1
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Wu N, Wang W, Zhu J. Progress on production of malic acid and succinic acid by industrially-important engineered microorganisms. J Biotechnol 2025; 400:8-19. [PMID: 39923900 DOI: 10.1016/j.jbiotec.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Organic acids are widely used as additives in the food, pharmaceutical, chemical, and plastic industries. Currently, the industrial production methods of organic acids mainly include plant extraction and chemical synthesis. The latter mainly uses petroleum-based compounds as raw materials to synthesize organic acids through a series of chemical reactions. All of these methods have problems such as environmental pollution, high cost, and unsustainability. By contrast, microbial fermentation can effectively utilize a variety of carbon sources. Due to its low production cost, environmental friendliness, and high product purity, microbial fermentation has received increasing attention in recent years. However, the low yield and long fermentation cycle of microbial fermentation limits its industrial application. With the development of genomics, transcriptomics, and other omics technologies, the metabolic pathways of various strains producing organic acids have gradually been elucidated. Based on this, new technologies such as synthetic biology and high-throughput screening have also been extensively studied. This review summarizes the latest research progress in improving organic acid biosynthesis through metabolic engineering, focusing on L-malic acid (L-MA) and succinic acid (SA). Finally, we also discuss the challenges and future prospects of this field. This review has important reference value in the fields of food, pharmaceuticals, and chemicals, providing a theoretical basis for the study of organic acid biosynthesis.
Collapse
Affiliation(s)
- Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Wenxin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jianguo Zhu
- Suzhou Wecare Probiotics (Suzhou) Co., Ltd., Suzhou, China.
| |
Collapse
|
3
|
Yook S, Alper HS. Recent advances in genetic engineering and chemical production in yeast species. FEMS Yeast Res 2025; 25:foaf009. [PMID: 40082732 PMCID: PMC11963765 DOI: 10.1093/femsyr/foaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Yeasts have emerged as well-suited microbial cell factory for the sustainable production of biofuels, organic acids, terpenoids, and specialty chemicals. This ability is bolstered by advances in genetic engineering tools, including CRISPR-Cas systems and modular cloning in both conventional (Saccharomyces cerevisiae) and non-conventional (Yarrowia lipolytica, Rhodotorula toruloides, Candida krusei) yeasts. Additionally, genome-scale metabolic models and machine learning approaches have accelerated efforts to create a broad range of compounds that help reduce dependency on fossil fuels, mitigate climate change, and offer sustainable alternatives to petrochemical-derived counterparts. In this review, we highlight the cutting-edge genetic tools driving yeast metabolic engineering and then explore the diverse applications of yeast-based platforms for producing value-added products. Collectively, this review underscores the pivotal role of yeast biotechnology in efforts to build a sustainable bioeconomy.
Collapse
Affiliation(s)
- Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
4
|
Yang P, Wang Q, Yang Y, Wen A, Zeng H, Liu N, Qin L. Effects of enhanced fermentation with high-yielding strains of Tetramethylpyrazine on flavor quality of Douchiba. Food Chem X 2025; 25:102037. [PMID: 39735683 PMCID: PMC11681824 DOI: 10.1016/j.fochx.2024.102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Douchiba (DCB) is a nutritious food rich in various functional components such as Tetramethylpyrazine (TTMP), and the strain fermentation is crucial for enhancing its quality. This work utilized Bacillus subtilis S2-2 and Hyphopichia burtonii S6-J1 with high TTMP production for fermentation of soybeans to optimize the pre-fermentation process and to evaluate the flavor quality of mature DCB. The concentration of TTMP in DCB fermented by mixed microbial (MG) was 2.95 times higher than that of of the control. Furthermore, the concentrations of taste substances, organic acids, free amino acids, and free fatty acids in MG were significantly increased. 87 flavor compounds were detected by gas chromatography-ion mobility spectrometry. The content of aldehydes, alcohols, esters, acids, and pyrazines flavor compounds was higher in MG, with esters and alcohols being notably higher than in other groups. Additionally, the highest comprehensive score of flavor quality was obtained in MG by principal component analysis.
Collapse
Affiliation(s)
- Panpan Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qin Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yurou Yang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Anyan Wen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Haiying Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Na Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, Guiyang 550025, China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guiyang 550025, China
| |
Collapse
|
5
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024; 12:11611-11635. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
6
|
Sobieraj K, Derkacz D, Krasowska A, Białowiec A. Isolation and identification of carbon monoxide producing microorganisms from compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:250-258. [PMID: 38677142 DOI: 10.1016/j.wasman.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Carbon monoxide (CO) formation has been observed during composting of various fractions of organic waste. It was reported that this production can be biotic, associated with the activity of microorganisms. However, there are no sources considering the microbial communities producing CO production in compost. This preliminary research aimed to isolate and identify microorganisms potentially responsible for the CO production in compost collected from two areas of the biowaste pile: with low (118 ppm) and high CO concentration (785 ppm). Study proved that all isolates were bacterial strains with the majority of rod-shaped Gram-positive bacteria. Both places can be inhabited by the same bacterial strains, e.g. Bacillus licheniformis and Paenibacillus lactis. The most common were Bacillus (B. licheniformis, B. haynesii, B. paralicheniformis, and B. thermolactis). After incubation of isolates in sealed bioreactors for 4 days, the highest CO levels in the headspace were recorded for B. paralicheniformis (>1000 ppm), B. licheniformis (>800 ppm), and G. thermodenitrificans (∼600 ppm). High CO concentrations were accompanied by low O2 (<6%) and high CO2 levels (>8%). It is recommended to analyze the expression of the gene encoding CODH to confirm or exclude the ability of the identified strains to convert CO2 to CO.
