1
|
Mahmood T, Moosa A, Zulfiqar F, Aslam MN, Zhao H, Mohammadi M, İzgü T, Bozkurt T, Ahmed T, Darwish DBE. Comparative Effects of Bacillus strains applied Via Seed Biopriming and Soil Drenching Applications on the Morpho-Physiological and Transcriptional Aspects of Cotton. J Basic Microbiol 2025; 65:e2400665. [PMID: 39916338 DOI: 10.1002/jobm.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 01/11/2025] [Indexed: 04/08/2025]
Abstract
Biofertilizers are considered as a sustainable solution for promoting the growth and productivity of crops while reducing the dependence on chemical fertilizers. There is a growing need for the sustainable agricultural solutions to lessen the reliance on chemical fertilizers; thus, evaluating Bacillus strains as biofertilizers for cotton growth promotion can support eco-friendly and economically viable crop production. Therefore, the growth promoting potential of endophytic Bacillus altitudinis strain TM22 and B. atrophaeus strain MCM61 applied as soil drenching or seed treatment, was evaluated on cotton cv. 'SS32'. In vitro, the qualitative assay both TM22 and MCM61 showed proteolytic, amylolytic, lipolytic, cellulolytic, and chitinolytic activity. TM22 and MCM61 strains also demonstrated the ability to produce siderophores, indole 3-acetic acid (IAA), and phosphate solubilization. In the pot experiment, seed biopriming with TM22 and MCM61 had better performance regarding plant growth and biomass, photosynthetic pigments, stomatal conductance, and relative leaf water contents than the soil drenching application. The gene expression analysis of growth hormones-related genes demonstrated that TM22 and MCM61 showed an upregulated expression of ARF1, ARF18, EXP6, IAA9, GIB1b, and CKX6 while ERF and ERF17 genes were downregulated. Overall, these findings suggest that seed biopriming with B. altitudinis TM22 and B. atrophaeus MCM61 is an effective method with the potential to enhance the biomass of cotton.
Collapse
Affiliation(s)
- Tahir Mahmood
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meisam Mohammadi
- Department of Horticulture, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Tolga İzgü
- Institute for BioEconomy (IBE), National Research Council (CNR), Sesto Fiorentino, Florence, Italy
| | - Taner Bozkurt
- Department of Plant Biotechnology, Korea Universtiy, South Korea
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- Advanced Research Centre European University of Lefke Lefke, Northern Cyprus, Mersin, Turkey
| | | |
Collapse
|
2
|
Teja BS, Jamwal G, Gupta V, Verma M, Sharma A, Sharma A, Pandit V. Biological control of bacterial leaf blight (BLB) in rice-A sustainable approach. Heliyon 2025; 11:e41769. [PMID: 39872461 PMCID: PMC11770542 DOI: 10.1016/j.heliyon.2025.e41769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Bacterial leaf blight (BLB) in rice, caused by the pathogen Xanthomonas oryzae pv. oryzae, is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management. Additionally, the induction of plant immunity and defense-related enzymes in rice further enhances the resistance against the disease. Therefore, implementation of biological controls can complement chemical treatments in contributing towards the sustainability of rice production systems by aiming at host immunity improvement and killing of pathogen. It is crucial to continue exploring and understanding the complex interactions between various beneficial microbes, the rice plants, and the BLB pathogen to optimize and implement effective biocontrol strategies in future.
Collapse
Affiliation(s)
- Bestha Sai Teja
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Gayatri Jamwal
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vishal Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Mansi Verma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Ayushi Sharma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Akash Sharma
- Division of Fruit Science, Faculty of Horticulture and Forestry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vinod Pandit
- Centre for Agriculture and Bioscience International (CABI), New Delhi, 110012, India
| |
Collapse
|
3
|
Zheng Y, Liu T, Wang Z, Wang X, Wang H, Li Y, Zheng W, Wei S, Leng Y, Li J, Yang Y, Liu Y, Li Z, Wang Q, Tian Y. Whole-genome sequencing and secondary metabolite exploration of the novel Bacillus velezensis BN with broad-spectrum antagonistic activity against fungal plant pathogens. Front Microbiol 2025; 15:1498653. [PMID: 39831126 PMCID: PMC11738913 DOI: 10.3389/fmicb.2024.1498653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 01/22/2025] Open
Abstract
The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts. Among these, Plant Growth-Promoting Rhizobacteria (PGPR), which are found within plant rhizosphere, stand out for their capacity to stimulate plant growth. Recently, we isolated a strain, BN, with broad-spectrum antimicrobial activity from the rhizosphere of Lilium brownii. Identification revealed that this strain belongs to the species Bacillus velezensis and exhibits significant inhibitory effects against various fungal plant pathogens. The complete genome sequence of B. velezensis BN consists of a circular chromosome with a length of 3,929,791 bp, includes 3,747 protein-coding genes, 81 small RNAs, 27 rRNAs, and 86 tRNAs. Genomic analysis revealed that 29% of the genes are directly involved in plant growth, while 70% of the genes are indirectly involved. In addition, 12 putative biosynthetic gene clusters were identified, responsible for the synthesis of secondary metabolites, such as non-ribosomal peptides, lanthipeptides, polyketides, siderophores, and terpenes. These findings provide a scientific basis for the development of efficient antimicrobial agents and the construction of biopesticide production platforms in chassis cells.
Collapse
Affiliation(s)
- Yanli Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Tongshu Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ziyu Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Xu Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Haiyan Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ying Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Wangshan Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Shiyu Wei
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yan Leng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jiajia Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yan Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Zhaoyu Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Lozano-Andrade CN, Dinesen C, Wibowo M, Bach NA, Hesselberg-Thomsen V, Jarmusch SA, Strube ML, Kovács ÁT. Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. THE ISME JOURNAL 2025; 19:wraf013. [PMID: 39846898 PMCID: PMC11833321 DOI: 10.1093/ismejo/wraf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation. Despite the growing body of knowledge on their mode of action, biosynthesis, and regulation, we still do not fully understand the role of secondary metabolites on the ecology of the producers and resident communities in situ. Here, we specifically examine the influence of Bacillus subtilis-produced cyclic lipopeptides during the assembly of a bacterial synthetic community, and simultaneously, explore the impact of cyclic lipopeptides on B. subtilis establishment success in a synthetic community propagated in an artificial soil microcosm. We found that surfactin production facilitates B. subtilis establishment success within multiple synthetic communities. Although neither a wild type nor a cyclic lipopeptide non-producer mutant had a major impact on the synthetic community composition over time, both the B. subtilis and the synthetic community metabolomes were altered during co-cultivation. Overall, our work demonstrates the importance of surfactin production in microbial communities, suggesting a broad spectrum of action of this natural product.
Collapse
Affiliation(s)
| | - Caja Dinesen
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Mario Wibowo
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Nil Arenos Bach
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | | | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
5
|
Zou Q, Zhang Y, Niu X, Yang H, Chu M, Wang N, Bao H, Zhan F, Yang R, Lou K, Shi Y. Antifungal Activity of Rhizosphere Bacillus Isolated from Ziziphus jujuba Against Alternaria alternata. Microorganisms 2024; 12:2189. [PMID: 39597579 PMCID: PMC11596436 DOI: 10.3390/microorganisms12112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
The serious impact of Alternaria alternata on jujube black spot disease has seriously affected the quality and yield of jujube, constraining the sustainable development of the jujube industry. The purpose of this study was to isolate and screen highly effective biocontrol strains of jujube black spot disease from jujube rhizosphere soil. Thirty-three soil samples were collected from four regions in southern Xinjiang. The strains with antagonistic effects were isolated and screened by the dilution spread method and plate confrontation method and identified by morphological, physiological, and biochemical characteristics, as well as 16S rDNA, gyrB, and rpoB gene sequences. Indoor and field efficacy experiments were conducted to determine their biocontrol effect. A total of 110 strains with antibacterial activity were selected, and one strain, Bacillus velezensis 26-8, with a stable antagonistic effect was further tested. Biological characteristic experiments showed that strain 26-8 could grow at NaCl concentrations of 0.5-10% and pH 4.0-9.0. The biocontrol experiment results showed that Bacillus velezensis 26-8 could achieve an 89.83% control effect against black spot disease. In conclusion, strain 26-8 has good salt and alkali tolerance, exerts a good control effect on jujube black spot disease, and is worthy of further study.
Collapse
Affiliation(s)
- Qiang Zou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- College of Life and Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yumeng Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- College of Life and Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xinxiang Niu
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, China
| | - Hongmei Yang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Min Chu
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Ning Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Huifang Bao
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Faqiang Zhan
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Rong Yang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Yingwu Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Q.Z.); (Y.Z.); (H.Y.); (M.C.); (N.W.); (H.B.); (F.Z.); (R.Y.); (K.L.)
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi 830091, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| |
Collapse
|
6
|
Chen Z, Lu Y, Cui J, Feng Y, Dong H, Huang X, Zhu C, Xiong X, Chen H, Wang Q, Liu G. Monitoring of Bacillus spore-forming dynamics through flow cytometry. Front Microbiol 2024; 15:1450913. [PMID: 39534508 PMCID: PMC11554475 DOI: 10.3389/fmicb.2024.1450913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The plate counting method is a traditional and widely accepted technique for live cell counting, often employed for Bacillus enumeration and spore forming rate calculations. However, this method requires at least 12 h to generate results, making it unsuitable for real-time monitoring of bacterial growth status and spore transformation rate. Bacillus thuringiensis crystals, produced during sporulation, are widely used as microbial pesticides, with high demand for industrial scale production. Variations in cultivation conditions and harvest timing during large-scale pore production of Bacillus thuringiensis significantly affect spore forming rate, impacting crystallization yield. Nevertheless, there is a lack of real-time monitoring methods for spore conversion rate. Flow cytometry (FCM), a well-established technique for single-cell analysis in eukaryotic cells, has been successfully applied in bacterial detection in environmental and food samples. In this study, we introduced a rapid flow cytometry-based method for determining spore forming rate of Bacillus thuringiensis, with two nucleic acid dyes, SYTO24 and LDS751. The method enables dynamic monitoring of spore, vegetative cell, and viable but non-culturable/dead cell proportions during the whole cultivation process, and spore forming rate could be gained within 30 min. Data of spore forming rate by FCM method is consistent with that by plate counting method, offering a faster and more efficient approach for assessing sporulation status in industrial Bacillus thuringiensis microbial pesticide production.
