms that control the expression of these molecules are not well understood, important advances have been made in recent years in this regard. Here we provide an updated overview on the current knowledge about the transcriptional control of axon guidance and the selection of trajectories at midline structures.
Collapse
|
12
|
Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Sci Rep 2022; 12:3840. [PMID: 35264657 PMCID: PMC8907295 DOI: 10.1038/s41598-022-07790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.
Collapse
Affiliation(s)
- Marwah M Al-Mathkour
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Abdulrahman M Dwead
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Esma Alp
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Ava M Boston
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Bekir Cinar
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Žunić Išasegi I, Kopić J, Smilović D, Krsnik Ž, Kostović I. Transient Subplate Sublayer Forms Unique Corridor for Differential Ingrowth of Associative Pulvinar and Primary Visual Projection in the Prospective Visual Cortical Areas of the Human Fetal Occipital Lobe. Cereb Cortex 2021; 32:110-122. [PMID: 34255828 DOI: 10.1093/cercor/bhab197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
Cytoarchitectonical parcellation of the visual cortex into the striate and extrastriate cortex requires complex histogenetic events within a precise spatio-temporal frame to attain the specification of areal domains and associated thalamocortical connections during the fetal brain development. We analyzed a deep subplate cellular monolayer (subplate "corridor" cells) present during a restricted period of 13-15 postconceptional weeks, showing the 3D caudo-ventro-medial position in the human fetal occipital lobe, corresponding to the segregation point of pulvinocortical and geniculocortical fibers at the prospective area 17/18 border. Immunofluorescence stainings revealed subplate "corridor" cells as the specific class of the deepest subplate neurons (NeuN+, Tbr1+, Cplx3+) expressing axon guidance molecules (Sema-3A+, EphA6+), presumably for the attraction of pulvinocortical axons and the repulsion of geniculocortical axons growing at that time (SNAP25+, Syn+, FN+). Furthermore, quantitative analysis of the subplate "corridor" region of interest, considering cell number, immunofluorescence signal intensity per cell and per region, revealed significant differences to other regions across the tangential circumference of the developing cerebral wall. Thus, our study sheds new light on the deepest subplate sublayer, strategically aligned along the growing axon systems in the prospective visual system, suggesting the establishment of the area 17/18 border by differential thalamocortical input during the fetal brain development.
Collapse
Affiliation(s)
- Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Psychiatry and Psychological Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Ding C, Zhang C, Kopp R, Kuney L, Meng Q, Wang L, Xia Y, Jiang Y, Dai R, Min S, Yao WD, Wong ML, Ruan H, Liu C, Chen C. Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia. Mol Psychiatry 2021; 26:3444-3460. [PMID: 32929213 PMCID: PMC7956165 DOI: 10.1038/s41380-020-00877-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/17/2023]
Abstract
Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.
Collapse
Affiliation(s)
- Chaodong Ding
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Richard Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Liz Kuney
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Qingtuan Meng
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, China
| | - Le Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Child Health Institute of New Jersey, Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yan Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yi Jiang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rujia Dai
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Shishi Min
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Hongyu Ruan
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA.
- School of Psychology, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Chao Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, the Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Yuan N, Tang K, Da X, Gan H, He L, Li X, Ma Q, Chen J. Integrating Clinical and Genomic Analyses of Hippocampal-Prefrontal Circuit Disorder in Depression. Front Genet 2021; 11:565749. [PMID: 33613615 PMCID: PMC7893101 DOI: 10.3389/fgene.2020.565749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/24/2020] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent, devastating and recurrent mental disease. Hippocampus (HIP)-prefrontal cortex (PFC) neural circuit abnormalities have been confirmed to exist in MDD; however, the gene-related molecular features of this circuit in the context of depression remain unclear. To clarify this issue, we performed gene set enrichment analysis (GSEA) to comprehensively analyze the genetic characteristics of the two brain regions and used weighted gene correlation network analysis (WGCNA) to determine the main depression-related gene modules in the HIP-PFC network. To clarify the regional differences and consistency for MDD, we also compared the expression patterns and molecular functions of the key modules from the two brain regions. The results showed that candidate modules related to clinical MDD of HIP and PFC, which contained with 363 genes and 225 genes, respectively. Ninety-five differentially expressed genes (DEGs) were identified in the HIP candidate module, and 51 DEGs were identified in the PFC candidate module, with only 11 overlapping DEGs in these two regional modules. Combined with the enrichment results, although there is heterogeneity in the molecular functions in the HIP-PFC network of depression, the regulation of the MAPK cascade, Ras protein signal transduction and Ephrin signaling were significantly enriched in both brain regions, indicating that these biological pathways play important roles in MDD pathogenesis. Additionally, the high coefficient protein–protein interaction (PPI) network was constructed via STRING, and the top-10 coefficient genes were identified as hub genes via the cytoHubba algorithm. In summary, the present study reveals the gene expression characteristics of MDD and identifies common and unique molecular features and patterns in the HIP-PFC network. Our results may provide novel clues from the gene function perspective to explain the pathogenic mechanism of depression and to aid drug development. Further research is needed to confirm these findings and to investigate the genetic regulation mechanisms of different neural networks in depression.
Collapse
Affiliation(s)
- Naijun Yuan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Kairui Tang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Da
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Liangliang He
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Morani F, Doccini S, Chiorino G, Fattori F, Galatolo D, Sciarrillo E, Gemignani F, Züchner S, Bertini ES, Santorelli FM. Functional Network Profiles in ARSACS Disclosed by Aptamer-Based Proteomic Technology. Front Neurol 2021; 11:603774. [PMID: 33584503 PMCID: PMC7873355 DOI: 10.3389/fneur.2020.603774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Although the genetic basis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) has been uncovered, our poor understanding of disease mechanisms requires new light on functional pathways and modifying factors to improve early diagnostic strategies and offer alternative treatment options in a rare condition with no cure. Investigation of the pathologic state combining disease models and quantitative omic approach might improve biomarkers discovery with possible implications in patients' diagnoses. In this study, we analyzed proteomics data obtained using the SomaLogic technology, comparing cell lysates from ARSACS patients and from a SACS KO SH-SY5Y neuroblastoma cell model. Single-stranded deoxyoligonucleotides, selected in vitro from large random libraries, bound and quantified molecular targets related to the neuroinflammation signaling pathway and to neuronal development. Changes in protein levels were further analyzed by bioinformatics and network approaches to identify biomarkers of ARSACS and functional pathways impaired in the disease. We identified novel significantly dysregulated biological processes related to neuroinflammation, synaptogenesis, and engulfment of cells in patients and in KO cells compared with controls. Among the differential expressed proteins found in this work, we identified several proteins encoded by genes already known to be mutated in other forms of neurodegeneration. This finding suggests that common dysfunctional networks could be therapeutic targets for future investigations.
