1
|
Su HA, Zhang MM, Wei H, Yu HK, Lu YY, Qi YX. NompC regulates locomotion and touch sensation in Bactrocera dorsalis. INSECT SCIENCE 2024. [PMID: 39491829 DOI: 10.1111/1744-7917.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024]
Abstract
No mechanoreceptor potential C (NompC) is a major mechanotransduction channel with an important role in sensing of external mechanical stimuli by insects, which help these organisms to avoid injury and adapt to environmental changes. To explore the biological functions of NompC in Bactrocera dorsalis, a notorious agricultural pest, we successfully generated NompC knockout strains using clustered regularly interspaced small palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9) technology. BdorNompC knockout led to an adult lethal phenotype, with approximately 100% mortality at 3 d after eclosion. Morphological observation revealed that the legs and wings of BdorNompC knockout insects were deformed, while behavioral assays showed that the locomotion was impaired in both adults and larvae, relative to that of the wild-type strain. Moreover, BdorNompC knockout reduced gentle-touch response in larvae. These results suggest that BdorNompC is critical for B. dorsalis survival, and that this mechanosensation channel represents a potential new target for pest control agents. Our findings also represent novel evidence indicating that insect NompC is involved in modulating adult wing and leg morphology.
Collapse
Affiliation(s)
- Hong-Ai Su
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Miao-Miao Zhang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hui Wei
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hai-Kuo Yu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Carbajo JM, Michan-Doña A, Carretero MI, Vela ML, De Gracia JA, Maraver F. Biophysical effects of a natural peloid on normal skin. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:143-152. [PMID: 37957435 DOI: 10.1007/s00484-023-02578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
A protocol study was designed to examine cutaneous behavior after continuous application of a peloid in the dry mineral residue of Lanjarón-Capuchina natural mineral water. This study aims to analyze the biomechanical behavior of normal skin using various non-invasive bioengineering techniques after the application of this peloid. We determine the effects of its application for 3 months on 38 healthy volunteers (41.4 ± 5.9 years, range 32-58) without a previous history of skin diseases by courtmetry, sebumetry, pH-metry, reviscometry, and tewametry. It was shown that the production of cutaneous sebum is significantly reduced by 6%, trans epidermal skin loss (TEWL) by 21%, skin fatigue by 30%, elasticity increased by 19%, firmness by 5%, and a skin redensification by 6% was obtained under these experimental conditions. Disparate and non-significant results were obtained concerning pH and viscoelasticity. Continuous skin care with the Lanjarón-Capuchina natural peloid modifies skin behavior, normalizing sebaceous secretion, favoring the biomechanical properties of the skin and the skin barrier function without modifying skin homeostasis.
Collapse
Affiliation(s)
- Jose M Carbajo
- Medical Hydrology Group, Department of Radiology, Rehabilitation & Physiotherapy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Alfredo Michan-Doña
- Medical Hydrology Group, Department of Radiology, Rehabilitation & Physiotherapy, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Medicine, Hospital Universitario de Jerez, Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11003, Cádiz, Spain
| | - M Isabel Carretero
- Department Cristalografia, Mineralogia y Quimica Agrícola, Sevilla University, 41012, Sevilla, Spain
| | - María Lorena Vela
- Medical Hydrology Group, Department of Radiology, Rehabilitation & Physiotherapy, Complutense University of Madrid, 28040, Madrid, Spain
- Health and Environment Sciences School, Comahue National University, 8300, Neuquen, Argentina
| | - Jose Antonio De Gracia
- Medical Hydrology Group, Department of Radiology, Rehabilitation & Physiotherapy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Francisco Maraver
- Medical Hydrology Group, Department of Radiology, Rehabilitation & Physiotherapy, Complutense University of Madrid, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
4
|
Fok A, Brissette B, Hallacy T, Ahamed H, Ho E, Ramanathan S, Ringstad N. High-fidelity encoding of mechanostimuli by tactile food-sensing neurons requires an ensemble of ion channels. Cell Rep 2023; 42:112452. [PMID: 37119137 PMCID: PMC10320741 DOI: 10.1016/j.celrep.2023.112452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/07/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
The nematode C. elegans uses mechanosensitive neurons to detect bacteria, which are food for worms. These neurons release dopamine to suppress foraging and promote dwelling. Through a screen of genes highly expressed in dopaminergic food-sensing neurons, we identify a K2P-family potassium channel-TWK-2-that damps their activity. Strikingly, loss of TWK-2 restores mechanosensation to neurons lacking the NOMPC-like channel transient receptor potential 4 (TRP-4), which was thought to be the primary mechanoreceptor for tactile food sensing. The alternate mechanoreceptor mechanism uncovered by TWK-2 mutation requires three Deg/ENaC channel subunits: ASIC-1, DEL-3, and UNC-8. Analysis of cell-physiological responses to mechanostimuli indicates that TRP and Deg/ENaC channels work together to set the range of analog encoding of stimulus intensity and to improve signal-to-noise characteristics and temporal fidelity of food-sensing neurons. We conclude that a specialized mechanosensory modality-tactile food sensing-emerges from coordination of distinct force-sensing mechanisms housed in one type of sensory neuron.