Collapse
Affiliation(s)
- Karolina Sobieraj
- Wrocław University of Environmental and Life Sciences, Department of Applied Bioeconomy, 37a Chełmońskiego Str., 51-630 Wrocław, Poland.
| | - Daria Derkacz
- University of Wrocław, Faculty of Biotechnology, Department of Biotransformation, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland.
| | - Anna Krasowska
- University of Wrocław, Faculty of Biotechnology, Department of Biotransformation, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland.
| | - Andrzej Białowiec
- Wrocław University of Environmental and Life Sciences, Department of Applied Bioeconomy, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; Iowa State University, Department of Agricultural and Biosystems Engineering, 605 Bissell Road, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Gao B, Liu X, Wu Y, Cheng H, Zhou H, Wang Y, Chen Z. Integration of lactic acid biorefinery with treatment of red mud from alumina refinery: win-win paradigm for waste valorization. BIORESOURCE TECHNOLOGY 2024; 401:130743. [PMID: 38677388 DOI: 10.1016/j.biortech.2024.130743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The cost of detoxification and neutralization poses certain challenges to the development of an economically viable lactic acid biorefinery with lignocellulosic biomass as feedstock. Herein, red mud, an alkaline waste, was explored as both a detoxifying agent and a neutralizer. Red mud treatment of lignocellulosic hydrolysate effectively removed the inhibitors generated in dilute acid pretreatment, improving the lactic acid productivity from 1.0 g/L·h-1 to 1.9 g/L·h-1 in later fermentation. In addition, red mud could replace CaCO3 as a neutralizer in lactic acid fermentation, which in turn enabled simultaneous bioleaching of valuable metals (Sc, Y, Nd, and Al) from red mud. The neutralization of alkali in red mud by acids retained in lignocellulosic hydrolysate and lactic acid produced from fermentation led to effective dealkalization, rendering a maximum alkali removal efficiency of 92.2 %. Overall, this study offered a win-win strategy for the valorization of both lignocellulosic biomass and red mud.
Collapse
Affiliation(s)
- Binyuan Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China
| | - Xi Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China
| | - Yudie Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China
| | - Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha Hunan, PR China.
| |
Collapse
|
8
|
Pairazamán OD, Woiciechowski AL, Zevallos LA, Tanobe VOA, Zandona A, Soccol CR. Fumaric acid production by Rhizopus species from acid hydrolysate of oil palm empty fruit bunches. Braz J Microbiol 2024; 55:1179-1187. [PMID: 38671219 PMCID: PMC11153437 DOI: 10.1007/s42770-024-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 04/28/2024] Open
Abstract
The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.
Collapse
Affiliation(s)
- Omar D Pairazamán
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
- Biological Science Department, National University of Cajamarca, Cajamarca, Peru
- Bacteriology Laboratory, Regional Public Health Laboratory, Cajamarca, Peru
| | - Adenise L Woiciechowski
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil.
- Chemical Engineering Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil.
| | - Luis A Zevallos
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
| | | | - Arion Zandona
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
- Chemical Engineering Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
- Chemical Engineering Department, Federal University of Paraná, Brazil, Polytechnic Center, CP 19011, Curitiba, 81531-908, Brazil
| |
Collapse
|
9
|
Lee YG, Kang NK, Kim C, Tran VG, Cao M, Yoshikuni Y, Zhao H, Jin YS. Self-Buffering system for Cost-Effective production of lactic acid from glucose and xylose using Acid-Tolerant Issatchenkia orientalis. BIORESOURCE TECHNOLOGY 2024; 399:130641. [PMID: 38552861 DOI: 10.1016/j.biortech.2024.130641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
This study presents a cost-effective strategy for producing organic acids from glucose and xylose using the acid-tolerant yeast, Issatchenkia orientalis. I. orientalis was engineered to produce lactic acid from xylose, and the resulting strain, SD108XL, successfully converted sorghum hydrolysates into lactic acid. In order to enable low-pH fermentation, a self-buffering strategy, where the lactic acid generated by the SD108XL strain during fermentation served as a buffer, was developed. As a result, the SD108 strain produced 67 g/L of lactic acid from 73 g/L of glucose and 40 g/L of xylose, simulating a sugar composition of sorghum biomass hydrolysates. Moreover, techno-economic analysis underscored the efficiency of the self-buffering strategy in streamlining the downstream process, thereby reducing production costs. These results demonstrate the potential of I. orientalis as a platform strain for the cost-effective production of organic acids from cellulosic hydrolysates.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Department of Bio and Fermentation Convergence Technology and Center for Bioconvergence, Kookmin University, Seoul 02707, Korea; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nam Kyu Kang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chanwoo Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vinh G Tran
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mingfeng Cao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
11
|
Ernst P, Wirtz A, Wynands B, Wierckx N. Establishing an itaconic acid production process with Ustilago species on the low-cost substrate starch. FEMS Yeast Res 2024; 24:foae023. [PMID: 39038994 PMCID: PMC11312366 DOI: 10.1093/femsyr/foae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ustilago maydis and Ustilago cynodontis are natural producers of a broad range of valuable molecules including itaconate, malate, glycolipids, and triacylglycerols. Both Ustilago species are insensitive toward medium impurities, and have previously been engineered for efficient itaconate production and stabilized yeast-like growth. Due to these features, these strains were already successfully used for the production of itaconate from different alternative feedstocks such as molasses, thick juice, and crude glycerol. Here, we analyzed the amylolytic capabilities of Ustilago species for metabolization of starch, a highly abundant and low-cost polymeric carbohydrate widely utilized as a substrate in several biotechnological processes. Ustilago cynodontis was found to utilize gelatinized potato starch for both growth and itaconate production, confirming the presence of extracellular amylolytic enzymes in Ustilago species. Starch was rapidly degraded by U. cynodontis, even though no α-amylase was detected. Further experiments indicate that starch hydrolysis is caused by the synergistic action of glucoamylase and α-glucosidase enzymes. The enzymes showed a maximum activity of around 0.5 U ml-1 at the fifth day after inoculation, and also released glucose from additional substrates, highlighting potential broader applications. In contrast to U. cynodontis, U. maydis showed no growth on starch accompanied with no detectable amylolytic activity.
Collapse
Affiliation(s)
- Philipp Ernst
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
12
|
Akiyama M, Osanai T. Regulation of organic acid and hydrogen production by NADH/NAD + ratio in Synechocystis sp. PCC 6803. Front Microbiol 2024; 14:1332449. [PMID: 38249449 PMCID: PMC10797119 DOI: 10.3389/fmicb.2023.1332449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Cyanobacteria serve as useful hosts in the production of substances to support a low-carbon society. Specifically, the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) can produce organic acids, such as acetate, lactate, and succinate, as well as hydrogen, under dark, anaerobic conditions. The efficient production of these compounds appears to be closely linked to the regulation of intracellular redox balance. Notably, alterations in intracellular redox balance have been believed to influence the production of organic acids and hydrogen. To achieve these alterations, genetic manipulations involved overexpressing malate dehydrogenase (MDH), knocking out d-lactate dehydrogenase (DDH), or knocking out acetate kinase (AK), which subsequently modified the quantities and ratios of organic acids and hydrogen under dark, anaerobic conditions. Furthermore, the mutants generated displayed changes in the oxidation of reducing powers and the nicotinamide adenine dinucleotide hydrogen (NADH)/NAD+ ratio when compared to the parental wild-type strain. These findings strongly suggest that intracellular redox balance, especially the NADH/NAD+ ratio, plays a pivotal role in the production of organic acids and hydrogen in Synechocystis 6803.