Collapse
Affiliation(s)
- Zhili Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Yuanyuan Lu
- Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jiazhen Cui
- Academy of Military Medical Sciences, Beijing, China
| | - Yuzhong Feng
- Academy of Military Medical Sciences, Beijing, China
| | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Xuan Huang
- Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
| | | | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
7
|
He P, Cui W, Munir S, He P, Huang R, Li X, Wu Y, Wang Y, Yang J, Tang P, He Y, He P. Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation. J Cell Physiol 2024; 239:e30991. [PMID: 36946428 DOI: 10.1002/jcp.30991] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/12/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023]
Abstract
Bacillus subtilis XF-1 is a well-investigated biocontrol agent against the biotrophic Plasmodiophora brassicae Woron., the causal agent of clubroot disease of cruciferous crops. The present study demonstrates that XF-1 could efficiently control clubroot disease via leaf spraying and provides an understanding of the biocontrol mechanisms. High-performance thin-layer chromatography (HTPLC) analysis indicated the presence of fengycin-type cyclopeptides in the supernatant. A ppsB deletion mutant of XF-1 resulted in no fengycin production, significantly reduced the lysis rate of testing spores in vitro and the primary infection rate of root hair in vivo, and decreased the protection value against clubroot disease under the greenhouse conditions. Confocal laser scanning microscopy proved that fengycin was not required for leaf internalization and root colonization. Moreover, the expression level of the ppsB gene in XF-1 was regulated by its cell density in root during interaction with P. brassicae. In addition, the ΔppsB mutant of XF-1 could not efficiently control disease because it led to a lower activation level of the jasmonic acid and salicylic acid signaling pathways in roots, which are necessary for the plant defense reaction upon pathogen invasion. Altogether, the present study provides a new understanding of specific cues in the interaction between B. subtilis and P. brassicae as well as insights into the application of B. subtilis in agriculture.
Collapse
Affiliation(s)
- Pengjie He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenyan Cui
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ruirong Huang
- Plant Protection Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yuehu Wang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Jiang C, Peng F, Zhang L, Zhang Y, Wang J, Li J, Cui B, Cao C, Wang C, Qin Y, Wang R, Zhao Z, Jiang J, Yang M, Sun M, Yang L, Zhang Q. Isolation, identification, and mechanism analysis of plant growth-promoting rhizobacteria in tobacco. Front Microbiol 2024; 15:1457624. [PMID: 39372272 PMCID: PMC11449712 DOI: 10.3389/fmicb.2024.1457624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Plant growth, crop yield, and pest and disease control are enhanced by PGPR (Plant growth promoting rhizobacteria), which are beneficial microorganisms found in a close symbiosis with plant roots. Phytohormones are secreted, nutrient uptake is improved, and soil properties along with the microbiological environment are regulated by these microorganisms, making them a significant focus in agricultural research. In this study, the efficient PGPR strain T1 was isolated and screened from tobacco inter-root soil, and identified and confirmed by ITS sequencing technology. Tobacco growth indicators and soil property changes were observed and recorded through potting experiments. The activities of key enzymes (e.g., sucrase, catalase, urease) in soil were further determined. High-throughput sequencing technology was utilized to sequence the soil microbial community, and combined with macro-genomics analysis, the effects of T1 strain on soil microbial diversity and metabolic pathways were explored. Following the application of T1, significant improvements were observed in the height, leaf length, and width of tobacco plants. Furthermore, the physical and chemical properties of the soil were notably enhanced, including a 26.26% increase in phosphorus availability. Additionally, the activities of key soil enzymes such as sucrase, catalase, and urease were significantly increased, indicating improved soil health and fertility. Comprehensive joint microbiomics and macrogenomics analyses revealed a substantial rise in the populations of beneficial soil microorganisms and an enhancement in metabolic pathways, including amino acid metabolism, synthesis, and production of secondary metabolites. These increase in beneficial microorganisms and the enhancement of their metabolic functions are crucial for plant growth and soil fertility. This study provides valuable references for the development of innovative microbial fertilizers and offers programs for the sustainable development of modern agriculture.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Fuyu Peng
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yuqin Zhang
- Shandong Rizhao Tobacco Co., Ltd., Rizhao, China
| | - Jie Wang
- Shandong Rizhao Tobacco Co., Ltd., Rizhao, China
| | - Junmin Li
- Shandong Rizhao Tobacco Co., Ltd., Rizhao, China
| | - Binghui Cui
- Shandong Rizhao Tobacco Co., Ltd., Rizhao, China
| | - Changdai Cao
- Shandong Rizhao Tobacco Co., Ltd., Rizhao, China
| | - Chengqiang Wang
- College of Life Science, Shandong Agricultural University, Tai'an, China
| | - Yunlei Qin
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zongpeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jiazhu Jiang
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Mingfeng Yang
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Mingming Sun
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Su L, Zhang J, Fan J, Li D, Zhao M, Wang Y, Pan H, Zhao L, Zhang X. Antagonistic Mechanism Analysis of Bacillus velezensis JLU-1, a Biocontrol Agent of Rice Pathogen Magnaporthe oryzae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19657-19666. [PMID: 39190007 DOI: 10.1021/acs.jafc.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Magnaporthe oryzae, the causal agent of rice blast, is a fungal disease pathogen. Bacillus spp. have emerged as the most promising biological control agent alternative to chemical fungicides. In this study, the bacterial strain JLU-1 with significant antagonistic activity isolated from the rhizosphere soil of rice was identified as Bacillus velezensis through whole-genome sequencing, average nucleotide identity analysis, and 16S rRNA gene sequencing. Twelve gene clusters for secondary metabolite synthesis were identified in JLU-1. Furthermore, 3 secondary metabolites were identified in JLU-1, and the antagonistic effect of secondary metabolites against fungal pathogens was confirmed. Exposure to JLU-1 reduced the virulence of M. oryzae, and JLU-1 has the ability to induce the reactive oxygen species production of rice and improve the salt tolerance of rice. All of these results indicated that JLU-1 and its secondary metabolites have the promising potential to be developed into a biocontrol agent to control fungal diseases.
Collapse
Affiliation(s)
- Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiyue Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinyu Fan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dan Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meixi Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yichi Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Lei Zhao
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
10
|
Xu X, Pioppi A, Kiesewalter HT, Strube ML, Kovács ÁT. Disentangling the factors defining Bacillus subtilis group species abundance in natural soils. Environ Microbiol 2024; 26:e16693. [PMID: 39324517 DOI: 10.1111/1462-2920.16693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Bacillus subtilis is ubiquitously and broadly distributed in various environments but is mostly isolated from soil. Given that B. subtilis is known as a plant growth-promoting rhizobacterium in agriculture, we aimed to describe the natural distribution of this species and uncover how biotic and abiotic factors affect its distribution. When comparing different soils, we discovered that B. subtilis group species are most abundant in grasslands but can rarely be isolated from forest soil, even if the soil sample sites are situated in proximity. Differential analysis revealed that spore-forming bacteria exhibited enrichments in the grassland, suggesting niche overlap or synergistic interactions leading to the proliferation of certain Bacillus species in grassland environments. Network analysis further revealed that Bacillus and other Bacillota established a densely interconnected hub module in the grassland, characterised by positive associations indicating co-occurrence, a pattern not observed in the forest soil. Speculating that this difference was driven by abiotic factors, we combined amplicon sequencing with physico-chemical analysis of soil samples and found multiple chemical variables, mainly pH, to affect microbial composition. Our study pinpoints the factors that influence B. subtilis abundance in natural soils and, therefore, offers insights for designing B. subtilis-based biocontrol products in agricultural settings.
Collapse
Affiliation(s)
- Xinming Xu
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Adele Pioppi
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Heiko T Kiesewalter
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Li R, Yang P, Zhang H, Wang C, Zhao F, Liu J, Wang Y, Liang Y, Sun T, Xie X. Comparative Genomic and Functional Analysis of c-di-GMP Metabolism and Regulatory Proteins in Bacillus velezensis LQ-3. Microorganisms 2024; 12:1724. [PMID: 39203566 PMCID: PMC11357230 DOI: 10.3390/microorganisms12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus velezensis is a promising candidate for biocontrol applications. A common second messenger molecule, bis-(3,5)-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has the ability to regulate a range of physiological functions that impact the effectiveness of biocontrol. However, the status of the c-di-GMP signaling pathway in biocontrol strain LQ-3 remains unknown. Strain LQ-3, which was isolated from wheat rhizosphere soil, has shown effective control of wheat sharp eyespot and has been identified as B. velezensis through whole-genome sequencing analyses. In this study, we investigated the intracellular c-di-GMP signaling pathway of LQ-3 and further performed a comparative genomic analysis of LQ-3 and 29 other B. velezensis strains. The results revealed the presence of four proteins containing the GGDEF domain, which is the conserved domain for c-di-GMP synthesis enzymes. Additionally, two proteins were identified with the EAL domain, which represents the conserved domain for c-di-GMP degradation enzymes. Furthermore, one protein was found to possess a PilZ domain, indicative of the conserved domain for c-di-GMP receptors in LQ-3. These proteins are called DgcK, DgcP, YybT, YdaK, PdeH, YkuI, and DgrA, respectively; they are distributed in a similar manner across the strains and belong to the signal transduction family. We selected five genes from the aforementioned seven genes for further study, excluding YybT and DgrA. They all play a role in regulating the motility, biofilm formation, and colonization of LQ-3. This study reveals the c-di-GMP signaling pathway associated with biocontrol features in B. velezensis LQ-3, providing guidance for the prevention and control of wheat sharp eyespot by LQ-3.