Collapse
Affiliation(s)
- Alice Fok
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Benjamin Brissette
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Tim Hallacy
- Harvard University, Departments of Molecular and Cell Biology, Stem Cell and Regenerative Biology and Applied Physics, Cambridge, MA 10238, USA
| | - Hassan Ahamed
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Elver Ho
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Sharad Ramanathan
- Harvard University, Departments of Molecular and Cell Biology, Stem Cell and Regenerative Biology and Applied Physics, Cambridge, MA 10238, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Veilleux CC, Dominy NJ, Melin AD. The sensory ecology of primate food perception, revisited. Evol Anthropol 2022; 31:281-301. [PMID: 36519416 DOI: 10.1002/evan.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Twenty years ago, Dominy and colleagues published "The sensory ecology of primate food perception," an impactful review that brought new perspectives to understanding primate foraging adaptations. Their review synthesized information on primate senses and explored how senses informed feeding behavior. Research on primate sensory ecology has seen explosive growth in the last two decades. Here, we revisit this important topic, focusing on the numerous new discoveries and lines of innovative research. We begin by reviewing each of the five traditionally recognized senses involved in foraging: audition, olfaction, vision, touch, and taste. For each sense, we provide an overview of sensory function and comparative ecology, comment on the state of knowledge at the time of the original review, and highlight advancements and lingering gaps in knowledge. Next, we provide an outline for creative, multidisciplinary, and innovative future research programs that we anticipate will generate exciting new discoveries in the next two decades.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Belin S, Maki BA, Catlin J, Rein BA, Popescu GK. Membrane Stretch Gates NMDA Receptors. J Neurosci 2022; 42:5672-5680. [PMID: 35705487 PMCID: PMC9302457 DOI: 10.1523/jneurosci.0350-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 01/22/2023] Open
Abstract
NMDARs are ionotropic glutamate receptors widely expressed in the CNS, where they mediate phenomena as diverse as neurotransmission, information processing, synaptogenesis, and cellular toxicity. They function as glutamate-gated Ca2+-permeable channels, which require glycine as coagonist, and can be modulated by many diffusible ligands and cellular cues, including mechanical stimuli. Previously, we found that, in cultured astrocytes, shear stress initiates NMDAR-mediated Ca2+ entry in the absence of added agonists, suggesting that more than being mechanosensitive, NMDARs may be mechanically activated. Here, we used controlled expression of rat recombinant receptors and noninvasive on-cell single-channel current recordings to show that mild membrane stretch can substitute for the neurotransmitter glutamate in gating NMDAR currents. Notably, stretch-activated currents maintained the hallmark features of the glutamate-gated currents, including glycine-requirement, large unitary conductance, high Ca2+ permeability, and voltage-dependent Mg2+ blockade. Further, we found that the stretch-gated current required the receptor's intracellular domain. Our results are consistent with the hypothesis that mechanical forces can gate endogenous NMDAR currents even in the absence of synaptic glutamate release, which has important implications for understanding mechanotransduction and the physiological and pathologic effects of mechanical forces on cells of the CNS.SIGNIFICANCE STATEMENT We show that, in addition to enhancing currents elicited with low agonist concentrations, membrane stretch can gate NMDARs in the absence of the neurotransmitter glutamate. Stretch-gated currents have the principal hallmarks of the glutamate-gated currents, including requirement for glycine, large Na+ conductance, high Ca2+ permeability, and voltage-dependent Mg2+ block. Therefore, results suggest that mechanical forces can initiate cellular processes presently attributed to glutamatergic neurotransmission, such as synaptic plasticity and cytotoxicity. Given the ubiquitous presence of mechanical forces in the CNS, this discovery identifies NMDARs as possibly important mechanotransducers during development and across the lifespan, and during pathologic processes, such as those associated with traumatic brain injuries, shaken infant syndrome, and chronic traumatic encephalopathy.