Collapse
Affiliation(s)
- Federica Morani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanna Chiorino
- Laboratorio di Genomica, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Fabiana Fattori
- Unit of Muscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Daniele Galatolo
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Elisa Sciarrillo
- Laboratorio di Genomica, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | | | - Stephan Züchner
- Department of Human Genetics, Hussman Institute for Human Genomics, University of Miami, Miami, FL, United States
| | - Enrico Silvio Bertini
- Unit of Muscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
18
|
Abstract
Exosomes are small vesicles secreted by all cell types in the brain and play a role in cell-cell communication through the transfer of cargo or encapsulation. Exosomes in the brain have considerable impact on neuronal development, activation, and regeneration. In addition, exosomes are reported to be involved in the onset and propagation of various neurodegenerative diseases. In this review, we discuss the content of exosomes derived from major cell types in the brain, and their function under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiao-Hui Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Juan Zhang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ding-Feng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Wu
- Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhong-Wen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China. E-mail:
| | - Qiang Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, Anhui 230026, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail:
| |
Collapse
|
19
|
Wu XR, Zhang Y, Liu XD, Han WB, Xu NJ, Sun S. EphB2 mediates social isolation-induced memory forgetting. Transl Psychiatry 2020; 10:389. [PMID: 33168800 PMCID: PMC7653962 DOI: 10.1038/s41398-020-01051-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Social isolation in adolescence leads to lasting deficits, including emotional and cognitive dysregulation. It remains unclear, however, how social isolation affects certain processes of memory and what molecular mechanisms are involved. In this study, we found that social isolation during the post-weaning period resulted in forgetting of the long-term fear memory, which was attributable to the downregulation of synaptic function in the hippocampal CA1 region mediated by EphB2, a receptor tyrosine kinase which involves in the glutamate receptor multiprotein complex. Viral-mediated EphB2 knockdown in CA1 mimicked the memory defects in group-housed mice, whereas restoration of EphB2 by either viral overexpression or resocialization reversed the memory decline in isolated mice. Taken together, our finding indicates that social isolation gives rise to memory forgetting by disrupting EphB2-mediated synaptic plasticity, which may provide a potential target for preventing memory loss caused by social isolation or loneliness.
Collapse
Affiliation(s)
- Xin-Rong Wu
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yu Zhang
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Xian-Dong Liu
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Wu-Bo Han
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
20
|
Niethamer TK, Teng T, Franco M, Du YX, Percival CJ, Bush JO. Aberrant cell segregation in the craniofacial primordium and the emergence of facial dysmorphology in craniofrontonasal syndrome. PLoS Genet 2020; 16:e1008300. [PMID: 32092051 PMCID: PMC7058351 DOI: 10.1371/journal.pgen.1008300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/05/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.
Collapse
Affiliation(s)
- Terren K. Niethamer
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng Teng
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Franco
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yu Xin Du
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (CJP); (JOB)
| | - Jeffrey O. Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (CJP); (JOB)
| |
Collapse
|
21
|
Harris SE, Cox SR, Bell S, Marioni RE, Prins BP, Pattie A, Corley J, Muñoz Maniega S, Valdés Hernández M, Morris Z, John S, Bronson PG, Tucker-Drob EM, Starr JM, Bastin ME, Wardlaw JM, Butterworth AS, Deary IJ. Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nat Commun 2020; 11:800. [PMID: 32041957 PMCID: PMC7010796 DOI: 10.1038/s41467-019-14161-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Identifying biological correlates of late life cognitive function is important if we are to ascertain biomarkers for, and develop treatments to help reduce, age-related cognitive decline. Here, we investigated the associations between plasma levels of 90 neurology-related proteins (Olink® Proteomics) and general fluid cognitive ability in the Lothian Birth Cohort 1936 (LBC1936, N = 798), Lothian Birth Cohort 1921 (LBC1921, N = 165), and the INTERVAL BioResource (N = 4451). In the LBC1936, 22 of the proteins were significantly associated with general fluid cognitive ability (β between -0.11 and -0.17). MRI-assessed total brain volume partially mediated the association between 10 of these proteins and general fluid cognitive ability. In an age-matched subsample of INTERVAL, effect sizes for the 22 proteins, although smaller, were all in the same direction as in LBC1936. Plasma levels of a number of neurology-related proteins are associated with general fluid cognitive ability in later life, mediated by brain volume in some cases.