Collapse
Affiliation(s)
| | - Takashi Osanai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
13
|
Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2023; 29:22. [PMID: 38202605 PMCID: PMC10779990 DOI: 10.3390/molecules29010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Citric acid finds broad applications in various industrial sectors, such as the pharmaceutical, food, chemical, and cosmetic industries. The bioproduction of citric acid uses various microorganisms, but the most commonly employed ones are filamentous fungi such as Aspergillus niger and yeast Yarrowia lipolytica. This article presents a literature review on the properties of citric acid, the microorganisms and substrates used, different fermentation techniques, its industrial utilization, and the global citric acid market. This review emphasizes that there is still much to explore, both in terms of production process techniques and emerging new applications of citric acid.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
14
|
Li X, Gadar-Lopez AE, Chen L, Jayachandran S, Cruz-Morales P, Keasling JD. Mining natural products for advanced biofuels and sustainable bioproducts. Curr Opin Biotechnol 2023; 84:103003. [PMID: 37769513 DOI: 10.1016/j.copbio.2023.103003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023]
Abstract
Recently, there has been growing interest in the sustainable production of biofuels and bioproducts derived from renewable sources. Natural products, the largest and more structurally diverse group of metabolites, hold significant promise as sources for such bio-based products. However, there are two primary challenges in harnessing natural products' potential: precise mining of biosynthetic gene clusters (BGCs) that can be used as scaffolds or bioparts and their functional expression for biofuel and bioproduct manufacture. In this review, we explore recent advances in the development of bioinformatic tools for BGC mining and the manipulation of various hosts for natural product-based biofuels and bioproducts manufacture. Moreover, we discuss potential strategies for expanding the chemical diversity of biofuels and bioproducts and enhancing their overall yield.
Collapse
Affiliation(s)
- Xiaowei Li
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Adrian E Gadar-Lopez
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Ling Chen
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark.
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Danmarks Tekniske Universitet, Kongens Lyngby, Denmark; Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA, USA; Joint BioEnergy Institute, Emeryville, CA, USA; Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA 94720, USA; Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
15
|
Lv X, Jin K, Yi Y, Song L, Xiu X, Liu Y, Li J, Du G, Chen J, Liu L. Analysis of acid-tolerance mechanism based on membrane microdomains in Saccharomyces cerevisiae. Microb Cell Fact 2023; 22:180. [PMID: 37700284 PMCID: PMC10498586 DOI: 10.1186/s12934-023-02195-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Saccharomyces cerevisiae has been used in the biosynthesis of acid products such as organic acids owing to its acid tolerance. Improving the acid tolerance of S. cerevisiae is beneficial for expanding its application range. Our previous study isolated the TAMC strain that was tolerant to a pH 2.3 through adaptive laboratory evolution; however, its mechanism underlying tolerance to low pH environment remains unclear. RESULTS In this study, through visual observation and order analysis of plasma membrane and membrane microdomains, we revealed that the membrane microdomains of TAMC strain play an indispensable role in acid tolerance. Transcriptomic analysis showed an increase in the expression of genes related to key components of membrane microdomains in TAMC strain. Furthermore, an obvious reduction was observed in the acid tolerance of the strain with sterol C-24 methyltransferase encoding gene ERG6 knockout for inhibiting membrane microdomain formation. Finally, colocalization analysis of H+-ATPase PMA1 and plasma membrane protein PMP1 showed that disruption of membrane microdomains could inhibit the formation of the H+-ATPase complex. CONCLUSIONS Membrane microdomains could provide a platform for forming H+-ATPase complexes to facilitate intracellular H+ homeostasis, and thereby improve cell acid resistance. This study proposed a novel acid tolerance mechanism, providing a new direction for the rational engineering of acid-tolerant strains.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Ke Jin
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yu Yi
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Lingang Song
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China.
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Balarezo-Cisneros LN, Timouma S, Hanak A, Currin A, Valle F, Delneri D. High quality de novo genome assembly of the non-conventional yeast Kazachstania bulderi describes a potential low pH production host for biorefineries. Commun Biol 2023; 6:918. [PMID: 37679437 PMCID: PMC10484914 DOI: 10.1038/s42003-023-05285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Kazachstania bulderi is a non-conventional yeast species able to grow efficiently on glucose and δ-gluconolactone at low pH. These unique traits make K. bulderi an ideal candidate for use in sustainable biotechnology processes including low pH fermentations and the production of green chemicals including organic acids. To accelerate strain development with this species, detailed information of its genetics is needed. Here, by employing long read sequencing we report a high-quality phased genome assembly for three strains of K. bulderi species, including the type strain. The sequences were assembled into 12 chromosomes with a total length of 14 Mb, and the genome was fully annotated at structural and functional levels, including allelic and structural variants, ribosomal array and mating type locus. This high-quality reference genome provides a resource to advance our fundamental knowledge of biotechnologically relevant non-conventional yeasts and to support the development of genetic tools for manipulating such strains towards their use as production hosts in biotechnological processes.
Collapse
Affiliation(s)
| | - Soukaina Timouma
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Alistair Hanak
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew Currin
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | - Daniela Delneri
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2023; 370:128580. [PMID: 36608859 DOI: 10.1016/j.biortech.2023.128580] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In industrial bioproduction of organic acids, numerous neutralizers are required which substantially increases production costs and burdens the environment. To address this challenge, a Saccharomyces cerevisiae mutant (named TAMC) with a low pH tolerance (pH 2.3) was isolated by adaptive laboratory evolution. Taking the synthesis of l-malic acid as an example, the malate dehydrogenase 3 without signal peptide (MDHΔSKL) and pyruvate carboxylase 2 (PYC2) were overexpressed in cytoplasmic synthesis pathway, and the l-malic acid titer increased 5.6-fold. Subsequently, the malic acid transporter SpMae1 was designed, and the extracellular l-malic acid titer was increased from 7.3 to 73.6 g/L. Furthermore, by optimizing the synthesis of the precursor pyruvate, the titer reached 81.8 g/L. Finally, without any neutralizer, the titer in the 3-L bioreactor reached 232.9 g/L, the highest l-malic acid titer reported to date. Herein, the engineered l-malic acid overproducer paves the way for the large-scale green production of l-malic acid.