Collapse
Affiliation(s)
- Sophie Belin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214
| | - Bruce A Maki
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214
| | - James Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214
| | - Benjamin A Rein
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214
| |
Collapse
|
7
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
8
|
Macefield VG. The roles of mechanoreceptors in muscle and skin in human proprioception. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Bandet MV, Dong B, Winship IR. Distinct patterns of activity in individual cortical neurons and local networks in primary somatosensory cortex of mice evoked by square-wave mechanical limb stimulation. PLoS One 2021; 16:e0236684. [PMID: 33914738 PMCID: PMC8084136 DOI: 10.1371/journal.pone.0236684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
Artificial forms of mechanical limb stimulation are used within multiple fields of study to determine the level of cortical excitability and to map the trajectory of neuronal recovery from cortical damage or disease. Square-wave mechanical or electrical stimuli are often used in these studies, but a characterization of sensory-evoked response properties to square-waves with distinct fundamental frequencies but overlapping harmonics has not been performed. To distinguish between somatic stimuli, the primary somatosensory cortex must be able to represent distinct stimuli with unique patterns of activity, even if they have overlapping features. Thus, mechanical square-wave stimulation was used in conjunction with regional and cellular imaging to examine regional and cellular response properties evoked by different frequencies of stimulation. Flavoprotein autofluorescence imaging was used to map the somatosensory cortex of anaesthetized C57BL/6 mice, and in vivo two-photon Ca2+ imaging was used to define patterns of neuronal activation during mechanical square-wave stimulation of the contralateral forelimb or hindlimb at various frequencies (3, 10, 100, 200, and 300 Hz). The data revealed that neurons within the limb associated somatosensory cortex responding to various frequencies of square-wave stimuli exhibit stimulus-specific patterns of activity. Subsets of neurons were found to have sensory-evoked activity that is either primarily responsive to single stimulus frequencies or broadly responsive to multiple frequencies of limb stimulation. High frequency stimuli were shown to elicit more population activity, with a greater percentage of the population responding and greater percentage of cells with high amplitude responses. Stimulus-evoked cell-cell correlations within these neuronal networks varied as a function of frequency of stimulation, such that each stimulus elicited a distinct pattern that was more consistent across multiple trials of the same stimulus compared to trials at different frequencies of stimulation. The variation in cortical response to different square-wave stimuli can thus be represented by the population pattern of supra-threshold Ca2+ transients, the magnitude and temporal properties of the evoked activity, and the structure of the stimulus-evoked correlation between neurons.