Collapse
Affiliation(s)
- Rong Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Panlei Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Hongjuan Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Chunjing Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Fang Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Jiehui Liu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yanbin Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yan Liang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Ting Sun
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Xiansheng Xie
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| |
Collapse
|
12
|
Ananev AA, Ogneva ZV, Nityagovsky NN, Suprun AR, Kiselev KV, Aleynova OA. Whole Genome Sequencing of Bacillus velezensis AMR25, an Effective Antagonist Strain against Plant Pathogens. Microorganisms 2024; 12:1533. [PMID: 39203375 PMCID: PMC11356610 DOI: 10.3390/microorganisms12081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The most serious problems for cultivated grapes are pathogenic microorganisms, which reduce the yield and quality of fruit. One of the most widespread disease of grapes is "gray mold", caused by the fungus Botrytis cinerea. Some strains of Bacillus, such as Bacillus halotolerans, Bacillus amyloliquefaciens, and Bacillus velezensis, are known to be active against major post-harvest plant rots. In this study, we showed that the endophytic bacteria B. velezensis strain AMR25 isolated from the leaves of wild grapes Vitis amurensis Rupr. exhibited antimicrobial activity against grape pathogens, including B. cinerea. The genome of B. velezensis AMR25 has one circular chromosome with a length of 3,909,646 bp. with 3689 open reading frames. Genomic analysis identified ten gene clusters involved in the nonribosomal synthesis of polyketides (macrolactin, bacillene, and difficidin), lipopeptides (surfactin, fengycin, and bacillizin), and bacteriocins (difficidin). Also, the genome under study contains a number of genes involved in root colonization, biofilm formation, and biosynthesis of phytohormones. Thus, the endophytic bacteria B. velezensis strain AMR25 shows great promise in developing innovative biological products for enhancing plant resistance against various pathogens.
Collapse
Affiliation(s)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.A.A.); (N.N.N.); (A.R.S.); (K.V.K.); (O.A.A.)
| | | | | | | | | |
Collapse
|
13
|
Li X, Tan C, Li P, Lin L, Zhou J, Tao H, Cai Y. Biological Control of Avocado Branch Blight Caused by Lasiodiplodia theobromae Using Bacillus velezensis. PLANT DISEASE 2024; 108:2053-2064. [PMID: 38347735 DOI: 10.1094/pdis-10-23-2216-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
In recent years, avocado branch blight has gradually become one of the major diseases causing mortality of avocado trees, which seriously affects the economic development of avocado planting regions. In order to investigate the cause of the disease, the pathogens were isolated from the interroot of avocado trees with the onset of the disease and identified as Lasiodiplodia theobromae. At the same time, three Bacillus velezensis strains, YK194, YK201, and YK268, with better antagonistic effects and high stability against L. theobromae, were isolated from the rhizospheric soil of healthy avocado plants. The results of branch experiments and field trials showed that the avocado leaves as well as branches treated with the strains YK194, YK201, and YK268 did not develop disease, and the incidence of avocado trees was significantly reduced. In the branch experiments, the biological control effect of the strains YK194, YK201, and YK268 reached 62.07, 52.70, and 72.45%, respectively. In the field experiments, it reached 63.85, 63.43, and 73.86%, respectively, which indicated that all these three strains possessed good biological control effects on avocado branch blight. Further investigation on the mechanism of action of antagonistic strains revealed that B. velezensis YK268 could produce lipopeptides, namely, surfactin, fengycin, and iturin, which could significantly inhibit the spore germination of L. theobromae. Consequently, these three isolates have potential as biocontrol agents against L. theobromae.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Chenxing Tan
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lizhen Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jianuan Zhou
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Huan Tao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
14
|
Fessia A, Sartori M, Orlando J, Barros G, Nesci A. Draft genome sequences of two biocontrol agents isolated from the maize phyllosphere : Bacillus subtilis strain EM-A7 and Bacillus velezensis strain EM-A8. Heliyon 2024; 10:e32607. [PMID: 39021968 PMCID: PMC11252862 DOI: 10.1016/j.heliyon.2024.e32607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
In the present study, the genomes of B. subtilis EM-A7 and B. velezensis EM-A8 were sequenced and annotated. The Illumina sequencing platform (NovaSeq PE150) was used to sequence the genomic DNA. There were 6 277 054 raw reads for EM-A7, with a Q20 of 97.52 % and 43.78 % GC, and 8 030 262 raw reads for EM-A8, with a Q20 of 97.53 % and 46.21 % GC. Annotation was carried out by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). The strains were classified taxonomically on the basis of an average nucleotide identity analysis (ANI), as well as through a dDDh analysis on the Genome-to-Genome Distance Calculator (GGDC v3.0). The pipeline predicted 4062 protein-coding sequences (CDSs) and 73 RNA genes (62 tRNA and 6 rRNA) for EM-A7, and 3797 protein-coding sequences (CDSs) and 80 RNA genes for EM-A8. These findings enhance our understanding of the two strains' potential as biocontrol agents to manage disease in maize.
Collapse
Affiliation(s)
- Aluminé Fessia
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Melina Sartori
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Germán Barros
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Nesci
- Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto, Ruta Nacional 36, Km 601, X5804ZAB Río Cuarto, Córdoba, Argentina. - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
15
|
Li L, Zheng R, Wang Z, Li H, Shi Y, Pan Z, Liu M. Leaf Health Status Regulates Endophytic Microbial Community Structure, Network Complexity, and Assembly Processes in the Leaves of the Rare and Endangered Plant Species Abies fanjingshanensis. Microorganisms 2024; 12:1254. [PMID: 39065023 PMCID: PMC11279022 DOI: 10.3390/microorganisms12071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The rare and endangered plant species Abies fanjingshanensis, which has a limited habitat, a limited distribution area, and a small population, is under severe threat, particularly due to poor leaf health. The plant endophytic microbiome is an integral part of the host, and increasing evidence indicates that the interplay between plants and endophytic microbes is a key determinant for sustaining plant fitness. However, little attention has been given to the differences in the endophytic microbial community structure, network complexity, and assembly processes in leaves with different leaf health statuses. Here, we investigated the endophytic bacterial and fungal communities in healthy leaves (HLs) and non-healthy leaves (NLs) of A. fanjingshanensis using 16S rRNA gene and internal transcribed spacer sequencing and evaluated how leaf health status affects the co-occurrence patterns and assembly processes of leaf endophytic microbial communities based on the co-occurrence networks, the niche breadth index, a neutral community model, and C-score metrics. HLs had significantly greater endophytic bacterial and fungal abundance and diversity than NLs, and there were significant differences in the endophytic microbial communities between HLs and NLs. Leaf-health-sensitive endophytic microbes were taxonomically diverse and were mainly grouped into four ecological clusters according to leaf health status. Poor leaf health reduced the complexity of the endophytic bacterial and fungal community networks, as reflected by a decrease in network nodes and edges and an increase in degrees of betweenness and assortativity. The stochastic processes of endophytic bacterial and fungal community assembly were weakened, and the deterministic processes became more important with declining leaf health. These results have important implications for understanding the ecological patterns and interactions of endophytic microbial communities in response to changing leaf health status and provide opportunities for further studies on exploiting plant endophytic microbes to conserve this endangered Abies species.
Collapse
Affiliation(s)
- Long Li
- School of Data Science, Tongren University, Tongren 554300, China;
| | - Rong Zheng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Zuhua Wang
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Haibo Li
- National Nature Reserve Administration of Fanjing Mountain, Tongren 554400, China;
| | - Yongjia Shi
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Zhongjie Pan
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Min Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| |
Collapse
|
16
|
Ali MA, Ahmed T, Ibrahim E, Rizwan M, Chong KP, Yong JWH. A review on mechanisms and prospects of endophytic bacteria in biocontrol of plant pathogenic fungi and their plant growth-promoting activities. Heliyon 2024; 10:e31573. [PMID: 38841467 PMCID: PMC11152693 DOI: 10.1016/j.heliyon.2024.e31573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024] Open
Abstract
Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.
Collapse
Affiliation(s)
- Md. Arshad Ali
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Ezzeldin Ibrahim
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khim Phin Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden
| |
Collapse
|
17
|
Izquierdo-García LF, Carmona-Gutiérrez SL, Moreno-Velandia CA, Villarreal-Navarrete ADP, Burbano-David DM, Quiroga-Mateus RY, Gómez-Marroquín MR, Rodríguez-Yzquierdo GA, Betancourt-Vásquez M. Microbial-Based Biofungicides Mitigate the Damage Caused by Fusarium oxysporum f. sp. cubense Race 1 and Improve the Physiological Performance in Banana. J Fungi (Basel) 2024; 10:419. [PMID: 38921405 PMCID: PMC11204473 DOI: 10.3390/jof10060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Fusarium wilt of banana (FWB) is the most limiting disease in this crop. The phytosanitary emergency caused by FWB since 2019 in Colombia has required the development of ecofriendly control methods. The aim of this study was to test the effectiveness of microbial-based biofungicides against FWB caused by Fusarium oxysporum f. sp. cubense race 1 (Foc R1) and correlate such effect with plant physiological parameters. Five Trichoderma (T1 to T4 and T9) and four Bacillus (T5 to T8)-based biofungicides were evaluated in pot experiments. In vitro, dual confrontation tests were also carried out to test whether the in vitro effects on Foc growth were consistent with the in vivo effects. While Trichoderma-based T3, T4, and T9, and Bacillus-based T8, significantly reduced the growth of Foc R1 in vitro, Trichoderma-based T1, T3, T4, and T9 temporarily reduced the Foc population in the soil. However, the incidence progress of FWB was significantly reduced by Bacterial-based T7 (74% efficacy) and Trichoderma-based T2 (50% efficacy). The molecular analysis showed that T7 prevented the inner tissue colonization by Foc R1 in 80% of inoculated plants. The T2, T4, T7, and T9 treatments mitigated the negative effects caused by Foc R1 on plant physiology and growth. Our data allowed us to identify three promising treatments to control FWB, reducing the progress of the disease, delaying the colonization of inner tissue, and mitigating physiological damages. Further studies should be addressed to determine the modes of action of the biocontrol agents against Foc and validate the utilization in the field.
Collapse
Affiliation(s)
- Luisa Fernanda Izquierdo-García
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera, Cundinamarca 250047, Colombia; (S.L.C.-G.); (A.d.P.V.-N.); (D.M.B.-D.); (R.Y.Q.-M.); (M.R.G.-M.); (G.A.R.-Y.); (M.B.-V.)
| | | | - Carlos Andrés Moreno-Velandia
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera, Cundinamarca 250047, Colombia; (S.L.C.-G.); (A.d.P.V.-N.); (D.M.B.-D.); (R.Y.Q.-M.); (M.R.G.-M.); (G.A.R.-Y.); (M.B.-V.)
| | | | | | | | | | | | | |
Collapse
|
18
|
Ali AO, Awla HK, Rashid TS. Investigating the in vivo biocontrol and growth-promoting efficacy of Bacillus sp. and Pseudomonas fluorescens against olive knot disease. Microb Pathog 2024; 191:106645. [PMID: 38631412 DOI: 10.1016/j.micpath.2024.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Olive knot disease, caused by Pseudomonas savastanoi, poses a significant threat to olive cultivation, necessitating sustainable alternatives to conventional chemical control. This study investigates the biocontrol effectiveness of Bacillus sp. (Og2) and Pseudomonas fluorescens (Oq5), alone and combined, against olive knot disease. Olive plants were sprayed with 5 ml of the bacteria until uniformly wet, with additional application to the soil surface. Pathogen injection occurred 24 h later. The results revealed that treating plants with a combination of both bacteria provided the highest reduction in disease severity (89.58 %), followed by P. fluorescens alone (69.38 %). Significant improvements were observed in shoot height, particularly with the combination of Bacillus sp. and P. fluorescens. The root length of olive seedlings treated with P. fluorescens and Bacillus sp., either alone or in combination, was significantly longer compared to the control and pathogen-treated seedlings. In terms of root dry weight, the most effective treatments were treated with P. fluorescens was the highest (82.94 g) among all treatments followed by the combination of both isolates with seedlings inoculated with P. savastanoi. These findings underscore the potential of Bacillus sp. and Pseudomonas fluorescens as effective biocontrol agents against olive knot disease and promoting olive seedlings growth, providing a sustainable and environmentally friendly approach to disease management.