Collapse
Affiliation(s)
- Li Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Quanwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiao Kong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
18
|
Hidese R, Matsuda M, Kajikawa M, Osanai T, Kondo A, Hasunuma T. Metabolic and Microbial Community Engineering for Four-Carbon Dicarboxylic Acid Production from CO 2-Derived Glycogen in the Cyanobacterium Synechocystis sp. PCC6803. ACS Synth Biol 2022; 11:4054-4064. [PMID: 36445137 DOI: 10.1021/acssynbio.2c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The four-carbon (C4) dicarboxylic acids, fumarate, malate, and succinate, are the most valuable targets that must be exploited for CO2-based chemical production in the move to a sustainable low-carbon future. Cyanobacteria excrete high amounts of C4 dicarboxylic acids through glycogen fermentation in a dark anoxic environment. The enhancement of metabolic flux in the reductive TCA branch in the Cyanobacterium Synechocystis sp. PCC6803 is a key issue in the C4 dicarboxylic acid production. To improve metabolic flux through the anaplerotic pathway, we have created the recombinant strain PCCK, which expresses foreign ATP-forming phosphoenolpyruvate carboxykinase (PEPck) concurrent with intrinsic phosphoenolpyruvate carboxylase (Ppc) overexpression. Expression of PEPck concurrent with Ppc led to an increase in C4 dicarboxylic acids by autofermentation. Metabolome analysis revealed that PEPck contributed to an increase in carbon flux from hexose and pentose phosphates into the TCA reductive branch. To enhance the metabolic flux in the reductive TCA branch, we examined the effect of corn-steep liquor (CSL) as a nutritional supplement on C4 dicarboxylic acid production. Surprisingly, the addition of sterilized CSL enhanced the malate production in the PCCK strain. Thereafter, the malate and fumarate excreted by the PCCK strain are converted into succinate by the CSL-settling microorganisms. Finally, high-density cultivation of cells lacking the acetate kinase gene showed the highest production of malate and fumarate (3.2 and 2.4 g/L with sterilized CSL) and succinate (5.7 g/L with non-sterile CSL) after 72 h cultivation. The present microbial community engineering is useful for succinate production by one-pot fermentation under dark anoxic conditions.
Collapse
Affiliation(s)
- Ryota Hidese
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mami Matsuda
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mamiko Kajikawa
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Akihiko Kondo
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.,Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
D-Lactic Acid Production from Sugarcane Bagasse by Genetically Engineered Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8080816. [PMID: 36012804 PMCID: PMC9410322 DOI: 10.3390/jof8080816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Lactic acid (LA) is a promising bio-based chemical that has broad applications in food, nutraceutical, and bioplastic industries. However, production of the D-form of LA (D-LA) from fermentative organisms is lacking. In this study, Saccharomyces cerevisiae harboring the D-lactate dehydrogenase (DLDH) gene from Leuconostoc mesenteroides was constructed (CEN.PK2_DLDH). To increase D-LA production, the CRISPR/Cas12a system was used for the deletion of gpd1, gpd2, and adh1 to minimize glycerol and ethanol production. Although an improved D-LA titer was observed for both CEN.PK2_DLDHΔgpd and CEN.PK2_DLDHΔgpdΔadh1, growth impairment was observed. To enhance the D-LA productivity, CEN.PK2_DLDHΔgpd was crossed with the weak acid-tolerant S. cerevisiae BCC39850. The isolated hybrid2 showed a maximum D-LA concentration of 23.41 ± 1.65 g/L, equivalent to the improvement in productivity and yield by 2.2 and 1.5 folds, respectively. The simultaneous saccharification and fermentation using alkaline pretreated sugarcane bagasse by the hybrid2 led to an improved D-LA conversion yield on both the washed solid and whole slurry (0.33 and 0.24 g/g glucan). Our findings show the exploitation of natural yeast diversity and the potential strategy of gene editing combined with conventional breeding on improving the performance of S. cerevisiae for the production of industrially potent products.
Collapse
|
20
|
Zhang W, Zhao F, Li Y, Lou X, Dai C, Lv W, Qu X, Zheng S, Chen B, Galaev IY, Yun J. Suspension and transformation performance of poly(2-hydroxyethyl methacrylate)-based anion exchange cryogel beads with immobilized Lactobacillus paracasei cells as biocatalysts towards biosynthesis of phenyllactic acid in stirred tank bioreactors. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Miyake R, Ling H, Foo JL, Fugono N, Chang MW. Transporter-Driven Engineering of a Genetic Biosensor for the Detection and Production of Short-Branched Chain Fatty Acids in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:838732. [PMID: 35372305 PMCID: PMC8975619 DOI: 10.3389/fbioe.2022.838732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Biosensors can be used for real-time monitoring of metabolites and high-throughput screening of producer strains. Use of biosensors has facilitated strain engineering to efficiently produce value-added compounds. Following our recent work on the production of short branched-chain fatty acids (SBCFAs) in engineered Saccharomyces cerevisiae, here we harnessed a weak organic acid transporter Pdr12p, engineered a whole-cell biosensor to detect exogenous and intracellular SBCFAs and optimized the biosensor’s performance by varying PDR12 expression. We firstly constructed the biosensor and evaluated its response to a range of short-chain carboxylic acids. Next, we optimized its sensitivity and operational range by deletion and overexpression of PDR12. We found that the biosensor responded to exogenous SBCFAs including isovaleric acid, isobutyric acid and 2-methylbutanoic acid. PDR12 deletion enhanced the biosensor’s sensitivity to isovaleric acid at a low concentration and PDR12 overexpression shifted the operational range towards a higher concentration. Lastly, the deletion of PDR12 improved the biosensor’s sensitivity to the SBCFAs produced in our previously engineered SBCFA-overproducing strain. To our knowledge, our work represents the first study on employing an ATP-binding-cassette transporter to engineer a transcription-factor-based genetic biosensor for sensing SBCFAs in S. cerevisiae. Our findings provide useful insights into SBCFA detection by a genetic biosensor that will facilitate the screening of SBCFA-overproducing strains.