Collapse
Affiliation(s)
- Mischa V. Bandet
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Bin Dong
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Furuta T, Bush NE, Yang AET, Ebara S, Miyazaki N, Murata K, Hirai D, Shibata KI, Hartmann MJZ. The Cellular and Mechanical Basis for Response Characteristics of Identified Primary Afferents in the Rat Vibrissal System. Curr Biol 2020; 30:815-826.e5. [PMID: 32004452 PMCID: PMC10623402 DOI: 10.1016/j.cub.2019.12.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/09/2019] [Accepted: 12/20/2019] [Indexed: 01/06/2023]
Abstract
Compared to our understanding of the response properties of receptors in the auditory and visual systems, we have only a limited understanding of the mechanoreceptor responses that underlie tactile sensation. Here, we exploit the stereotyped morphology of the rat vibrissal (whisker) array to investigate coding and transduction properties of identified primary tactile afferents. We performed in vivo intra-axonal recording and labeling experiments to quantify response characteristics of four different types of identified mechanoreceptors in the vibrissal follicle: ring-sinus Merkel; lanceolate; clublike; and rete-ridge collar Merkel. Of these types, only ring-sinus Merkel endings exhibited slowly adapting properties. A weak inverse relationship between response magnitude and onset response latency was found across all types. All afferents exhibited strong "angular tuning," i.e., their response magnitude and latency depended on the whisker's deflection angle. Although previous studies suggested that this tuning should be aligned with the angular location of the mechanoreceptor in the follicle, such alignment was observed only for Merkel afferents; angular tuning of the other afferent types showed no clear alignment with mechanoreceptor location. Biomechanical modeling suggested that this tuning difference might be explained by mechanoreceptors' differential sensitivity to the force directed along the whisker length. Electron microscopic investigations of Merkel endings and lanceolate endings at the level of the ring sinus revealed unique anatomical features that may promote these differential sensitivities. The present study systematically integrates biomechanical principles with the anatomical and morphological characterization of primary afferent endings to describe the physical and cellular processing that shapes the neural representation of touch.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita, Osaka 565-0871, Japan; Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Anne En-Tzu Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Satomi Ebara
- Department of Anatomy, Meiji University of Integrative Medicine, Kyoto 629-0392, Japan
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Daichi Hirai
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Shibata
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitra J Z Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
11
|
Popsuj S, Stolfi A. Neurobiology: Swimming at the Intersection of Light and Gravity. Curr Biol 2020; 30:R171-R174. [PMID: 32097645 DOI: 10.1016/j.cub.2019.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many animals use gravity as a spatial reference to help navigate their surroundings, but how they do so is not well understood. A new study reveals that a representative of our closest invertebrate relatives, the tunicate Ciona, processes light and gravity cues through a simple neural circuit to decide when and how to swim.
Collapse
Affiliation(s)
- Sydney Popsuj
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA
| | - Alberto Stolfi
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Bertheaux C, Toscano R, Fortunier R, Roux JC, Charier D, Borg C. Emotion Measurements Through the Touch of Materials Surfaces. Front Hum Neurosci 2020; 13:455. [PMID: 32009917 PMCID: PMC6978750 DOI: 10.3389/fnhum.2019.00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
The emotion generated by the touch of materials is studied via a protocol based on blind assessment of various stimuli. The human emotional reaction felt toward a material is estimated through (i) explicit measurements, using a questionnaire collecting valence and intensity, and (ii) implicit measurements of the activity of the autonomic nervous system, via a pupillometry equipment. A panel of 25 university students (13 women, 12 men), aged from 18 to 27, tested blind twelve materials such as polymers, sandpapers, wood, velvet and fur, randomly ordered. After measuring the initial pupil diameter, taken as a reference, its variation during the tactile exploration was recorded. After each touch, the participants were asked to quantify the emotional value of the material. The results show that the pupil size variation follows the emotional intensity. It is significantly larger during the touch of materials considered as pleasant or unpleasant, than with the touch of neutral materials. Moreover, after a time period of about 0.5 s following the stimulus, the results reveal significant differences between pleasant and unpleasant stimuli, as well as differences according to gender, i.e., higher pupil dilatation of women than men. These results suggest (i) that the autonomic nervous system is initially sensitive to high arousing stimulation, and (ii) that, after a certain period, the pupil size changes according to the cognitive interest induced and the emotional regulation adopted. This research shows the interest of the emotional characterization of materials for product design.