Collapse
Affiliation(s)
- Avin Omer Ali
- Department of Plant Protection, College of Agricultural Engineering Sciences, Salahaddin University, Erbil, Iraq
| | | | - Tavga Sulaiman Rashid
- Department of Plant Protection, College of Agricultural Engineering Sciences, Salahaddin University, Erbil, Iraq.
| |
Collapse
|
19
|
Shu HY, Chen CC, Ku HT, Wang CL, Wu KM, Weng HY, Liu ST, Chen CL, Chiu CH. Complete genome sequence of Bacillus halotolerans F29-3, a fengycin-producing strain. Microbiol Resour Announc 2024; 13:e0124623. [PMID: 38451104 PMCID: PMC11008187 DOI: 10.1128/mra.01246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Bacillus halotolerans F29-3, a Gram-positive bacterium, is recognized for its synthesis of the antifungal substance fengycin. This announcement introduces the complete genome sequence and provides insights into the genetic products related to antibiotic secondary metabolites, including non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and NRPS/PKS combination.
Collapse
Affiliation(s)
- Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | - Chien-Chi Chen
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Hsin-Tzu Ku
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | - Chun-Lin Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Keh-Ming Wu
- Bioinformatics Department, Welgene Biotech Co., Ltd., Taipei, Taiwan
| | - Hui-Ying Weng
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Tung Liu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
20
|
Yurnaliza Y, Nurwahyuni I, Lenny S, Lutfia A. Bioprospecting Study of Plant Growth Promoting Rhizospheric Bacteria from Oil Palm Plantation as Biological Control Agent of Ganoderma boninense. Pak J Biol Sci 2024; 27:256-267. [PMID: 38840466 DOI: 10.3923/pjbs.2024.256.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.
Collapse
|
21
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
22
|
Li Y, Tao S, Liang Y. Time-Course Responses of Apple Leaf Endophytes to the Infection of Gymnosporangium yamadae. J Fungi (Basel) 2024; 10:128. [PMID: 38392801 PMCID: PMC10890309 DOI: 10.3390/jof10020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Apple rust, caused by Gymnosporangium yamadae, poses a significant challenge to apple production. Prior studies have underscored the pivotal role played by endophytic microbial communities, intimately linked with the host, in influencing plant diseases and their pathogenic outcomes. The objective of this study is to scrutinize alternations in endophytic microbial communities within apple leaves at different stages of apple rust using high-throughput sequencing technology. The findings revealed a discernible pattern characterized by an initial increase and subsequent decrease in the alpha diversity of microbial communities in diseased leaves. A microbial co-occurrence network analysis revealed that the complexity of the bacterial community in diseased leaves diminished initially and then rebounded during the progression of the disease. Additionally, employing the PICRUSt2 platform, this study provided preliminary insights into the functions of microbial communities at specific disease timepoints. During the spermogonial stage, endophytic bacteria particularly exhibited heightened activity in genetic information processing, metabolism, and environmental information processing pathways. Endophytic fungi also significantly enriched a large number of metabolic pathways during the spermogonial stage and aecial stage, exhibiting abnormally active life activities. These findings establish a foundation for comprehending the role of host endophytes in the interaction between pathogens and hosts. Furthermore, they offer valuable insights for the development and exploitation of plant endophytic resources, thereby contributing to enhanced strategies for managing apple rust.
Collapse
Affiliation(s)
- Yunfan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan 518000, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
23
|
Nascente AS, Temitope IZ, Filippi MCC, Cruz DRC. Effect of one or more microorganisms on the yield components of upland rice under greenhouse conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:991-1000. [PMID: 38013212 DOI: 10.1080/10934529.2023.2286858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
The use of beneficial microorganisms is an important strategy to improve rice production in a sustainable way. The study was carried out to determine the effect of single and combined beneficial microorganism on the development of upland rice. The experiment was performed in greenhouse and arranged in a completely randomized design with 29 treatments and 4 replications. Treatments consisted of rice seeds cultivar BRS A501 CL treated with single and combined multifunctional microorganisms (1 (Serratia marcescens), 2 (Bacillus toyonensis), 3 (Phanerochaete australis), 4 (Trichoderma koningiopsis), 5 (Azospirillum brasilense), 6 (Azospirillum sp.), 7 (Bacillus sp.), 8 to 28 (combination of all these microorganisms in pairs) and 29 (control)). Inoculation of upland rice with sole and combined microorganism on upland rice increased the roots and shoots development, yield components and grain yield of upland rice. The combinations of Bacillus sp. (BRM 63573) and A. brasilense (AbV5), Azospirillum sp. (BRM 63574) + B. toyonensis (BRM 32110) and Phanerochaete australis (BRM 62389) + Serratia marcenscens (BRM 32114) led to improved roots and shoots development; increased number of panicles and grains per pot, 1000 grains weight and grain yield of rice plants. Besides, the combinations allow helped in increased accumulation of nutrients in roots, shoots and grains of rice plants.
Collapse
Affiliation(s)
- Adriano S Nascente
- Brazilian Agricultural Research Corporation, Embrapa, Rice and Bean National Research Center, Santo Antônio de Goiás, GO, Brazil
| | | | - Marta Cristina C Filippi
- Brazilian Agricultural Research Corporation, Embrapa, Rice and Bean National Research Center, Santo Antônio de Goiás, GO, Brazil
| | | |
Collapse
|
24
|
Schilling T, Ferrero-Bordera B, Neef J, Maaβ S, Becher D, van Dijl JM. Let There Be Light: Genome Reduction Enables Bacillus subtilis to Produce Disulfide-Bonded Gaussia Luciferase. ACS Synth Biol 2023; 12:3656-3668. [PMID: 38011677 PMCID: PMC10729301 DOI: 10.1021/acssynbio.3c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Bacillus subtilis is a major workhorse for enzyme production in industrially relevant quantities. Compared to mammalian-based expression systems, B. subtilis presents intrinsic advantages, such as high growth rates, high space-time yield, unique protein secretion capabilities, and low maintenance costs. However, B. subtilis shows clear limitations in the production of biopharmaceuticals, especially proteins from eukaryotic origin that contain multiple disulfide bonds. In the present study, we deployed genome minimization, signal peptide screening, and coexpression of recombinant thiol oxidases as strategies to improve the ability of B. subtilis to secrete proteins with multiple disulfide bonds. Different genome-reduced strains served as the chassis for expressing the model protein Gaussia Luciferase (GLuc), which contains five disulfide bonds. These chassis lack extracellular proteases, prophages, and key sporulation genes. Importantly, compared to the reference strain with a full-size genome, the best-performing genome-minimized strain achieved over 3000-fold increased secretion of active GLuc while growing to lower cell densities. Our results show that high-level GLuc secretion relates, at least in part, to the absence of major extracellular proteases. In addition, we show that the thiol-disulfide oxidoreductase requirements for disulfide bonding have changed upon genome reduction. Altogether, our results highlight genome-engineered Bacillus strains as promising expression platforms for proteins with multiple disulfide bonds.
Collapse
Affiliation(s)
- Tobias Schilling
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Borja Ferrero-Bordera
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Sandra Maaβ
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| |
Collapse
|
25
|
Dehbi I, Achemrk O, Ezzouggari R, El Jarroudi M, Mokrini F, Legrifi I, Belabess Z, Laasli SE, Mazouz H, Lahlali R. Beneficial Microorganisms as Bioprotectants against Foliar Diseases of Cereals: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:4162. [PMID: 38140489 PMCID: PMC10747484 DOI: 10.3390/plants12244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Cereal production plays a major role in both animal and human diets throughout the world. However, cereal crops are vulnerable to attacks by fungal pathogens on the foliage, disrupting their biological cycle and photosynthesis, which can reduce yields by 15-20% or even 60%. Consumers are concerned about the excessive use of synthetic pesticides given their harmful effects on human health and the environment. As a result, the search for alternative solutions to protect crops has attracted the interest of scientists around the world. Among these solutions, biological control using beneficial microorganisms has taken on considerable importance, and several biological control agents (BCAs) have been studied, including species belonging to the genera Bacillus, Pseudomonas, Streptomyces, Trichoderma, Cladosporium, and Epicoccum, most of which include plants of growth-promoting rhizobacteria (PGPRs). Bacillus has proved to be a broad-spectrum agent against these leaf cereal diseases. Interaction between plant and beneficial agents occurs as direct mycoparasitism or hyperparasitism by a mixed pathway via the secretion of lytic enzymes, growth enzymes, and antibiotics, or by an indirect interaction involving competition for nutrients or space and the induction of host resistance (systemic acquired resistance (SAR) or induced systemic resistance (ISR) pathway). We mainly demonstrate the role of BCAs in the defense against fungal diseases of cereal leaves. To enhance a solution-based crop protection approach, it is also important to understand the mechanism of action of BCAs/molecules/plants. Research in the field of preventing cereal diseases is still ongoing.