Collapse
Affiliation(s)
- Ryoma Miyake
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jee Loon Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nobutake Fugono
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama, Japan
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Matthew Wook Chang,
| |
Collapse
|
22
|
Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8030115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The revolutionary transformation from petrol-based production to bio-based production is becoming urgent in line with the rapid industrialization, depleting resources, and deterioration of the ecosystem. Bio-based production from waste-streams is offering a sustainable and environmentally friendly solution. It offers several advantages, such as a longer operation period, less competition for microorganisms, higher efficiency, and finally, lower process costs. In the current study, several bio-based products (organic acids, biomethane, biohydrogen, and metal leachates) produced under acidic conditions are reviewed regarding their microbial pathways, processes, and operational conditions. Furthermore, the limitations both in the production process and in the scale-up are evaluated with future recommendations.
Collapse
|
23
|
Xiang P, Li SM. Formation of 3-Orsellinoxypropanoic Acid in Penicillum crustosum is Catalyzed by a Bifunctional Nonreducing Polyketide Synthase. Org Lett 2022; 24:462-466. [PMID: 34962820 DOI: 10.1021/acs.orglett.1c04189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The heterologous expression of a nonreducing polyketide synthase gene oesA from Penicillium crustosum led to the identification of orsellinoylpropanoic acid (1). Domain deletion and recombination proved that OesA catalyzes not only the formation of orsellinic acid but also its transfer to 3-hydroxypropanoic acid. Both ACP domains contribute independently and complementarily to the product formation. Feeding experiments provided evidence that only the orsellinyl residue is derived from acetate.
Collapse
Affiliation(s)
- Pan Xiang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
24
|
Dey N, Kumar G, Vickram AS, Mohan M, Singhania RR, Patel AK, Dong CD, Anbarasu K, Thanigaivel S, Ponnusamy VK. Nanotechnology-assisted production of value-added biopotent energy-yielding products from lignocellulosic biomass refinery - A review. BIORESOURCE TECHNOLOGY 2022; 344:126171. [PMID: 34695586 DOI: 10.1016/j.biortech.2021.126171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 05/22/2023]
Abstract
The need to develop sustainable alternatives for pretreatment and hydrolysis of lignocellulosic biomass (LCB) is a massive concern in the industrial sector today. Breaking down of LCB yields sugars and fuel in the bulk scale. If explored under nanotechnology, LCB can be refined to yield high-performance fuel sources. The toxicity and cost of conventional methods can be reduced by applying nanoparticles (NPs) in refining LCB. Immobilization of enzymes onto NPs or used in conjugation with nanomaterials would instill specific and eco-friendly options for hydrolyzing LCB. Nanomaterials increase the proficiency, reusability, and stability of enzymes. Notably, magnetic NPs have bagged their place in the downstream processing of LCB effluents due to their efficient separation and cost-effectiveness. The current review highlights the role of nanotechnology and its particles in refining LCB into various commercial precursors and value-added products. The relationship between nanotechnology and LCB refinery is portrayed effectively in the present study.
Collapse
Affiliation(s)
- Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Monisha Mohan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Reeta Rani Singhania
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - Anil Kumar Patel
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - Cheng-Di Dong
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - S Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai City, India
| | - Vinoth Kumar Ponnusamy
- Program of Aquatic Science and Technology, & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 811, Taiwan; Department of Medicinal and Applied Chemistry. & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan.
| |
Collapse
|
25
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
26
|
Ji H, Xu K, Dong X, Sun D, Jin L. Sequential Production of ᴅ-xylonate and Ethanol from Non-Detoxified Corncob at Low-pH by Pichia kudriavzevii via a Two-Stage Fermentation Strategy. J Fungi (Basel) 2021; 7:jof7121038. [PMID: 34947020 PMCID: PMC8709110 DOI: 10.3390/jof7121038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Improving the comprehensive utilization of sugars in lignocellulosic biomass is a major challenge for enhancing the economic viability of lignocellulose biorefinement. A robust yeast Pichia kudriavzevii N-X showed excellent performance in ethanol production under high temperature and low pH conditions and was engineered for ᴅ-xylonate production without xylitol generation. The recombinant strain P. kudriavzevii N-X/S1 was employed for sequential production of ᴅ-xylonate and ethanol from ᴅ-xylose, feeding on ᴅ-glucose without pH control in a two-stage strategy of aerobic and shifting micro-aerobic fermentation. Acid-pretreated corncob without detoxification and filtration was used for ᴅ-xylonate production, then simultaneous saccharification and ethanol fermentation was performed with cellulase added at pH 4.0 and at 40 °C. By this strategy, 33.5 g/L ᴅ-xylonate and 20.8 g/L ethanol were produced at yields of 1.10 g/g ᴅ-xylose and 84.3% of theoretical value, respectively. We propose a promising approach for the sequential production of ᴅ-xylonate and ethanol from non-detoxified corncob using a single microorganism.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (K.X.); (D.S.); (L.J.)
- Correspondence:
| | - Ke Xu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (K.X.); (D.S.); (L.J.)
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China;
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (K.X.); (D.S.); (L.J.)
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (K.X.); (D.S.); (L.J.)