Collapse
Affiliation(s)
- Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK. .,Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK
| | - Steven Bell
- UK Medical Research Council/British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK.,The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK.,Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge Neurology Unit, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Bram P Prins
- UK Medical Research Council/British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Maria Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Zoe Morris
- Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | - Sally John
- Translational Biology, Biogen, Cambridge, MA, 02142, USA
| | | | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas, 108 E Dean Keeton St, Austin, TX, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath St, Glasgow, UK.,Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK.,UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Adam S Butterworth
- UK Medical Research Council/British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK.,The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
22
|
Zhang L, Wang R, Bai T, Xiang X, Qian W, Song J, Hou X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS. FASEB J 2019; 33:13644-13659. [PMID: 31601124 DOI: 10.1096/fj.201901192r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Patients with irritable bowel syndrome (IBS) show pain hypersensitivity and smooth muscle hypercontractility in response to colorectal distension (CRD). Synaptic plasticity, a key process of memory formation, in the enteric nervous system may be a novel explanation. This study aimed to explore the regulatory role of ephrinB2/ephB2 in enteric synaptic plasticity and colonic hyperreactive motility in IBS. Postinfectious (PI)-IBS was induced by Trichinella spiralis infection in rats. Isometric contractions of colonic circular muscle strips, particularly neural-mediated contractions, were recorded ex vivo. Meanwhile, ephrinB2/ephB2-mediated enteric structural and functional synaptic plasticity were assessed in the colonic muscularis, indicating that ephrinB2 and ephB2 were located on enteric nerves and up-regulated in the colonic muscularis of PI-IBS rats. Colonic hypersensitivity to CRD and neural-mediated colonic hypercontractility were present in PI-IBS rats, which were correlated with increased levels of cellular homologous fos protein (c-fos) and activity-regulated cystoskeleton-associated protein (arc), the synaptic plasticity-related immediate early genes, and were ameliorated by ephB2Fc (an ephB2 receptor blocker) or MK801 (an NMDA receptor inhibitor) exposure. EphrinB2/ephB2 facilitated synaptic sprouting and NMDA receptor-mediated synaptic potentiation in the colonic muscularis of PI-IBS rats and in the longitudinal muscle-myenteric plexus cultures, involving the Erk-MAPK and PI3K-protein kinase B pathways. In conclusion, ephrinB2/ephB2 promoted the synaptic sprouting and potentiation of myenteric nerves involved in persistent muscle hypercontractility and pain in PI-IBS. Hence, ephrinB2/ephB2 may be an emerging target for the treatment of IBS.-Zhang, L., Wang, R., Bai, T., Xiang, X., Qian, W., Song, J., Hou, X. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuelian Xiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Lamb-Echegaray ID, Noftz WA, Stinson JPC, Gabriele ML. Shaping of discrete auditory inputs to extramodular zones of the lateral cortex of the inferior colliculus. Brain Struct Funct 2019; 224:3353-3371. [PMID: 31729553 DOI: 10.1007/s00429-019-01979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight its modular-extramodular organization (e.g. modules: GAD67-positive, extramodular zones: calretinin-positive, CR), mature projection patterns suggest that major LCIC afferents recognize and adhere to such a framework. In adult mice, distinct afferent projections appear segregated, with somatosensory inputs targeting LCIC modules and auditory inputs surrounding extramodular fields. Currently lacking is an understanding regarding the development and shaping of multimodal LCIC afferents with respect to its emerging modular-extramodular microarchitecture. Combining living slice tract-tracing and immunocytochemical approaches in GAD67-GFP knock-in mice, the present study characterizes the critical period of projection shaping for LCIC auditory afferents arising from its neighboring central nucleus (CNIC). Both crossed and uncrossed projection patterns exhibit LCIC extramodular mapping characteristics that emerge from initially diffuse distributions. Projection mismatch with GAD-defined modules and alignment with encompassing extramodular zones becomes increasingly clear over the early postnatal period (birth to postnatal day 12). CNIC inputs terminate almost exclusively in extramodular zones that express CR. These findings suggest multimodal LCIC inputs may initially be sparse and intermingle, prior to segregation into distinct processing streams. Future experiments are needed to determine the likely complex interactions and mechanisms (e.g. activity-dependent and independent) responsible for shaping early modality-specific LCIC circuits.
Collapse
Affiliation(s)
- Isabel D Lamb-Echegaray
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - William A Noftz
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeremiah P C Stinson
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Mark L Gabriele
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
24
|
Culjat M, Milošević NJ. Callosal septa express guidance cues and are paramedian guideposts for human corpus callosum development. J Anat 2019; 235:670-686. [PMID: 31070791 PMCID: PMC6704273 DOI: 10.1111/joa.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
The early development and growth of the corpus callosum are supported by several midline transient structures in mammals that include callosal septa (CS), which are present only in the second half of gestation in humans. Here we provide new data that support the guidance role of CS in corpus callosum development, derived from the analysis of 46 postmortem fetal brains, ranging in age from 16 to 40 post conception weeks (PCW). Using immunohistochemical methods, we show the expression pattern of guidance cues ephrinA4 and neogenin, extracellular protein fibronectin, as well as non-activated microglia in the CS. We found that the dynamic changes in expression of guidance cues, cellular and extracellular matrix constituents in the CS correlate well with the growth course of the corpus callosum at midsagittal level. The CS reach and maintain their developmental maximum between 20 and 26 PCW and can be visualized as hypointense structures in the ventral callosal portion with ex vivo (in vitro) T2-weighted 3T magnetic resonance imaging (MRI). The maximum of septal development overlaps with an increase in the callosal midsagittal area, whereas the slow, gradual resolution of CS coincides with a plateau of midsagittal callosal growth. The recognition of CS existence in human fetal brain and the ability to visualize them by ex vivoMRI attributes a potential diagnostic value to these transient structures, as advancement in imaging technologies will likely also enable in vivoMRI visualization of the CS in the near future.
Collapse
Affiliation(s)
- Marko Culjat
- MedStar Georgetown University HospitalWashingtonDCUSA
| | | |
Collapse
|
25
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
26
|
Zhao Y, Yin L, Zhang H, Lan T, Li S, Ma P. Eph/ephrin family anchored on exosome facilitate communications between cells. Cell Biol Int 2018; 42:1458-1462. [PMID: 29624789 DOI: 10.1002/cbin.10968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/31/2018] [Indexed: 12/18/2022]
Abstract
Interactions of Ephrins and Eph receptors at cell membranes play crucial role in boundary formation and axon guidance. Extracellular vesicles (EVs), such as exosomes, are formed by cells communicating with each other in paracrine or endocrine manner. Until now, it is thought that direct cell-cell contact is necessary for ephrin and Eph receptor signal transduction. In this review, we discuss recent data that indicate the existence of a novel Eph-ephrin family anchored exosome signaling pathway in long-range intercellular communication and provide evidence that this type of signaling elicits cellular responses in cancer cells, independent of juxtacrine interactions. We emphasize that exosome-anchored Eph/ephrin involves a variety of biological processes and transduction signals, which may serve as a potential diagnostic biomarker.