Collapse
Affiliation(s)
- Ilham Dehbi
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
- Laboratory of Plant Biotechnology and Molecular Biology, Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco;
| | - Oussama Achemrk
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| | - Rachid Ezzouggari
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
- Laboratory of Biotechnology, Conservation, and Valorization of Natural Resources (LBCVNR), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco
| | - Moussa El Jarroudi
- Department of Environmental Sciences and Management, SPHERES Research Unit, University of Liège, 6700 Arlon, Belgium;
| | - Fouad Mokrini
- Biotechnology Unit, Regional Center of Agricultural Research, INRA–Morocco, Rabat 10080, Morocco;
| | - Ikram Legrifi
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP 578, Meknes 50001, Morocco;
| | - Salah-Eddine Laasli
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| | - Hamid Mazouz
- Laboratory of Plant Biotechnology and Molecular Biology, Faculty of Sciences, Moulay Ismail University, BP 11201, Zitoune, Meknes 50000, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole National of Agriculture Meknes, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (I.D.); (O.A.); (R.E.); (I.L.); (S.-E.L.)
| |
Collapse
|
26
|
Fu Y, Liu X, Su Z, Wang P, Guo Q, Ma P. Arabinose Plays an Important Role in Regulating the Growth and Sporulation of Bacillus subtilis NCD-2. Int J Mol Sci 2023; 24:17472. [PMID: 38139303 PMCID: PMC10744016 DOI: 10.3390/ijms242417472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
A microbial fungicide developed from Bacillus subtilis NCD-2 has been registered for suppressing verticillium wilt in crops in China. Spores are the main ingredient of this fungicide and play a crucial role in suppressing plant disease. Therefore, increasing the number of spores of strain NCD-2 during fermentation is important for reducing the cost of the fungicide. In this study, five kinds of carbon sources were found to promote the metabolism of strain NCD-2 revealed via Biolog Phenotype MicroArray (PM) technology. L-arabinose showed the strongest ability to promote the growth and sporulation of strain NCD-2. L-arabinose increased the bacterial concentration and the sporulation efficiency of strain NCD-2 by 2.04 times and 1.99 times compared with D-glucose, respectively. Moreover, L-arabinose significantly decreased the autolysis of strain NCD-2. Genes associated with arabinose metabolism, sporulation, spore resistance to heat, and spore coat formation were significantly up-regulated, and genes associated with sporulation-delaying protein were significantly down-regulated under L-arabinose treatment. The deletion of msmX, which is involved in arabinose transport in the Bacillus genus, decreased growth and sporulation by 53.71% and 86.46% compared with wild-type strain NCD-2, respectively. Complementing the mutant strain by importing an intact msmX gene restored the strain's growth and sporulation.
Collapse
Affiliation(s)
- Yifan Fu
- College of Plant Protection, Agricultural University of Hebei, Baoding 071000, China;
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Xiaomeng Liu
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Zhenhe Su
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Peipei Wang
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Qinggang Guo
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| | - Ping Ma
- Key Laboratory of IPM on Crops in Northern Region of North China, Integrated Pest Management Innovation Centre of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China; (X.L.); (Z.S.); (P.W.)
| |
Collapse
|
27
|
Shin JH, Lee HK, Lee SC, Han YK. Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp. THE PLANT PATHOLOGY JOURNAL 2023; 39:600-613. [PMID: 38081320 PMCID: PMC10721391 DOI: 10.5423/ppj.oa.08.2023.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.
Collapse
Affiliation(s)
- Jong-Hwan Shin
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ha-Kyoung Lee
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seong-Chan Lee
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| | - You-Kyoung Han
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
28
|
Xu X, Nielsen LJD, Song L, Maróti G, Strube ML, Kovács ÁT. Enhanced specificity of Bacillus metataxonomics using a tuf-targeted amplicon sequencing approach. ISME COMMUNICATIONS 2023; 3:126. [PMID: 38012258 PMCID: PMC10682494 DOI: 10.1038/s43705-023-00330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Bacillus species are ubiquitous in nature and have tremendous application potential in agriculture, medicine, and industry. However, the individual species of this genus vary widely in both ecological niches and functional phenotypes, which, hence, requires accurate classification of these bacteria when selecting them for specific purposes. Although analysis of the 16S rRNA gene has been widely used to disseminate the taxonomy of most bacterial species, this gene fails proper classification of Bacillus species. To circumvent this restriction, we designed novel primers and optimized them to allow exact species resolution of Bacillus species in both synthetic and natural communities using high-throughput amplicon sequencing. The primers designed for the tuf gene were not only specific for the Bacillus genus but also sufficiently discriminated species both in silico and in vitro in a mixture of 11 distinct Bacillus species. Investigating the primers using a natural soil sample, 13 dominant species were detected including Bacillus badius, Bacillus velezensis, and Bacillus mycoides as primary members, neither of which could be distinguished with 16S rRNA sequencing. In conclusion, a set of high-throughput primers were developed which allows unprecedented species-level identification of Bacillus species and aids the description of the ecological distribution of Bacilli in various natural environment.
Collapse
Affiliation(s)
- Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Lasse Johan Dyrbye Nielsen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Lijie Song
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
- BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
- Institute of Biology Leiden, Leiden University, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
29
|
Biermann R, Beutel S. Endospore production of Bacillus spp. for industrial use. Eng Life Sci 2023; 23:e2300013. [PMID: 37970521 PMCID: PMC10630785 DOI: 10.1002/elsc.202300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
The increased occurrence of antibiotic resistance and the harmful use of pesticides are a major problem of modern times. A ban on the use of antibiotics as growth promoters in animal breeding has put a focus on the probiotics market. Probiotic food supplements are versatile and show promising results in animal and human nutrition. Chemical pesticides can be substituted by biopesticides, which are very effective against various pests in plants due to increased research. What these fields have in common is the use of spore-forming bacteria. The endospore-forming Bacillus spp. belonging to this group offer an effective solution to the aforementioned problems. Therefore, the biotechnological production of sufficient qualities of such endospores has become an innovative and financially viable field of research. In this review, the production of different Bacillus spp. endospores will be reviewed. For this purpose, the media compositions, cultivation conditions and bioprocess optimization methods of the last 20 years are presented and reflected.
Collapse
Affiliation(s)
- Riekje Biermann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sascha Beutel
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| |
Collapse
|
30
|
Lozano-Andrade CN, Nogueira CG, Henriksen NNSE, Wibowo M, Jarmusch SA, Kovács ÁT. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. ISME COMMUNICATIONS 2023; 3:110. [PMID: 37838789 PMCID: PMC10576751 DOI: 10.1038/s43705-023-00318-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Bacterial secondary metabolites are structurally diverse molecules that drive microbial interaction by altering growth, cell differentiation, and signaling. Bacillus subtilis, a Gram-positive soil-dwelling bacterium, produces a wealth of secondary metabolites, among them, lipopeptides have been vastly studied by their antimicrobial, antitumor, and surfactant activities. However, the natural functions of secondary metabolites in the lifestyles of the producing organism remain less explored under natural conditions, i.e. in soil. Here, we describe a hydrogel-based transparent soil system to investigate B. subtilis chemical ecology under controllable soil-like conditions. The transparent soil matrix allows the growth of B. subtilis and other isolates gnotobiotically and under nutrient-controlled conditions. Additionally, we show that transparent soil allows the detection of lipopeptides production and dynamics by HPLC-MS, and MALDI-MS imaging, along with fluorescence imaging of 3-dimensional bacterial assemblages. We anticipate that this affordable and highly controllable system will promote bacterial chemical ecology research and help to elucidate microbial interactions driven by secondary metabolites.
Collapse
Affiliation(s)
| | - Carla G Nogueira
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Mario Wibowo
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Scott A Jarmusch
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Ákos T Kovács
- DTU Bioengineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
- Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
31
|
Yaraguppi DA, Bagewadi ZK, Patil NR, Mantri N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023; 13:1515. [PMID: 37892197 PMCID: PMC10604914 DOI: 10.3390/biom13101515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review examines iturin, a cyclic lipopeptide originating from Bacillus subtilis and related bacteria. These compounds are structurally diverse and possess potent inhibitory effects against plant disease-causing bacteria and fungi. Notably, Iturin A exhibits strong antifungal properties and low toxicity, making it valuable for bio-pesticides and mycosis treatment. Emerging research reveals additional capabilities, including anticancer and hemolytic features. Iturin finds applications across industries. In food, iturin as a biosurfactant serves beyond surface tension reduction, enhancing emulsions and texture. Biosurfactants are significant in soil remediation, agriculture, wound healing, and sustainability. They also show promise in Microbial Enhanced Oil Recovery (MEOR) in the petroleum industry. The pharmaceutical and cosmetic industries recognize iturin's diverse properties, such as antibacterial, antifungal, antiviral, anticancer, and anti-obesity effects. Cosmetic applications span emulsification, anti-wrinkle, and antibacterial use. Understanding iturin's structure, synthesis, and applications gains importance as biosurfactant and lipopeptide research advances. This review focuses on emphasizing iturin's structural characteristics, production methods, biological effects, and applications across industries. It probes iturin's antibacterial, antifungal potential, antiviral efficacy, and cancer treatment capabilities. It explores diverse applications in food, petroleum, pharmaceuticals, and cosmetics, considering recent developments, challenges, and prospects.
Collapse
Affiliation(s)
- Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi 580031, Karnataka, India;
| | - Ninganagouda R. Patil
- Department of Physics, B. V Bhoomaraddi College of Engineering and Technology, Hubballi 580031, Karnataka, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
32
|
Gu M, Fu J, Yan H, Yue X, Zhao S, Zhang Q, Li P. Approach for quick exploration of highly effective broad-spectrum biocontrol strains based on PO8 protein inhibition. NPJ Sci Food 2023; 7:45. [PMID: 37658048 PMCID: PMC10474023 DOI: 10.1038/s41538-023-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/03/2023] [Indexed: 09/03/2023] Open
Abstract
Aflatoxin is a group of strongly toxic and carcinogenic mycotoxins produced by Aspergillus flavus and other Aspergillus species, which caused food contamination and food loss problems widely across the world especially in developing countries, thus threatening human health and sustainable development. So, it is important to develop new, green, and broad-spectrum biocontrol technology for the prevention of aflatoxin contamination sources. Previously, we found that the PO8 protein from aflatoxigenic A. flavus could be used as a biomarker to predict aflatoxin production in peanuts (so the PO8 is named as an early warning molecule), which infers that the PO8 is relative to aflatoxin production. Therefore, in the study, based on inhibiting the PO8, a new and quick strategy for screening aflatoxin biocontrol strains for developing control agents was presented. With the PO8 inhibition method, four biocontrol strains (2 strains were isolated from peanut kernels with sterilized surface and another 2 strains from peanut rhizosphere soil) were selected and combined to increase prevention wide-spectrum. As a result, the combination showed over 90% inhibition to all tested aflatoxigenic A. flavus isolated from three different peanut production areas (north, middle, and south areas of China), and better than any single strain. The field experiments located in five provinces of China showed that the practice prevention effects (inhibition of aflatoxigenic fungi on the surface of the peanuts) were from 50% to over 80%. The results indicated that the strategy of inhibiting the early warning molecule PO8 can be used to develop aflatoxin control agents well.