| |
Collapse
|
27
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
28
|
Ozogul F, Ozcelik S, Ozogul Y, Yilmaz MT. Seafood infusion broths as novel sources to produce organic acids using selected lactic acid bacteria strains. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zhang K, Zhang F, Wu YR. Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147024. [PMID: 33895504 DOI: 10.1016/j.scitotenv.2021.147024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Concerns regarding high energy demand and gradual depletion of fossil fuels have attracted the desire of seeking renewable and sustainable alternatives. Similar to but better than the first- and second-generation biomass, algae derived third-generation biorefinery aims to generate value-added products by microbial cell factories and has a great potential due to its abundant, carbohydrate-rich and lignin-lacking properties. However, it is crucial to establish an efficient process with higher competitiveness over the current petroleum industry to effectively utilize algal resources. In this review, we summarize the recent technological advances in maximizing the bioavailability of different algal resources. Following an overview of approaches to enhancing the hydrolytic efficiency, we review prominent opportunities involved in microbial conversion into various value-added products including alcohols, organic acids, biogas and other potential industrial products, and also provide key challenges and trends for future insights into developing biorefineries of marine biomass.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Feifei Zhang
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, Guangdong, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
30
|
Reiter A, Herbst L, Wiechert W, Oldiges M. Need for speed: evaluation of dilute and shoot-mass spectrometry for accelerated metabolic phenotyping in bioprocess development. Anal Bioanal Chem 2021; 413:3253-3268. [PMID: 33791825 PMCID: PMC8079306 DOI: 10.1007/s00216-021-03261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023]
Abstract
With the utilization of small-scale and highly parallelized cultivation platforms embedded in laboratory robotics, microbial phenotyping and bioprocess development have been substantially accelerated, thus generating a bottleneck in bioanalytical bioprocess sample analytics. While microscale cultivation platforms allow the monitoring of typical process parameters, only limited information about product and by-product formation is provided without comprehensive analytics. The use of liquid chromatography mass spectrometry can provide such a comprehensive and quantitative insight, but is often limited by analysis runtime and throughput. In this study, we developed and evaluated six methods for amino acid quantification based on two strong cation exchanger columns and a dilute and shoot approach in hyphenation with either a triple-quadrupole or a quadrupole time-of-flight mass spectrometer. Isotope dilution mass spectrometry with 13C15N labeled amino acids was used to correct for matrix effects. The versatility of the methods for metabolite profiling studies of microbial cultivation supernatants is confirmed by a detailed method validation study. The methods using chromatography columns showed a linear range of approx. 4 orders of magnitude, sufficient response factors, and low quantification limits (7-443 nM) for single analytes. Overall, relative standard deviation was comparable for all analytes, with < 8% and < 11% for unbuffered and buffered media, respectively. The dilute and shoot methods with an analysis time of 1 min provided similar performance but showed a factor of up to 35 times higher throughput. The performance and applicability of the dilute and shoot method are demonstrated using a library of Corynebacterium glutamicum strains producing L-histidine, obtained from random mutagenesis, which were cultivated in a microscale cultivation platform.
Collapse
Affiliation(s)
- Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Laura Herbst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Computational Systems Biotechnology, RWTH Aachen University, 52062, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, 52062, Aachen, Germany.
| |
Collapse
|
31
|
Engineering of the Small Noncoding RNA (sRNA) DsrA Together with the sRNA Chaperone Hfq Enhances the Acid Tolerance of Escherichia coli. Appl Environ Microbiol 2021; 87:AEM.02923-20. [PMID: 33674434 DOI: 10.1128/aem.02923-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/21/2021] [Indexed: 11/20/2022] Open
Abstract
Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In Escherichia coli, the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of E. coli IMPORTANCE Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.
Collapse
|
32
|
Xiberras J, Klein M, Prosch C, Malubhoy Z, Nevoigt E. Anaplerotic reactions active during growth of Saccharomyces cerevisiae on glycerol. FEMS Yeast Res 2021; 20:5672635. [PMID: 31821485 DOI: 10.1093/femsyr/foz086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 02/01/2023] Open
Abstract
Anaplerotic reactions replenish TCA cycle intermediates during growth. In Saccharomyces cerevisiae, pyruvate carboxylase and the glyoxylate cycle have been experimentally identified to be the main anaplerotic routes during growth on glucose (C6) and ethanol (C2), respectively. The current study investigates the importance of the two isoenzymes of pyruvate carboxylase (PYC1 and PYC2) and one of the key enzymes of the glyoxylate cycle (ICL1) for growth on glycerol (C3) as a sole carbon source. As the wild-type strains of the CEN.PK family are unable to grow in pure synthetic glycerol medium, a reverse engineered derivative showing a maximum specific growth rate of 0.14 h-1 was used as the reference strain. While the deletion of PYC1 reduced the maximum specific growth rate by about 38%, the deletion of PYC2 had no significant impact, neither in the reference strain nor in the pyc1Δ mutant. The deletion of ICL1 only marginally reduced growth of the reference strain but further decreased the growth rate of the pyc1 deletion strain by 20%. Interestingly, the triple deletion (pyc1Δ pyc2Δ icl1Δ) did not show any growth. Therefore, both the pyruvate carboxylase and the glyoxylate cycle are involved in anaplerosis during growth on glycerol.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Celina Prosch
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Zahabiya Malubhoy
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
33
|
Iijima H, Watanabe A, Sukigara H, Iwazumi K, Shirai T, Kondo A, Osanai T. Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Metab Eng 2021; 65:88-98. [PMID: 33722652 DOI: 10.1016/j.ymben.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Succinate, fumarate, and malate are valuable four-carbon (C4) dicarboxylic acids used for producing plastics and food additives. C4 dicarboxylic acid is biologically produced by heterotrophic organisms. However, current biological production requires organic carbon sources that compete with food uses. Herein, we report C4 dicarboxylic acid production from CO2 using metabolically engineered Synechocystis sp. PCC 6803. Overexpression of citH, encoding malate dehydrogenase (MDH), resulted in the enhanced production of succinate, fumarate, and malate. citH overexpression increased the reductive branch of the open cyanobacterial tricarboxylic acid (TCA) cycle flux. Furthermore, product stripping by medium exchanges increased the C4 dicarboxylic acid levels; product inhibition and acidification of the media were the limiting factors for succinate production. Our results demonstrate that MDH is a key regulator that activates the reductive branch of the open cyanobacterial TCA cycle. The study findings suggest that cyanobacteria can act as a biocatalyst for converting CO2 to carboxylic acids.