Collapse
Affiliation(s)
- Yao Zhao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Lingyu Yin
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Haoliang Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shibao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsum 221004, China
| | - Ping Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsum 221004, China
| |
Collapse
|
27
|
Liu XD, Zhu XN, Halford MM, Xu TL, Henkemeyer M, Xu NJ. Retrograde regulation of mossy fiber axon targeting and terminal maturation via postsynaptic Lnx1. J Cell Biol 2018; 217:4007-4024. [PMID: 30185604 PMCID: PMC6219728 DOI: 10.1083/jcb.201803105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Synapse formation relies on the coordination of dynamic pre- and postsynaptic structures during brain development. Liu et al. reveal that presynaptic terminal maturation of mossy fiber axons is retrogradely regulated by postsynaptic scaffold protein Lnx1 via stabilizing EphB receptor kinases. Neuronal connections are initiated by axon targeting to form synapses. However, how the maturation of axon terminals is modulated through interacting with postsynaptic elements remains elusive. In this study, we find that ligand of Numb protein X 1 (Lnx1), a postsynaptic PDZ protein expressed in hippocampal CA3 pyramidal neurons, is essential for mossy fiber (MF) axon targeting during the postnatal period. Lnx1 deletion causes defective synaptic arrangement that leads to aberrant presynaptic terminals. We further identify EphB receptors as novel Lnx1-binding proteins to form a multiprotein complex that is stabilized on the CA3 neuron membrane through preventing proteasome activity. EphB1 and EphB2 are independently required to transduce distinct signals controlling MF pruning and targeting for precise DG-CA3 synapse formation. Furthermore, constitutively active EphB2 kinase rescues structure of the wired MF terminals in Lnx1 mutant mice. Our data thus define a retrograde trans-synaptic regulation required for integration of post- and presynaptic structure that participates in building hippocampal neural circuits during the adolescence period.
Collapse
Affiliation(s)
- Xian-Dong Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Na Zhu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael M Halford
- Department of Neuroscience, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX
| | - Tian-Le Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Henkemeyer
- Department of Neuroscience, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nan-Jie Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai China
| |
Collapse
|
28
|
Dong M, Spelke DP, Lee YK, Chung JK, Yu CH, Schaffer DV, Groves JT. Spatiomechanical Modulation of EphB4-Ephrin-B2 Signaling in Neural Stem Cell Differentiation. Biophys J 2018; 115:865-873. [PMID: 30075851 PMCID: PMC6127455 DOI: 10.1016/j.bpj.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between EphB4 receptor tyrosine kinases and their membrane-bound ephrin-B2 ligands on apposed cells play a regulatory role in neural stem cell differentiation. With both receptor and ligand constrained to move within the membranes of their respective cells, this signaling system inevitably experiences spatial confinement and mechanical forces in conjunction with receptor-ligand binding. In this study, we reconstitute the EphB4-ephrin-B2 juxtacrine signaling geometry using a supported-lipid-bilayer system presenting laterally mobile and monomeric ephrin-B2 ligands to live neural stem cells. This experimental platform successfully reconstitutes EphB4-ephrin-B2 binding, lateral clustering, downstream signaling activation, and neuronal differentiation, all in a configuration that preserves the spatiomechanical aspects of the natural juxtacrine signaling geometry. Additionally, the supported bilayer system allows control of lateral movement and clustering of the receptor-ligand complexes through patterns of physical barriers to lateral diffusion fabricated onto the underlying substrate. The results from this study reveal a distinct spatiomechanical effect on the ability of EphB4-ephrin-B2 signaling to induce neuronal differentiation. These observations parallel similar studies of the EphA2-ephrin-A1 system in a very different biological context, suggesting that such spatiomechanical regulation may be a common feature of Eph-ephrin signaling.
Collapse
Affiliation(s)
- Meimei Dong
- Department of Chemistry, University of California Berkeley, Berkeley, California; Biophysics Graduate Group, University of California Berkeley, Berkeley, California
| | - Dawn P Spelke
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California; Department of Bioengineering, University of California Berkeley, Berkeley, California
| | - Young Kwang Lee
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Jean K Chung
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Cheng-Han Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David V Schaffer
- Department of Chemical Engineering, University of California Berkeley, Berkeley, California; Department of Bioengineering, University of California Berkeley, Berkeley, California.
| | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Biophysics Graduate Group, University of California Berkeley, Berkeley, California.
| |
Collapse
|
29
|
From intra- to extracellular vesicles: extracellular vesicles in developmental signalling. Essays Biochem 2018; 62:215-223. [DOI: 10.1042/ebc20180001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules. EVs have recently been found to allow the transport of two major developmental signalling pathways: Hedgehog and Wnt. These signalling molecules undergo crucial post-translational lipid modifications, which anchor them to membranes and impede their free release into the extracellular space. Preparation of these ligands in EVs involves intracellular vesicle sorting in an endocytosis-dependent recycling process before secretion. In the present review, we discuss the most recent advances with regard to EV involvement in developmental signalling at a distance. We focus on the role of the protein complexes involved in EV genesis, and provide a comprehensive perspective of the contribution of these complexes to intracellular vesicle sorting of developmental signals for their extracellular secretion, reception and transduction.