Collapse
Affiliation(s)
- Mei Gu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430061, China
| | - Jiayun Fu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430061, China
| | - Honglin Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430061, China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430061, China
- Hubei Hongshan Laboratory, Wuhan, 430061, China
| | - Shancang Zhao
- Institute of Quality Standards and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430061, China.
- Hubei Hongshan Laboratory, Wuhan, 430061, China.
- Institute of Food Safety, Hubei University, Wuhan, 430061, China.
- Ministry of Agriculture and Rural Affairs and Key Laboratory of Detection for Mycotoxins, Wuhan, 430061, China.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, 430061, China.
- Hubei Hongshan Laboratory, Wuhan, 430061, China.
- Ministry of Agriculture and Rural Affairs and Key Laboratory of Detection for Mycotoxins, Wuhan, 430061, China.
- Xianghu Laboratory, Hangzhou, 311231, P. R. China.
| |
Collapse
|
33
|
Song L, Ping X, Mao Z, Zhao J, Yang Y, Li Y, Xie B, Ling J. Variation and stability of rhizosphere bacterial communities of Cucumis crops in association with root-knot nematodes infestation. FRONTIERS IN PLANT SCIENCE 2023; 14:1163271. [PMID: 37324672 PMCID: PMC10266268 DOI: 10.3389/fpls.2023.1163271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Introduction Root-knot nematodes (RKN) disease is a devastating disease in Cucumis crops production. Existing studies have shown that resistant and susceptible crops are enriched with different rhizosphere microorganisms, and microorganisms enriched in resistant crops can antagonize pathogenic bacteria. However, the characteristics of rhizosphere microbial communities of Cucumis crops after RKN infestation remain largely unknown. Methods In this study, we compared the changes in rhizosphere bacterial communities between highly RKN-resistant Cucumis metuliferus (cm3) and highly RKN-susceptible Cucumis sativus (cuc) after RKN infection through a pot experiment. Results The results showed that the strongest response of rhizosphere bacterial communities of Cucumis crops to RKN infestation occurred during early growth, as evidenced by changes in species diversity and community composition. However, the more stable structure of the rhizosphere bacterial community in cm3 was reflected in less changes in species diversity and community composition after RKN infestation, forming a more complex and positively co-occurrence network than cuc. Moreover, we observed that both cm3 and cuc recruited bacteria after RKN infestation, but the bacteria enriched in cm3 were more abundant including beneficial bacteria Acidobacteria, Nocardioidaceae and Sphingomonadales. In addition, the cuc was enriched with beneficial bacteria Actinobacteria, Bacilli and Cyanobacteria. We also found that more antagonistic bacteria than cuc were screened in cm3 after RKN infestation and most of them were Pseudomonas (Proteobacteria, Pseudomonadaceae), and Proteobacteria were also enriched in cm3 after RKN infestation. We hypothesized that the cooperation between Pseudomonas and the beneficial bacteria in cm3 could inhibit the infestation of RKN. Discussion Thus, our results provide valuable insights into the role of rhizosphere bacterial communities on RKN diseases of Cucumis crops, and further studies are needed to clarify the bacterial communities that suppress RKN in Cucumis crops rhizosphere.
Collapse
Affiliation(s)
- Liqun Song
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Microbial Research Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, Chaoyang, China
| | - Xingxing Ping
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- Insititute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Rocha GT, Queiroz PRM, Grynberg P, Togawa RC, de Lima Ferreira ADC, do Nascimento IN, Gomes ACMM, Monnerat R. Biocontrol potential of bacteria belonging to the Bacillus subtilis group against pests and diseases of agricultural interest through genome exploration. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01822-3. [PMID: 37178245 DOI: 10.1007/s10482-023-01822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
The usage of microorganisms as biocontrol agents and biofertilizers has been recommended and recognized as an ecologically correct alternative to maintaining the productivity and safety of crops. Thus, the objectives of this work were to characterize twelve strains belonging to Invertebrate Bacteria Collection of Embrapa Genetic Resources and Biotechnology by molecular, morphological, and biochemical methods and to evaluate the pathogenicity of these strains against pests and diseases of agricultural interest. The morphological characteristic of the strains was performed according to the principles of Bergy's Manual of Systematic Bacteriology. The genomes of the 12 strains were sequenced in Macrogen, Inc. (Seoul, Korea) using the HiSeq2000 and GS-FLX Plus high-performance platforms. In the determination of antibiotic sensibility profiles, disc-diffusion methods (Cefar Diagnótica Ltda) were adopted©. Selective bioassays were carried out with insects of the Lepidoptera (Spodoptera frugiperda, Helicoverpa armigera, and Chrysodeixis includens), Coleoptera (Anthonomus grandis), Diptera (Aedes aegypti) and Hemiptera (Euschistus heros) orders, and with the nematode Caenorhabditis elegans. In addition, the antagonistic action of the phytopathogens Fusarium oxysporum f. sp. vasinfectum and Sclerotinia sclerotiorum against the strains under study, and in vitro assays of phosphate solubilization were also performed. Sequencing of the complete genome of the 12 strains determined that all of them belonged to the Bacillus subtilis sensu lato group. In the strains genome were detected genic clusters responsible for encoding secondary metabolites such as surfactin, iturin, fengycins/plipastatin, bacillomycin, bacillisin, and siderophores. Due to the production of these compounds, there was a survival reduction of the Lepidoptera order insects and a reduction in the phytopathogens mycelial growth. These results show that the species of group B. subtilis s.l. can become promising microbiological alternatives to pest and disease control.
Collapse
Affiliation(s)
- Gabriela Teodoro Rocha
- Faculdade de Agronomia e Medicina Veterinária., Universidade de Brasília - Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
| | - Paulo Roberto Martins Queiroz
- Centro Universitário de Brasília - CEUB 707/907 - Campus Universitário, SEPN - Asa Norte, Brasília, DF, 70790-075, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | | | - Izabela Nunes do Nascimento
- Universidade Federal da Paraíba - Centro de Ciências Agrárias, Campus II, Rodovia PB 079 - Km 12, Areia, PB, 58397-000, Brazil
| | - Ana Cristina Meneses Mendes Gomes
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Rose Monnerat
- Embrapa Recursos Genéticos e Biotecnologia, CENARGEN, Parque Estação Biológica, PqEB, Av. W5 Norte (final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
35
|
Zhang Y, Cheng Z, Li Q, Dai Q, Hu J. Responses of rhizosphere bacterial communities in newly reclaimed mudflat paddies to rice genotype and nitrogen fertilizer rate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38761-38774. [PMID: 36586025 DOI: 10.1007/s11356-022-25020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The rhizosphere microbiome plays a vital role in crop growth and adaptation. However, the effects of rice genotype, nitrogen (N) fertilization, and their interactions on the rhizosphere bacterial communities in low fertility soil remain poorly understood. In this study, a two-factor field experiment was performed in newly reclaimed mudflat paddies characterized by poor fertility to analyze bacterial communities in the rhizosphere of Yongyou 2640 (japonica/indica hybrid rice, JIH) and Huaidao No.5 (japonica conventional rice, JC) under different N fertilizer rates. Results showed that genotype, followed by N fertilizer rate, was the primary factor affecting rhizobacteria diversity. Rhizobacteria diversity was higher in JIH than in JC and that of JIH and JC did not significantly change overall as N fertilizer rates but increased and decreased at N fertilizer rates of over 300 kg N ha-1, respectively. The inconsistent response was probably attributed to the difference in the increase of ammonium and/or nitrate in the rhizosphere of JIH and JC. Genotype explained approximately 26% of the variation in rhizosphere bacterial communities. Rhizosphere bacterial communities with N fertilizer rates of over 300 kg N ha-1 were more dissimilar to those without N fertilization relative to those with N fertilizer rates of below 300 kg N ha-1, which was mainly attributed to changes in the concentration of ammonium and/or nitrate. The relative abundances of some potential beneficial genera such as Salinimicrobium, Salegentibacter, Gillisia, and Anaerolinea in the rhizosphere of JC and Salegentibacter, Lysobacter, Nocardioides, and Pontibacter in the rhizosphere of JIH were increased under N fertilizer rates of less than 300 kg N ha-1 and positively correlated with rice yields, which indicate that changes in bacterial communities caused by N fertilization might be strongly associated with the improvement of rice yield. Overall, rhizosphere bacterial communities were more sensitive to genotype in newly reclaimed mudflat paddies and showed a consistent response to N fertilizer rates.
Collapse
Affiliation(s)
- Yang Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China
| | - Zhandou Cheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qing Li
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetic and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Hu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
36
|
Rosier A, Pomerleau M, Beauregard PB, Samac DA, Bais HP. Surfactin and Spo0A-Dependent Antagonism by Bacillus subtilis Strain UD1022 against Medicago sativa Phytopathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1007. [PMID: 36903868 PMCID: PMC10005099 DOI: 10.3390/plants12051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this study indicate that the PGPR UD1022 would be a good candidate for further investigations into its antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE 19713, USA
| | - Maude Pomerleau
- Département de Biologie, Bureau D8-1014, Université de Sherbrooke, 2500 boul. Université Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Pascale B. Beauregard
- Département de Biologie, Bureau D8-1014, Université de Sherbrooke, 2500 boul. Université Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Deborah A. Samac
- USDA-ARS Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Harsh P. Bais
- Department of Plant and Soil Sciences, University of Delaware, 311 AP Biopharma, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
37
|
A bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis 2023. [DOI: 10.1007/s13199-023-00904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
38
|
Ni H, Wu Y, Zong R, Ren S, Pan D, Yu L, Li J, Qu Z, Wang Q, Zhao G, Zhao J, Liu L, Li T, Zhang Y, Tu Q. Combination of Aspergillus niger MJ1 with Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0- nif improved crop quality, soil properties, and microbial communities in barrier soil. Front Microbiol 2023; 14:1064358. [PMID: 36819023 PMCID: PMC9932699 DOI: 10.3389/fmicb.2023.1064358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Soil salinization and acidification seriously damage soil health and restricts the sustainable development of planting. Excessive application of chemical fertilizer and other reasons will lead to soil acidification and salinization. This study focus on acid and salinized soil, investigated the effect of phosphate-solubilizing bacteria, Aspergillus niger MJ1 combined with nitrogen-fixing bacteria Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0-nif on crop quality, soil physicochemical properties, and microbial communities. A total of 5 treatments were set: regular fertilization (T1), regular fertilization with MJ1 and DSM4166 (T2), regular fertilization with MJ1 and CHA0-nif (T3), 30%-reducing fertilization with MJ1 and DSM4166 (T4), and 30%-reducing fertilization with MJ1 and CHA0-nif (T5). It was found that the soil properties (OM, HN, TN, AP, AK, and SS) and crop quality of cucumber (yield production, protein, and vitamin C) and lettuce (yield production, vitamin C, nitrate, soluble protein, and crude fiber) showed a significant response to the inoculated strains. The combination of MJ1 with DSM4166 or CHA0-nif influenced the diversity and richness of bacterial community in the lettuce-grown soil. The organismal system-, cellular process-, and metabolism-correlated bacteria and saprophytic fungi were enriched, which were speculated to mediate the response to inoculated strains. pH, OM, HN, and TN were identified to be the major factors correlated with the soil microbial community. The inoculation of MJ1 with DSM4166 and CHA0-nif could meet the requirement of lettuce and cucumber growth after reducing fertilization in acid and salinized soil, which provides a novel candidate for the eco-friendly technique to meet the carbon-neutral topic.