Collapse
Affiliation(s)
- Hiroko Iijima
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Atsuko Watanabe
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Haruna Sukigara
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kaori Iwazumi
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
34
|
Luo Z, Zhou L, Zhu Y, Zhou C. Effects of different drying methods on the physicochemical property and edible quality of fermented
Pyracantha fortuneana
fruit powder. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhencen Luo
- College of Food Science Southwest University Chongqing400715China
| | - Lingguo Zhou
- Chongqing Food Technology Institute Chongqing400042China
| | - Yiwei Zhu
- Chongqing Food Technology Institute Chongqing400042China
| | - Caiqiong Zhou
- College of Food Science Southwest University Chongqing400715China
- Engineering & Technology Research Centre of Characteristic Food Chongqing400715China
| |
Collapse
|
35
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
36
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
37
|
Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci U S A 2020; 117:27954-27961. [PMID: 33106428 PMCID: PMC7668050 DOI: 10.1073/pnas.2013044117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Toxicity from the external presence or internal production of compounds can reduce the growth and viability of microbial cell factories and compromise productivity. Aromatic compounds are generally toxic for microorganisms, which makes their production in microbial hosts challenging. Here we use adaptive laboratory evolution to generate Saccharomyces cerevisiae mutants tolerant to two aromatic acids, coumaric acid and ferulic acid. The evolution experiments were performed at low pH (3.5) to reproduce conditions typical of industrial processes. Mutant strains tolerant to levels of aromatic acids near the solubility limit were then analyzed by whole genome sequencing, which revealed prevalent point mutations in a transcriptional activator (Aro80) that is responsible for regulating the use of aromatic amino acids as the nitrogen source. Among the genes regulated by Aro80, ESBP6 was found to be responsible for increasing tolerance to aromatic acids by exporting them out of the cell. Further examination of the native function of Esbp6 revealed that this transporter can excrete fusel acids (byproducts of aromatic amino acid catabolism) and this role is shared with at least one additional transporter native to S. cerevisiae (Pdr12). Besides conferring tolerance to aromatic acids, ESBP6 overexpression was also shown to significantly improve the secretion in coumaric acid production strains. Overall, we showed that regulating the activity of transporters is a major mechanism to improve tolerance to aromatic acids. These findings can be used to modulate the intracellular concentration of aromatic compounds to optimize the excretion of such products while keeping precursor molecules inside the cell.
Collapse
Affiliation(s)
- Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Elsayed T Mohamed
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Mohammad S Radi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Adam M Feist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
- BioInnovation Institute, 2200 Copenhagen N, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
38
|
Danielski GM, Evangelista AG, Luciano FB, de Macedo REF. Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review. Crit Rev Food Sci Nutr 2020; 62:1105-1118. [DOI: 10.1080/10408398.2020.1835818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gabriela Maia Danielski
- Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
- Undergraduate Program in Agronomy, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | | | | |
Collapse
|
39
|
Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. ENERGIES 2020. [DOI: 10.3390/en13205300] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conversion of lignocellulosic biomass (LB) to sugar is an intricate process which is the costliest part of the biomass conversion process. Even though acid/enzyme catalysts are usually being used for LB hydrolysis, enzyme immobilization has been recognized as a potential strategy nowadays. The use of nanobiocatalysts increases hydrolytic efficiency and enzyme stability. Furthermore, biocatalyst/enzyme immobilization on magnetic nanoparticles enables easy recovery and reuse of enzymes. Hence, the exploitation of nanobiocatalysts for LB to biofuel conversion will aid in developing a lucrative and sustainable approach. With this perspective, the effects of nanobiocatalysts on LB to biofuel production were reviewed here. Several traits, such as switching the chemical processes using nanomaterials, enzyme immobilization on nanoparticles for higher reaction rates, recycling ability and toxicity effects on microbial cells, were highlighted in this review. Current developments and viability of nanobiocatalysts as a promising option for enhanced LB conversion into the biofuel process were also emphasized. Mostly, this would help in emerging eco-friendly, proficient, and cost-effective biofuel technology.
Collapse
|
40
|
Mendes Ferreira A, Mendes-Faia A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020; 9:E1231. [PMID: 32899297 PMCID: PMC7555314 DOI: 10.3390/foods9091231] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition.
Collapse
Affiliation(s)
- Ana Mendes Ferreira
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Arlete Mendes-Faia
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
41
|
Ji H, Xu K, Dong X, Sun D, Peng R, Lin S, Zhang K, Jin L. Transcriptional profiling reveals molecular basis and the role of arginine in response to low-pH stress in Pichia kudriavzevii. J Biosci Bioeng 2020; 130:588-595. [PMID: 32798135 DOI: 10.1016/j.jbiosc.2020.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
The non-conventional yeast Pichia kudriavzevii is considered to be a promising biotechnological host for the production of organic acids under low-pH conditions. However, little is known about the low-pH stress response in P. kudriavzevii, which significantly restricts its future development. In this study, P. kudriavzevii N-X showed great tolerance to low-pH stress, but the cell aggregation upon extremely acidic conditions might be unfavorable for low-pH fermentation. We therefore conducted RNA-Seq to compare global gene expression of P. kudriavzevii N-X in response to different pH stresses. Totally 434 genes were identified to be differentially expressed genes (DEGs), and annotation and enrichment analysis suggested that multiple genes associated with regulation of membrane lipid composition, filamentous growth and arginine metabolism were differentially expressed. The increased specific activity of arginase and intracellular ammonia concentration of P. kudriavzevii cultured at pH 2.0 further implied potential roles of arginine in response to extreme low-pH conditions. Extracellular supplementation of 5 mM arginine resulted in increased pHi and cell growth at pH 2.0, meanwhile the cell aggregation was partially suppressed. Additionally, overexpression of ARG J involving in arginine synthesis can also enhance the cell growth and reduce the aggregation effect. These results suggested that increasing arginine flux might be an alternative approach in the developing of P. kudriavzevii as a platform host for production of organic acids under low-pH conditions.
Collapse
Affiliation(s)
- Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China.
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Xiameng Dong
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang 325006, PR China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Kailun Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, PR China; Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang 325035, PR China
| |
Collapse
|
42
|
de Siqueira GMV, Silva-Rocha R, Guazzaroni ME. Turning the Screw: Engineering Extreme pH Resistance in Escherichia coli through Combinatorial Synthetic Operons. ACS Synth Biol 2020; 9:1254-1262. [PMID: 32438805 DOI: 10.1021/acssynbio.0c00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adoption of microorganisms as platforms for sustainable biobased production requires host cells to be able to withstand harsh conditions, usually very distant from those in which these organisms are naturally adapted to thrive. However, novel survival mechanisms unearthed by the study of microbiomes from extreme habitats may be exploited to enhance microbial robustness under the strict conditions needed for different industrial appplications. In this work, synthetic biology approaches were used to engineer enhanced acidic resistance in Escherichia coli through the characterization of a collection of unique operons composed of combinatorial assemblies of three novel genes from an extreme environment and three synthetic ribosome binding sites. The results here presented illustrate the efficacy of combining different metagenomic genes for resistance in synthetic operons, as expression of these gene clusters increased hundred-fold the survival percentage of cells exposed to an acidic shock in minimal media at pH 1.9 under aerobic conditions.