Collapse
|
30
|
Liu TT, Li Y, Shu Y, Xiao B, Feng L. Ephrin‑b3 modulates hippocampal neurogenesis and the reelin signaling pathway in a pilocarpine‑induced model of epilepsy. Int J Mol Med 2018; 41:3457-3467. [PMID: 29512697 PMCID: PMC5881691 DOI: 10.3892/ijmm.2018.3543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022] Open
Abstract
Ephrin-B3 is important in the regulation of cell proliferation, differentiation and migration via cell-cell contact, and can activate the reelin pathway during brain development. However, the effect of ephrin-B3 on hippocampal neurogenesis and the reelin pathway in epilepsy remains to be fully elucidated. In the present study, the expression of ephrin-B3 in pilocarpine-induced status epilepticus (SE) rats was investigated. SYBR Green-based reverse transcription-quantitative polymerase chain reaction analysis, immunohistochemical labeling and western blot analysis were used to detect the gene and protein expression levels of ephrin-B3 and reelin pathway proteins. Immunofluorescence staining of doublecortin (DCX) was utilized to analyze hippocampal neurogenesis. The data revealed that the mRNA and protein expression levels of ephrin-B3 in the hippocampus decreased during the spontaneous seizure period. Of note, the expression of reelin and its downstream phosphorylation disabled 1 (p-Dab1) were also notably decreased during the spontaneous seizure period, which showed similar dynamic changes as in the expression of ephrin-B3. In addition, it was found that the number of DCX-labeled neuronal progenitor cells was increased in the hippocampus following pilocarpine-induced SE. To further clarify the role of ephrin-B3 in neurogenesis and the reelin pathway in epilepsy, an exogenous ephrin-B3 clustering stimulator, EphB3-Fc, was infused into the bilateral hippocampus of the rats post-SE. Following EphB3-Fc injection, it was found that the expression levels of reelin and p-Dab1 were significantly increased in the epileptic rats following EphB3-Fc injection. The number of DCX-labeled neuronal progenitor cells was reduced in the hippocampus of the epileptic rats. Furthermore, the intensity and frequency of spontaneous recurrent seizures and electroencephalographic seizures were attenuated in the epileptic rats post-injection. These results demonstrated the critical role of ephrin-B3 in regulation of the reelin pathway and hippocampal neurogenesis in epilepsy, providing experimental evidence that ephrin-B3 functions as a potential protective factor in epilepsy, at least in animals.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Li
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | - Yi Shu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
31
|
Ling KK, Jackson M, Alkam D, Liu D, Allaire N, Sun C, Kiaei M, McCampbell A, Rigo F. Antisense-mediated reduction of EphA4 in the adult CNS does not improve the function of mice with amyotrophic lateral sclerosis. Neurobiol Dis 2018. [PMID: 29518482 DOI: 10.1016/j.nbd.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult onset motor neuron disease characterized by progressive denervation and subsequent motor impairment. EphA4, a negative regulator of axonal growth, was recently identified as a genetic modifier in fish and rodent models of ALS. To evaluate the therapeutic potential of EphA4 for ALS, we examined the effect of CNS-directed EphA4 reduction in preclinical mouse models of ALS, and assessed if the levels of EPHA4 mRNA in blood correlate with disease onset and progression in human ALS patients. We developed antisense oligonucleotides (ASOs) to specifically reduce the expression of EphA4 in the central nervous system (CNS) of adult mice. Intracerebroventricular administration of an Epha4-ASO in wild-type mice inhibited Epha4 mRNA and protein in the brain and spinal cord, and promoted re-innervation and functional recovery after sciatic nerve crush. In contrast, lowering of EphA4 in the CNS of two mouse models of ALS (SOD1G93A and PFN1G118V) did not improve their motor function or survival. Furthermore, the level of EPHA4 mRNA in human blood correlated weakly with age of disease onset, and it was not a significant predictor of disease progression as measured by ALS Functional Rating Scores (ALSFRS). Our data demonstrates that lowering EphA4 in the adult CNS may not be a stand-alone viable strategy for treating ALS.
Collapse
Affiliation(s)
| | | | - Duah Alkam
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | - Mahmoud Kiaei
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA.
| |
Collapse
|
32
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
33
|
Deneris E, Gaspar P. Serotonin neuron development: shaping molecular and structural identities. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.301. [PMID: 29072810 PMCID: PMC5746461 DOI: 10.1002/wdev.301] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 02/03/2023]
Abstract
The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Nervous System Development > Secondary: Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Evan Deneris
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patricia Gaspar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
- Sorbonne Université, Paris, France
- Institut du Fer à Moulin, Campus Jussieu, Paris, France
| |
Collapse
|
34
|
[Changes in the expression of EphA5/ephrinA5 in the CA3 region of the hippocampus in rats with epilepsy and their role in the pathogenesis of temporal lobe epilepsy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017. [PMID: 29237529 PMCID: PMC7389806 DOI: 10.7499/j.issn.1008-8830.2017.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the changes in the expression of EphA5 and its ligand ephrinA5 in the hippocampus of rats with epilepsy and their role in the pathogenesis of temporal lobe epilepsy (TLE). METHODS A total of 240 Sprague-Dawley rats were randomly divided into control group and TLE group, with 120 rats in each group. A rat model of lithium-pilocarpine TLE was established, and then the rats were divided into subgroups at 12 and 24 hours and 7, 15, 30, and 60 days after epilepsy was induced. In-situ hybridization was used to measure the mRNA expression of ephrinA5 in the CA3 region and the dentate gyrus of the hippocampus in 9 rats; immunohistochemistry was used to measure the protein expression of EphA5 in the CA3 region and the dentate gyrus of the hippocampus in 9 rats; Neo-Timm silver staining was used to observe mossy fiber sprouting in the CA3 region of the hippocampus in 2 rats. RESULTS In-situ hybridization showed mRNA expression of ephrinA5 in the CA3 region of the hippocampus, but this was not found in the dentate gyrus. Compared with the control group at the same time point, the TLE group had a significant reduction in the mRNA expression of ephrinA5 in the CA3 region of the hippocampus at 7 and 15 days after epilepsy was induced (P<0.05); at 30 and 60 days after epilepsy was induced, the TLE group had a gradual increase in the mRNA expression of ephrinA5 in the CA3 region of the hippocampus, and there was no significant difference between the TLE and control groups (P>0.05). Immunohistochemistry showed that EphA5 protein was expressed in the CA3 region and the dentate gyrus of the hippocampus and had a similar trend of change as ephrinA5 mRNA. Neo-Timm silver staining showed that the TLE group developed marked mossy fiber sprouting in the CA3 region of the hippocampus at 7 and 15 days after epilepsy was induced. CONCLUSIONS Downregulation of ephrinA5 and EphA5 in the CA3 region of the hippocampus may participate in the mechanism of mossy fiber sprouting and is closely associated with the development and progression of epilepsy.