Collapse
Affiliation(s)
- Haiping Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Zong
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Shiai Ren
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Deng Pan
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Jianwei Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Zhuling Qu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Qiyao Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Gengxing Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, College of Resources and Environment, Shandong Agricultural University, Tai’an, China
| | - Jianzhong Zhao
- Shandong Rural Economic Management and Service Center, Jinan, China
| | - Lumin Liu
- Qingdao Hexie Biotechnology Co., Ltd., Qingdao, China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Youming Zhang, ✉
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Qiang Tu, ✉
| |
Collapse
|
39
|
Platel R, Lucau-Danila A, Baltenweck R, Maia-Grondard A, Trapet P, Magnin-Robert M, Randoux B, Duret M, Halama P, Hilbert JL, Coutte F, Jacques P, Hugueney P, Reignault P, Siah A. Deciphering immune responses primed by a bacterial lipopeptide in wheat towards Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2023; 13:1074447. [PMID: 36777540 PMCID: PMC9909289 DOI: 10.3389/fpls.2022.1074447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Plant immunity induction with natural biocontrol compounds is a valuable and promising ecofriendly tool that fits with sustainable agriculture and healthy food. Despite the agroeconomic significance of wheat, the mechanisms underlying its induced defense responses remain obscure. We reveal here, using combined transcriptomic, metabolomic and cytologic approach, that the lipopeptide mycosubtilin from the beneficial bacterium Bacillus subtilis, protects wheat against Zymoseptoria tritici through a dual mode of action (direct and indirect) and that the indirect one relies mainly on the priming rather than on the elicitation of plant defense-related mechanisms. Indeed, the molecule primes the expression of 80 genes associated with sixteen functional groups during the early stages of infection, as well as the accumulation of several flavonoids during the period preceding the fungal switch to the necrotrophic phase. Moreover, genes involved in abscisic acid (ABA) biosynthesis and ABA-associated signaling pathways are regulated, suggesting a role of this phytohormone in the indirect activity of mycosubtilin. The priming-based bioactivity of mycosubtilin against a biotic stress could result from an interaction of the molecule with leaf cell plasma membranes that may mimic an abiotic stress stimulus in wheat leaves. This study provides new insights into induced immunity in wheat and opens new perspectives for the use of mycosubtilin as a biocontrol compound against Z. tritici.
Collapse
Affiliation(s)
- Rémi Platel
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Anca Lucau-Danila
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | | | | | - Pauline Trapet
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Maryline Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Béatrice Randoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Morgane Duret
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Patrice Halama
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Jean-Louis Hilbert
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - François Coutte
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| | - Philippe Jacques
- Joint Research Unit 1158 BioEcoAgro, TERRA Teaching and Research Centre, MiPI, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | | | - Philippe Reignault
- Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d’Opale, Calais Cedex, France
| | - Ali Siah
- Joint Research Unit 1158 BioEcoAgro, Junia, Université de Lille, Université de Liège, UPJV, Université d’Artois, ULCO, INRAE, Lille, France
| |
Collapse
|
40
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
41
|
Gong H, Jiang W, Yang Y, Zhang Y, Chen X, Li W, Yang P, Wang Z, Wang Q, Li Y. Cyclic di-GMP regulates bacterial colonization and further biocontrol efficacy of Bacillus velezensis against apple ring rot disease via its potential receptor YdaK. Front Microbiol 2022; 13:1034168. [PMID: 36590391 PMCID: PMC9800504 DOI: 10.3389/fmicb.2022.1034168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Bacillus species are among the most investigated beneficial bacteria and widely used in agricultural systems as biological control agents. Its biocontrol efficacy is controlled by diverse regulators. Cyclic diguanylate (c-di-GMP) is a nearly universal second messenger in bacteria and modulates various important physiological processes, including motility, biofilm formation, antifungal antibiotic production and host colonization. However, the impact of c-di-GMP on biocontrol efficacy of beneficial bacteria is unknown. Bacillus velezensis PG12 is an effective biocontrol strain against apple ring rot disease caused by Botryosphaeria dothidea. In this study, the contribution of c-di-GMP to biocontrol efficacy of B. velezensis PG12 was investigated. Deletion of single gene encoding diguanylate cyclase or phosphodiesterase did not affect its biocontrol efficacy against apple ring rot. However, artificial modulation of c-di-GMP level in the cells leads to a significant change of biocontrol efficacy, suggesting that c-di-GMP positively regulates biocontrol efficacy of B. velezensis PG12 against apple ring rot disease. More evidences indicate that c-di-GMP does not affect the antagonistic activity of B. velezensis PG12 against B. dothidea in vitro and in vivo, but positively regulates biofilm formation of B. velezensis PG12 and its colonization on apple fruits. Importantly, deletion of ydaK could rescue the inhibition of biofilm formation, bacterial colonization and biocontrol efficacy caused by low c-di-GMP level, indicating that YdaK is the potential c-di-GMP receptor to regulate biofilm formation, colonization and effective biological control. However, YdaK did not affect the antagonistic activity of B. velezensis PG12 against B. dothidea. Based on these findings, we propose that c-di-GMP regulates biofilm formation, subsequently the bacterial colonization on apple fruits and thus biocontrol efficacy of B. velezensis through its receptor YdaK. This is the first report showing that c-di-GMP plays a role in biocontrol efficacy of beneficial bacteria.
Collapse
Affiliation(s)
- Huiling Gong
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wenxiao Jiang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Yang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Yue Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xufei Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wei Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Panlei Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenshuo Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Yan Li,
| |
Collapse
|
42
|
Pazarlar S, Madriz-Ordeñana K, Thordal-Christensen H. Bacillus cereus EC9 protects tomato against Fusarium wilt through JA/ET-activated immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1090947. [PMID: 36589090 PMCID: PMC9798288 DOI: 10.3389/fpls.2022.1090947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The mechanisms of action and the limitations of effectiveness of natural biocontrol agents should be determined in order to convert them into end products that can be used in practice. Rhizosphere Bacillus spp. protect plants from various pathogens by displaying several modes of action. However, the ability of Bacillus spp. to control plant diseases depends on the interaction between the bacteria, host, and pathogen, and the environmental conditions. We found that soil drenching of tomato plants with the non-antifungal Bacillus cereus strain EC9 (EC9) enhances plant defense against Fusarium oxysporum f. sp. lycopersici (Fol). To study the involvement of plant defense-related phytohormones in the regulation of EC9-activated protection against Fol, we conducted plant bioassays in tomato genotypes impaired in salicylic acid (SA) accumulation, jasmonic acid (JA) biosynthesis, and ethylene (ET) production, and analyzed the transcript levels of pathways-related marker genes. Our results indicate that JA/ET-dependent signaling is required for EC9-mediated protection against Fol in tomato. We provide evidence that EC9 primes tomato plants for enhanced expression of proteinase inhibitor I (PI-I) and ethylene receptor4 (ETR4). Moreover, we demonstrated that EC9 induces callose deposition in tomato roots. Understanding the involvement of defense-related phytohormones in EC9-mediated defense against Fusarium wilt has increased our knowledge of interactions between non-antifungal plant defense-inducing rhizobacteria and plants.
Collapse
Affiliation(s)
- Sercan Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
- Department of Plant and Environmental Sciences, Section for Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Madriz-Ordeñana
- Department of Plant and Environmental Sciences, Section for Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Section for Plant and Soil Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Response of root endosphere bacterial communities of typical rice cultivars to nitrogen fertilizer reduction at the jointing stage. Arch Microbiol 2022; 204:722. [DOI: 10.1007/s00203-022-03334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
|
44
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
45
|
Kang BR, Park JS, Ryu GR, Jung WJ, Choi JS, Shin HM. Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4189. [PMID: 36500812 PMCID: PMC9737214 DOI: 10.3390/nano12234189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study aims to evaluate the effect of chitosan coating on the formation and properties of Bacillus cyclic lipopeptide (CLP)-loaded liposomes. A nanoencapsulation strategy for a chitosan-coated liposomal system using lecithin phospholipids for the entrapment of antibiotic CLP prepared from Bacillus subtilis KB21 was developed. The produced chitosan-coated CLP liposome had mean size in the range of 118.47-121.67 nm. Transmission electron microscopy showed the spherical-shaped vesicles. Fourier transform infrared spectroscopy findings indicated the successful coating of the produced CLP-loaded liposomes by the used chitosan. Liposomes coated with 0.2% and 0.5% chitosan concentration decreased the surface tension by 7.3-12.1%, respectively, and increased the CLP content by 15.1-27.0%, respectively, compared to the uncoating liposomes. The coated concentration of chitosan influenced their CLP loading encapsulation efficiency and release kinetics. The physicochemical results of the dynamic light scattering, CLP capture efficiency and long-term storage capacity of nanocapsules increased with chitosan coating concentration. Furthermore, the chitosan-coated liposomes exhibited a significant enhancement in the stability of CLP loading liposomes. These results may suggest the potential application of chitosan-coated liposomes as a carrier of antibiotics in the development of the functional platform.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Seong Park
- Gwangju Metropolitan City Agricultural Extension Center, Gwangju Metropolitan City 61945, Republic of Korea
| | - Gwang Rok Ryu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-Seok Choi
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye-Min Shin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
46
|
Added Value of Biophysics to Study Lipid-Driven Biological Processes: The Case of Surfactins, a Class of Natural Amphiphile Molecules. Int J Mol Sci 2022; 23:ijms232213831. [PMID: 36430318 PMCID: PMC9693386 DOI: 10.3390/ijms232213831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The role of membrane lipids is increasingly claimed to explain biological activities of natural amphiphile molecules. To decipher this role, biophysical studies with biomimetic membrane models are often helpful to obtain insights at the molecular and atomic levels. In this review, the added value of biophysics to study lipid-driven biological processes is illustrated using the case of surfactins, a class of natural lipopeptides produced by Bacillus sp. showing a broad range of biological activities. The mechanism of interaction of surfactins with biomimetic models showed to be dependent on the surfactins-to-lipid ratio with action as membrane disturber without membrane lysis at low and intermediate ratios and a membrane permeabilizing effect at higher ratios. These two mechanisms are relevant to explain surfactins' biological activities occurring without membrane lysis, such as their antiviral and plant immunity-eliciting activities, and the one involving cell lysis, such as their antibacterial and hemolytic activities. In both biological and biophysical studies, influence of surfactin structure and membrane lipids on the mechanisms was observed with a similar trend. Hence, biomimetic models represent interesting tools to elucidate the biological mechanisms targeting membrane lipids and can contribute to the development of new molecules for pharmaceutical or agronomic applications.