Collapse
Affiliation(s)
- Cyril Bertheaux
- Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, Saint-Étienne, France
| | - Rosario Toscano
- Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, Saint-Étienne, France
| | - Roland Fortunier
- Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, Saint-Étienne, France
- ISAE-ENSMA, Chasseneuil-du-Poitou, France
| | | | - David Charier
- University Hospital of Saint-Étienne, SNA-EPI Laboratory, EA 4607, CHU, Université de Lyon, Saint-Priest-en-Jarez, France
| | - Céline Borg
- University Hospital of Saint-Étienne, CMRR Neuropsychology, Department of Neurology, Université de Lyon, Saint-Priest-en-Jarez, France
| |
Collapse
|
13
|
Zhang M, Li X, Zheng H, Wen X, Chen S, Ye J, Tang S, Yao F, Li Y, Yan Z. Brv1 Is Required for Drosophila Larvae to Sense Gentle Touch. Cell Rep 2019; 23:23-31. [PMID: 29617663 DOI: 10.1016/j.celrep.2018.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 01/16/2023] Open
Abstract
How we sense touch is fundamental for many physiological processes. However, the underlying mechanism and molecular identity for touch sensation are largely unknown. Here, we report on defective gentle-touch behavioral responses in brv1 loss-of-function Drosophila larvae. RNAi and Ca2+ imaging confirmed the involvement of Brv1 in sensing touch and demonstrated that Brv1 mediates the mechanotransduction of class III dendritic arborization neurons. Electrophysiological recordings further revealed that the expression of Brv1 protein in HEK293T cells gives rise to stretch-activated cation channels. Purified Brv1 protein reconstituted into liposomes were found to sense stretch stimuli. In addition, co-expression studies suggested that Brv1 amplifies the response of mechanosensitive ion channel NOMPC (no mechanoreceptor potential C) to touch stimuli. Altogether, these findings demonstrate a molecular entity that mediates the gentle-touch response in Drosophila larvae, providing insights into the molecular mechanisms of touch sensation.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xia Li
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Honglan Zheng
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoxu Wen
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihan Chen
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia Ye
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Siyang Tang
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fuqiang Yao
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuezhou Li
- Children's Hospital and Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology, Human Phenome Institute, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Institute of Brain Science, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
14
|
Carbajo JM, Maraver F. Salt water and skin interactions: new lines of evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2018; 62:1345-1360. [PMID: 29675710 DOI: 10.1007/s00484-018-1545-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.
Collapse
Affiliation(s)
- Jose Manuel Carbajo
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Francisco Maraver
- Department of Radiology, Rehabilitation and Physiotherapy, Faculty of Medicine, Universidad Complutense de Madrid, Plaza Ramon y Cajal, s/n, 28040, Madrid, Spain.
- Professional School of Medical Hydrology, Faculty of Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
15
|
FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells. Nat Commun 2018; 9:2333. [PMID: 29899403 PMCID: PMC5998134 DOI: 10.1038/s41467-018-04399-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/27/2018] [Indexed: 12/14/2022] Open
Abstract
Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the progenitor cell population that gives rise to these cells is unknown. Here, we show that during embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling in Merkel cell specification. Merkel cells are mechanoreceptors located in the epidermis whose developmental origin is unclear. Here the authors show that Merkel cells originate from SOX9 positive cells inside hair follicles and that FGFR2-mediated epithelial signalling is required for their specification.
Collapse
|
16
|
Spatiotemporal relationships defining the adaptive gating of the bacterial mechanosensitive channel MscS. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:663-677. [DOI: 10.1007/s00249-018-1303-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
|
17
|
Sachs F. Mechanical Transduction and the Dark Energy of Biology. Biophys J 2018; 114:3-9. [PMID: 29320693 PMCID: PMC5984904 DOI: 10.1016/j.bpj.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
|
18
|
Abstract
The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.
Collapse
Affiliation(s)
- Paul de Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol 2017; 18:771-783. [PMID: 28974772 DOI: 10.1038/nrm.2017.92] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular mechanotransduction, the process of translating mechanical forces into biological signals, is crucial for a wide range of physiological processes. A role for ion channels in sensing mechanical forces has been proposed for decades, but their identity in mammals remained largely elusive until the discovery of Piezos. Recent research on Piezos has underscored their importance in somatosensation (touch perception, proprioception and pulmonary respiration), red blood cell volume regulation, vascular physiology and various human genetic disorders.