Collapse
|
35
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML. High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 2017; 144:292-304. [PMID: 28096217 DOI: 10.1242/dev.139220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.
Collapse
Affiliation(s)
- Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Tristan H Aguero
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Karen M Newman
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Derek Van Booven
- The Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
37
|
Xia B, Zou Y, Xu Z, Lv Y. Gene expression profiling analysis of the effects of low-intensity pulsed ultrasound on induced pluripotent stem cell-derived neural crest stem cells. Biotechnol Appl Biochem 2017; 64:927-937. [PMID: 28127791 DOI: 10.1002/bab.1554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a noninvasive technique that has been shown to affect cell proliferation, migration, and differentiation and promote the regeneration of damaged peripheral nerve. Our previous studies had proved that LIPUS can significantly promote the neural differentiation of induced pluripotent stem cell-derived neural crest stem cells (iPSCs-NCSCs) and enhance the repair of rat-transected sciatic nerve. To further explore the underlying mechanisms of LIPUS treatment of iPSCs-NCSCs, this study reported the gene expression profiling analysis of iPSCs-NCSCs before and after LIPUS treatment using the RNA-sequencing (RNA-Seq) method. It was found that expression of 76 genes of iPSCs-NCSCs cultured in a serum-free neural induction medium and expression of 21 genes of iPSCs-NCSCs cultured in a neuronal differentiation medium were significantly changed by LIPUS treatment. The differentially expressed genes are related to angiogenesis, nervous system activity and functions, cell activities, and so on. The RNA-seq results were further verified by a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). High correlation was observed between the results obtained from qRT-PCR and RNA-Seq. This study presented new information on the global gene expression patterns of iPSCs-NCSCs after LIPUS treatment and may expand the understanding of the complex molecular mechanism of LIPUS treatment of iPSCs-NCSCs.
Collapse
Affiliation(s)
- Bin Xia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.,Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yang Zou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.,Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.,Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.,Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
38
|
Kemmerling N, Wunderlich P, Theil S, Linnartz-Gerlach B, Hersch N, Hoffmann B, Heneka MT, de Strooper B, Neumann H, Walter J. Intramembranous processing by γ-secretase regulates reverse signaling of ephrin-B2 in migration of microglia. Glia 2017; 65:1103-1118. [PMID: 28370426 DOI: 10.1002/glia.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/30/2022]
Abstract
The Eph-ephrin system plays pivotal roles in cell adhesion and migration. The receptor-like functions of the ephrin ligands allow the regulation of intracellular processes via reverse signaling. γ-Secretase mediated processing of ephrin-B has previously been linked to activation of Src, a kinase crucial for focal adhesion and podosome phosphorylation. Here, we analyzed the role of γ-secretase in the stimulation of reverse ephrin-B2 signaling in the migration of mouse embryonic stem cell derived microglia. The proteolytic generation of the ephrin-B2 intracellular domain (ICD) by γ-secretase stimulates Src and focal adhesion kinase (FAK). Inhibition of γ-secretase decreased the phosphorylation of Src and FAK, and reduced cell motility. These effects were associated with enlargement of the podosomal surface. Interestingly, expression of ephrin-B2 ICD could rescue these effects, indicating that this proteolytic fragment mediates the activation of Src and FAK, and thereby regulates podosomal dynamics in microglial cells. Together, these results identify γ-secretase as well as ephrin-B2 as regulators of microglial migration.
Collapse
Affiliation(s)
- Nadja Kemmerling
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | | | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | | | - Nils Hersch
- Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7 Biomechanics, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Michael T Heneka
- Department of Neurology, University of Bonn, Bonn, 53127, Germany.,German Center for Neurodegenerative Diseases, Bonn, 53127, Germany
| | - Bart de Strooper
- KULeuven Centre for Human Genetics, Leuven, 3000, Belgium.,Centre for Brain and Disease, VIB (Flanders Institute for Biotechnology), Leuven, 3000, Belgium
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, 53127, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| |
Collapse
|
39
|
Savier E, Eglen SJ, Bathélémy A, Perraut M, Pfrieger FW, Lemke G, Reber M. A molecular mechanism for the topographic alignment of convergent neural maps. eLife 2017; 6. [PMID: 28322188 PMCID: PMC5360444 DOI: 10.7554/elife.20470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/26/2017] [Indexed: 12/01/2022] Open
Abstract
Sensory processing requires proper alignment of neural maps throughout the brain. In the superficial layers of the superior colliculus of the midbrain, converging projections from retinal ganglion cells and neurons in visual cortex must be aligned to form a visuotopic map, but the basic mechanisms mediating this alignment remain elusive. In a new mouse model, ectopic expression of ephrin-A3 (Efna3) in a subset of retinal ganglion cells, quantitatively altering the retinal EFNAs gradient, disrupts cortico-collicular map alignment onto the retino-collicular map, creating a visuotopic mismatch. Genetic inactivation of ectopic EFNA3 restores a wild-type cortico-collicular map. Theoretical analyses using a new mapping algorithm model both map formation and alignment, and recapitulate our experimental observations. The algorithm is based on an initial sensory map, the retino-collicular map, which carries intrinsic topographic information, the retinal EFNAs, to the superior colliculus. These EFNAs subsequently topographically align ingrowing visual cortical axons to the retino-collicular map. DOI:http://dx.doi.org/10.7554/eLife.20470.001
Collapse
Affiliation(s)
- Elise Savier
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, Cambridge Computational Biology Institute, University of Cambridge, Cambridge, United Kingdom.,University of Strasbourg Institute of Advanced Study, Strasbourg, France
| | - Amélie Bathélémy
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Martine Perraut
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Frank W Pfrieger
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, United States
| | - Michael Reber
- CNRS UPR3212 - Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France.,University of Strasbourg Institute of Advanced Study, Strasbourg, France
| |
Collapse
|
40
|