Collapse
Affiliation(s)
- Guilherme M. V. de Siqueira
- Departamento de Bioquı́mica, Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Ribeirão Preto, SP 14049-900, Brasil
| | - Rafael Silva-Rocha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP-USP), Ribeirão Preto, SP 14049-900, Brasil
| | - María-Eugenia Guazzaroni
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP-USP), Ribeirão Preto, SP 14040-901, Brasil
| |
Collapse
|
43
|
Li JW, Zhang XY, Wu H, Bai YP. Transcription Factor Engineering for High-Throughput Strain Evolution and Organic Acid Bioproduction: A Review. Front Bioeng Biotechnol 2020; 8:98. [PMID: 32140463 PMCID: PMC7042172 DOI: 10.3389/fbioe.2020.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Metabolic regulation of gene expression for the microbial production of fine chemicals, such as organic acids, is an important research topic in post-genomic metabolic engineering. In particular, the ability of transcription factors (TFs) to respond precisely in time and space to various small molecules, signals and stimuli from the internal and external environment is essential for metabolic pathway engineering and strain development. As a key component, TFs are used to construct many biosensors in vivo using synthetic biology methods, which can be used to monitor the concentration of intracellular metabolites in organic acid production that would otherwise remain “invisible” within the intracellular environment. TF-based biosensors also provide a high-throughput screening method for rapid strain evolution. Furthermore, TFs are important global regulators that control the expression levels of key enzymes in organic acid biosynthesis pathways, therefore determining the outcome of metabolic networks. Here we review recent advances in TF identification, engineering, and applications for metabolic engineering, with an emphasis on metabolite monitoring and high-throughput strain evolution for the organic acid bioproduction.
Collapse
Affiliation(s)
- Jia-Wei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
44
|
Hakkaart X, Liu Y, Hulst M, El Masoudi A, Peuscher E, Pronk J, van Gulik W, Daran-Lapujade P. Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO 2 levels. Biotechnol Bioeng 2020; 117:721-735. [PMID: 31654410 PMCID: PMC7028085 DOI: 10.1002/bit.27210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Engineered strains of Saccharomyces cerevisiae are used for industrial production of succinic acid. Optimal process conditions for dicarboxylic‐acid yield and recovery include slow growth, low pH, and high CO2. To quantify and understand how these process parameters affect yeast physiology, this study investigates individual and combined impacts of low pH (3.0) and high CO2 (50%) on slow‐growing chemostat and retentostat cultures of the reference strain S. cerevisiae CEN.PK113‐7D. Combined exposure to low pH and high CO2 led to increased maintenance‐energy requirements and death rates in aerobic, glucose‐limited cultures. Further experiments showed that these effects were predominantly caused by low pH. Growth under ammonium‐limited, energy‐excess conditions did not aggravate or ameliorate these adverse impacts. Despite the absence of a synergistic effect of low pH and high CO2 on physiology, high CO2 strongly affected genome‐wide transcriptional responses to low pH. Interference of high CO2 with low‐pH signaling is consistent with low‐pH and high‐CO2 signals being relayed via common (MAPK) signaling pathways, notably the cell wall integrity, high‐osmolarity glycerol, and calcineurin pathways. This study highlights the need to further increase robustness of cell factories to low pH for carboxylic‐acid production, even in organisms that are already applied at industrial scale.
Collapse
Affiliation(s)
- Xavier Hakkaart
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Yaya Liu
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Mandy Hulst
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Anissa El Masoudi
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Eveline Peuscher
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Jack Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| |
Collapse
|
45
|
Zhang C, Chen Z, Tao Y, Ke T, Li S, Wang P, Chen L. Enhanced removal of trichlorfon and Cd(II) from aqueous solution by magnetically separable chitosan beads immobilized Aspergillus sydowii. Int J Biol Macromol 2020; 148:457-465. [PMID: 31972191 DOI: 10.1016/j.ijbiomac.2020.01.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 02/03/2023]
Abstract
Simultaneous removal of heavy metals and organics from wastewater has always been an environmental problem with great concern. In this study, a novel ecofriendly bioborbent, magnetic chitosan beads immobilized Aspergillus sydowii (MCBAs) were synthesized and used to simultaneously remove trichlorfon (TCF) and Cd(II) from aqueous solution. MCBAs showed an increased special surface area (55.38 m2·g-1) through immobilizing A. sydowii and its saturation magnetization reached 14.62 emu·g-1. The equilibrium removal capacities of TCF and Cd(II) were 135.43 mg·g-1 and 56.40 mg·g-1 in the co-system with 200 mg·L-1 TCF and 50 mg·L-1 Cd(II), respectively. The removal capacities of TCF and Cd(II) were strongly depended on the immobilized A. sydowii spore concentration, initial concentrations of TCF and Cd(II), and MCBAs dose. TCF biodegradation intermediates were identified by gas chromatography-mass spectrometry system. Fourier transform infrared spectra displayed that -OH and -NH groups on MCBAs mainly participated in the Cd(II) sequestration and the CO stretching vibration was possibly related to the degradation intermediates of TCF. MCBAs exhibited excellent recyclability upto four cycles. Therefore, MCBAs are suitable and effective for the simultaneous removal of TCF and Cd(II) from wastewater.
Collapse
Affiliation(s)
- Chao Zhang
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Zixu Chen
- College of Chemistry & Environment Engineering, Yangtze University, Jingzhou 434023, China
| | - Yue Tao
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Tan Ke
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Shuangxi Li
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Panpan Wang
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China
| | - Lanzhou Chen
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
46
|
Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00338j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Medium-chain dicarboxylic acids (MDCAs) are widely used in the production of nylon materials, and among which, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids are particularly important for that purpose.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Dixuan Huang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Xue Sui
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Bing Huang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF)
- Jiangnan University
- Wuxi
- China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology
| |
Collapse
|
47
|
Harnessing microbial metabolomics for industrial applications. World J Microbiol Biotechnol 2019; 36:1. [DOI: 10.1007/s11274-019-2775-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
48
|
Pereira R, Wei Y, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metab Eng 2019; 56:130-141. [DOI: 10.1016/j.ymben.2019.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
|
49
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
50
|
Kruis AJ, Bohnenkamp AC, Patinios C, van Nuland YM, Levisson M, Mars AE, van den Berg C, Kengen SW, Weusthuis RA. Microbial production of short and medium chain esters: Enzymes, pathways, and applications. Biotechnol Adv 2019; 37:107407. [DOI: 10.1016/j.biotechadv.2019.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|