Collapse
|
20
|
Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat Commun 2017. [PMID: 28970527 DOI: 10.1038/s41467‐017‐01095‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gustatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory-related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding.Characterization of gustatory neural pathways has suffered due to a lack of molecular markers. Here, the authors report single cell RNA sequencing and unbiased transcriptome analyses to reveal major distinctions between gustatory and somatosensory neurons and subclusters of gustatory neurons with unique molecular and functional profiles.
Collapse
|
21
|
Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat Commun 2017; 8:760. [PMID: 28970527 PMCID: PMC5624912 DOI: 10.1038/s41467-017-01095-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 01/30/2023] Open
Abstract
Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gustatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory-related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding. Characterization of gustatory neural pathways has suffered due to a lack of molecular markers. Here, the authors report single cell RNA sequencing and unbiased transcriptome analyses to reveal major distinctions between gustatory and somatosensory neurons and subclusters of gustatory neurons with unique molecular and functional profiles.
Collapse
|
22
|
Nourse JL, Pathak MM. How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. Semin Cell Dev Biol 2017; 71:3-12. [PMID: 28676421 DOI: 10.1016/j.semcdb.2017.06.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 11/17/2022]
Abstract
Cells constantly encounter mechanical stimuli in their environment, such as dynamic forces and mechanical features of the extracellular matrix. These mechanical cues are transduced into biochemical signals, and integrated with genetic and chemical signals to modulate diverse physiological processes. Cells also actively generate forces to internally transport cargo, to explore the physical properties of their environment and to spatially position themselves and other cells during development. Mechanical forces are therefore central to development, homeostasis, and repair. Several molecular and biophysical strategies are utilized by cells for detecting and generating mechanical forces. Here we discuss an important class of molecules involved in sensing and transducing mechanical forces - mechanically-activated ion channels. We focus primarily on the Piezo1 ion channel, and examine its relationship with the cellular cytoskeleton.
Collapse
Affiliation(s)
- Jamison L Nourse
- Department of Physiology & Biophysics, Sue & Bill Gross Stem Cell Research Center, 835 Health Sciences Road, Room 275B, UC Irvine, Irvine, CA 92697, United States
| | - Medha M Pathak
- Department of Physiology & Biophysics, Sue & Bill Gross Stem Cell Research Center, 835 Health Sciences Road, Room 275B, UC Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
23
|
Kromer J, Khaledi-Nasab A, Schimansky-Geier L, Neiman AB. Emergent stochastic oscillations and signal detection in tree networks of excitable elements. Sci Rep 2017. [PMID: 28638071 PMCID: PMC5479816 DOI: 10.1038/s41598-017-04193-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We study the stochastic dynamics of strongly-coupled excitable elements on a tree network. The peripheral nodes receive independent random inputs which may induce large spiking events propagating through the branches of the tree and leading to global coherent oscillations in the network. This scenario may be relevant to action potential generation in certain sensory neurons, which possess myelinated distal dendritic tree-like arbors with excitable nodes of Ranvier at peripheral and branching nodes and exhibit noisy periodic sequences of action potentials. We focus on the spiking statistics of the central node, which fires in response to a noisy input at peripheral nodes. We show that, in the strong coupling regime, relevant to myelinated dendritic trees, the spike train statistics can be predicted from an isolated excitable element with rescaled parameters according to the network topology. Furthermore, we show that by varying the network topology the spike train statistics of the central node can be tuned to have a certain firing rate and variability, or to allow for an optimal discrimination of inputs applied at the peripheral nodes.