EphrinA5 Signaling Is Required for the Distinctive Targeting of Raphe Serotonin Neurons in the Forebrain. eNeuro 2017; 4:eN-NWR-0327-16. [PMID: 28197551 PMCID: PMC5292598 DOI: 10.1523/eneuro.0327-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-HT) neurotransmission in the brain relies on a widespread axon terminal network originating from the hindbrain raphe nuclei. These projections are topographically organized such that the dorsal (DR), and median raphe (MnR) nuclei have different brain targets. However, the guidance molecules involved in this selective targeting in development are unknown. Here, we show the implication of ephrinA5 signaling in this process. We find that the EphA5 gene is selectively expressed in a subset of 5-HT neurons during embryonic and postnatal development. Highest coexpression of EphA5 and the 5-HT marker Tph2 is found in the DR, with lower coexpression in the MnR, and hardly any colocalization of the caudal raphe in the medulla. Accordingly, ephrinA induced a dose-dependent collapse response of 5-HT growth cones cultured from rostral but not caudal raphe. Ectopic expression of ephrinA3, after in utero electroporation in the amygdala and piriform cortex, repelled 5-HT raphe fiber ingrowth. Conversely, misplaced DR 5-HT axons were found in ephrin A5 knockout mice in brain regions that are normally only targeted by MnR 5-HT axons. This causes an overall increase in the density of 5-HT innervation in the ventromedial hypothalamus, the suprachiasmatic nucleus, and the olfactory bulb. All these brain areas have high expression of ephrinAs at the time of 5-HT fiber ingrowth. Present results show for the first time the role of a guidance molecule for the region-specific targeting of raphe neurons. This has important implications to understand how functional parsing of central 5-HT neurons is established during development.
Collapse
|
41
|
Sullivan CS, Kümper M, Temple BS, Maness PF. The Neural Cell Adhesion Molecule (NCAM) Promotes Clustering and Activation of EphA3 Receptors in GABAergic Interneurons to Induce Ras Homolog Gene Family, Member A (RhoA)/Rho-associated protein kinase (ROCK)-mediated Growth Cone Collapse. J Biol Chem 2016; 291:26262-26272. [PMID: 27803162 DOI: 10.1074/jbc.m116.760017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/24/2016] [Indexed: 02/03/2023] Open
Abstract
Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.
Collapse
Affiliation(s)
- Chelsea S Sullivan
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| | - Maike Kümper
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| | - Brenda S Temple
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| | - Patricia F Maness
- From the Department of Biochemistry and Biophysics, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7264
| |
Collapse
|
42
|
Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear. J Neurosci 2016; 36:10151-62. [PMID: 27683910 DOI: 10.1523/jneurosci.0845-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/17/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB-ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions in the postnatal developing brain.
Collapse
|
43
|
Biswas KH, Groves JT. A Microbead Supported Membrane-Based Fluorescence Imaging Assay Reveals Intermembrane Receptor-Ligand Complex Dimension with Nanometer Precision. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6775-6780. [PMID: 27264296 DOI: 10.1021/acs.langmuir.6b01377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Receptor-ligand complexes spanning a cell-cell interface inevitably establish a preferred intermembrane spacing based on the molecular dimensions and orientation of the complexes. This couples molecular binding events to membrane mechanics and large-scale spatial organization of receptors on the cell surface. Here, we describe a straightforward, epi-fluorescence-based method to precisely determine intermembrane receptor-ligand dimension at adhesions established by receptor-ligand binding between apposed membranes in vitro. Adhesions were reconstituted between planar and silica microbead supported membranes via specific interaction between cognate receptor/ligand pairs (EphA2/EphrinA1 and E-cadherin/anti-E-cadherin antibody). Epi-fluorescence imaging of the ligand enrichment zone in the supported membrane beneath the adhering microbead, combined with a simple geometrical interpretation, proves sufficient to estimate intermembrane receptor-ligand dimension with better than 1 nm precision. An advantage of this assay is that no specialized equipment or imaging methods are required.
Collapse
Affiliation(s)
- Kabir H Biswas
- Mechanobiology Institute, National University of Singapore , Singapore 117411, Singapore
| | - Jay T Groves
- Mechanobiology Institute, National University of Singapore , Singapore 117411, Singapore
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
44
|
Gong J, Körner R, Gaitanos L, Klein R. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 2016; 214:35-44. [PMID: 27354374 PMCID: PMC4932373 DOI: 10.1083/jcb.201601085] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022] Open
Abstract
Ephs interact with ESCRT complex components and are released via extracellular vesicles or exosomes. EphB2 released via exosomes mediates a novel cell contact–independent mode of ephrin-Eph signaling that contributes to axon guidance in cell–cell repulsion processes. The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2+ EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2+ EVs in neural development and synapse physiology.
Collapse
Affiliation(s)
- Jingyi Gong
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Roman Körner
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Louise Gaitanos
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| |
Collapse
|
45
|
Abstract
…once the development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. Santiago Ramón y Cajal Cajal's neurotropic theory postulates that the complexity of the nervous system arises from the collaboration of neurotropic signals from neuronal and non-neuronal cells and that once development has ended, a paucity of neurotropic signals means that the pathways of the central nervous system are "fixed, ended, immutable". While the capacity for regeneration and plasticity of the central nervous system may not be quite as paltry as Cajal proposed, regeneration is severely limited in scope as there is no spontaneous regeneration of long-distance projections in mammals and therefore limited opportunity for functional recovery following spinal cord injury. It is not a far stretch from Cajal to hypothesize that reappropriation of the neurotropic programs of development may be an appropriate strategy for reconstitution of injured circuits. It has become clear, however, that a significant number of the molecular cues governing circuit development become re-active after injury and many assume roles that paradoxically obstruct the functional re-wiring of severed neural connections. Therefore, the problem to address is how individual neural circuits respond to specific molecular cues following injury, and what strategies will be necessary for instigating functional repair or remodeling of the injured spinal cord.