Collapse
|
47
|
Zhou X, Zhang X, Ma C, Wu F, Jin X, Dini-Andreote F, Wei Z. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. CHEMOSPHERE 2022; 307:136138. [PMID: 36002065 DOI: 10.1016/j.chemosphere.2022.136138] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Biochar amendment in the soil can exert a positive effect in reducing heavy metal toxicity in plants. However, it remains unclear the extent to which this effect is associated with the modulation of plant growth-promoting rhizobacteria (PGPR). Here, we initially conducted a pot experiment using tomato (Solanum lycopersicum L.) as a model plant grown in soil spiked with cadmium. First, we found biochar amendment to result in reduced cadmium uptake in tomato plants and trackable changes in the tomato rhizosphere microbiome. Then, a rhizosphere transplant experiment validated the importance of this microbiome modulation for cadmium-toxicity amelioration. Sequence-based analyses targeted the isolation of representative isolates of PGPR, including Bacillus and Flavisolibacter spp. that displayed in vitro cadmium tolerance and biosorption capabilities (in addition to abilities to solubilize phosphate and produce indole acetic acid). Last, we performed a soil inoculation experiment and confirmed the effectiveness of these isolates in reducing cadmium toxicity in tomato plants. Besides, we found the inoculation of these taxa as single inoculant and in combination to result in increased activities of specific antioxidant enzymes in tomato tissues. Taken together, this study revealed the ecological and physiological mechanisms by which biochar amendment indirectly alleviate cadmium toxicity in tomato plants, in this case, via the modulation and activity of specific PGPR populations. This study provides new insights into strategies able to promote beneficial PGPR in the rhizosphere with potential application to ameliorate heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Xingang Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xianhong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Changli Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Jin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Department of Horticulture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
48
|
Yang L, Yan C, Peng S, Chen L, Guo J, Lu Y, Li L, Ji Z. Broad-spectrum resistance mechanism of serine protease Sp1 in Bacillus licheniformis W10 via dual comparative transcriptome analysis. Front Microbiol 2022; 13:974473. [PMID: 36267189 PMCID: PMC9577198 DOI: 10.3389/fmicb.2022.974473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Antagonistic microorganisms are considered to be the most promising biological controls for plant disease. However, they are still not as popular as chemical pesticides due to complex environmental factors in the field. It is urgent to exploit their potential genetic characteristics and excellent properties to develop biopesticides with antimicrobial substances as the main components. Here, the serine protease Sp1 isolated from the Bacillus licheniformis W10 strain was confirmed to have a broad antifungal and antibacterial spectrum. Sp1 treatment significantly inhibited fungal vegetative growth and damaged the structure of hyphae, in accordance with that caused by W10 strain. Furthermore, Sp1 could activate the systemic resistance of peach twigs, fruits and tobacco. Dual comparative transcriptome analysis uncovered how Sp1 resisted the plant pathogenic fungus Phomopsis amygdali and the potential molecular resistance mechanisms of tobacco. In PSp1 vs. P. amygdali, RNA-seq identified 150 differentially expressed genes (DEGs) that were upregulated and 209 DEGs that were downregulated. Further analysis found that Sp1 might act on the energy supply and cell wall structure to inhibit the development of P. amygdali. In TSp1 vs. Xanthi tobacco, RNA-seq identified that 5937 DEGs were upregulated and 2929 DEGs were downregulated. DEGs were enriched in the metabolic biosynthesis pathways of secondary metabolites, plant hormone signal transduction, plant–pathogen interactions, and MAPK signaling pathway–plant and further found that the genes of salicylic acid (SA) and jasmonic acid (JA) signaling pathways were highly expressed and the contents of SA and JA increased significantly, suggesting that systemic resistance induced by Sp1 shares features of SAR and ISR. In addition, Sp1 might induce the plant defense responses of tobacco. This study provides insights into the broad-spectrum resistance molecular mechanism of Sp1, which could be used as a potential biocontrol product.
Collapse
Affiliation(s)
- Lina Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chun Yan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuai Peng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lili Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Junjie Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yihe Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaolin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaolin Ji,
| |
Collapse
|
49
|
Chen Y, Liang J, Zia A, Gao X, Wang Y, Zhang L, Xiang Q, Zhao K, Yu X, Chen Q, Penttinen P, Nyima T, Gu Y. Culture dependent and independent characterization of endophytic bacteria in the seeds of highland barley. Front Microbiol 2022; 13:981158. [PMID: 36246264 PMCID: PMC9555213 DOI: 10.3389/fmicb.2022.981158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Endophytes in the seeds of plants have shown plant growth promoting (PGP) properties. Highland barley is an economically important crop and a major part of the local diet in the Tibetan Plateau, China, with potential health benefits. We applied culture-dependent and culture-independent methods to study endophytic bacteria in the seeds of eight Highland barley varieties. Based on the seed properties, the variety Ali was clearly separated from the other varieties except the variety CM. Most of the 86 isolates were assigned into genus Bacillus. Approximately half of the isolates showed PGP properties in vitro. Compared to the not-inoculated plants, inoculation with the isolate Bacillus tequilensis LZ-9 resulted in greater length and number of roots, and in bigger aboveground and root weights. Based on the 16S rRNA gene sequencing, the seed microbiome was majorly affiliated with the phylum Proteobacteria and the family Enterobacteriaceae. Overall, the bacterial community compositions in the different varieties were different from each other, yet the between variety differences in community composition seemed relatively small. The differences in community compositions were associated with differences in the total and reducing sugar contents and viscosity of the seeds, thus possibly connected to differences in the osmotic pressure tolerance of the endophytes. The results suggested that the seed endophytes are likely to promote the growth of Highland barley since germination.
Collapse
Affiliation(s)
- Yulan Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Jinpeng Liang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Alina Zia
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xue Gao
- Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Yong Wang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Liangshan Tobacco Corporation of Sichuan Province, Xichang, China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Petri Penttinen,
| | - Tashi Nyima
- Institute of Agricultural Resources and Environmental Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet, China
- Tashi Nyima,
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Yunfu Gu,
| |
Collapse
|
50
|
Effects of Phenotypic Variation on Biological Properties of Endophytic Bacteria Bacillus mojavensis PS17. BIOLOGY 2022; 11:biology11091305. [PMID: 36138785 PMCID: PMC9495571 DOI: 10.3390/biology11091305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Microorganisms play an important role in agriculture by protecting and stimulating the growth of plants. The phenotypic activities of microbial biological agents (MBA) can change under different environmental conditions. However, to adapt to these harsh conditions, genetic mutations take place in bacteria that are seen phenotypically, which might not be beneficial or less beneficial to the plants. Some adaptative mechanisms used by microorganisms, especially bacteria, to face these environmental factors lead to the appearance of subpopulations with different morphotypes that may be more adapted to survive in stressful conditions. Moreover, in favorable conditions, these subpopulations may become dominant among the overall bacterial population. In this study, Bacillus mojavensis undergoes phase variation when grown in a minimal medium, in which two colonies, opaque (morphotype I) and translucent (morphotype II), were generated. The characteristics of the generated morphotypes were determined and compared with those of their original strain. Overall, the results obtained showed that the phenotypic characteristics of morphotype I statistically differed from morphotype II. This phenomenon may be one of the factors behind the dissimilarities in the results between the laboratory and field data on the application of MBA. Abstract The use of microorganism-based products in agricultural practices is gaining more interest as an alternative to chemical methods due to their non-toxic bactericidal and fungicidal properties. Various factors influence the efficacy of the microorganisms used as biological control agents in infield conditions as compared to laboratory conditions due to ecological and physiological aspects. Abiotic factors have been shown to trigger phase variations in bacterial microorganisms as a mechanism for adapting to hostile environments. In this study, we investigated the stability of the morphotype and the effects of phenotypic variation on the biological properties of Bacillus mojavensis strain PS17. B. mojavensis PS17 generated two variants (opaque and translucent) that were given the names morphotype I and II, respectively. The partial sequence of the 16S rRNA gene revealed that both morphotypes belonged to B. mojavensis. BOX and ERIC fingerprinting PCR also showed the same DNA profiles in both morphotypes. The characteristics of morphotype I did not differ from the original strain, while morphotype II showed a lower hydrolytic enzyme activity, phytohormone production, and antagonistic ability against phytopathogenic fungi. Both morphotypes demonstrated endophytic ability in tomato plants. A low growth rate of the strain PS17(II) in a minimal medium was observed in comparison to the PS17(I) strain. Furthermore, the capacity for biocontrol of B. mojavensis PS17(II) was not effective in the suppression of root rot disease in the tomato plants caused by Fusarium oxysporum f. sp. radices-lycopersici stain ZUM2407, compared to B. mojavensis PS17(I), whose inhibition was almost 47.9 ± 1.03% effective.
Collapse
|