Collapse
Affiliation(s)
- Justus Kromer
- Center for Advancing Electronics Dresden, TU Dresden, Mommsenstrasse 15, 01069, Dresden, Germany
| | - Ali Khaledi-Nasab
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, USA
| | - Lutz Schimansky-Geier
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Alexander B Neiman
- Department of Physics and Astronomy, Ohio University, Athens, Ohio, 45701, USA. .,Neuroscience Program, Ohio University, Athens, Ohio, 45701, USA.
| |
Collapse
|
24
|
Schneider ER, Gracheva EO, Bagriantsev SN. Evolutionary Specialization of Tactile Perception in Vertebrates. Physiology (Bethesda) 2017; 31:193-200. [PMID: 27053733 DOI: 10.1152/physiol.00036.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| | - Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, Connecticut; and Department of Neuroscience, Yale University, New Haven, Connecticut
| | - Slav N Bagriantsev
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
25
|
Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S, Laubacher C, Hayes LH, Alter K, Zampieri C, Stanley C, Innes AM, Mah JK, Grosmann CM, Bradley N, Nguyen D, Foley AR, Le Pichon CE, Bönnemann CG. The Role of PIEZO2 in Human Mechanosensation. N Engl J Med 2016; 375:1355-1364. [PMID: 27653382 PMCID: PMC5911918 DOI: 10.1056/nejmoa1602812] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The senses of touch and proprioception evoke a range of perceptions and rely on the ability to detect and transduce mechanical force. The molecular and neural mechanisms underlying these sensory functions remain poorly defined. The stretch-gated ion channel PIEZO2 has been shown to be essential for aspects of mechanosensation in model organisms. METHODS We performed whole-exome sequencing analysis in two patients who had unique neuromuscular and skeletal symptoms, including progressive scoliosis, that did not conform to standard diagnostic classification. In vitro and messenger RNA assays, functional brain imaging, and psychophysical and kinematic tests were used to establish the effect of the genetic variants on protein function and somatosensation. RESULTS Each patient carried compound-inactivating variants in PIEZO2, and each had a selective loss of discriminative touch perception but nevertheless responded to specific types of gentle mechanical stimulation on hairy skin. The patients had profoundly decreased proprioception leading to ataxia and dysmetria that were markedly worse in the absence of visual cues. However, they had the ability to perform a range of tasks, such as walking, talking, and writing, that are considered to rely heavily on proprioception. CONCLUSIONS Our results show that PIEZO2 is a determinant of mechanosensation in humans. (Funded by the National Institutes of Health Intramural Research Program.).
Collapse
Affiliation(s)
- Alexander T Chesler
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Marcin Szczot
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Diana Bharucha-Goebel
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Marta Čeko
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Sandra Donkervoort
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Claire Laubacher
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Leslie H Hayes
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Katharine Alter
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Cristiane Zampieri
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Christopher Stanley
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - A Micheil Innes
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Jean K Mah
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Carla M Grosmann
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Nathaniel Bradley
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - David Nguyen
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - A Reghan Foley
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Claire E Le Pichon
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| | - Carsten G Bönnemann
- From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.)
| |
Collapse
|
26
|
Schwarz C. The Slip Hypothesis: Tactile Perception and its Neuronal Bases. Trends Neurosci 2016; 39:449-462. [PMID: 27311927 DOI: 10.1016/j.tins.2016.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/26/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Abstract
The slip hypothesis of epicritic tactile perception interprets actively moving sensor and touched objects as a frictional system, known to lead to jerky relative movements called 'slips'. These slips depend on object geometry, forces, material properties, and environmental factors, and, thus, have the power to incorporate coding of the perceptual target, as well as perceptual strategies (sensor movement). Tactile information as transferred by slips will be encoded discontinuously in space and time, because slips sometimes engage only parts of the touching surfaces and appear as discrete and rare events in time. This discontinuity may have forced tactile systems of vibrissae and fingertips to evolve special ways to convert touch signals to a tactile percept.
Collapse
Affiliation(s)
- Cornelius Schwarz
- Werner Reichardt Center for Integrative Neuroscience, Systems Neurophysiology, Eberhard Karls University, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Department for Cognitive Neurology, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
27
|
Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal. Int J Mol Sci 2015; 16:28098-107. [PMID: 26602926 PMCID: PMC4691026 DOI: 10.3390/ijms161226078] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022] Open
Abstract
The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes.
Collapse
|