Collapse
Affiliation(s)
- Edmund R Hollis
- Burke Medical Research Institute, White Plains, NY, USA.
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
46
|
Gjorgjieva J, Evers JF, Eglen SJ. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity. J Neurosci 2016; 36:3722-34. [PMID: 27030758 PMCID: PMC4812132 DOI: 10.1523/jneurosci.2511-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 11/21/2022] Open
Abstract
Developing neuronal networks display spontaneous bursts of action potentials that are necessary for circuit organization and tuning. While spontaneous activity has been shown to instruct map formation in sensory circuits, it is unknown whether it plays a role in the organization of motor networks that produce rhythmic output. Using computational modeling, we investigate how recurrent networks of excitatory and inhibitory neuronal populations assemble to produce robust patterns of unidirectional and precisely timed propagating activity during organism locomotion. One example is provided by the motor network inDrosophilalarvae, which generates propagating peristaltic waves of muscle contractions during crawling. We examine two activity-dependent models, which tune weak network connectivity based on spontaneous activity patterns: a Hebbian model, where coincident activity in neighboring populations strengthens connections between them; and a homeostatic model, where connections are homeostatically regulated to maintain a constant level of excitatory activity based on spontaneous input. The homeostatic model successfully tunes network connectivity to generate robust activity patterns with appropriate timing relationships between neighboring populations. These timing relationships can be modulated by the properties of spontaneous activity, suggesting its instructive role for generating functional variability in network output. In contrast, the Hebbian model fails to produce the tight timing relationships between neighboring populations required for unidirectional activity propagation, even when additional assumptions are imposed to constrain synaptic growth. These results argue that homeostatic mechanisms are more likely than Hebbian mechanisms to tune weak connectivity based on spontaneous input in a recurrent network for rhythm generation and robust activity propagation. SIGNIFICANCE STATEMENT How are neural circuits organized and tuned to maintain stable function and produce robust output? This task is especially difficult during development, when circuit properties change in response to variable environments and internal states. Many developing circuits exhibit spontaneous activity, but its role in the synaptic organization of motor networks that produce rhythmic output is unknown. We studied a model motor network, that when appropriately tuned, generates propagating activity as during crawling inDrosophilalarvae. Based on experimental evidence of activity-dependent tuning of connectivity, we examined plausible mechanisms by which appropriate connectivity emerges. Our results suggest that activity-dependent homeostatic mechanisms are better suited than Hebbian mechanisms for organizing motor network connectivity, and highlight an important difference from sensory areas.
Collapse
Affiliation(s)
- Julijana Gjorgjieva
- Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom,
| | - Jan Felix Evers
- Heidelberg University, Centre for Organismal Studies, Heidelberg D-69120, Germany, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, and
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom, Cambridge Computational Biology Institute, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
47
|
Catela C, Shin MM, Lee DH, Liu JP, Dasen JS. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes. Cell Rep 2016; 14:1901-15. [PMID: 26904955 DOI: 10.1016/j.celrep.2016.01.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
48
|
Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 2016; 320:129-39. [PMID: 26851773 DOI: 10.1016/j.neuroscience.2016.01.061] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. The biogenesis of microvesicles, characterized by a vesicle diameter of 50 to 1000 nm, involves membrane shedding while exosomes, of 30 to 100 nm in diameter, originate in the multivesicular bodies within cells. Both vesicle types, which can be harvested from the conditioned media of cell cultures by differential centrifugation steps, regulate the function of target cells due to their molecular content of microRNA, mRNA, proteins and lipids. Here, we compared the effect of human menstrual MSCs (MenSCs) mediated by cell-cell contact, by their total secretome or by secretome-derived extracellular vesicles on neuritic outgrowth in primary neuronal cultures. The contact of MenSCs with cortical neurons inhibited neurite outgrowth while their total secretome enhanced it. The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic conveyors in neurodegenerative pathologies.
Collapse
|
49
|
Noh H, Park S. Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis. Mol Cells 2016; 39:136-40. [PMID: 26674965 PMCID: PMC4757801 DOI: 10.14348/molcells.2016.2245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/27/2022] Open
Abstract
Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(α)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina--particularly the nasal and temporal regions--is markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina.
Collapse
Affiliation(s)
- Hyuna Noh
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Soochul Park
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
50
|
Son AI, Hashimoto-Torii K, Rakic P, Levitt P, Torii M. EphA4 has distinct functionality from EphA7 in the corticothalamic system during mouse brain development. J Comp Neurol 2015; 524:2080-92. [PMID: 26587807 DOI: 10.1002/cne.23933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 11/11/2022]
Abstract
Deciphering the molecular basis for guiding specific aspects of neocortical development remains a challenge because of the complexity of histogenic events and the vast array of protein interactions mediating these events. The Eph family of receptor tyrosine kinases is implicated in a number of neurodevelopmental activities. Eph receptors have been known to be capable of responding to several ephrin ligands within their subgroups, often eliciting similar downstream effects. However, several recent studies have indicated specificity between receptor-ligand pairs within each subfamily, the functional relevance of which is not defined. Here we show that a receptor of the EphA subfamily, EphA4, has effects distinct from those of its close relative, EphA7, in the developing brain. Both EphA4 and EphA7 interact similarly with corresponding ligands expressed in the developing neocortex. However, only EphA7 shows strong interaction with ligands in the somatosensory thalamic nuclei; EphA4 affects only cortical neuronal migration, with no visible effects on the guidance of corticothalamic (CT) axons, whereas EphA7 affects both cortical neuronal migration and CT axon guidance. Our data provide new evidence that Eph receptors in the same subfamily are not simply interchangeable but are functionally specified through selective interactions with distinct ligands in vivo. J. Comp. Neurol. 524:2080-2092, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine of University of Southern California, Los Angeles, California, 90027
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, 20010.,Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010
| |
Collapse
|